JP2015169449A - Barrel diameter measuring apparatus for glass bottle - Google Patents

Barrel diameter measuring apparatus for glass bottle Download PDF

Info

Publication number
JP2015169449A
JP2015169449A JP2014042157A JP2014042157A JP2015169449A JP 2015169449 A JP2015169449 A JP 2015169449A JP 2014042157 A JP2014042157 A JP 2014042157A JP 2014042157 A JP2014042157 A JP 2014042157A JP 2015169449 A JP2015169449 A JP 2015169449A
Authority
JP
Japan
Prior art keywords
glass bottle
camera
star wheel
light
parabolic mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014042157A
Other languages
Japanese (ja)
Other versions
JP6279353B2 (en
Inventor
滝澤 務
Tsutomu Takizawa
務 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Machinery Co Ltd
Original Assignee
Toyo Glass Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Machinery Co Ltd filed Critical Toyo Glass Machinery Co Ltd
Priority to JP2014042157A priority Critical patent/JP6279353B2/en
Publication of JP2015169449A publication Critical patent/JP2015169449A/en
Application granted granted Critical
Publication of JP6279353B2 publication Critical patent/JP6279353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable highly-accurate measurement rarely affected by a mechanical vibration and a vibration caused by the rotation of a glass bottle, by receiving only parallel light regardless of a barrel diameter of a measured object.SOLUTION: A barrel diameter measuring apparatus 1 comprises: a star wheel 3 for successively sending a glass bottle 100; a drive wheel 60 that rotates the glass bottle 100; a projector 61 that is provided inside the star wheel 3 and irradiates the glass bottle 100 with light; a parabolic mirror 62 that is provided outside the star wheel 3 and reflects the light irradiated through the glass bottle; and a camera 64 that is provided outside the star wheel 3 and receives the irradiated light reflected from the parabolic mirror 62.

Description

本発明は、カメラと放物面鏡を備えるガラスびんの胴径測定器に関する。   The present invention relates to a glass bottle barrel diameter measuring device including a camera and a parabolic mirror.

一般に、ガラスびんは、成形時の例えばガラス温度の不均一や、除冷炉に入るまでの間に生じる変形によって、求める規格とは異なって成形される場合がある。このような欠陥を有するガラスびんを検出するための一つとして、胴径測定器は、ガラスびんの胴径を測定する(例えば、特許文献1参照。)。
従来、ガラスびんの胴径測定器の測定方式は、接触方式と非接触方式がある。接触方式は、接触部をガラスびんに接触させることによって胴径を測定する。この接触方式は、常にガラスびんとの接触があるため、接触時の衝撃によって部品の破損や摩耗が生じる。
また、接触方式は、接触による振動のため測定精度を保つことができず、部位によっては測定ができない。
一方、非接触方式は、接触することなく測定ができるため、測定時にガラスびんを傷つけることがない。また、非接触方式は、接触による振動がなく、また、例えばラインセンサカメラでは光によって測定をおこなうため、測定の精度が高い。
Generally, a glass bottle may be molded differently from a required standard due to, for example, non-uniformity of glass temperature at the time of molding or deformation that occurs before entering a cooling furnace. As one of the methods for detecting a glass bottle having such a defect, the body diameter measuring instrument measures the body diameter of the glass bottle (see, for example, Patent Document 1).
Conventionally, there are a contact method and a non-contact method for measuring the diameter of a glass bottle. In the contact method, the body diameter is measured by bringing the contact portion into contact with the glass bottle. In this contact method, since there is always contact with the glass bottle, parts are damaged or worn by an impact at the time of contact.
Further, the contact method cannot maintain measurement accuracy due to vibration caused by contact, and cannot measure depending on the part.
On the other hand, since the non-contact method can measure without contact, the glass bottle is not damaged during measurement. In the non-contact method, there is no vibration due to contact, and, for example, a line sensor camera performs measurement with light, so the measurement accuracy is high.

特開2005−091060号公報Japanese Patent Laying-Open No. 2005-091060

しかしながら、例えば投光器と受光器の相対位置が固定され、光線の芯がずれないことを前提とするレーザスキャンマイクロメータでは、機械振動やガラスびんの回転による振動によって投光器と受光器の相対位置がずれてしまい精度良く測定ができない。
また、ガラスびんの胴径を精度良く測定するため、受光器は、投光器からの照射光のうち平行光を受光することによって、ノギスのように胴部の両端を測定する必要がある。しかしながら、例えばラインセンサカメラの場合、測定物の胴径が大きくなればなるほど、カメラ視線が斜めになり胴部の両端の測定値に誤差を生じる。
本発明は、上述した事情に鑑みてなされたものであり、機械振動やガラスびんの回転による振動の影響を受けにくく、測定物の胴径に依らず平行光のみを受光することによって、精度の高い測定ができるガラスびんの胴径測定器を提供することを目的とする。
However, for example, in a laser scan micrometer that assumes that the relative position of the projector and the receiver is fixed and the core of the light beam does not shift, the relative position of the projector and the receiver is shifted due to mechanical vibration or vibration caused by the rotation of the glass bottle. Measurement is not possible with high accuracy.
Moreover, in order to measure the barrel diameter of the glass bottle with high accuracy, the light receiver needs to measure both ends of the barrel portion like a caliper by receiving parallel light out of the light emitted from the projector. However, in the case of a line sensor camera, for example, the larger the body diameter of the object to be measured, the more oblique the camera line of sight becomes and an error occurs in the measured values at both ends of the body.
The present invention has been made in view of the above-described circumstances, is not easily affected by mechanical vibrations and vibrations caused by the rotation of glass bottles, and receives only parallel light regardless of the body diameter of the measurement object. An object of the present invention is to provide a glass bottle diameter measuring device capable of high measurement.

上記目的を達成するために、本発明は、ガラスびんを間欠的に送るためのスターホイールと、前記ガラスびんを回転させるドライブホイールと、前記スターホイールの内に設けられ、前記スターホイールの外に向けて、光を前記ガラスびんに照射する投光器と、前記スターホイールの外に設けられ、前記ガラスびん越しに照射した光を反射する放物面鏡と、前記放物面鏡から反射した光を受光するカメラと、を備えたことを特徴とする。
この発明では、胴径測定器は、機械振動やガラスびんの回転による振動の影響を受けにくく、測定物の胴径に依らず投光器からの照射光のうち平行光のみを受光できる。
したがって、投光器からの照射光のうち平行光を受光することによって、ノギスのように胴部の両端を測定するため、ガラスびんの胴径を精度良く測定できる。
In order to achieve the above object, the present invention provides a star wheel for intermittently feeding glass bottles, a drive wheel for rotating the glass bottles, and a star wheel provided outside the star wheel. A light projector that irradiates the glass bottle with light, a parabolic mirror that is provided outside the star wheel and reflects light irradiated through the glass bottle, and light reflected from the parabolic mirror. And a camera for receiving light.
In this invention, the barrel diameter measuring device is not easily affected by mechanical vibrations or vibrations caused by the rotation of the glass bottle, and can receive only the parallel light of the irradiation light from the projector regardless of the barrel diameter of the measurement object.
Therefore, since both ends of the barrel are measured like vernier calipers by receiving parallel light out of the light emitted from the projector, the barrel diameter of the glass bottle can be measured with high accuracy.

前記放物面鏡と前記平面鏡とは、一対のフレームにより支持され、放物面鏡と、平面鏡と、一対のフレームとは枠状に形成されていてもよい。
前記放物面鏡側に前記カメラが配置されていてもよい。
この発明では、光学系を構成するに際し、一対のフレームを利用して、放物面鏡と平面鏡とカメラとを一体に保持できるため、光学系の配置が容易化でき、放物面鏡と平面鏡とカメラの光学上の芯出しを容易化できる。
前記投光器は拡散面光源であってもよい。
前記カメラは、エリアセンサカメラの機能を備え、初期設定時にエリアセンサカメラとして画像を撮影し、撮影画像中の所定のラインを選択し、ガラスびんの胴径の測定中には当該選択したラインの画像を処理してもよい。
The parabolic mirror and the plane mirror may be supported by a pair of frames, and the parabolic mirror, the plane mirror, and the pair of frames may be formed in a frame shape.
The camera may be disposed on the parabolic mirror side.
In the present invention, when the optical system is configured, the parabolic mirror, the plane mirror, and the camera can be integrally held by using a pair of frames, so that the arrangement of the optical system can be facilitated, and the parabolic mirror and the plane mirror And camera optical alignment.
The projector may be a diffuse surface light source.
The camera has an area sensor camera function, takes an image as an area sensor camera at the time of initial setting, selects a predetermined line in the taken image, and measures the selected line during measurement of the diameter of the glass bottle. The image may be processed.

本発明によれば、胴径測定器は、機械振動やガラスびんの回転による振動の影響が受けにくく、測定物の胴径によらず投光器からの照射光のうち平行光のみを受光できるため、精度の高い測定ができる。   According to the present invention, the barrel diameter measuring instrument is not easily affected by mechanical vibration or vibration due to the rotation of the glass bottle, and can receive only the parallel light of the irradiation light from the projector regardless of the trunk diameter of the measurement object. Highly accurate measurement is possible.

本発明に係る胴径測定器の平面図である。It is a top view of the trunk diameter measuring device concerning the present invention. 図1における測定機器の側面図である。It is a side view of the measuring apparatus in FIG. 図1における測定機器の平面図である。It is a top view of the measuring instrument in FIG. カメラ画像を示す図である。It is a figure which shows a camera image. Aは、発明に係る別の実施の形態を示す胴径測定器の平面図、Bは、測定ユニットの側面図である。A is a top view of the trunk diameter measuring device which shows another embodiment which concerns on invention, B is a side view of a measurement unit.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本発明に係るガラスびんの胴径測定器1の平面図である。
胴径測定器1は、マシンセンター2を回転軸として回転し、ガラスびん100を順次に間欠的に送るスターホイール3と、ガラスびん100をスターホイール3に搬入する搬入コンベア4と、ガラスびん100をスターホイール3から搬出する搬出コンベア5と、ガラスびん100の胴径を測定する測定ユニット6と、を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view of a bottle diameter measuring device 1 according to the present invention.
The body diameter measuring instrument 1 is rotated around the machine center 2 as a rotation axis, a star wheel 3 that sequentially and intermittently sends the glass bottles 100, a carry-in conveyor 4 that carries the glass bottles 100 into the star wheel 3, and a glass bottle 100. The unloading conveyor 5 which unloads from the star wheel 3, and the measurement unit 6 which measures the body diameter of the glass bottle 100 are provided.

スターホイール3は、円盤状のホイールであり、周方向に等間隔に8個の凹溝3aを有する。このスターホイール3は、回転可能な垂直軸であるマシンセンター2を回転軸として、図1では、反時計回りに回転する。また、スターホイール3は、マシンセンター2に対し、図2に示すように、上下に間隔をあけて一対設けられる。
この構成によって、一対のスターホイール3は、ガラスびん100をそれぞれの凹溝3aに受け入れ、ガラスびん100の胴部を上下に間隔をあけて2箇所で支持し、ガラスびん100を立てた状態で所定の方向に順次に間欠的に送ることができる。
The star wheel 3 is a disk-shaped wheel, and has eight concave grooves 3a at equal intervals in the circumferential direction. The star wheel 3 rotates counterclockwise in FIG. 1 with the machine center 2 being a rotatable vertical axis as a rotation axis. Further, as shown in FIG. 2, a pair of star wheels 3 is provided with a space in the vertical direction with respect to the machine center 2.
With this configuration, the pair of star wheels 3 receive the glass bottles 100 in the respective concave grooves 3a, support the body of the glass bottles 100 at two positions at an interval in the vertical direction, and stand the glass bottles 100 upright. It can be sent intermittently sequentially in a predetermined direction.

搬入コンベア4は、図1に示すように、ガラスびん100を立てた状態でスライド移動させながらスターホイール3の下の台座20(図2参照。)に運び入れる。台座20に載ったガラスびん100は、スターホイール3の凹溝3aに受け入れられる。スターホイール3は、間欠的に反時計方向に駆動される。
ガラスびん100が、測定ユニット6の位置に至ると、スターホイール3が一時的に停止する。この位置で測定ユニット6による測定を受けさせながら、ガラスびん100は順次に反時計方向に間欠的に送られる。
ガラスびん100は、搬出コンベア5の位置に至ると、搬出コンベア5に移し替えられて、スターホイール3の外に送り出される。
As shown in FIG. 1, the carry-in conveyor 4 carries in the pedestal 20 (see FIG. 2) under the star wheel 3 while sliding the glass bottle 100 in a standing state. The glass bottle 100 placed on the pedestal 20 is received in the concave groove 3 a of the star wheel 3. The star wheel 3 is intermittently driven counterclockwise.
When the glass bottle 100 reaches the position of the measuring unit 6, the star wheel 3 is temporarily stopped. While receiving the measurement by the measurement unit 6 at this position, the glass bottles 100 are sequentially and intermittently sent counterclockwise.
When the glass bottle 100 reaches the position of the carry-out conveyor 5, it is transferred to the carry-out conveyor 5 and sent out of the star wheel 3.

測定ユニット6は、スターホイール3により順次に送られてきたガラスびん100の胴径を測定する。この測定ユニット6は、図2及び図3に示すように、台座20に載ったガラスびん100をびん軸C回りに回転させるドライブホイール60と、スターホイール3の内側に位置して、ガラスびん100の胴部に向けて光を照射する投光器61と、投光器61からの照射光であって、ガラスびん100の胴部を透過した平行光を入射する放物面鏡62と、この放物面鏡62とガラスびん100の間に位置し、放物面鏡62で反射した光を入射する平面鏡63と、平面鏡63で反射した光を撮影するカメラ64と、を備える。
放物面鏡62と平面鏡63とは、一対のフレームS2により支持され、放物面鏡62と、平面鏡63と、一対のフレームS2とは枠状に形成されている。放物面鏡62の中央にはカメラ支持部S1が設けられ、カメラ支持部S1にカメラ64が配置されている。
この構成では、光学系を構成するに際し、一対のフレームS2を利用して、放物面鏡62と平面鏡63とカメラ64とを一体に保持できる。したがって、光学系の配置が容易化される。放物面鏡62と平面鏡63とカメラ64の光学上の芯出しを行い、カメラ支持部S1でカメラ64を固定することで芯出しを容易化できる。
The measuring unit 6 measures the diameter of the glass bottle 100 that is sequentially sent by the star wheel 3. As shown in FIGS. 2 and 3, the measurement unit 6 is located inside the star wheel 3 and the drive wheel 60 that rotates the glass bottle 100 placed on the pedestal 20 around the bottle axis C. A projector 61 for irradiating light toward the body of the lens, a parabolic mirror 62 for receiving parallel light transmitted from the projector 61 and passing through the body of the glass bottle 100, and the parabolic mirror 62 and a glass bottle 100, and includes a plane mirror 63 that receives the light reflected by the parabolic mirror 62, and a camera 64 that captures the light reflected by the plane mirror 63.
The parabolic mirror 62 and the plane mirror 63 are supported by a pair of frames S2, and the parabolic mirror 62, the plane mirror 63, and the pair of frames S2 are formed in a frame shape. A camera support S1 is provided at the center of the parabolic mirror 62, and a camera 64 is disposed on the camera support S1.
In this configuration, the parabolic mirror 62, the plane mirror 63, and the camera 64 can be integrally held by using the pair of frames S2 when configuring the optical system. Therefore, the arrangement of the optical system is facilitated. Optical alignment of the paraboloidal mirror 62, the plane mirror 63, and the camera 64 is performed, and the camera 64 is fixed by the camera support portion S1 to facilitate the centering.

スターホイール3は、図1に示すように、それぞれの凹溝3aに2つのスターホイールローラ7を有する。測定ユニット6において、スターホイール3の凹溝3aに入ったガラスびん100は、台座20に載った状態で、2つのスターホイールローラ7と、ドライブホイール60との間に配置される。ドライブホイール60は、図2に示すように、スターホイール3の外側に設けられ、自身が回転することにより、スターホイールローラ7との協働によりガラスびん100をびん軸C回りに回転させる。   As shown in FIG. 1, the star wheel 3 has two star wheel rollers 7 in each concave groove 3 a. In the measurement unit 6, the glass bottle 100 that has entered the concave groove 3 a of the star wheel 3 is placed between the two star wheel rollers 7 and the drive wheel 60 in a state of being placed on the pedestal 20. As shown in FIG. 2, the drive wheel 60 is provided outside the star wheel 3, and rotates itself to rotate the glass bottle 100 around the bottle axis C in cooperation with the star wheel roller 7.

投光器61は、光を照射する面照明機器であり、ガラスびん越しに照射するため、図1に示すように、投光器支持具61Aに支持されて、上部のスターホイール3と下部のスターホイール3の間に設けられる。この投光器61の光源は、どの方向から見ても輝度が変わらない拡散面光源である。
放物面鏡62は、図3に示すように、放物状の反射面の凹面鏡である。本構成では、帯状の放物面鏡を採用する。
平面鏡63は、反射面が平らな帯状の鏡である。この平面鏡63で反射した光を、カメラ64が受光するように設けられている。
The projector 61 is a surface illumination device that irradiates light. In order to irradiate through a glass bottle, as shown in FIG. 1, the projector 61 is supported by a projector support tool 61 </ b> A and includes an upper star wheel 3 and a lower star wheel 3. Between. The light source of the projector 61 is a diffusing surface light source whose luminance does not change when viewed from any direction.
As shown in FIG. 3, the parabolic mirror 62 is a concave mirror having a parabolic reflecting surface. In this configuration, a belt-like parabolic mirror is employed.
The plane mirror 63 is a belt-like mirror having a flat reflecting surface. The camera 64 is provided so that the light reflected by the plane mirror 63 is received.

上述したカメラ64は、ラインセンサカメラで構成されている。このラインセンサカメラは、受光素子が一次元の線状に配置されているカメラであり、像を線で捉え、通常のカメラより高解像度である。
本実施の形態では、カメラ64に、エリアセンサカメラの機能を保有させてもよい。すなわち、図4に示すように、測定ユニット6の初期設定の段階では、カメラ64を、エリアセンサカメラとして機能させる。エリアセンサカメラは、受光素子が二次元の面状に配置されており像を面Mで捉えるカメラである。面Mは横と縦が、1024×768の画素で構成されている。カメラ64により、像を面Mで捉えさせ、その面画像Mにおいて、ガラスびん100の胴部に対応した、所望の測定ラインL10、L11、L12を選択する。
測定ラインは、一つのラインでも、複数のラインでも選択できる。
カメラ64は、測定時において、選択した、一または複数の測定ラインL10、L11、L12に基づいて、ラインセンサカメラとして機能させる。
カメラ64を、単機能のラインセンサカメラとした場合、ガラスびん100の所望の胴部に対し、測定ラインを芯出しするためのセッティングが困難である。これに対し、カメラ64に、エリアセンサカメラの機能を保有させ、取得した面画像Mにおいて、ガラスびん100の胴部に対応した、所望の測定ラインL10、L11、L12を選択すれば、選択操作により、ガラスびん100の所望の胴部に対し、測定ラインを芯出しすることができ、測定ラインのセッティングが容易化できる。
The camera 64 described above is a line sensor camera. This line sensor camera is a camera in which light receiving elements are arranged in a one-dimensional line, and captures an image with a line and has a higher resolution than a normal camera.
In the present embodiment, the camera 64 may have the function of an area sensor camera. That is, as shown in FIG. 4, at the initial setting stage of the measurement unit 6, the camera 64 is caused to function as an area sensor camera. The area sensor camera is a camera in which the light receiving elements are arranged in a two-dimensional plane and the image is captured by the plane M. The surface M is composed of 1024 × 768 pixels in the horizontal and vertical directions. The camera 64 causes the image to be captured on the surface M, and in the surface image M, desired measurement lines L10, L11, and L12 corresponding to the body portion of the glass bottle 100 are selected.
The measurement line can be selected from one line or a plurality of lines.
The camera 64 is caused to function as a line sensor camera based on the selected one or a plurality of measurement lines L10, L11, and L12 at the time of measurement.
When the camera 64 is a single-function line sensor camera, setting for centering the measurement line with respect to a desired barrel of the glass bottle 100 is difficult. On the other hand, if the camera 64 has the function of the area sensor camera and the desired measurement line L10, L11, L12 corresponding to the body of the glass bottle 100 is selected in the acquired surface image M, the selection operation is performed. Thus, the measurement line can be centered with respect to a desired body portion of the glass bottle 100, and the setting of the measurement line can be facilitated.

次に、測定ユニット6について説明する。
ガラスびん100は、図2に示すように、上部のスターホイール3と下部のスターホイール3によって、台座20の上に立った状態で支持される。この測定ユニット6において、ガラスびん100は軸線C回りを回転し、回転するガラスびん100の胴部に、スターホイール3の内側の投光器61から光が照射される。
Next, the measurement unit 6 will be described.
As shown in FIG. 2, the glass bottle 100 is supported by the upper star wheel 3 and the lower star wheel 3 while standing on the pedestal 20. In this measurement unit 6, the glass bottle 100 rotates around the axis C, and light is irradiated to the body of the rotating glass bottle 100 from the projector 61 inside the star wheel 3.

ガラスびん100の胴径は、図3に示すように、ガラスびん100の両端を通過する平行光L1に基づいて測定される。図3では、光路矢印をカメラ64の視線で示す。
投光器61からの平行光L1、L2は、ガラスびん100の胴部を透過して直進し、平面鏡63の下を通過し、放物面鏡62に到達する。放物面鏡62は、やや上向きに光を反射し、この反射光は平面鏡63に到達する。すなわち、投光器61からガラスびん越しに照射された光は、ガラスびん100の両側を通過した平行光L1、L2のみが、帯状の放物面鏡62によって反射され、その反射光が平面鏡63に到達する。
そして、平面鏡63で反射した光がカメラ64に結像される。
カメラ64に結像した画像は、ガラスびん100の胴部両端を通過した平行光L1、L2のみから成っており、ガラスびん100の胴部をノギスのように挟んで通過した一対の平行光L1の間隔を特定し、この特定に基づいてガラスびん100の胴径が計測される。
The body diameter of the glass bottle 100 is measured based on the parallel light L1 passing through both ends of the glass bottle 100 as shown in FIG. In FIG. 3, the optical path arrow is indicated by the line of sight of the camera 64.
The parallel lights L1 and L2 from the projector 61 pass straight through the barrel of the glass bottle 100, pass under the plane mirror 63, and reach the parabolic mirror 62. The parabolic mirror 62 reflects light slightly upward, and the reflected light reaches the plane mirror 63. That is, in the light irradiated from the projector 61 through the glass bottle, only the parallel lights L1 and L2 that have passed through both sides of the glass bottle 100 are reflected by the belt-like parabolic mirror 62, and the reflected light reaches the plane mirror 63. To do.
Then, the light reflected by the plane mirror 63 is imaged on the camera 64.
The image formed on the camera 64 is composed only of parallel lights L1 and L2 that have passed through both ends of the barrel of the glass bottle 100, and a pair of parallel lights L1 that have passed through the barrel of the glass bottle 100 like calipers. And the barrel diameter of the glass bottle 100 is measured based on this specification.

本実施形態によれば、ガラスびん100の胴径測定器1は、ガラスびん100を順次に間欠的に送るためのスターホイール3と、ガラスびん100を回転させるためのドライブホイール60と、スターホイール3の内に設けられ、光をガラスびん100に照射する投光器61と、スターホイール3の外に設けられ、ガラスびん越しに照射した光を反射する放物面鏡62と、スターホイール3の外に設けられ、放物面鏡62から反射した照射光を受光するカメラ64と、を備えることとした。
これにより、胴径測定器1は、投光器61とカメラ64を分離して設けられ、放物面鏡62によって投光器61からの照射光のうち平行光のみをカメラ64に結像する。このカメラ64は、スターホイール3の外に設けられるため、スターホイール3の振動やガラスびん100の回転による振動の影響を受けにくく、安定した測定が可能となる。
これに対し、投光器61は、図1に示すように、投光器支持具61Aに支持されて、スターホイール3の内側に配置される。しかしながら、投光器61は、光を照射する面照明機器であるため、スターホイール3の内側に配置されて、仮に投光器61が振動しても、測定精度に及ぼす影響は少ない。
According to this embodiment, the barrel diameter measuring instrument 1 of the glass bottle 100 includes a star wheel 3 for sequentially and intermittently feeding the glass bottle 100, a drive wheel 60 for rotating the glass bottle 100, and a star wheel. 3, a projector 61 for irradiating the glass bottle 100 with light, a parabolic mirror 62 provided outside the star wheel 3 for reflecting the light irradiated through the glass bottle, and the outside of the star wheel 3. And a camera 64 that receives the irradiation light reflected from the parabolic mirror 62.
Thereby, the trunk diameter measuring device 1 is provided by separating the projector 61 and the camera 64, and the parabolic mirror 62 forms an image of only the parallel light in the irradiation light from the projector 61 on the camera 64. Since the camera 64 is provided outside the star wheel 3, the camera 64 is not easily affected by the vibration of the star wheel 3 or the vibration caused by the rotation of the glass bottle 100, thereby enabling stable measurement.
On the other hand, as shown in FIG. 1, the projector 61 is supported by a projector support tool 61 </ b> A and is disposed inside the star wheel 3. However, since the projector 61 is a surface illumination device that irradiates light, even if the projector 61 is arranged inside the star wheel 3 and the projector 61 vibrates, there is little influence on the measurement accuracy.

本実施形態によれば、カメラ64は、複数の測定ライン(図4参照。)の設定が可能である。これにより、測定幅が広がるため、胴径測定器1は、一つのライン測定では検出しにくいガラスびん100の胴部の凹みや膨らみを検出できる。
本実施形態によれば、投光器61の光源は、拡散面光源であることとした。これにより、投光器61が振動を受けてもカメラ64が受光する光量の変化が少ないため、胴径測定器1は、大きな測定誤差を生じることなく正確に測定ができる。
According to the present embodiment, the camera 64 can set a plurality of measurement lines (see FIG. 4). Thereby, since the measurement width is widened, the barrel diameter measuring device 1 can detect the depression or bulge of the barrel portion of the glass bottle 100 that is difficult to detect by one line measurement.
According to the present embodiment, the light source of the projector 61 is a diffusing surface light source. Thereby, even if the projector 61 receives vibration, since the change in the amount of light received by the camera 64 is small, the trunk diameter measuring device 1 can accurately measure without causing a large measurement error.

図5A、Bは、別の実施の形態を示す。図5において、図1と同一部分には同一符号を付して示し、その説明を省略する。
この実施の形態では、図1の実施の形態と比較し、測定ユニット6における光学系機能部品の配置の構成が異なっている。すなわち、図5Bに示すように、台座20に載ったガラスびん100をびん軸C回りに回転させるドライブホイール60と、スターホイール3の内側に位置して、ガラスびん100の胴部に向けて光を照射する投光器61と、投光器61からの照射光であって、ガラスびん100の胴部を透過した平行光を入射する放物面鏡62とを備えている。本実施の形態では、放物面鏡62とガラスびん100の間にカメラ64が配置され、図1の平面鏡63が省略されている。
5A and 5B show another embodiment. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
This embodiment is different from the embodiment of FIG. 1 in the arrangement of optical system functional components in the measurement unit 6. That is, as shown in FIG. 5B, the drive wheel 60 that rotates the glass bottle 100 placed on the pedestal 20 around the bottle axis C and the star wheel 3 are positioned on the inside of the star wheel 3, and light is directed toward the body of the glass bottle 100. And a parabolic mirror 62 that receives the parallel light that has passed through the body of the glass bottle 100 and is emitted from the projector 61. In the present embodiment, a camera 64 is disposed between the parabolic mirror 62 and the glass bottle 100, and the plane mirror 63 in FIG. 1 is omitted.

この実施の形態では、放物面鏡62から反射した投光器61からの平行光が、直接カメラ64に結像される。この場合、カメラ64は、スターホイール3の外側に離して設けられる。スターホイール3の外側にカメラ64を離して設けたため、スターホイール3の振動やガラスびん100の回転の振動の影響を受けない。したがって、カメラ64による安定した測定が可能になる。   In this embodiment, the parallel light from the projector 61 reflected from the parabolic mirror 62 is directly imaged on the camera 64. In this case, the camera 64 is provided outside the star wheel 3. Since the camera 64 is provided outside the star wheel 3, it is not affected by the vibration of the star wheel 3 or the vibration of the rotation of the glass bottle 100. Therefore, stable measurement by the camera 64 is possible.

上述した各実施形態では、ガラスびん100をスターホイール3に運ぶ搬入コンベア4の近い位置に、測定ユニット6を設けるよう例示した。しかしながら、必ずしも搬入コンベア4に近い位置に設ける必要はなく、測定ユニット6は、搬入コンベア4から搬出コンベア5までの間に設けられればよい。
また、各実施の形態では、投光器61からの照射光のうち平行光L1、L2を受光することによって、ノギスのようにガラスびん100の胴部の両端を測定するため、ガラスびん100の胴径を精度良く測定できる。
上述した実施形態は、あくまでも本発明の一態様を例示するものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。
In each embodiment mentioned above, it illustrated so that the measurement unit 6 might be provided in the position near the carrying-in conveyor 4 which conveys the glass bottle 100 to the star wheel 3. FIG. However, it is not necessarily provided at a position close to the carry-in conveyor 4, and the measurement unit 6 may be provided between the carry-in conveyor 4 and the carry-out conveyor 5.
Moreover, in each embodiment, in order to measure the both ends of the trunk | drum of the glass bottle 100 like a caliper by receiving parallel light L1, L2 among the irradiation lights from the light projector 61, the cylinder diameter of the glass bottle 100 is measured. Can be measured with high accuracy.
The above-described embodiments are merely illustrative of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

1 胴径測定器
3 スターホイール
3a 凹溝
6 測定ユニット
60 ドライブホイール
61 投光器
62 放物面鏡
63 平面鏡
64 カメラ
100 ガラスびん
DESCRIPTION OF SYMBOLS 1 Body diameter measuring device 3 Star wheel 3a Groove 6 Measuring unit 60 Drive wheel 61 Projector 62 Parabolic mirror 63 Plane mirror 64 Camera 100 Glass bottle

Claims (5)

ガラスびんを間欠的に送るためのスターホイールと、前記ガラスびんを回転させるドライブホイールと、前記スターホイールの内に設けられ、前記スターホイールの外に向けて、光を前記ガラスびんに照射する投光器と、前記スターホイールの外に設けられ、前記ガラスびん越しに照射した光を反射する放物面鏡と、前記放物面鏡から反射した光を受光するカメラと、を備えたことを特徴とするガラスびんの胴径測定器。   A star wheel for intermittently sending a glass bottle, a drive wheel for rotating the glass bottle, and a projector provided inside the star wheel and irradiating the glass bottle with light toward the outside of the star wheel And a parabolic mirror that is provided outside the star wheel and reflects the light irradiated through the glass bottle, and a camera that receives the light reflected from the parabolic mirror. Glass bottle body diameter measuring instrument. 前記放物面鏡と前記平面鏡とは、一対のフレームにより支持され、放物面鏡と、平面鏡と、一対のフレームとは枠状に形成されていることを特徴とする請求項1に記載のガラスびんの胴径測定器。   The parabolic mirror and the plane mirror are supported by a pair of frames, and the parabolic mirror, the plane mirror, and the pair of frames are formed in a frame shape. Glass bottle body diameter measuring instrument. 前記放物面鏡側に前記カメラが配置されていることを特徴とする請求項1または2に記載のガラスびんの胴径測定器。   The glass bottle barrel diameter measuring instrument according to claim 1 or 2, wherein the camera is disposed on the parabolic mirror side. 前記投光器は拡散面光源であることを特徴とする請求項1乃至3の何れか一項に記載のガラスびんの胴径測定器。   The glass bottle body diameter measuring device according to any one of claims 1 to 3, wherein the projector is a diffusing surface light source. 前記カメラは、エリアセンサカメラの機能を備え、初期設定時にエリアセンサカメラとして画像を撮影し、撮影画像中の所定のラインを選択し、ガラスびんの胴径の測定中には当該選択したラインの画像を処理することを特徴とする請求項1乃至4の何れか一項に記載のガラスびんの胴径測定器。   The camera has an area sensor camera function, takes an image as an area sensor camera at the time of initial setting, selects a predetermined line in the taken image, and measures the selected line during measurement of the diameter of the glass bottle. The glass bottle barrel diameter measuring device according to any one of claims 1 to 4, wherein an image is processed.
JP2014042157A 2014-03-04 2014-03-04 Glass bottle barrel diameter measuring instrument Active JP6279353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014042157A JP6279353B2 (en) 2014-03-04 2014-03-04 Glass bottle barrel diameter measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014042157A JP6279353B2 (en) 2014-03-04 2014-03-04 Glass bottle barrel diameter measuring instrument

Publications (2)

Publication Number Publication Date
JP2015169449A true JP2015169449A (en) 2015-09-28
JP6279353B2 JP6279353B2 (en) 2018-02-14

Family

ID=54202324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014042157A Active JP6279353B2 (en) 2014-03-04 2014-03-04 Glass bottle barrel diameter measuring instrument

Country Status (1)

Country Link
JP (1) JP6279353B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513334A (en) * 2016-12-13 2017-03-22 苏州铁近机电科技有限公司 Automatic sorting device for bearing outer ring inner diameters
CN109883351A (en) * 2019-02-28 2019-06-14 重庆青年职业技术学院 Automatic assembling detection system
EP3797883A1 (en) * 2019-09-27 2021-03-31 SCHOTT Schweiz AG Apparatus for inspecting a pharmaceutical container
CN114636367A (en) * 2022-05-17 2022-06-17 欧璧医药包装科技(中国)有限公司 Synchronous detection equipment for inner and outer diameters of bottle mouth of penicillin bottle
US11841327B2 (en) 2020-01-23 2023-12-12 Schott Pharma Schweiz Ag Detection and characterization of defects in pharmaceutical cylindrical containers
US11921128B2 (en) 2019-09-27 2024-03-05 Schott Pharma Schweiz Ag Apparatus for inspecting pharmaceutical containers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559432U (en) * 1978-07-04 1980-01-22
JPS57104592A (en) * 1980-11-03 1982-06-29 Owens Illinois Inc Detector for defect of side wall of glass vessel
JPS6429701A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Measuring method for outside diameter of pin by laser
US4895448A (en) * 1988-01-13 1990-01-23 Laird Richard P Method and apparatus for determining the surface quality of an object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559432U (en) * 1978-07-04 1980-01-22
JPS57104592A (en) * 1980-11-03 1982-06-29 Owens Illinois Inc Detector for defect of side wall of glass vessel
JPS6429701A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Measuring method for outside diameter of pin by laser
US4895448A (en) * 1988-01-13 1990-01-23 Laird Richard P Method and apparatus for determining the surface quality of an object

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513334A (en) * 2016-12-13 2017-03-22 苏州铁近机电科技有限公司 Automatic sorting device for bearing outer ring inner diameters
CN109883351A (en) * 2019-02-28 2019-06-14 重庆青年职业技术学院 Automatic assembling detection system
CN109883351B (en) * 2019-02-28 2020-09-01 重庆青年职业技术学院 Automatic assembly detection system
EP3797883A1 (en) * 2019-09-27 2021-03-31 SCHOTT Schweiz AG Apparatus for inspecting a pharmaceutical container
US11921128B2 (en) 2019-09-27 2024-03-05 Schott Pharma Schweiz Ag Apparatus for inspecting pharmaceutical containers
US11933798B2 (en) 2019-09-27 2024-03-19 Schott Pharma Schweiz Ag Apparatus for inspecting pharmaceutical containers
US11841327B2 (en) 2020-01-23 2023-12-12 Schott Pharma Schweiz Ag Detection and characterization of defects in pharmaceutical cylindrical containers
CN114636367A (en) * 2022-05-17 2022-06-17 欧璧医药包装科技(中国)有限公司 Synchronous detection equipment for inner and outer diameters of bottle mouth of penicillin bottle

Also Published As

Publication number Publication date
JP6279353B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6279353B2 (en) Glass bottle barrel diameter measuring instrument
US9948841B2 (en) Tire shape testing device and tire shape testing method
US20140092395A1 (en) Method for automated inline determination of the refractive power of an ophthalmic lens
KR101464852B1 (en) Specimen information detecting device and specimen information detecting method
CN114518220B (en) Device for detecting a modulation transfer function and centering an optical system
KR101755615B1 (en) Optical apparatus and optical inspecting apparatus having the same
KR101917131B1 (en) Optical inspecting apparatus
CN103076337A (en) Multiple light source detection device
KR101470424B1 (en) Testing apparatus for lens
CN104698010A (en) Device used to detect appearance of chip assembly
JP2014240766A (en) Surface inspection method and device
JP2015219085A (en) Substrate inspection device
KR20140089200A (en) Method of detecting defect and reflective optical inspection device using the same
JP2006242828A (en) Surface defect detection device
TWM479416U (en) Apparatus for testing component
CN106461382B (en) Five-axis optical detection system
JP5298619B2 (en) Eccentricity measuring method and eccentricity measuring device
JP2013181784A (en) Article inspection device and article inspection method
JP2005134294A (en) Method and apparatus for inspecting shape of cylindrical part
TWI637165B (en) Vision inspection module and device inspection system having the same
JP2021038998A (en) Appearance inspection device
JP6267480B2 (en) Imaging apparatus and inspection apparatus
KR20170037423A (en) inspection apparatus of hot stamping molded article
CN106980226B (en) Mask inspection device and method thereof
KR101580177B1 (en) Apparatus for Investigating Lens Having Module Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250