JP2015167444A - Protection system of feeder circuit for electric propulsion device - Google Patents

Protection system of feeder circuit for electric propulsion device Download PDF

Info

Publication number
JP2015167444A
JP2015167444A JP2014041163A JP2014041163A JP2015167444A JP 2015167444 A JP2015167444 A JP 2015167444A JP 2014041163 A JP2014041163 A JP 2014041163A JP 2014041163 A JP2014041163 A JP 2014041163A JP 2015167444 A JP2015167444 A JP 2015167444A
Authority
JP
Japan
Prior art keywords
circuit
power supply
current
supply circuit
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014041163A
Other languages
Japanese (ja)
Other versions
JP6354212B2 (en
Inventor
泰弘 高林
Yasuhiro Takabayashi
泰弘 高林
謙二 馬場
Kenji Baba
謙二 馬場
徹 引地
Toru Hikichi
徹 引地
陽介 樋口
Yosuke Higuchi
陽介 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014041163A priority Critical patent/JP6354212B2/en
Publication of JP2015167444A publication Critical patent/JP2015167444A/en
Application granted granted Critical
Publication of JP6354212B2 publication Critical patent/JP6354212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protection system of a feeder circuit for an electric propulsion device, capable of avoiding power feeding stop of the whole auxiliary machine feeder circuit when a short-circuit fault occurs at the terminal of the auxiliary machine feeder circuit, by blocking only an individual auxiliary machine feeder circuit in which the short-circuit fault has occurred.SOLUTION: A feeder circuit for an electric propulsion device comprising: a main feeder circuit for feeding power to a propulsion motor from a power source with a battery; and an auxiliary machine feeder circuit having individual auxiliary machine feeder circuits for feeding power to a plurality of auxiliary machines and which are branched for each of the auxiliary machines. In the auxiliary machine feeding circuit, an upstream-side overcurrent protection unit is provided on a source flow passage on the upstream side of the individual auxiliary machine feeder circuits of the auxiliary machine feeder circuit, a downstream-side overcurrent protection unit is provided in each of the downstream-side individual auxiliary machine feeding circuits, and a high-speed current-limiting unit is serially connected to each downstream-side overcurrent protection unit. When a short-circuit fault occurs at the terminal of the individual auxiliary machine feeder circuit, a short-circuit current is limited by the high-speed current-limiting unit to a current equal to or below a breaking current setting value of the upstream-side overcurrent protection unit, thereby the current is cut-off more quickly by the downstream-side overcurrent protection unit than the upstream-side overcurrent protection unit.

Description

この発明は、電気自動車や電気推進船舶などの電池を電源とする電気推進装置における給電回路を短絡電流等の過電流から保護するための保護方式に関する。   The present invention relates to a protection method for protecting a power feeding circuit in an electric propulsion apparatus using a battery such as an electric vehicle or an electric propulsion ship from an overcurrent such as a short circuit current.

電池を電源とする電気推進装置における給電回路の保護装置としては、特許文献1に示すものが知られており、その構成を図11に示す。   As a power supply circuit protection device in an electric propulsion device using a battery as a power source, the one shown in Patent Document 1 is known, and its configuration is shown in FIG.

図11の電気推進装置の給電回路は、電池Bpから推進電動機Mへの給電路および発電機Gから電池への充電路となる主給電回路MLと、電池Bpまたは発電機Gから電気推進装置に必要な多数の補機装置Sに給電するための補機給電回路ALで構成される。   The power supply circuit of the electric propulsion device in FIG. 11 includes a main power supply circuit ML serving as a power supply path from the battery Bp to the propulsion motor M and a charging path from the generator G to the battery, and from the battery Bp or the generator G to the electric propulsion device. The auxiliary power supply circuit AL is configured to supply power to a large number of necessary auxiliary equipment S.

主給電回路MLには、保護装置として、主給電回路開閉器DSM、ヒューズ等の限流遮断を行う主給電回路過電流保護装置UFM、配線用遮断器CBMが、発電機Gからの給電回路には、配線用遮断器CBGとヒューズ等の限流遮断の可能な過電流保護装置UFGが設けられている。   The main power supply circuit ML includes, as protective devices, a main power supply circuit switch DSM, a main power supply circuit overcurrent protection device UFM that cuts off a current limit of a fuse, and a circuit breaker CBM as power supply circuits from the generator G. Are provided with an overcurrent protection device UFG capable of interrupting current limiting such as a circuit breaker CBG and a fuse.

また、各種の複数の補機装置S1〜Snへ安定して電力を供給することは、電気推進装置の安全運行には不可欠な重要要素である。このために、補機給電回路ALには、共通の補機給電回路開閉器DSAと、ヒューズ等の限流遮断の可能な上流側過電流保護装置UFAが設けられている。そしてこの補機給電回路ALから分岐して複数の個別の補機装置S1〜Snに給電を行う個別補機給電回路ALS1〜ALSnにはそれぞれ配線用遮断器CBS1〜CBSnが設けられている。これらの保護装置は、短絡事故等が発生して回路電流が過大となったとき、これらの電流を遮断して回路および推進電動機M、補機装置S等の負荷装置を過大電流から保護する。   In addition, it is an indispensable important element for the safe operation of the electric propulsion device to stably supply electric power to various auxiliary devices S1 to Sn. For this purpose, the auxiliary power supply circuit AL is provided with a common auxiliary power supply circuit switch DSA and an upstream overcurrent protection device UFA capable of interrupting current limiting such as a fuse. Circuit breakers CBS1 to CBSn are provided in the individual auxiliary power supply circuits ALS1 to ALSn that branch from the auxiliary power supply circuit AL and supply power to the plurality of individual auxiliary devices S1 to Sn, respectively. When a short circuit accident or the like occurs and the circuit current becomes excessive, these protective devices cut off these currents and protect the circuit and the load devices such as the propulsion motor M and the auxiliary device S from the excessive current.

このような給電回路の電池で構成された電源Bpから個別補機給電回路の末端(Pi点)までの電路には、図11に示す等価回路のように、電路インダクタンスLBp、L1、LSiおよび電路抵抗RBp、R1、RSiが分布する。電路インダクタンスLBp、L1、LSiの総和を給電路全体の総電路インダクタンスLΣp0とよび、電路抵抗RBp、R1、RSiの総和を総電路抵抗RΣp0とよぶ。   As shown in the equivalent circuit shown in FIG. 11, the electric circuit inductances LBp, L1, LSi, and electric circuit are connected to the electric circuit from the power source Bp constituted by the battery of the electric power supply circuit to the terminal (Pi point) of the individual auxiliary power supply circuit. Resistors RBp, R1, RSi are distributed. The sum total of the circuit inductances LBp, L1, and LSi is called a total circuit inductance LΣp0 of the entire power supply path, and the sum of the circuit resistances RBp, R1, and RSi is called a total circuit resistance RΣp0.

従来の給電回路では、電池電源Bpが内部インダクタンスLBpおよび内部抵抗RBpの大きい特性を有する鉛電池で構成されるため、個別補機給電回路の末端までの総電路インダクタンスLΣp0および総電路抵抗RΣp0は大きくなる。この結果、補機装置Siの接続された補機給電回路の末端で短絡事故が生じた場合、短絡電流は比較的小さく抑えられ、総回路時定数TΣp0(=LΣp0÷RΣp0)も比較的大きいので短絡電流の上昇率が小さく抑えられる。   In the conventional power supply circuit, since the battery power source Bp is composed of a lead battery having large characteristics of the internal inductance LBp and the internal resistance RBp, the total circuit inductance LΣp0 and the total circuit resistance RΣp0 to the end of the individual auxiliary power supply circuit are large. Become. As a result, when a short-circuit accident occurs at the end of the auxiliary power supply circuit to which the auxiliary equipment Si is connected, the short-circuit current is kept relatively small and the total circuit time constant TΣp0 (= LΣp0 ÷ RΣp0) is also relatively large. The rate of increase in short circuit current can be kept small.

ここでは、個別補機給電回路ALiの配線用遮断器CBSiの遮断電流設定値Isを300Aに設定し、補機給電回路ALの上流側過電流保護装置UFAの遮断電流設定値IAsを3000Aにしている。このような補機給電回路ALにおいて、末端のPi点で短絡事故が発生すると、短絡電流は図8に特性線Aで示すように比較的ゆっくり上昇する。個別補機給電回路Siの配線用遮断器CBSiは、この短絡電流が遮断電流設定値Is(=300A)に達するA0点でこれを検出し、遮断動作を開始し、機械的な動作遅れ時間(13ms)後のA1点で開閉接点を開極して事故電流を限流(遮断)し、電流が完全に零となるA2点で遮断を完了する。   Here, the breaking current set value Is of the circuit breaker CBSi for the individual auxiliary power supply circuit ALi is set to 300A, and the breaking current set value IAs of the upstream overcurrent protection device UFA of the auxiliary power supply circuit AL is set to 3000A. Yes. In such an auxiliary power feeding circuit AL, when a short circuit accident occurs at the terminal Pi point, the short circuit current rises relatively slowly as indicated by a characteristic line A in FIG. The circuit breaker CBSi for the individual auxiliary power feeder circuit Si detects this short-circuit current at the point A0 when the short-circuit current reaches the cut-off current set value Is (= 300 A), starts the cut-off operation, and starts a mechanical operation delay time ( The switching contact is opened at point A1 after 13 ms) to limit (cut off) the accident current, and the interruption is completed at point A2 where the current is completely zero.

このとき、配線用遮断器CBSiの遮断開始点A1の電流(1800A)は、補機給電回路ALの上流側過電流保護装置UFAの遮断電流設定値AU(3000A)には達していないから、この上流側過電流保護装置UFAは動作しない。すなわち、上流側の保護装置と、下流側保護装置の保護協調が確保されているから、給電回路ALの下流側に短絡事故が生じたときは、短絡事故の生じている個別補機給電回路の配線用遮断器CBSiのみが短絡事故電流の遮断動作をし、上流側保護装置UFAは遮断動作をしないので、健全な残りの個別補機給電回路への給電は、停止することなく継続することができる。   At this time, the current (1800A) at the breaking start point A1 of the circuit breaker CBSi for wiring does not reach the breaking current set value AU (3000A) of the upstream overcurrent protection device UFA of the auxiliary power feeding circuit AL. The upstream overcurrent protection device UFA does not operate. That is, since the protection coordination between the upstream protection device and the downstream protection device is secured, when a short circuit accident occurs on the downstream side of the power supply circuit AL, the individual auxiliary machine power supply circuit in which the short circuit accident has occurred Only the circuit breaker CBSi for wiring performs the operation for interrupting the short-circuit fault current, and the upstream protection device UFA does not perform the operation for interrupting. Therefore, the power supply to the remaining healthy individual auxiliary power supply circuit can be continued without stopping. it can.

しかし、近年、船舶など、電池を電源とする電気推進装置では、推進容量の増大に伴い、従来の鉛電池に代わって、リチウムイオン電池が採用させるようになってきた。   However, in recent years, in an electric propulsion apparatus using a battery as a power source such as a ship, a lithium ion battery has been adopted instead of a conventional lead battery as the propulsion capacity increases.

リチウムイオン電池を用いた電源は、性能が高く、大容量とすることができるが、電池の内部抵抗および電路インダクタンスが極めて小さいことから、短絡事故が発生したとき、短絡電流を制限することができず、これが膨大となる。このため、リチウムイオン電池を電源とする給電回路においては、短絡事故が生じると、従来から用いられている過電流保護装置、例えば配線用遮断器、ヒューズ等では、遮断能力が不足し、事故電流を安全、確実に遮断することができないという問題が発生することが懸念される。   A power source using a lithium ion battery has high performance and can have a large capacity, but the short circuit current can be limited when a short circuit accident occurs because the internal resistance and circuit inductance of the battery are extremely small. This is enormous. For this reason, in a power supply circuit using a lithium ion battery as a power source, when a short-circuit accident occurs, a conventional overcurrent protection device such as a circuit breaker, a fuse, or the like has insufficient interruption capability, and an accident current There is a concern that problems may occur that cannot be safely and reliably blocked.

また、短絡事故電流は、膨大となるだけでなく、電流の上昇速度も速いことから、補機給電回路の末端で短絡事故が発生したとき、下流側の保護装置、すなわち個別補機給電回路に挿入された配線用遮断器CBSiの遮断動作が完了する前に、上流側の共通の補機給電回路に挿入された過電流保護装置UFAが動作して、補機給電回路全体の給電が遮断されて全部の補機装置の運転を不能にし、電気推進装置の安全運転に重大な支障を与えることになる。   In addition, the short-circuit fault current is not only enormous, but also the current rise rate is fast, so when a short-circuit fault occurs at the end of the auxiliary power supply circuit, the downstream protection device, that is, the individual auxiliary power supply circuit Before the interrupting operation of the inserted circuit breaker CBSi is completed, the overcurrent protection device UFA inserted in the upstream common auxiliary power supply circuit operates to interrupt the power supply of the entire auxiliary power supply circuit. This makes it impossible to operate all the auxiliary equipment, and seriously impedes the safe operation of the electric propulsion device.

特開2005‐086891号公報Japanese Patent Laying-Open No. 2005-086891

このように従来の電気推進装置におけるリチウムイオン電池で構成された電源から給電が行われる給電回路では、短絡電流の上昇が速いため、個別補機給電回路の上流に設けた上流側過電流保護装置と各個別補機給電回路に設けた配線用遮断器等の下流側過電流保護装置との保護協調がとれず、補機給電回路の末端で短絡事故が発生したときに下流側過電流保護装置が遮断動作する前に、上流側保護装置が遮断動作して補機給電回路全体の給電が停止される問題がある。   In this way, in the power feeding circuit that is fed from the power source constituted by the lithium ion battery in the conventional electric propulsion device, the short circuit current rises quickly, so the upstream overcurrent protection device provided upstream of the individual auxiliary power feeding circuit And the downstream overcurrent protection device such as the circuit breaker for wiring provided in each individual auxiliary power supply circuit, and the downstream overcurrent protection device when a short circuit accident occurs at the end of the auxiliary power supply circuit There is a problem in that the upstream protection device shuts down before the power is shut off and power supply to the entire auxiliary power feeding circuit is stopped.

この発明は、このような問題を解決するため、電気推進装置における補機給電回路の上流側過電流保護装置と下流側過電流保護装置の保護協調がとれるようにして、短絡事故が補機給電回路の末端で発生したときに、短絡事故の発生した個別補機給電回路のみを遮断し、上流側過電流保護装置は動作させないようにして補機給電回路全体が給電停止になることを回避することのできる給電回路の保護方式を提供することを課題とする。   In order to solve such a problem, the present invention enables protection coordination between the upstream side overcurrent protection device and the downstream side overcurrent protection device of the auxiliary power feeding circuit in the electric propulsion device, so that a short-circuit accident can cause the auxiliary power feeding. When this occurs at the end of the circuit, only the individual auxiliary machine power supply circuit where the short circuit accident occurred is shut off, and the upstream overcurrent protection device is not operated to avoid the entire auxiliary machine power supply circuit from being stopped. It is an object of the present invention to provide a power feeding circuit protection method that can be used.

この発明は、前記の課題を解決するため、リチウムイオン電池で構成された電源のように内部抵抗および電路インダクタンスの小さい、電池で構成された電源から推進電動機に給電を行う主給電回路と、前記電源から複数の補機装置へ給電を行うために補機装置ごとに分岐された個別補機給電回路を有する補機給電回路とを備えた電気推進装置の給電回路において、前記補機給電回路の個別補機給電回路の上流側の源流路に、前記補機給電回路を過電流から保護する上流側過電流保護装置を、また、下流側の各個別補機給電回路に、個別補機給電回路を過電流から保護する下流側過電流保護装置を設け、前記個別補機給電回路の下流側過電流保護装置にそれぞれ高速限流装置を直列に接続し、前記個別補機給電回路で短絡事故が発生したとき、短絡電流を、前記高速限流装置により前記上流側過電流保護装置の遮断電流設定値以下の電流に限流して前記上流側過電流保護装置より早く当該短絡事故の発生している個別補機給電回路の下流側過電流保護装置により遮断し、事故回路の切り離しを行うことを特徴とするものである。   In order to solve the above problems, the present invention provides a main power feeding circuit for feeding power to a propulsion motor from a power source constituted by a battery having a small internal resistance and electric circuit inductance like a power source constituted by a lithium ion battery, A power supply circuit for an electric propulsion device comprising an auxiliary power supply circuit having an individual auxiliary power supply circuit branched for each auxiliary device in order to supply power to a plurality of auxiliary devices from a power supply. An upstream overcurrent protection device that protects the auxiliary power supply circuit from overcurrent in the upstream source flow path of the individual auxiliary power supply circuit, and an individual auxiliary power supply circuit in each individual auxiliary power supply circuit on the downstream side Is provided with a downstream overcurrent protection device that protects against overcurrent, and a high-speed current limiting device is connected in series to each of the downstream overcurrent protection devices of the individual auxiliary power supply circuit, and a short circuit accident occurs in the individual auxiliary power supply circuit. When it occurs The individual auxiliary power supply in which the short-circuit fault occurs earlier than the upstream overcurrent protection device by limiting the short-circuit current to a current equal to or lower than the cutoff current set value of the upstream overcurrent protection device by the high-speed current limiting device. The circuit is cut off by an overcurrent protection device on the downstream side of the circuit, and the accident circuit is disconnected.

この発明において、前記高速限流装置は、限流抵抗と、通常電流では閉路し、過電流になると高速で開路する高速スイッチ手段とを並列接続して構成することができる。高速スイッチ手段としては、高速ヒューズまたは半導体スイッチ装置を用いることができる。   In the present invention, the high-speed current limiting device can be configured by connecting in parallel a current-limiting resistor and high-speed switch means that closes at a normal current and opens at a high speed when an overcurrent occurs. As the high-speed switch means, a high-speed fuse or a semiconductor switch device can be used.

また、この発明においては、前記補機給電回路、または前記個別補機給電回路のそれぞれに直列に電流制限用リアクトルを挿入することもできる。   Further, in the present invention, a current limiting reactor can be inserted in series in each of the auxiliary power feeding circuit or the individual auxiliary power feeding circuit.

この発明によれば、電気推進装置の補機給電回路に上流側過電流保護装置を設け、個別補機給電回路に下流側過電流保護装置を設けるとともに、これに直列に高速限流装置を接続しているので、個別補機給電回路の末端で短絡事故が発生したとき、短絡電流を限流装置により上流側過電流保護装置の遮断設定電流値以下の電流に限流させて上流側過電流保護装置より早く下流側過電流保護装置により遮断を行うことにより、短絡事故を生じた個別補機給電回路のみを切離すことができるので、補機給電回路の上流側過電流保護装置が動作せず、補機給電回路の全停電が防止されることにより、電気推進装置の安全性、信頼性を向上することができる。   According to the present invention, the upstream overcurrent protection device is provided in the auxiliary power supply circuit of the electric propulsion device, the downstream overcurrent protection device is provided in the individual auxiliary power supply circuit, and the high speed current limiting device is connected in series thereto. Therefore, when a short-circuit accident occurs at the end of the individual auxiliary power supply circuit, the short-circuit current is limited by the current-limiting device to a current that is less than or equal to the cutoff set current value of the upstream-side overcurrent protection device. By shutting down the downstream overcurrent protection device earlier than the protection device, only the individual auxiliary power supply circuit that has caused the short-circuit accident can be disconnected, so the upstream overcurrent protection device of the auxiliary power supply circuit cannot operate. Therefore, the safety and reliability of the electric propulsion device can be improved by preventing the power failure of the auxiliary power supply circuit.

この発明の第1の実施例を示す電気推進装置の給電回路の構成図である。It is a block diagram of the electric power feeding circuit of the electric propulsion apparatus which shows 1st Example of this invention. この発明の第1の実施例の電気推進装置の個別補機給電回路の等価回路図である。FIG. 3 is an equivalent circuit diagram of an individual auxiliary machine power supply circuit of the electric propulsion device according to the first embodiment of the present invention. この発明の第2の実施例を示す電気推進装置の給電回路の構成図である。It is a block diagram of the electric power feeding circuit of the electric propulsion apparatus which shows the 2nd Example of this invention. この発明の第2の実施例の電気推進装置の個別補機給電回路の等価回路図である。FIG. 6 is an equivalent circuit diagram of an individual auxiliary machine power supply circuit of an electric propulsion device according to a second embodiment of the present invention. この発明の第2の実施例における限流装置の構成図である。It is a block diagram of the current limiting device in 2nd Example of this invention. この発明の第3の実施例を示す電気推進装置の給電回路の構成図である。It is a block diagram of the electric power feeding circuit of the electric propulsion apparatus which shows the 3rd Example of this invention. この発明の第3の実施例の電気推進装置の個別補機給電回路の等価回路図である。It is an equivalent circuit diagram of the individual auxiliary machine electric power feeding circuit of the electric propulsion device of the 3rd example of this invention. この発明の動作説明に用いる電流遮断特性図である。It is a current interruption characteristic figure used for operation explanation of this invention. この発明の第4の実施例を示す電気推進装置の給電回路の構成図である。It is a block diagram of the electric power feeding circuit of the electric propulsion apparatus which shows the 4th Example of this invention. この発明の第4の実施例の電気推進装置の個別補機給電回路の等価回路図である。It is an equivalent circuit diagram of the individual auxiliary machine electric power feeding circuit of the electric propulsion apparatus of the 4th Example of this invention. 従来の電気推進装置の給電回路の構成図である。It is a block diagram of the electric power feeding circuit of the conventional electric propulsion apparatus. 従来の電気推進装置の個別補機給電回路の等価回路図である。It is an equivalent circuit diagram of the individual auxiliary machine power supply circuit of the conventional electric propulsion device.

この発明の実施の形態を図に示す実施例について説明する。   Embodiments of the present invention will be described with reference to the embodiments shown in the drawings.

図1に、この発明の第1の実施例の給電回路を示す。   FIG. 1 shows a power supply circuit according to a first embodiment of the present invention.

この図1の実施例1の給電回路において、電源Brは、例えば、リチウムイオン電池で構成された電源のように、従来の鉛電池に比べて内部抵抗RBrが著しく小さく、また、電路インダクタンスLBrも小さい特性を有する電池で構成された電源である。   In the power supply circuit according to the first embodiment shown in FIG. 1, the power supply Br has an extremely small internal resistance RBr as compared with a conventional lead battery, for example, as a power supply constituted by a lithium ion battery, and also has an electric circuit inductance LBr. It is a power source composed of a battery having small characteristics.

この電源Brには、推進電動機Mへ給電する主給電回路MLと、複数の補機装置S1〜Snに給電する個別補機給電回路ALS1〜ALSnを有する補機給電回路ALとが接続される。主給電回路MLには、この回路を開閉する開閉器DSM、過電流保護装置としての高速ヒューズUFM、配線用遮断器CBMが直列に挿入され、これらにより主給電回路MLを過電流から保護する。主給電回路MLには電源Brの電池を充電するために配線用遮断器CBGおよび高速ヒューズUFGを介して発電機Gも接続される。   The power supply Br is connected to a main power supply circuit ML that supplies power to the propulsion motor M and an auxiliary power supply circuit AL that includes individual auxiliary power supply circuits ALS1 to ALSn that supply power to a plurality of auxiliary devices S1 to Sn. A switch DSM that opens and closes the circuit, a high-speed fuse UFM as an overcurrent protection device, and a circuit breaker CBM are inserted in series in the main power supply circuit ML, thereby protecting the main power supply circuit ML from overcurrent. A generator G is also connected to the main power supply circuit ML via a circuit breaker CBG and a high-speed fuse UFG in order to charge the battery of the power supply Br.

また、複数の補機装置S1〜Snに給電するための補機給電回路ALには、補機開閉器DSA、および上流側過電流保護装置としての高速ヒューズUFAが直列に挿入される。この補機給電回路ALから、分岐して設けられた複数の補機装置S1〜Snの個々に給電する個別補機給電回路ALS1〜ALSnには、それぞれ配線用遮断器CBS1〜CBSnおよび限流装置CL1〜CLnを直列接続して構成した下流側過電流保護装置が挿入される。   In addition, an auxiliary switch DSA and a high-speed fuse UFA as an upstream overcurrent protection device are inserted in series into the auxiliary power supply circuit AL for supplying power to the plurality of auxiliary devices S1 to Sn. The auxiliary power supply circuits ALS1 to ALSn that individually supply power to a plurality of auxiliary devices S1 to Sn branched from the auxiliary power supply circuit AL include circuit breakers CBS1 to CBSn and current limiting devices, respectively. A downstream overcurrent protection device configured by connecting CL1 to CLn in series is inserted.

限流装置CL1〜CLnは、限流抵抗RE1〜REnにそれぞれ並列に高速ヒューズFE1〜FEnを接続して構成されている。限流装置CL1〜CLnでは、個別補機給電回路ALS1〜ALSnに通常の負荷電流が流れている状態では、高速ヒューズFE1〜FEnが接続(閉路)状態にあるので、限流抵抗FE1〜FEnが高速ヒューズFE1〜FEnによって短絡され、限流抵抗RE1〜REnには負荷電流は流れない。このため、個別補機給電回路ALS1〜ALSnに通常の電流が供給されているときには、限流抵抗による通電損失は発生しない。   The current limiting devices CL1 to CLn are configured by connecting high speed fuses FE1 to FEn in parallel with current limiting resistors RE1 to REn, respectively. In the current limiting devices CL1 to CLn, the high speed fuses FE1 to FEn are in a connected (closed) state in a state where a normal load current flows through the individual auxiliary power supply circuits ALS1 to ALSn, so that the current limiting resistors FE1 to FEn are Short-circuited by the high-speed fuses FE1 to FEn, no load current flows through the current limiting resistors RE1 to REn. For this reason, when a normal current is supplied to the individual auxiliary machine power supply circuits ALS1 to ALSn, an energization loss due to the current limiting resistance does not occur.

この実施例1において、補機給電回路ALの上流側過電流保護装置UFAと下流側回路遮断器CBSiの遮断電流設定値IAsおよびIsは、ここでは、前記の従来装置と同様に、それぞれ3000Aおよび300Aに設定している。   In the first embodiment, the upstream overcurrent protection device UFA of the auxiliary power supply circuit AL and the cutoff current set values IAs and Is of the downstream circuit breaker CBSi are 3000 A and It is set to 300A.

個別補機給電回路ALS1〜ALSnに短絡電流のような過大電流が流れると、限流装置CL1〜CLnの高速ヒューズFE1〜FEnがおよそ2000Aで溶断するように設定されている。短絡電流により高速ヒューズFE1〜FEnが溶断し、開路すると、短絡電流が限流抵抗RE1〜REnに転流して限流され、上流側過電流保護装置としての高速ヒューズUFAの遮断設定電流値以下で、しかも個別補機給電回路の配線用遮断器CBSiの遮断可能な電流に抑制される。   When an excessive current such as a short circuit current flows through the individual auxiliary power supply circuits ALS1 to ALSn, the high speed fuses FE1 to FEn of the current limiting devices CL1 to CLn are set to blow at about 2000A. When the high-speed fuses FE1 to FEn are blown and opened due to the short-circuit current, the short-circuit current is commutated to the current-limiting resistors RE1 to REn to limit the current, and is less than the cut-off set current value of the high-speed fuse UFA as the upstream overcurrent protection device Moreover, the current can be cut off by the circuit breaker CBSi for wiring in the individual auxiliary power feeding circuit.

例えば、図1の給電回路の個別補機給電回路ALS1の末端となる補機装置S1の入力点P1で短絡事故が発生したとすると、この回路に短絡事故電流が流れるので、この回路ALS1の限流装置CL1の高速ヒューズUF1が真っ先に溶断し、開路するので、限流抵抗RE1に短絡電流が転流して限流され、この限流された短絡電流を配線用遮断器CB1が安全に遮断する。   For example, if a short circuit accident occurs at the input point P1 of the auxiliary device S1 that is the terminal of the individual auxiliary power supply circuit ALS1 of the power supply circuit of FIG. 1, a short circuit accident current flows through this circuit. Since the high-speed fuse UF1 of the current flow device CL1 is blown first and opens, the short-circuit current is commutated to the current-limiting resistor RE1, and the current-breaking short-circuit current is safely interrupted by the wiring breaker CB1. .

図1の実施例1の給電回路における1つの個別補機給電回路ALSiの等価回路を図2に示す。   FIG. 2 shows an equivalent circuit of one individual auxiliary machine power supply circuit ALSi in the power supply circuit of the first embodiment shown in FIG.

図2にRBrおよびLBrで示される電源Brの内部抵抗および電路インダクタンスは、電源Brがリチウムイオン電池等の内部抵抗が小さく、電路インダクタンスの小さい電池で構成されているため、図12に示す従来の鉛電池で構成された電源Bpの内部抵抗RBpおよび電路インダクタンスLBpより著しく小さくなる。上流側過電流保護装置UFAを含む補機給電回路ALおよび配線用遮断器CBSiを含む個別補機給電回路ALSiにはそれぞれ、従来の給電回路と同等の電路抵抗RA、電路インダクタンスLA、および電路抵抗RSi、電路インダクタンスLSiが含まれる。そして、個別補機給電回路ALSiに設けられた限流装置CLiは、等価的には、図示するように常閉接点Fei、内部抵抗RFiおよび内部インダクタンスLFiの直列回路からなる高速ヒューズFEiと、内部抵抗Reiを有する限流抵抗REiとの並列回路で示される。   The internal resistance and electric circuit inductance of the power supply Br indicated by RBr and LBr in FIG. 2 are constituted by a battery having a low internal resistance such as a lithium ion battery and a small electric circuit inductance, so that the conventional resistance shown in FIG. It becomes significantly smaller than the internal resistance RBp and the circuit inductance LBp of the power source Bp formed of a lead battery. The auxiliary power supply circuit AL including the upstream overcurrent protection device UFA and the individual auxiliary power supply circuit ALSi including the circuit breaker CBSi have the same circuit resistance RA, circuit inductance LA, and circuit resistance as the conventional power supply circuit, respectively. RSi and circuit inductance LSi are included. The current limiting device CLi provided in the individual auxiliary power supply circuit ALSi is equivalent to a high-speed fuse FEi composed of a series circuit of a normally closed contact Fei, an internal resistance RFi and an internal inductance LFi, as shown in FIG. It is shown in a parallel circuit with a current limiting resistor REi having a resistor Rei.

このため、この等価回路における電源Brから1つの個別補機給電回路ALSiの出力端Aiまでの通常状態(限流装置の高速ヒューズが溶断してない状態)での総電路抵抗RΣa1は、RΣa1=RBr+RA+RFiとなり、また、総電路インダクタンスLΣa1は、LΣa1=LRr+LA+LFiとなる。しかし、もともと電源Brの内部抵抗RBr、電路インダクタンスLBrが著しく小さいため、従来の給電回路におけるそれよりも著しく小さくなる。   For this reason, the total circuit resistance RΣa1 in the normal state (the state where the high-speed fuse of the current limiting device is not blown) from the power supply Br to the output terminal Ai of one individual auxiliary machine power supply circuit ALSi in this equivalent circuit is RΣa1 = RBr + RA + RFi, and the total circuit inductance LΣa1 is LΣa1 = LRr + LA + LFi. However, since the internal resistance RBr and the circuit inductance LBr of the power supply Br are originally extremely small, they are significantly smaller than those in the conventional power supply circuit.

また、個別補機給電回路ALSiの限流装置CLiの内部抵抗RFiは、短絡事故によって高速ヒューズFEiが溶断すると限流抵抗REiの抵抗値Reiとなるので、このときは、電源Brの内部抵抗RBrの小さい分を補うことができ、従来の給電回路の総電路抵抗RΣp0と同等またはそれより大きくすることができるが、総電路インダクタンスLΣp1は、従来の給電回路の総電路インダクタンスLΣp0より小さいままである。   Further, the internal resistance RFi of the current limiting device CLi of the individual auxiliary power feeding circuit ALSi becomes the resistance value Rei of the current limiting resistance REi when the high-speed fuse FEi is melted due to a short circuit accident. At this time, the internal resistance RBr of the power supply Br Can be compensated for and can be made equal to or larger than the total circuit resistance RΣp0 of the conventional power supply circuit, but the total circuit inductance LΣp1 remains smaller than the total circuit inductance LΣp0 of the conventional power supply circuit. .

この結果、個別補機給電回路ALSiの末端のPi点で短絡事故が発生したときは、図8に特性線Bで示すように、特性線Aで示す従来の短絡電流よりも速い速度で上昇する短絡電流が流れる。個別補機給電回路ALSiの配線用遮断器CBSiは図8の特性線B上のB0点で短絡電流の遮断電流設定値Is(=300A)に達し、これを検出し遮断動作を開始するが、機械的な動作遅れのために直ちには、遮断動作は開始されない。   As a result, when a short circuit accident occurs at the Pi point at the end of the individual auxiliary power supply circuit ALSi, as shown by the characteristic line B in FIG. 8, it rises at a faster speed than the conventional short circuit current indicated by the characteristic line A. Short circuit current flows. The circuit breaker CBSi for the wiring of the individual auxiliary power supply circuit ALSi reaches the breaking current set value Is (= 300 A) of the short-circuit current at the point B0 on the characteristic line B in FIG. 8, and detects this to start the breaking operation. Due to the mechanical delay, the shut-off operation is not started immediately.

一方、限流装置CLiの高速ヒューズFEiは、遮断電流設定値(2000A)を超えたB1点で遮断動作(溶断)を開始し、短絡電流を限流しながら遮断する。そして、B2点で完全に遮断動作(溶断)が完了し、短絡電流が限流抵抗REiに転流すると、短絡電流は、この限流抵抗REiの抵抗値Reiで決まる電流(1500A)に限流される。B0点から配線用遮断器CBSi動作遅れ時間(13ms)に相当する時間の経過したB3点で配線用遮断器CBSiが開閉接点を開極して事故電流の遮断を開始してB4点で遮断を完了する。   On the other hand, the high-speed fuse FEi of the current limiting device CLi starts a breaking operation (melting) at a point B1 exceeding the breaking current set value (2000A), and breaks while short-circuiting the current. When the cut-off operation (melting) is completely completed at the point B2 and the short-circuit current is commutated to the current-limiting resistor REi, the short-circuit current is limited to the current (1500 A) determined by the resistance value Rei of the current-limiting resistor REi. It is. When the time corresponding to the circuit breaker CBSi operation delay time (13 ms) elapses from point B0, the circuit breaker CBSi opens the switching contact at the point B3 and starts the interruption of the fault current, and the circuit breaks at the point B4. Complete.

このように実施例1においては、個別補機給電回路ALSiの末端で短絡事故が生じた場合、限流装置CLiによって短絡電流が、上流側過電流保護装置としての高速ヒューズUFAの遮断電流設定値(3000A)以下の、個別過電流保護装置としての配線用遮断器CBSiの遮断可能な電流値(1500A)に限流されるので、高速ヒューズUFAが遮断する前にこの配線用遮断器CBiにより短絡電流を安全、確実に遮断することができる。このため、個別補機給電回路の末端で短絡事故が生じたとしても、短絡事故の発生した個別補機給電回路だけを切り離すだけで、補機給電回路全体が給電停止されることがないので、残りの健全な個別補機給電回路は、停止することなく運転を継続することができる。   As described above, in the first embodiment, when a short circuit accident occurs at the end of the individual auxiliary power supply circuit ALSi, the short circuit current is caused by the current limiting device CLi, and the breaking current set value of the high-speed fuse UFA as the upstream overcurrent protection device. (3000A) The current is limited to the current value (1500A) that can be cut off by the circuit breaker CBSi as an individual overcurrent protection device below. Therefore, before the high-speed fuse UFA is cut off, the wiring breaker CBi Can be safely and reliably shut off. For this reason, even if a short circuit accident occurs at the end of the individual auxiliary power supply circuit, the power supply of the entire auxiliary power supply circuit will not be stopped by simply disconnecting only the individual auxiliary power supply circuit where the short circuit accident occurred. The remaining sound individual auxiliary power feeding circuit can continue to operate without stopping.

図3にこの発明の第2の実施例の給電回路を示す。   FIG. 3 shows a power feeding circuit according to a second embodiment of the present invention.

この実施例2の給電回路は、実施例1の給電回路における限流回路における限流抵抗REに並列接続した高速ヒューズFEを半導体スイッチQに置き換えたものである。その他の構成は、実施例1と同じである。   The power supply circuit of the second embodiment is obtained by replacing the high-speed fuse FE connected in parallel with the current limiting resistor RE in the current limiting circuit in the power supply circuit of the first embodiment with a semiconductor switch Q. Other configurations are the same as those in the first embodiment.

図4に、図3の実施例2の1つの個別補機給電回路ALSiの等価回路を示す。   FIG. 4 shows an equivalent circuit of one individual auxiliary machine power supply circuit ALSi of the second embodiment shown in FIG.

図3に示す個別補機給電回路の末端のPi点までの総電路インダクタンスLΣp2は、LΣp2=LB+LA+LQi+LSi、総電路抵抗RΣp2はRΣp2=RBr+RA+RQi+RSiとなる。半導体スイッチQiの内部インダクタンスLQiが、実施例1における高速ヒューズFEiの内部インダクタンスLFiよりはるかに小さいため、この総電路インダクタンスLΣp2は、実施例1の総電路インダクタンスLΣp1よりもさらに小さくなる。   The total circuit inductance LΣp2 up to the end Pi point of the individual auxiliary power feeding circuit shown in FIG. 3 is LΣp2 = LB + LA + LQi + LSi, and the total circuit resistance RΣp2 is RΣp2 = RBr + RA + RQi + RSi. Since the internal inductance LQi of the semiconductor switch Qi is much smaller than the internal inductance LFi of the high-speed fuse FEi in the first embodiment, the total circuit inductance LΣp2 is further smaller than the total circuit inductance LΣp1 of the first embodiment.

このため、この実施例2では総回路時定数TΣp2(TΣp2=LΣp2÷RΣp2)が小さくなり、短絡電流が大きくなるとともに、短絡電流の上昇率が図8に特性線Cで示すように、実施例1の特性線Bよりもさらに大きくなる。この結果、給電回路末端Pi点で短絡事故が発生すると、特性線Cに従って短絡電流が速い速度で上昇する。配線用遮断器CBSiはこの電流が遮断電流設定値Isに達するC0点で過電流を検出し、遮断動作を開始するが、配線用遮断器CBiの実際の遮断動作(接点開極)は遅れる。   Therefore, in the second embodiment, the total circuit time constant TΣp2 (TΣp2 = LΣp2 ÷ RΣp2) is reduced, the short-circuit current is increased, and the increase rate of the short-circuit current is as shown by the characteristic line C in FIG. It becomes larger than the characteristic line B of 1. As a result, when a short circuit accident occurs at the feed circuit terminal Pi point, the short circuit current rises at a fast speed according to the characteristic line C. The circuit breaker CBSi for wiring detects an overcurrent at the point C0 where the current reaches the breaking current set value Is, and starts the circuit breaking operation, but the actual circuit breaking operation (contact opening) of the circuit breaker CBi is delayed.

一方、半導体スイッチQiと限流抵抗FEiを用いた限流装置CLiは、半導体スイッチQiを回路電流Iに応じて開閉制御するために、図5に示すようにスイッチング制御装置SCを備える。   On the other hand, the current limiting device CLi using the semiconductor switch Qi and the current limiting resistor FEi includes a switching control device SC as shown in FIG. 5 in order to control the semiconductor switch Qi according to the circuit current I.

この半導体スイッチQiのスイッチング制御装置SCは、電子回路で構成された制御部CTR、個別補機給電回路ALSiの電路電流を検出する電流検出器IDi、半導体スイッチQiの遮断電流値を設定する電流設定器VRiを有する。制御部CTRは、電流検出器IDiで検出された電流Iと電流設定器VRiに設定された遮断電流設定値ICsとを比較してI<ICsとなる通常の電流範囲では、半導体スイッチQiにオン信号を送り、半導体スイッチQiをオンにする。これにより、限流装置CLiの限流抵抗REiは短絡され、これに負荷電流は流れない。   The switching control device SC of the semiconductor switch Qi includes a control unit CTR configured by an electronic circuit, a current detector IDi that detects a circuit current of the individual auxiliary power supply circuit ALSi, and a current setting that sets a cutoff current value of the semiconductor switch Qi. Has a device VRi. The control unit CTR compares the current I detected by the current detector IDi with the cutoff current set value ICs set in the current setter VRi, and turns on the semiconductor switch Qi in a normal current range where I <ICs. A signal is sent to turn on the semiconductor switch Qi. As a result, the current limiting resistor REi of the current limiting device CLi is short-circuited, and no load current flows through it.

I>ICsとなる過電流状態になると、制御部CTRから直ちに半導体スイッチQiにオフ信号を送り、半導体スイッチQiをほとんど時間遅れなしにオフにして、限流抵抗REiの短絡を解放し、負荷電流Iを限流抵抗REiに転流して、負荷電流の限流を行う。   In an overcurrent state where I> ICs, the control unit CTR immediately sends an off signal to the semiconductor switch Qi, turns off the semiconductor switch Qi with almost no time delay, releases the short circuit of the current limiting resistor REi, and loads current I is commutated to the current limiting resistor REi to limit the load current.

次に、このように構成された実施例2における短絡事故時の遮断動作を、図8を参照して説明する。   Next, the interruption | blocking operation | movement at the time of the short circuit accident in Example 2 comprised in this way is demonstrated with reference to FIG.

実施例2では、前記の半導体スイッチQiの遮断電流設定値ICsは、600Aに設定されている。   In the second embodiment, the breaking current set value ICs of the semiconductor switch Qi is set to 600A.

限流装置CLiは、限流抵抗REiを両端を開閉する高速スイッチング素子として内部インダクタンスの小さい半導体スイッチQiを用いているため、給電回路の個別補機給電回路ALSiの端末のPi点で短絡事故が発生すると、この個別補機給電回路ALS1に流れる短絡電流は、図8に特性線Cで示すように特性線Bで示す実施例1における短絡電流より大きな電流上昇率で上昇する。この短絡電流が、図8のC0点で配線用遮断器CBSiの遮断電流設定値(300A)に達すると、配線用遮断器CBS1が遮断動作を開始する。さらに短絡電流が上昇してスイッチング制御装置SC(図5)の遮断電流設定値ICs(=600A)に達するC1点になると、スイッチング制御装置SCがこれを検出し、この時点から僅かに遅れたC2点で限流装置CLiの半導体スイッチQiにオフ信号を与える。これにより、半導体スイッチQiは、C2点でオフ動作を開始してC3点でオフする。   The current limiting device CLi uses a semiconductor switch Qi having a small internal inductance as a high-speed switching element that opens and closes both ends of the current limiting resistor REi. Therefore, a short circuit accident occurs at the Pi point of the terminal of the individual auxiliary power supply circuit ALSi of the power supply circuit. When this occurs, the short circuit current flowing through the individual auxiliary power supply circuit ALS1 rises at a larger current increase rate than the short circuit current in the first embodiment indicated by the characteristic line B as indicated by the characteristic line C in FIG. When this short-circuit current reaches the breaking current set value (300A) of the wiring breaker CBSi at the point C0 in FIG. 8, the breaking breaker CBS1 starts breaking operation. Further, when the short-circuit current rises and reaches a point C1 that reaches the breaking current set value ICs (= 600 A) of the switching control device SC (FIG. 5), the switching control device SC detects this, and C2 slightly delayed from this point. In this respect, an off signal is given to the semiconductor switch Qi of the current limiting device CLi. As a result, the semiconductor switch Qi starts an off operation at the point C2 and turns off at the point C3.

半導体スイッチQiがオフすると短絡電流は限流抵抗REiに転流して、限流抵抗REiの抵抗値Reiで決まる電流(ここでは約1500Aとしている)に限流される。配線用遮断器CBSiは所定の時間遅れたC4点から過電流遮断動作によって接点を開極して限流された電流の遮断を始め、C5点で遮断を完了する。   When the semiconductor switch Qi is turned off, the short-circuit current is commutated to the current limiting resistor REi, and is limited to a current determined by the resistance value Rei of the current limiting resistor REi (here, about 1500 A). The circuit breaker CBSi for wiring starts breaking the current limited by opening the contact by the overcurrent breaking operation from the point C4 delayed for a predetermined time, and completes the breaking at the point C5.

このとき、半導体スイッチQiがオフを開始するC2点では、短絡電流が上流保護装置UFAの遮断電流設定値CU(300A)に達していないからこの上流保護装置UFAは動作しない。   At this time, at the point C2 where the semiconductor switch Qi starts to turn off, the upstream protection device UFA does not operate because the short-circuit current has not reached the cutoff current set value CU (300A) of the upstream protection device UFA.

すなわち、上流側保護装置UFAと下流側保護装置CBSiの保護協調がとれているから、短絡電流は上流側保護装置UFAより早く、下流側保護装置CBSiで遮断し、上流側保護装置UFAでは遮断しないので補機給電回路ALの全体の給電停止は発生しない。   That is, since the protection coordination between the upstream protection device UFA and the downstream protection device CBSi is taken, the short-circuit current is earlier than the upstream protection device UFA, and is shut off by the downstream protection device CBSi and not by the upstream protection device UFA. Therefore, the power supply stop of the entire auxiliary power supply circuit AL does not occur.

半導体スイッチQiは高速スイッチングが可能であるから、急峻に短絡電流が上昇しても、限流動作を短時間に行うことができるため、限流装置CLiが高速に限流動作を開始することによって補機給電回路ALの上流側保護装置UFAと下流側保護装置CBSiとの保護協調を確実にとることができる。この結果、補機給電回路ALの全体の給電停止を防止でき、電気推進装置の安全性、信頼性の向上を図ることができる。   Since the semiconductor switch Qi is capable of high-speed switching, the current-limiting operation can be performed in a short time even when the short-circuit current rises sharply, so that the current-limiting device CLi starts the current-limiting operation at high speed. Protection coordination between the upstream protection device UFA and the downstream protection device CBSi of the auxiliary power feeding circuit AL can be reliably achieved. As a result, it is possible to prevent the power supply stop of the entire auxiliary power supply circuit AL and to improve the safety and reliability of the electric propulsion device.

図6にこの発明の第3の実施例を示す。   FIG. 6 shows a third embodiment of the present invention.

この実施例3の給電回路は、前記の実施例2の給電回路の各個別補機給電回路ALSi(ALS1〜ALSn)にそれぞれ設けられた限流装置CLi(CL1〜CLn)の半導体スイッチQi(Q1〜Qn)の内部インダクタンスが小さいため、各個別補機給電回路ALSi(ALS1〜ALSn)にリアクトルLi(L1〜Ln)を直列に接続してこれを補うようにしたものである。   The power supply circuit of the third embodiment is a semiconductor switch Qi (Q1) of a current limiting device CLi (CL1 to CLn) provided in each individual auxiliary power supply circuit ALSi (ALS1 to ALSn) of the power supply circuit of the second embodiment. Since the internal inductance of .about.Qn) is small, reactors Li (L1 to Ln) are connected in series to the individual auxiliary machine power supply circuits ALSi (ALS1 to ALSn) to compensate for this.

これにより、図7に等価回路を示すように、各個別補機給電回路ALSiの末端Piまでの総電路インダクタンスLΣp3は、LΣp3=LB+LA+Li+LSiとなり、実施例2の総電路インダクタンスLΣp2に、追加したリアクトルLiのインダクタンスLiが加わり、これより大きくなる。リアクトルLiのインダクタンスLiを実施例1の限流装置の高速ヒューズFEiの内部インダクタンスLFi相当の値にすると、総電路インダクタンスLΣp3を実施例1における総電路インダクタンスLΣp1相当の値とすることができる。   Accordingly, as shown in an equivalent circuit in FIG. 7, the total circuit inductance LΣp3 to the terminal Pi of each individual auxiliary power supply circuit ALSi becomes LΣp3 = LB + LA + Li + LSi, and the added reactor Li is added to the total circuit inductance LΣp2 of the second embodiment. The inductance Li is added and becomes larger than this. When the inductance Li of the reactor Li is set to a value corresponding to the internal inductance LFi of the high-speed fuse FEi of the current limiting device of the first embodiment, the total circuit inductance LΣp3 can be set to a value corresponding to the total circuit inductance LΣp1 in the first embodiment.

このようにすれば、個別補機給電回路ALSiの末端Piで短絡事故が発生した場合、短絡電流の上昇速度を、図8の特性線Bで示す実施例1の短絡電流と同じ上昇速度に抑えることができる。   In this way, when a short circuit accident occurs at the terminal Pi of the individual auxiliary power supply circuit ALSi, the increase rate of the short circuit current is suppressed to the same increase rate as the short circuit current of Example 1 shown by the characteristic line B in FIG. be able to.

この実施例3の給電回路においては、短絡事故が発生し、特性線図8で示す短絡電流上のB0点で、個別補機給電回路ALSiの配線用遮断器CBSiが遮断電流設定値Is(300A)を検出し、遮断動作を開始する。短絡電流がさらに上昇し、流限流装置CLiの遮断設定電流ICs(600A)に達したB1´点で、スイッチング制御装置SC(図5)の制御部CTRがこれを検出して半導体スイッチQiにオフ信号を送り、これをオフにする。これにより、短絡電流がほぼB1´点で限流抵抗REiに転流するので、ここから短絡電流は、特性線B´で示すようにさらにゆっくり上昇し、限流抵抗REiの抵抗値Reiで決まる電流値Ir(1500A)まで上昇し、実施例1と同様にB3点で、個別補機給電回路ALSiの配線用遮断器CBSiが開閉接点の開極し、短絡電流の遮断を行う。   In the power supply circuit of the third embodiment, a short circuit accident occurs, and the circuit breaker CBSi for the wiring of the individual auxiliary power supply circuit ALSi at the point B0 on the short circuit current shown in the characteristic diagram 8 is the cut-off current set value Is (300A ) Is detected and the shutoff operation is started. At the point B1 ′ when the short-circuit current further rises and reaches the cutoff setting current ICs (600A) of the current limiting device CLi, the control unit CTR of the switching control device SC (FIG. 5) detects this and supplies it to the semiconductor switch Qi. Send off signal to turn it off. As a result, the short-circuit current is commutated to the current limiting resistor REi at approximately the point B1 ′, so that the short-circuit current rises more slowly as indicated by the characteristic line B ′ and is determined by the resistance value Rei of the current limiting resistor REi. The current value Ir rises to 1500 (A), and at the point B3 as in the first embodiment, the circuit breaker CBSi of the individual auxiliary power feeding circuit ALSi opens the switching contact and cuts off the short-circuit current.

このとき、短絡電流は、限流抵抗で決まる上流側保護装置UFAの動作電流以下の電流に限流されて個別補機給電回路ALSiの配線用遮断器CBSiにより遮断されるので、上流側の保護装置UFAは動作しない。このため、短絡事故の生じた際は、補機給電回路AF全体の給電が停止されることなく、短絡事故の発生した個別補機給電回路ALSiのみを切り離し、その他の健全な個別補機給電回路はそのまま継続して運転することができる。   At this time, the short-circuit current is limited to a current equal to or lower than the operating current of the upstream protection device UFA determined by the current limiting resistance and is interrupted by the wiring breaker CBSi of the individual auxiliary power feeding circuit ALSi. The device UFA does not work. For this reason, when a short-circuit accident occurs, power supply of the entire auxiliary power supply circuit AF is not stopped, only the individual auxiliary power supply circuit ALSi in which the short-circuit accident has occurred is disconnected, and other healthy individual auxiliary power supply circuits Can continue to drive.

図9にこの発明の第4の実施例を示す。   FIG. 9 shows a fourth embodiment of the present invention.

この実施例4の給電回路は、前記の実施例1の給電回路の各個別補機給電回路ALSi(ALS1〜ALSn)にそれぞれ設けられた、各個別補機給電回路ALSi(ALS1〜ALSn)にリアクトルLi(L1〜Ln)を直列に接続して、電路インダクタンスや限流装置のインダクタンスの不足を補うようにしたものである。   The power supply circuit according to the fourth embodiment is a reactor for each individual auxiliary power supply circuit ALSi (ALS1 to ALSn) provided in each individual auxiliary power supply circuit ALSi (ALS1 to ALSn) of the power supply circuit according to the first embodiment. Li (L1 to Ln) is connected in series to compensate for the shortage of the circuit inductance or the current limiting device.

これにより、図10に等価回路を示すように、各個別補機給電回路ALSiの末端Piまでの総電路インダクタンスLΣp4は、LΣp4=LBr+LAr+LFi+LSiとなり、実施例1の総電路インダクタンスLΣp1に、追加したリアクトルLiのインダクタンスLiが加わり、これより大きくなる。   As a result, as shown in an equivalent circuit in FIG. 10, the total circuit inductance LΣp4 up to the terminal Pi of each individual auxiliary power supply circuit ALSi is LΣp4 = LBr + LAr + LFi + LSi, and the added reactor Li Li The inductance Li is added and becomes larger than this.

したがって、実施例4の給電回路においては、限流装置CLi(CL1〜CLn)に使用された高速ヒューズFEi(FE1〜FEn)の内部インダクタンスが小さかったり、電路インダクタンスLAが小さい場合でも、リアクトルLiを加えることにより総電路インダクタンスLΣp4を実施例1における総電路インダクタンスLΣp1と等しい値またはそれより大きい値にすることができる。   Therefore, in the power supply circuit of the fourth embodiment, even when the internal inductance of the high-speed fuse FEi (FE1 to FEn) used in the current limiting device CLi (CL1 to CLn) is small or the circuit inductance LA is small, the reactor Li is used. By adding, the total circuit inductance LΣp4 can be made equal to or greater than the total circuit inductance LΣp1 in the first embodiment.

このようにすれば、個別補機給電回路ALSiの末端Piで短絡事故が発生した場合、短絡電流の上昇速度を、少なくとも、図8の特性線Bで示す実施例1の短絡電流と同じ上昇速度に抑えることができる。   In this way, when a short circuit accident occurs at the terminal Pi of the individual auxiliary power supply circuit ALSi, the short circuit current rise speed is at least the same as the short circuit current of the first embodiment shown by the characteristic line B in FIG. Can be suppressed.

このため、実施例4の給電回路においては、短絡事故が発生した場合は、実施例1の回路と同様に、図8の特性線Bで示す短絡電流線上のB0点で、個別補機給電回路ALSiの配線用遮断器CBSiが遮断電流設定値Is(300A)を検出し、遮断動作を開始する。短絡電流がさらに上昇し、遮断電流設定値(2000A)を超えたB1点で限流装置CLiの高速ヒューズFEiが、遮断動作(溶断)を開始し、短絡電流を限流しながら遮断する。そして、B2点で完全に遮断動作(溶断)が完了し、短絡電流が限流抵抗REiに転流すると、短絡電流は、この限流抵抗REiの抵抗値Reiで決まる電流(1500A)に限流される。B0点から配線用遮断器CBSi動作遅れ時間(13ms)に相当する時間の経過したB3点で配線用遮断器CBSiが開閉接点を開極して事故電流の遮断を開始してB4点で遮断を完了する。   Therefore, in the power supply circuit according to the fourth embodiment, when a short circuit accident occurs, the individual auxiliary power supply circuit at the point B0 on the short circuit current line indicated by the characteristic line B in FIG. The ALSi wiring breaker CBSi detects the breaking current set value Is (300 A) and starts the breaking operation. The high-speed fuse FEi of the current limiting device CLi starts a cut-off operation (melting) at a point B1 where the short-circuit current further rises and exceeds the cut-off current set value (2000A), and cuts off while the short-circuit current is limited. When the cut-off operation (melting) is completely completed at the point B2 and the short-circuit current is commutated to the current-limiting resistor REi, the short-circuit current is limited to the current (1500 A) determined by the resistance value Rei of the current-limiting resistor REi. It is. When the time corresponding to the circuit breaker CBSi operation delay time (13 ms) elapses from point B0, the circuit breaker CBSi opens the switching contact at the point B3 and starts the interruption of the fault current, and the circuit breaks at the point B4. Complete.

このとき、短絡電流は、限流抵抗で決まる上流側保護装置UFAの動作電流以下の電流に限流されて個別補機給電回路ALSiの配線用遮断器CBSiにより遮断されるので、上流側の保護装置UFAは動作しない。このため、短絡事故の生じた際は、補機給電回路AF全体の給電が停止されることなく、短絡事故の発生した個別補機給電回路ALSiのみを切り離し、その他の健全な個別補機給電回路はそのまま継続して運転することができる。   At this time, the short-circuit current is limited to a current equal to or lower than the operating current of the upstream protection device UFA determined by the current limiting resistance and is interrupted by the wiring breaker CBSi of the individual auxiliary power feeding circuit ALSi. The device UFA does not work. For this reason, when a short-circuit accident occurs, power supply of the entire auxiliary power supply circuit AF is not stopped, only the individual auxiliary power supply circuit ALSi in which the short-circuit accident has occurred is disconnected, and other healthy individual auxiliary power supply circuits Can continue to drive.

Br:リチウムイオン電池を用いた電池電源
ML:主給電回路
DSM:主給電回路開閉器
UMF:主給電回路保護装置(高速ヒューズ)
CBM:主回路配線用遮断器
M:推進電動機(主回路負荷)
AL:補機給電回路
DSA:補機給電回路開閉器
UFA:補機給電回路上流側保護装置(高速ヒューズ)
ALSi(ALS1〜ALSn):個別補機給電回路
CBSi(CBS1〜CBSn):個別補機給電回路配線用遮断器
CLi(CL1〜CLn):限流装置
FEi(FE1〜FEn):高速ヒューズ
REi(RE1〜REn):限流抵抗
Si(S1〜Sn):補機装置
Br: Battery power supply using lithium ion battery ML: Main power supply circuit DSM: Main power supply circuit switch UMF: Main power supply circuit protection device (high-speed fuse)
CBM: Circuit breaker for main circuit wiring M: Propulsion motor (main circuit load)
AL: Auxiliary power supply circuit DSA: Auxiliary power supply circuit switch UFA: Auxiliary power supply circuit upstream protection device (high-speed fuse)
ALSi (ALS1-ALSn): Individual auxiliary machine power supply circuit CBSi (CBS1-CBSn): Circuit breaker for individual auxiliary machine power supply circuit wiring CLi (CL1-CLn): Current limiting device FEi (FE1-FEn): High-speed fuse REi (RE1 ~ REn): Current limiting resistance Si (S1 ~ Sn): Auxiliary equipment

Claims (4)

リチウムイオン電池で構成された電源のように内部抵抗および電路インダクタンスの小さい、電池で構成された電源から推進電動機に給電を行う主給電回路と、前記電源から複数の補機装置へ給電を行うために補機装置ごとに分岐された個別補機給電回路を有する補機給電回路とを備えた電気推進装置の給電回路において、前記補機給電回路の個別補機給電回路の上流側の源流路に、前記補機給電回路を過電流から保護する上流側過電流保護装置を、また、下流側の各個別補機給電回路に、個別補機給電回路を過電流から保護する下流側過電流保護装置を設け、前記個別補機給電回路の下流側過電流保護装置にそれぞれ高速限流装置を直列に接続し、前記個別補機給電回路で短絡事故が発生したとき、短絡電流を、前記高速限流装置により前記上流側過電流保護装置の遮断電流設定値以下の電流に限流して前記上流側過電流保護装置より早く当該短絡事故の発生している個別補機給電回路の下流側過電流保護装置により遮断し、事故回路の切り離しを行うことを特徴とする電気推進装置の給電回路の保護方式。   A main power supply circuit that supplies power to the propulsion motor from a power source configured by a battery, such as a power source configured by a lithium ion battery, having a small internal resistance and circuit inductance, and for supplying power from the power source to a plurality of auxiliary devices A power supply circuit of an electric propulsion device having an auxiliary power supply circuit having an individual auxiliary power supply circuit branched for each auxiliary device, and a source flow path upstream of the individual auxiliary power supply circuit of the auxiliary power supply circuit. An upstream overcurrent protection device that protects the auxiliary machine power supply circuit from overcurrent, and a downstream overcurrent protection device that protects the individual auxiliary machine power supply circuit from overcurrent in each downstream individual auxiliary machine power supply circuit A high-speed current limiting device is connected in series to each of the downstream overcurrent protection devices of the individual auxiliary power supply circuit, and when a short-circuit fault occurs in the individual auxiliary power supply circuit, the short-circuit current is Previous by equipment The current is limited to a current equal to or lower than the cut-off current set value of the upstream overcurrent protection device and cut off by the downstream overcurrent protection device of the individual auxiliary power supply circuit in which the short circuit accident has occurred earlier than the upstream overcurrent protection device. The protection method for the power supply circuit of the electric propulsion device, characterized by disconnecting the accident circuit. 前記高速限流装置は、限流抵抗と、通常電流では閉路し、過電流になると高速で開路する高速スイッチ手段とを並列接続して構成した請求項1に記載の電気推進装置の給電回路の保護方式。   2. The electric propulsion device feeding circuit according to claim 1, wherein the high-speed current limiting device is configured by connecting in parallel a current-limiting resistor and high-speed switch means that closes at a normal current and opens at a high speed when an overcurrent occurs. Protection method. 前記高速スイッチ手段が高速ヒューズまたは半導体スイッチ装置である請求項2に記載の電気推進装置の給電回路の保護方式。   3. The electric propulsion device power supply circuit protection system according to claim 2, wherein the high-speed switch means is a high-speed fuse or a semiconductor switch device. 前記補機給電回路、または前記個別補機給電回路のそれぞれに直列に電流制限用リアクトルを挿入した請求項1ないし3の何れか1項に記載の電気推進装置の給電回路の保護方式。   The protection system for the power supply circuit of the electric propulsion device according to any one of claims 1 to 3, wherein a current limiting reactor is inserted in series in each of the auxiliary power supply circuit or the individual auxiliary power supply circuit.
JP2014041163A 2014-03-04 2014-03-04 Protection system for power supply circuit of electric propulsion device Active JP6354212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041163A JP6354212B2 (en) 2014-03-04 2014-03-04 Protection system for power supply circuit of electric propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041163A JP6354212B2 (en) 2014-03-04 2014-03-04 Protection system for power supply circuit of electric propulsion device

Publications (2)

Publication Number Publication Date
JP2015167444A true JP2015167444A (en) 2015-09-24
JP6354212B2 JP6354212B2 (en) 2018-07-11

Family

ID=54258073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041163A Active JP6354212B2 (en) 2014-03-04 2014-03-04 Protection system for power supply circuit of electric propulsion device

Country Status (1)

Country Link
JP (1) JP6354212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453337A (en) * 2017-09-04 2017-12-08 湖南长高思瑞自动化有限公司 A kind of distributed photovoltaic and network protection method and device
WO2023095567A1 (en) * 2021-11-23 2023-06-01 株式会社デンソー Power supply monitoring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924651Y1 (en) * 1968-09-27 1974-07-03
JPS5795022A (en) * 1980-12-05 1982-06-12 Mitsubishi Electric Corp Current limiting breaker
JPS5811930U (en) * 1981-07-13 1983-01-25 日新電機株式会社 current limiting device
JP2013144499A (en) * 2012-01-13 2013-07-25 Denso Corp Vehicular power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924651Y1 (en) * 1968-09-27 1974-07-03
JPS5795022A (en) * 1980-12-05 1982-06-12 Mitsubishi Electric Corp Current limiting breaker
JPS5811930U (en) * 1981-07-13 1983-01-25 日新電機株式会社 current limiting device
JP2013144499A (en) * 2012-01-13 2013-07-25 Denso Corp Vehicular power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453337A (en) * 2017-09-04 2017-12-08 湖南长高思瑞自动化有限公司 A kind of distributed photovoltaic and network protection method and device
WO2023095567A1 (en) * 2021-11-23 2023-06-01 株式会社デンソー Power supply monitoring device

Also Published As

Publication number Publication date
JP6354212B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
US11967842B2 (en) Smart battery disconnect and protection architecture for airborne high-power modular multi-string battery pack
JP7105322B2 (en) Multi-voltage level DC grid system and control protection method
JP6255429B2 (en) Current interrupt device and wire harness
AU2009268165B2 (en) High-speed circuit breaker for a high-performance battery in an isolated direct current network
JP4665922B2 (en) Battery charge / discharge circuit switch control system
US10134555B2 (en) Fuse for a device to be protected
CN108352701A (en) Spare overload protection scheme for solid-state power controller
KR20170114440A (en) Current circuit breaker
US11201462B2 (en) Fault-tolerant solid state power controller
JP6354212B2 (en) Protection system for power supply circuit of electric propulsion device
EP2945241B1 (en) Fault current limiter
JP4635989B2 (en) Current interrupt device
JP2017139903A (en) Current cutoff device
JP5189892B2 (en) Surge protection device
US20060043610A1 (en) Power controller with bond wire fuse
JP5295635B2 (en) Surge protection device
JP5220561B2 (en) Surge protection device
CN113644621A (en) Automobile circuit protection device, system and method
JP4883002B2 (en) Power supply circuit protection method
US11749484B2 (en) Circuit protector arc flash reduction system with parallel connected semiconductor switch
KR20150031729A (en) Fault current limiter with reclose fuction
JP4120618B2 (en) DC feeding network protection system
JP5220529B2 (en) Surge protection device
KR20180099431A (en) Double quench current limiting device for direct current and alternating current
JP4120540B2 (en) DC feeding network protection method and DC feeding network protection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250