JP4883002B2 - Power supply circuit protection method - Google Patents

Power supply circuit protection method Download PDF

Info

Publication number
JP4883002B2
JP4883002B2 JP2007333975A JP2007333975A JP4883002B2 JP 4883002 B2 JP4883002 B2 JP 4883002B2 JP 2007333975 A JP2007333975 A JP 2007333975A JP 2007333975 A JP2007333975 A JP 2007333975A JP 4883002 B2 JP4883002 B2 JP 4883002B2
Authority
JP
Japan
Prior art keywords
circuit
auxiliary
electric circuit
protection
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007333975A
Other languages
Japanese (ja)
Other versions
JP2009159713A (en
Inventor
泰弘 高林
謙二 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007333975A priority Critical patent/JP4883002B2/en
Publication of JP2009159713A publication Critical patent/JP2009159713A/en
Application granted granted Critical
Publication of JP4883002B2 publication Critical patent/JP4883002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

この発明は、複数の電池群を並列接続して構成される電池電源を備えた電気自動車や電気推進船舶等の電気推進システムなどにおける給電回路の短絡保護方式に関する。   The present invention relates to a short circuit protection system for a power feeding circuit in an electric propulsion system such as an electric vehicle or an electric propulsion ship provided with a battery power source configured by connecting a plurality of battery groups in parallel.

電池を電源とする電気自動車や電気推進船舶などの電気推進システムにおける給電電路は、電池とこの電池を充電する発電機と推進電動機とからなる主機器・装置およびこれらの主機器・装置を制御する補機類から構成される。
このような構成において、主電路で短絡事故が発生したときは、主電路に配置した保護装置によって主電路保護が行なわれるが、同時に補機電路の給電が停止(ブラックアウト)しない給電方式が望ましく、補機・装置への給電は継続させることが望ましい。これは、補機類は主機器・装置を制御するものであるから、補機電路のブラックアウトは電気推進システムを制御不能に陥れ、安全運行が損なわれるからである。
A power supply circuit in an electric propulsion system such as an electric vehicle or an electric propulsion ship using a battery as a power source controls a main device / device including a battery, a generator for charging the battery, and a propulsion motor, and the main device / device. Consists of auxiliary machinery.
In such a configuration, when a short circuit accident occurs in the main electric circuit, the main electric circuit protection is performed by a protective device arranged in the main electric circuit, but at the same time, a power supply method in which the power supply of the auxiliary electric circuit does not stop (blackout) is desirable. It is desirable to continue supplying power to the auxiliary equipment. This is because auxiliary machinery controls the main equipment and devices, and blackout of the auxiliary machinery circuit causes the electric propulsion system to become uncontrollable and the safe operation is impaired.

図4Aに、単電池による給電回路の保護方式の一般的な例を示す。Bは電池、CBL,CBAXは遮断器、MBは主電路、ABは補機電路、AXLは補機、Gは発電機、Mは推進電動機を示す。
これは主電路MBに遮断器CBLを設け、主電路で短絡事故が発生したときは遮断器CBLが作動し主電路を保護するものである。なお、図4Aの構成では、遮断器CBLの負荷(推進電動機)側において遮断器CBAXを介して補機電路ABが分岐されているので、遮断器CBLの作動により、同時に補機電路ABへの給電も断たれるため、電気推進システムのブラックアウトが発生し、極めて危険な状態になる。
FIG. 4A shows a general example of a protection system for a power feeding circuit using a single battery. B is a battery, CBL and CBAX are circuit breakers, MB is a main circuit, AB is an auxiliary circuit, AXL is an auxiliary machine, G is a generator, and M is a propulsion motor.
This is a circuit breaker CBL provided in the main circuit MB, and when a short circuit accident occurs in the main circuit, the circuit breaker CBL is activated to protect the main circuit. In the configuration of FIG. 4A, since the auxiliary circuit AB is branched via the circuit breaker CBAX on the load (propulsion motor) side of the circuit breaker CBL, the circuit breaker CBL is activated to simultaneously access the auxiliary circuit AB. Since the power supply is also cut off, blackout of the electric propulsion system occurs and it becomes extremely dangerous.

図4Bに、単電池による給電回路の保護方式の別の例を示す。
これは、遮断器CBLの電池側において遮断器CBAXを介して補機電路ABを分岐し、遮断器CBLおよび遮断器CBAXにより主電路MBと補機電路ABとが分離されるようにしたものである。これにより、主電路短絡事故で遮断器CBLが遮断動作しても、補機電路への給電は継続され電気推進システムのブラックアウトが発生しないので、安全が確保される。
図4Cは、図4Bで電池が複数群(B1~Bn)である点を除けば全く同じであり、保護方式も図4Bと基本的に同様である。
FIG. 4B shows another example of a protection method for a power feeding circuit using a single battery.
This is because the auxiliary electric circuit AB is branched on the battery side of the circuit breaker CBL via the circuit breaker CBAX, and the main electric circuit MB and the auxiliary electric circuit AB are separated by the circuit breaker CBL and circuit breaker CBAX. is there. As a result, even if the circuit breaker CBL is interrupted in the event of a main circuit short circuit accident, the power supply to the auxiliary circuit is continued and blackout of the electric propulsion system does not occur, so safety is ensured.
FIG. 4C is the same as FIG. 4B except that the battery is a plurality of groups (B1 to Bn), and the protection method is basically the same as FIG. 4B.

これら回路を用いた電気推進システムにおける主電路の容量(推進電動機容量)と補機電路の容量との比は、通常10:1程度またはそれ以上と言われ、主電路の容量に比べて補機電路の容量は小さいから、補機電路保護装置などの機器通電電流(IAX)は主電路のそれ(IL)に比べて小さい。
しかし、補機電路で短絡が発生した場合には、図5(a)や図6(a)に示すように、補機電路短絡点(点線参照)には電池からの短絡電流IBs,発電機からの短絡電流IGs、推進電動機からの短絡電流IMsを合計した莫大な短絡電流が流入し、常時通電電流が小さな補機電路に大短絡電流が流入することになるから、特に、保護装置の遮断機能に課題があることが指摘され、補機電路保護装置(CBAX)の遮断性能向上・改善が重要な技術課題ともなっている。
The ratio of the capacity of the main electric circuit (propulsion motor capacity) and the capacity of the auxiliary electric circuit in the electric propulsion system using these circuits is usually said to be about 10: 1 or more, and the auxiliary machine is larger than the capacity of the main electric circuit. Since the capacity of the electric circuit is small, the device energization current (IAX) such as the auxiliary circuit protection device is smaller than that of the main circuit (IL).
However, when a short circuit occurs in the auxiliary electric circuit, as shown in FIG. 5 (a) and FIG. 6 (a), the auxiliary electric circuit short circuit point (see dotted line) has a short circuit current IBs from the battery, a generator The short circuit current IGs from the motor and the short circuit current IMs from the propulsion motor flow in a huge amount of short circuit current, and the large short circuit current flows into the auxiliary circuit with a small constant current flow. It is pointed out that there is a problem in function, and improvement and improvement of the interruption performance of the auxiliary circuit protection device (CBAX) is also an important technical issue.

そこで、例えば特許文献1,2のように通常の遮断器に代えて、遮断性能の高い超限流遮断器を用いるものが提案されている。しかしながら、この超限流遮断器は一般に大型かつ高価であることから、これに代わる方式として、限流抵抗を利用するものが既に実用化されている。
図5(b),図6(b)にその例を示す。図5(b)は単電池給電方式、図6(b)は複数電池給電方式の場合である。
Therefore, for example, as disclosed in Patent Documents 1 and 2, a device using a supercurrent breaker having a high breaking performance instead of a normal breaker has been proposed. However, since the current limiting circuit breaker is generally large and expensive, an alternative method using a current limiting resistor has already been put into practical use.
An example is shown in FIGS. 5B and 6B. FIG. 5B shows the case of the single battery feeding method, and FIG. 6B shows the case of the multiple battery feeding method.

図7は、上述の限流抵抗RAXを用いて推定短絡電流を抑制する限流効果を説明する原理説明図である。すなわち、限流抵抗RAXが無い場合は図7にIsMAXとして示す推定短絡電流が流れるが、保護装置の遮断性能上限値ICBL以下の最大短絡電流ICBsとなるよう、限流抵抗RAXを挿入して抑制することにより、保護装置が安全,確実に短絡電流を遮断できるようにするものである。   FIG. 7 is a principle explanatory diagram for explaining the current limiting effect of suppressing the estimated short-circuit current using the above-described current limiting resistor RAX. That is, when there is no current limiting resistor RAX, an estimated short-circuit current shown as IsMAX in FIG. 7 flows, but the current-limiting resistor RAX is inserted and suppressed so that the maximum short-circuit current ICBs is below the upper limit value ICBL of the protective device. By doing so, the protection device can safely and reliably cut off the short-circuit current.

しかしながら、電気推進システムの電池電源は安全性や安定性等を考慮して、通常は複数並列電池構成が採用されているから、上記図5(b)のような方式ではなく、図6(b)のような構成とされる場合が多い。しかし、図6(b)のような構成では、限流抵抗による通電損失や電圧降下が大きいという問題がある。なお、この点については、実施形態のところで詳しく説明する。   However, since the battery power source of the electric propulsion system usually adopts a plurality of parallel battery configurations in consideration of safety, stability and the like, it is not the method as shown in FIG. ) In many cases. However, in the configuration as shown in FIG. 6B, there is a problem that current loss and voltage drop due to current limiting resistance are large. This point will be described in detail in the embodiment.

特開2005−086891号公報Japanese Patent Laying-Open No. 2005-086991 特開2005−323444号公報JP 2005-323444 A

従って、この発明の解決しようとする課題は、電気推進システムなどにおける複数の電池群が並列接続されてなる電池電源からの給電回路であって,主機および補機にそれぞれ給電する主電路および補機電路を個別に設けた給電回路の保護方式において、通常通電時における限流抵抗による通電損失や電圧降下を低減することができるとともに、補機電路用の保護装置の安全,確実な遮断動作ができ、補機電路用の保護装置の小型,軽量化および低コスト化を図ることのできる保護方式を提供することにある。   Therefore, the problem to be solved by the present invention is a power supply circuit from a battery power source in which a plurality of battery groups in an electric propulsion system or the like are connected in parallel, and the main electric circuit and the auxiliary machine for supplying power to the main machine and the auxiliary machine, respectively. In the power supply circuit protection system with separate electric circuits, it is possible to reduce current loss and voltage drop due to current limiting resistance during normal energization, and safe and reliable shut-off operation of the protective device for auxiliary electric circuits. Another object of the present invention is to provide a protection system capable of reducing the size, weight and cost of a protection device for an auxiliary circuit.

上記課題を解決すため、請求項1の発明では、複数の電池群がそれぞれの充放電スイッチを介して共通の電池電源母線に並列接続されてなる電池電源からの給電回路として、主機に給電する主電路と、補機に給電する補機電路とを個別に設け、電池電源母線と主電路とを主電路用の保護装置を介して接続するとともに、補機電路用の保護装置と,限流抵抗とが直列接続されてなる補機電路用保護回路を各電池群ごとに設け、電池電源における各電池群と各充放電スイッチとのそれぞれの接続点と補機電路とを前記各補機電路用保護回路を介してそれぞれ接続し、前記補機電路で短絡事故が発生したときは、各補機電路用保護回路における補機電路用の保護装置が安全・確実に遮断動作可能なように前記各限流抵抗にて短絡電流を抑制するとともに、各電池群から個別にそれぞれの補機電路用保護回路を介して補機への給電を行なうことにより、通常通電時における限流抵抗での通電損失を低減することを特徴とする。   In order to solve the above-mentioned problem, in the invention of claim 1, power is supplied to the main unit as a power supply circuit from a battery power source in which a plurality of battery groups are connected in parallel to a common battery power source bus via respective charge / discharge switches. A main electric circuit and an auxiliary electric circuit for supplying power to the auxiliary machine are provided separately, and the battery power supply bus and the main electric circuit are connected via a protective device for the main electric circuit, and the protective device for the auxiliary electric circuit, A protection circuit for auxiliary machine electric circuits formed by connecting resistors in series is provided for each battery group, and each connection point between each battery group and each charge / discharge switch in the battery power source and the auxiliary electric circuit are connected to each auxiliary electric circuit. When a short circuit accident occurs in the auxiliary circuit, the protective device for the auxiliary circuit in each auxiliary circuit can be safely and reliably cut off. Suppressing the short-circuit current with each current limiting resistor To, by performing the power supply to the auxiliary machine through the respective auxiliary path protection circuit separately from each cell group, characterized by reducing the current loss in the current limiting resistor in the normal energization.

請求項1の発明においては、前記各補機電路用保護回路のそれぞれにおいて補機電路用の保護装置と,限流抵抗とに対してダイオードを直列接続し、前記主電路に短絡事故が発生したときは、補機電路に接続された機器・装置からの吐き出し電流を前記ダイオードによって阻止することにより、補機電路の機器・装置を保護するとともに、補機電路用の保護装置が作動しないようにすることができる(請求項2の発明)。
また、上記請求項1または2の発明においては、前記複数の電池群の一部に異常が発生したときは、異常電池群に対応する充放電スイッチと、異常電池群に対応する補機電路用保護回路における補機電路用の保護装置とを「切」とし、主電路および補機電路から異常電池群を確実に切り離すことができる(請求項3の発明)。
さらに、上記請求項1〜3の発明においては、前記各補機電路用保護回路における補機電路用の保護装置を、スイッチとヒューズとの直列接続回路から構成することができる(請求項4の発明)。
In the invention of claim 1, a diode is connected in series with the protection device for the auxiliary electric circuit and the current limiting resistor in each of the protective circuits for the auxiliary electric circuit, and a short circuit accident occurs in the main electric circuit. In this case, by blocking the discharge current from the devices / devices connected to the auxiliary electric circuit by the diode, the devices / devices in the auxiliary electric circuit are protected and the protective device for the auxiliary electric circuit is not activated. (Invention of claim 2).
In the invention of claim 1 or 2, when an abnormality occurs in a part of the plurality of battery groups, a charge / discharge switch corresponding to the abnormal battery group and an auxiliary electric circuit corresponding to the abnormal battery group The protection device for the auxiliary electric circuit in the protection circuit is set to “OFF”, and the abnormal battery group can be reliably separated from the main electric circuit and the auxiliary electric circuit (invention of claim 3).
Furthermore, in the inventions according to claims 1 to 3, the protection device for the auxiliary electric circuit in each auxiliary electric circuit protection circuit can be constituted by a series connection circuit of a switch and a fuse. invention).

(a)この発明によれば、電気推進システムなどにおける複数の電池群がそれぞれの充放電スイッチを介して共通の電池電源母線に並列接続されてなる電池電源からの給電回路であって、主機に給電する主電路と,補機に給電する補機電路とを個別に設けた給電回路の保護方式として、電池電源母線と主電路とを主電路用の保護装置を介して接続するとともに、補機電路用の保護装置と,限流抵抗とが直列接続されてなる補機電路用保護回路を各電池群ごとに設け、電池電源における各電池群と各充放電スイッチとのそれぞれの接続点と補機電路とを前記各補機電路用保護回路を介してそれぞれ接続する。
給電回路の保護方式としての上記構成により、下記(a1)〜(a4)の作用効果が奏される。
(A) According to the present invention, a power supply circuit from a battery power source in which a plurality of battery groups in an electric propulsion system or the like are connected in parallel to a common battery power source bus via respective charge / discharge switches, As a protection method for a power supply circuit in which a main electric circuit for supplying power and an auxiliary electric circuit for supplying power to an auxiliary device are individually provided, the battery power supply bus and the main electric circuit are connected via a protective device for the main electric circuit, and the auxiliary device A protection circuit for an auxiliary electric circuit, in which a protection device for the electric circuit and a current limiting resistor are connected in series, is provided for each battery group, and each connection point between each battery group and each charge / discharge switch in the battery power supply is supplemented. An electric circuit is connected to each auxiliary electric circuit protection circuit.
With the above configuration as a protection method for the power feeding circuit, the following effects (a1) to (a4) are exhibited.

(a1)前記補機電路で短絡事故が発生したときは、各補機電路用保護回路における補機電路用の保護装置が安全・確実に遮断動作可能なように前記各限流抵抗にて短絡電流を抑制することができるので、補機電路用の保護装置として、配線用遮断器などの通常の保護装置や通常のヒューズが適用できるようになる。
(a2)各電池群から個別にそれぞれの補機電路用保護回路を介して補機への給電を行なうので、通常通電時における限流抵抗での通電損失を低減することができるようになる。
(a3)各電池群から個別にそれぞれの補機電路用保護回路を介して補機への給電を行なうので、補機電路用の保護装置の通電容量を小さくすることもできるようになる。
(a4)そして、上記(a1)および(a3)の点により、補機電路用の保護装置の小型,軽量化および低コスト化を図ることができる。
(A1) When a short circuit accident occurs in the auxiliary electric circuit, the auxiliary electric circuit protection device in each auxiliary electric circuit protection circuit is short-circuited by each current limiting resistor so that the protective device for the auxiliary electric circuit can be safely and reliably cut off. Since the current can be suppressed, a normal protective device such as a circuit breaker or a normal fuse can be applied as a protective device for the auxiliary circuit.
(A2) Since power is supplied to each auxiliary device from each battery group via the auxiliary circuit protection circuit for each auxiliary device, it is possible to reduce energization loss due to current limiting resistance during normal energization.
(A3) Since power is supplied to the auxiliary machine from each battery group individually via the protection circuit for auxiliary machine electric circuit, the energization capacity of the protective device for auxiliary machine electric circuit can be reduced.
(A4) Then, the points (a1) and (a3) described above can reduce the size, weight, and cost of the protective device for the auxiliary electric circuit.

(b)また、上記構成に加えて、各補機電路用保護回路のそれぞれにおいて補機電路用の保護装置と,限流抵抗とに対してダイオードを直列接続した構成では、主電路に短絡事故が発生したときに、補機電路に接続された機器・装置からの吐き出し電流を上記ダイオードによって阻止することができるので、補機電路の機器・装置を保護することができるとともに、補機電路用の保護装置が作動しないようにして、補機電路のブラックアウトを回避することができる。
(c)なお、複数の電池群の一部に異常が発生したときは、異常電池群に対応する充放電スイッチと、異常電池群に対応する補機電路用保護回路における補機電路用の保護装置とを「切」とし、主電路および補機電路から異常電池群を確実に切り離すことができる。
(B) In addition to the above configuration, in each of the protection circuit for the auxiliary electric circuit, in the configuration in which a diode is connected in series with the protective device for the auxiliary electric circuit and the current limiting resistor, a short circuit accident occurs in the main electric circuit. When this occurs, the diodes can block the discharge current from the devices / equipment connected to the auxiliary electric circuit, so that the auxiliary electric circuit devices / devices can be protected and the auxiliary electric circuit Therefore, the blackout of the auxiliary circuit can be avoided.
(C) When abnormality occurs in some of the plurality of battery groups, the charge / discharge switch corresponding to the abnormal battery group and the protection for the auxiliary electric circuit in the auxiliary circuit protection circuit corresponding to the abnormal battery group It is possible to reliably disconnect the abnormal battery group from the main electric circuit and the auxiliary electric circuit by turning off the device.

図1Aはこの発明の実施の形態を示す回路図、図1Bは図1Aと対比して説明するための回路図である。図1A〜1Bの回路は、いずれも、複数の電池群B1〜Bnがそれぞれの充放電スイッチSWB1〜SWBnを介して共通の電池電源母線に並列接続されてなる電池電源を備えている。
そして、図1Aは、電池電源母線(複数電池群の並列接続部)と主電路MBとを主電路用保護装置CBLを介して接続するとともに、補機電路用保護装置(CBAX1〜CBAXn)と限流抵抗(RAX1〜RAXn)とが直列接続されてなる補機電路用保護回路を各電池群B1〜Bnごとに設け、電池電源における各電池群B1〜Bnと各充放電スイッチSWB1〜SWBnとのそれぞれの接続点と補機電路ABとを前記各補機電路用保護回路を介してそれぞれ接続した構成となっている。なお、電池電源からは、主電路MBを介して主機(推進電動機M)への給電が行われるとともに、補機電路ABを介して主機(推進電動機M)より負荷容量の小さい補機AXLへの給電が行われる。
FIG. 1A is a circuit diagram showing an embodiment of the present invention, and FIG. 1B is a circuit diagram for comparison with FIG. 1A. Each of the circuits shown in FIGS. 1A to 1B includes a battery power source in which a plurality of battery groups B1 to Bn are connected in parallel to a common battery power bus via respective charge / discharge switches SWB1 to SWBn.
Fig. 1A shows the connection between the battery power bus (parallel connection of multiple battery groups) and the main circuit MB via the main circuit protection device CBL, and the auxiliary circuit protection devices (CBAX1 to CBAXn). A protection circuit for auxiliary electric circuit, in which current resistors (RAX1 to RAXn) are connected in series, is provided for each battery group B1 to Bn, and each battery group B1 to Bn and each charge / discharge switch SWB1 to SWBn in the battery power supply Each connection point and auxiliary electric circuit AB are connected via the auxiliary electric circuit protection circuits. From the battery power source, power is supplied to the main machine (propulsion motor M) via the main electric circuit MB, and to the auxiliary machine AXL having a smaller load capacity than the main machine (propulsion motor M) via the auxiliary electric circuit AB. Power is supplied.

一方、図1Bは、電池電源母線(複数電池群の並列接続部)から主電路MBと補機電路ABとを分岐し、補機電路AB用保護回路は、補機電路用保護装置CBAXと限流抵抗RAXとが直列接続されてなる回路としたもので、図6(b)と同じ給電方式を示す。
図1A,1Bの各方式について、以下具体的な数値を用いて比較検討する。
まず、各量を次のように定め、図1Bから説明する。
電池電圧VB=650V(充放電で変動する電池電圧の最大値)
主電路電流IL=5000A
補機電路電流ΣIAX=500A(ILの1/10とする)
電池並列数n=10
On the other hand, Fig. 1B shows that the main circuit MB and the auxiliary circuit AB are branched from the battery power supply bus (parallel connection of multiple battery groups), and the protection circuit for the auxiliary circuit AB is limited to the protection device CBAX for the auxiliary circuit. This is a circuit in which a current resistor RAX is connected in series, and shows the same power supply method as in FIG.
Each method in Figs. 1A and 1B will be compared and examined using specific numerical values.
First, the respective amounts are determined as follows and will be described from FIG. 1B.
Battery voltage VB = 650V (maximum value of battery voltage that fluctuates due to charge / discharge)
Main circuit current IL = 5000A
Auxiliary circuit current ΣIAX = 500A (1/10 of IL)
Number of parallel batteries n = 10

1)図1B の場合
電気推進船舶に用いる大容量電気推進装置を想定するとき、電池内部抵抗及び給電回路の電路インピーダンスが極めて小さいことから、給電回路において短絡事故が発生した時に流れる短絡電流は、図7に示す短絡事故電流値IsMAX=200KA~300 KAに達するものと推定される。このような大きさの短絡電流を安全・確実に遮断するためには、主電路用保護装置CBLに超高速遮断機能を持つもの、例えば超限流ヒューズが用いられることは、先に説明したところであり、この点は、補機電路用保護装置CBAXについても同様である。しかし、電池電源(並列接続電池)から補機AXLに給電する補機電路ABの保護装置に、従来からの超限流ヒューズを用いると保護装置の大型化,コストアップにつながるのも前述の通りである。
1) In the case of Fig. 1B Assuming a large capacity electric propulsion device used in electric propulsion vessels, the short circuit current that flows when a short circuit accident occurs in the power supply circuit is as follows: It is estimated that the short-circuit fault current value IsMAX = 200KA to 300KA shown in FIG. In order to safely and reliably interrupt such a short-circuit current, the main circuit protection device CBL having an ultra-high-speed interrupt function, for example, an ultra-current limiting fuse is used as described above. Yes, this is also true for the auxiliary circuit protection device CBAX. However, as described above, using a conventional ultra-current-limiting fuse for the protection device of auxiliary circuit AB that supplies power to auxiliary device AXL from a battery power supply (parallel connection battery) leads to an increase in the size and cost of the protection device. It is.

そこで、補機電路用保護装置の大型化,コストアップを回避するため、図1Bのように補機電路用保護装置CBAXと限流抵抗RAXとを直列接続してなる保護回路を利用することが考えられ、既に実用化されているのも先に説明した通りである。
ここで、図1Bにおいて、図7に示す保護装置の遮断性能上限値ICBL=30KAと仮定し、この短絡電流を遮断性能上限値ICBL以下の最大短絡電流ICBs=20KAに限流しようとするときの限流抵抗値RAXは、
RAX=VBmax÷ICBs=650V÷20KA = 0.0325Ω
であり、通常通電時の限流抵抗での通電損失は、
WRAX=RAX×ΣIAX2= 0.0325Ω×500A2 =8.125KW
となり、通常通電時の限流抵抗での電圧降下は、
VRAX=RAX×ΣIAX=0.0325Ω×500A =16.25V
となる。
Therefore, in order to avoid an increase in the size and cost of the protective device for the auxiliary machine electric circuit, it is possible to use a protective circuit formed by connecting the protective device for the auxiliary machine electric circuit CBAX and the current limiting resistor RAX in series as shown in FIG. 1B. It is considered and has already been put into practical use as described above.
Here, in FIG. 1B, it is assumed that the breaking performance upper limit value ICBL = 30KA of the protection device shown in FIG. The current limiting resistance value RAX is
RAX = VBmax ÷ ICBs = 650V ÷ 20KA = 0.0325Ω
The energization loss at the current limiting resistance during normal energization is
WRAX = RAX × ΣIAX 2 = 0.0325Ω × 500A 2 = 8.125KW
The voltage drop at the current limiting resistance during normal energization is
VRAX = RAX × ΣIAX = 0.0325Ω × 500A = 16.25V
It becomes.

2)図1Aの場合
電池並列数n=10とし、短絡電流を図1Bの場合と同じくICBs=20KAに限流しようとするときの限流抵抗値RAX=0.0325Ωは、図1Bと同じ値である。
通常通電時の各電池群B1〜Bnからの電流(IAX1〜IAXn)は、それぞれIAX=ΣIAX÷10=500A÷10=50A
であり、通常通電時の各限流抵抗(RAX1〜RAXn)での通電損失は、
WRAX=RAX×(ΣIAX÷10)2=0.08125KW
となり、合計損失は、
ΣWRAX=WRAX×10=0.8125KW
のように図1Bの場合の1/10になり、
通常通電時の限流抵抗での電圧降下は、
VRAX=RAX×ΣIAX÷10=1.625V
であり、これも図1Bの場合の1/10となる。
2) In the case of Fig. 1A When the number of paralleled batteries is n = 10, and the short-circuit current is limited to ICBs = 20KA as in Fig. 1B, the current limiting resistance value RAX = 0.0325Ω is the same value as in Fig. 1B. is there.
The current (IAX1 to IAXn) from each of the battery groups B1 to Bn during normal energization is IAX = ΣIAX ÷ 10 = 500A ÷ 10 = 50A, respectively.
The current loss at each current limiting resistor (RAX1 to RAXn) during normal energization is
WRAX = RAX × (ΣIAX ÷ 10) 2 = 0.08125KW
And the total loss is
ΣWRAX = WRAX × 10 = 0.8125KW
It becomes 1/10 in the case of FIG.
The voltage drop at the current limiting resistance during normal energization is
VRAX = RAX × ΣIAX ÷ 10 = 1.625V
This is also 1/10 of the case of FIG. 1B.

以上の結果から、図1Aと図1Bを比較すると、図1A の方が通常通電時の限流抵抗での通電損失および電圧降下ともに図1B の場合の1/10となり、有利であることが分かる。ただし、図1B の場合に比べ補機電路用保護装置CBAXの数量が多くなるという難点を有することになる。しかしながら、図1Aの構成では、
上述した限流抵抗の短絡電流抑制効果により補機電路用保護装置として通常の保護装置(配線用遮断器,ヒューズ)を用いることができることに加えて、補機電路用保護装置の通電容量を小さくすることもできるので、補機電路用保護装置の小型,軽量化およびコストダウンが可能となり、給電回路の保護方式として好適である。
From the above results, comparing FIG. 1A and FIG. 1B, it can be seen that FIG. 1A is more advantageous in that the conduction loss and voltage drop at the current-limiting resistance during normal energization are 1/10 of those in FIG. 1B. . However, there is a problem that the number of auxiliary circuit protection devices CBAX increases compared to the case of FIG. 1B. However, in the configuration of FIG.
In addition to being able to use a normal protective device (circuit breaker for wiring, fuse) as a protective device for auxiliary machine circuit due to the short-circuit current suppressing effect of the current limiting resistor described above, the current carrying capacity of the protective device for auxiliary machine circuit can be reduced. Therefore, it is possible to reduce the size, weight, and cost of the protective device for the auxiliary electric circuit, which is suitable as a protection method for the power feeding circuit.

なお、各電池群B1〜Bnのうち一部の個別電池群に異常が発生したとき、異常電池群に対応する充放電スイッチ(SWB1~SWBn)を「切」とするのと連動させて、異常電池群に対応する補機電路用保護装置(CBAX1~CBAXn)も「切」とすれば、異常電池群を給電回路(主電路MBおよび補機電路AB)から切り離すことができる。
また、通常の配線用遮断器などを用いた補機電路用保護装置(CBAX)に代えて図3のように、スイッチSWとヒューズFとを直列接続してなる構成の保護装置にすれば、補機電路用保護装置のさらなる小型,軽量化およびコストダウンが可能となる。
In addition, when an abnormality occurs in some of the individual battery groups among the battery groups B1 to Bn, the charge / discharge switch (SWB1 to SWBn) corresponding to the abnormal battery group is turned off, If the protection device for auxiliary electric circuit (CBAX1 to CBAXn) corresponding to the battery group is also set to “OFF”, the abnormal battery group can be disconnected from the power supply circuit (main electric circuit MB and auxiliary electric circuit AB).
In addition, instead of an auxiliary circuit protection device (CBAX) using a normal circuit breaker or the like, as shown in FIG. 3, a protection device having a configuration in which a switch SW and a fuse F are connected in series is used. This makes it possible to further reduce the size, weight, and cost of the protective device for the auxiliary electric circuit.

図2Aはこの発明の他の実施形態を示し、図1Aにおける各電池群B1〜Bnに対応する各補機電路用保護回路のそれぞれにおいて、補機電路用保護装置(CBAX1~CBAXn)と限流抵抗(RAX1~RAXn)とに対して直列に、かつ、通常通電時の電流方向が順方向となるように逆流阻止用のダイオード(DAX1〜DAXn)を挿入した例である。
この方式は、主電路MBに短絡事故が発生したとき、補機電路ABに接続されている補機機器・装置(補機AXL)から主電路短絡点へ吐き出し電流が流れて補機電路用保護装置(CBAX1~CBAXn)が動作して補機電路がブラックアウトすることを防止するとともに、吐き出し電流が流れて補機機器・装置(補機AXL)が損傷することを防止するものである。
FIG. 2A shows another embodiment of the present invention. In each of the auxiliary circuit protection circuits corresponding to the battery groups B1 to Bn in FIG. 1A, the auxiliary circuit protection devices (CBAX1 to CBAXn) This is an example in which diodes (DAX1 to DAXn) for preventing backflow are inserted in series with resistors (RAX1 to RAXn) so that the current direction during normal energization is the forward direction.
In this method, when a short-circuit accident occurs in the main circuit MB, a discharge current flows from the auxiliary equipment / device (auxiliary machine AXL) connected to the auxiliary circuit AB to the main circuit short-circuit point to protect the auxiliary circuit. This prevents the equipment (CBAX1 to CBAXn) from operating and blacking out the auxiliary circuit, and also prevents the discharge current from flowing and damaging the auxiliary equipment / device (auxiliary machine AXL).

この場合も、図1Bと対応する図2Bを想定し、図2Bを図2Aと比較する。
いま、ダイオードの沿層電圧を2Vと仮定すると、上述の図1A〜1Bの場合と同様に電池並列数n=10としたとき、図2Aの場合における各ダイオード(DAX1〜DAXn)の通電損失はWD=2V×50A=0.1KWで合計損失は0.1KW×10=1KW 、図2Bの場合におけるダイオード(DAX)の通電損失はWD=2V×500A=1KWで、全体としての通電損失は両方とも変わりはないが、図2Aでの各ダイオード(DAX1〜DAXn)の通電損失は0.1KWであるのに対し、図2Bでのダイオード(DAX)の通電損失は1KWと大きい。このため、補機電路ABに接続されている補機機器・装置(補機AXL)の負荷容量が大きくて、図2Bではダイオードに対する強制風冷が必要となるような場合であっても、図2Aでは自然風冷でも可能となるようにすることができるので、ダイオード冷却構造の観点からも図2Aの方が小型,軽量化およびコストダウンに適しているといえる。
Again, assuming FIG. 2B corresponding to FIG. 1B, FIG. 2B is compared with FIG. 2A.
Assuming that the voltage across the diode is 2 V, the current loss of each diode (DAX1 to DAXn) in the case of FIG. 2A when the number of parallel batteries n is 10 as in the case of FIGS. 1A to 1B described above. WD = 2V × 50A = 0.1KW and total loss is 0.1KW × 10 = 1KW. In the case of Figure 2B, the diode (DAX) current loss is WD = 2V × 500A = 1KW. However, the conduction loss of each diode (DAX1 to DAXn) in FIG. 2A is 0.1 kW, whereas the conduction loss of the diode (DAX) in FIG. 2B is as large as 1 kW. Therefore, even if the load capacity of the auxiliary equipment / device (auxiliary machine AXL) connected to the auxiliary electric circuit AB is large and forced air cooling is required for the diode in FIG. Since 2A can be made even by natural air cooling, it can be said that FIG. 2A is more suitable for miniaturization, weight reduction and cost reduction from the viewpoint of diode cooling structure.

これらの考察結果から、図1Aと図2Aの方式がより望ましく、並列接続された複数電池群B1〜Bnを電池電源とするとともに主電路MBと補機電路ABとを備えた電気推進システムにおける補機電路ABへの給電は、各電池群B1〜Bnごとに設けられた,補機電路用保護装置(CBAX1〜CBAXn)および限流抵抗(RAX1〜RAXn)とを直列接続してなる各補機電路用保護回路を介して、各電池群B1〜Bnと各充放電スイッチSWB1〜SWBnとのそれぞれの接続点から共通の補機電路ABへ給電する方式とする。
図1Aおよび図2Aの上記方式では、まず、図1Bおよび図2Bの方式と同様であるが、限流抵抗(RAX1〜RAXn)によって短絡事故発生時の短絡電流を抑制することにより、補機電路用保護装置として、通常の配線用遮断器、または通常の保護ヒューズを用いて、安全・確実に事故電流が遮断できるようにする。
From these consideration results, the method of FIG. 1A and FIG. 2A is more desirable, and the auxiliary battery in the electric propulsion system including the plurality of battery groups B1 to Bn connected in parallel as the battery power source and the main electric circuit MB and the auxiliary electric circuit AB is used. Power supply to the machine electric circuit AB is provided for each battery group B1 to Bn, and each auxiliary machine formed by connecting an auxiliary electric circuit protection device (CBAX1 to CBAXn) and a current limiting resistor (RAX1 to RAXn) in series. Power is supplied to the common auxiliary circuit AB from the connection points of the battery groups B1 to Bn and the charge / discharge switches SWB1 to SWBn via the circuit protection circuit.
1A and 2A are the same as the methods in FIGS. 1B and 2B, but the auxiliary current circuit is controlled by limiting the short-circuit current when a short-circuit accident occurs by the current-limiting resistors (RAX1 to RAXn). As a protective device, use a normal circuit breaker or a normal protective fuse so that the accident current can be safely and reliably interrupted.

次に、図1Aおよび図2Aの上記方式では、図1Bおよび図2Bの方式とは異なり、各電池群B1〜Bnから個別にそれぞれの補機電路用保護回路を介して共通の補機電路ABへの給電を行なうので、通常通電時における限流抵抗(RAX1〜RAXn)での通電損失を低減することができ、各限流抵抗での通電損失を合計した全体の通電損失としても、図1Bおよび図2Bの方式における限流抵抗での通電損失に比べて1/n(nは電池並列数)とすることができるとともに、補機電路用保護装置(CBAX1〜CBAXn)の通電容量を小さくすることもできる。
そして、図1Aおよび図2Aの上記方式では、補機電路用保護装置として通常の配線用遮断器、または通常の保護ヒューズを用いることができるとともに、補機電路用保護装置の通電容量を小さくすることができることから、補機電路用保護装置の小型,軽量化および低コスト化を図ることが可能となる。
Next, in the above system of FIGS. 1A and 2A, unlike the systems of FIGS. 1B and 2B, the common auxiliary circuit AB is individually connected from each of the battery groups B1 to Bn via the protective circuit for each auxiliary circuit. Since the power supply loss is reduced, the current loss at the current-limiting resistance (RAX1 to RAXn) during normal energization can be reduced, and the total current loss at each current-limiting resistance is also shown in Fig. 1B. In addition, it can be reduced to 1 / n (where n is the number of batteries in parallel) compared to the current loss due to current limiting resistance in the method of FIG. 2B, and the current carrying capacity of auxiliary circuit protection devices (CBAX1 to CBAXn) is reduced. You can also.
1A and 2A, a normal circuit breaker or a normal protective fuse can be used as an auxiliary circuit protection device, and the current carrying capacity of the auxiliary circuit protection device can be reduced. Therefore, it is possible to reduce the size, weight, and cost of the protection device for auxiliary electric circuit.

また、図2Aの方式では、図2Bの方式と同様であるが、主電路MBで短絡事故が発生した時は、補機電路ABに接続された補機機器・装置(補機AXL)からの吐き出し電流をダイオードDAX1〜DAXnでブロックすることにより、上記吐き出し電流で補機電路保護装置CBAX1〜CBAXnが動作しないようにして、補機電路ABのブラックアウトを回避するとともに、上記吐き出し電流で補機機器・装置(補機AXL)が損傷しないように保護する。
なお、複数の電池群の一部に異常が発生したときは、異常電池群に対応する充放電スイッチ(SWB1~SWBn)と、異常電池群に対応する補機電路用保護回路における補機電路用保護装置(CBAX1〜CBAXn)とを「切」とすることで、異常電池群を主電路および補機電路から確実に切り離すことができ、これにより、電源供給を中断することなく健全電池群による例えば電気推進船舶などの電気推進システムの運転を継続することが可能となる。
2A is the same as the method of FIG. 2B, but when a short circuit accident occurs in the main electric circuit MB, the auxiliary device / device (auxiliary device AXL) connected to the auxiliary electric circuit AB is used. By blocking the discharge current with the diodes DAX1 to DAXn, the discharge current prevents the auxiliary circuit protection devices CBAX1 to CBAXn from operating, avoiding blackout of the auxiliary circuit AB, and the auxiliary current with the discharge current. Protect equipment and devices (auxiliary machine AXL) from damage.
When an abnormality occurs in some of the battery groups, the charge / discharge switches (SWB1 to SWBn) corresponding to the abnormal battery group and the auxiliary circuit circuit protection circuit for the auxiliary electric circuit corresponding to the abnormal battery group By turning off the protective devices (CBAX1 to CBAXn), the abnormal battery group can be reliably disconnected from the main electric circuit and the auxiliary circuit, so that, for example, a healthy battery group can be used without interrupting the power supply. It becomes possible to continue operation of an electric propulsion system such as an electric propulsion ship.

また、上述の説明では、主として電気推進システムにおける給電回路の保護方式を例として説明したが、この発明は、電気推進システム以外の電気設備においても、複数の電池群が並列接続されてなる電池電源からの給電回路であって,主機および補機にそれぞれ給電する主電路および補機電路を個別に設けた給電回路であれば、その給電回路の保護方式として適用することができるものである。   In the above description, the protection method of the power feeding circuit in the electric propulsion system has been mainly described as an example. However, the present invention also provides a battery power source in which a plurality of battery groups are connected in parallel in electric equipment other than the electric propulsion system. Can be applied as a protection system for the power supply circuit provided that the main circuit and the auxiliary circuit for supplying power to the main machine and the auxiliary machine are separately provided.

この発明の実施の形態を示す回路図Circuit diagram showing an embodiment of the present invention 図1Aと比較対照するための回路図Circuit diagram for comparison with FIG. 1A この発明の他の実施の形態を示す回路図Circuit diagram showing another embodiment of the present invention 図2Aと比較対照するための回路図Circuit diagram for comparison with FIG. 2A 図1A〜2Bで用いられる保護装置の具体例Specific examples of protective devices used in FIGS. 給電回路の保護方式の第1例を示す回路図Circuit diagram showing the first example of the protection method of the power feeding circuit 給電回路の保護方式の第2例を示す回路図Circuit diagram showing a second example of the protection method of the power feeding circuit 給電回路の保護方式の第3例を示す回路図Circuit diagram showing a third example of the protection method of the feeding circuit 単電池給電方式の短絡事故発生時における電流経路説明図Current path explanatory diagram at the time of short-circuit accident of single-cell power feeding method 複数電池給電方式の短絡事故発生時における電流経路説明図Current path explanatory diagram at the time of occurrence of short-circuit accident of multiple battery feeding method 限流抵抗による短絡電流抑制効果の説明図Explanatory diagram of short-circuit current suppression effect by current limiting resistance

符号の説明Explanation of symbols

B,B1〜Bn…電池、CBL,CBAX,CBAX1〜CBAXn…遮断器、MB…主電路、AB…補機電路、AXL…補機、G…発電機、M…推進電動機、RAX,RAX1~ RAXn…限流抵抗、SW,SWB1~SWBn…スイッチ。   B, B1 to Bn: Battery, CBL, CBAX, CBAX1 to CBAXn ... Circuit breaker, MB ... Main circuit, AB ... Auxiliary machine circuit, AXL ... Auxiliary machine, G ... Generator, M ... Propulsion motor, RAX, RAX1 ~ RAXn … Current limiting resistor, SW, SWB1 ~ SWBn… Switch.

Claims (4)

複数の電池群がそれぞれの充放電スイッチを介して共通の電池電源母線に並列接続されてなる電池電源からの給電回路として、主機に給電する主電路と、補機に給電する補機電路とを個別に設け、電池電源母線と主電路とを主電路用の保護装置を介して接続するとともに、補機電路用の保護装置と,限流抵抗とが直列接続されてなる補機電路用保護回路を各電池群ごとに設け、電池電源における各電池群と各充放電スイッチとのそれぞれの接続点と補機電路とを前記各補機電路用保護回路を介してそれぞれ接続し、
前記補機電路で短絡事故が発生したときは、各補機電路用保護回路における補機電路用の保護装置が安全・確実に遮断動作可能なように前記各限流抵抗にて短絡電流を抑制するとともに、各電池群から個別にそれぞれの補機電路用保護回路を介して補機への給電を行なうことにより、通常通電時における限流抵抗での通電損失を低減することを特徴とする給電回路の保護方式。
As a power supply circuit from a battery power supply in which a plurality of battery groups are connected in parallel to a common battery power supply bus via respective charge / discharge switches, a main electric circuit for supplying power to the main machine and an auxiliary electric circuit for supplying power to the auxiliary machine are provided. A protective circuit for auxiliary electric circuit comprising a protection device for auxiliary electric circuit and a current limiting resistor connected in series, and provided separately, connecting the battery power supply bus and the main electric circuit via the protective device for main electric circuit For each battery group, connecting each battery group in the battery power source and each charge / discharge switch and the auxiliary electrical circuit via the protective circuit for each auxiliary electrical circuit,
When a short-circuit accident occurs in the auxiliary circuit, the short-circuit current is suppressed by the current limiting resistors so that the protective device for the auxiliary circuit in each auxiliary circuit protection circuit can be safely and reliably cut off. In addition, by supplying power to each auxiliary device individually from each battery group via the protection circuit for each auxiliary electric circuit, the power supply loss at the current limiting resistance during normal energization is reduced. Circuit protection method.
前記各補機電路用保護回路のそれぞれにおいて補機電路用の保護装置と,限流抵抗とに対してダイオードを直列接続し、前記主電路に短絡事故が発生したときは、補機電路に接続された機器・装置からの吐き出し電流を前記ダイオードによって阻止することにより、補機電路の機器・装置を保護するとともに、補機電路用の保護装置が作動しないようにすることを特徴とする請求項1に記載の給電回路の保護方式。   In each of the protection circuit for each auxiliary electric circuit, a diode is connected in series with the protective device for the auxiliary electric circuit and the current limiting resistor, and when a short circuit accident occurs in the main electric circuit, it is connected to the auxiliary electric circuit. The discharge current from the connected device / device is blocked by the diode, thereby protecting the device / device in the auxiliary electric circuit and preventing the protective device for the auxiliary electric circuit from operating. The protection method for the power feeding circuit according to 1. 前記複数の電池群の一部に異常が発生したときは、異常電池群に対応する充放電スイッチと、異常電池群に対応する補機電路用保護回路における補機電路用の保護装置とを「切」とし、主電路および補機電路から異常電池群を確実に切り離すことを特徴とする請求項1または2に記載の給電回路の保護方式。   When an abnormality occurs in some of the plurality of battery groups, a charge / discharge switch corresponding to the abnormal battery group and an auxiliary electric circuit protection device in the auxiliary electric circuit protection circuit corresponding to the abnormal battery group The power feeding circuit protection system according to claim 1 or 2, wherein the abnormal battery group is surely separated from the main electric circuit and the auxiliary electric circuit. 前記各補機電路用保護回路における補機電路用の保護装置を、スイッチとヒューズとの直列接続回路から構成することを特徴とする請求項1〜3のいずれか1つに記載の給電回路の保護方式。   The protection device for auxiliary electric circuit in each of the auxiliary electric circuit protection circuits is constituted by a series connection circuit of a switch and a fuse. Protection method.
JP2007333975A 2007-12-26 2007-12-26 Power supply circuit protection method Active JP4883002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333975A JP4883002B2 (en) 2007-12-26 2007-12-26 Power supply circuit protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333975A JP4883002B2 (en) 2007-12-26 2007-12-26 Power supply circuit protection method

Publications (2)

Publication Number Publication Date
JP2009159713A JP2009159713A (en) 2009-07-16
JP4883002B2 true JP4883002B2 (en) 2012-02-22

Family

ID=40963113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333975A Active JP4883002B2 (en) 2007-12-26 2007-12-26 Power supply circuit protection method

Country Status (1)

Country Link
JP (1) JP4883002B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338382B2 (en) * 2014-01-11 2018-06-06 株式会社クラレンドン研究所 Capacitor bank
JP6569570B2 (en) * 2016-03-15 2019-09-04 株式会社オートネットワーク技術研究所 Power supply
JP5967327B1 (en) * 2016-03-16 2016-08-10 富士電機株式会社 Insulation resistance measurement method for DC power supply circuit

Also Published As

Publication number Publication date
JP2009159713A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US11967842B2 (en) Smart battery disconnect and protection architecture for airborne high-power modular multi-string battery pack
JP4665922B2 (en) Battery charge / discharge circuit switch control system
AU2009268165B2 (en) High-speed circuit breaker for a high-performance battery in an isolated direct current network
EP4044394B1 (en) Systems and methods for fail-safe battery protection independent from battery management system
US8564914B2 (en) Fault clearing without a DC backup power source
US20210226468A1 (en) Over-temperature battery protection
KR20120082876A (en) Electricity storage system and control device
US11381072B2 (en) Quick battery disconnect system for high current circuits
CN109923746B (en) DC power system divided into different protection zones
US20190092173A1 (en) High-Voltage Battery System Having a Safety Device
JP4883002B2 (en) Power supply circuit protection method
JP2022535932A (en) Photovoltaic system protection device and protection method, and photovoltaic system
US20220352705A1 (en) Vehicle electrical system, particularly for a motor vehicle
KR102115787B1 (en) Dc shipboard power system
JP2017139903A (en) Current cutoff device
JP6354212B2 (en) Protection system for power supply circuit of electric propulsion device
JP5564770B2 (en) Protecting method of electric propulsion system
JP4120618B2 (en) DC feeding network protection system
US20200144807A1 (en) Redundant protection system for a hybrid electrical system
JP7159236B2 (en) Short circuit breaker for DC power supply equipment
JP4120540B2 (en) DC feeding network protection method and DC feeding network protection system
US20230059046A1 (en) Apparatus and Methods for Arc Detection, Fault Isolation, and Battery System Reconfiguration
JP2021090235A (en) Power storage system
KR20210059227A (en) Battery protection circuit device for submarine

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250