JP5967327B1 - Insulation resistance measurement method for DC power supply circuit - Google Patents

Insulation resistance measurement method for DC power supply circuit Download PDF

Info

Publication number
JP5967327B1
JP5967327B1 JP2016053041A JP2016053041A JP5967327B1 JP 5967327 B1 JP5967327 B1 JP 5967327B1 JP 2016053041 A JP2016053041 A JP 2016053041A JP 2016053041 A JP2016053041 A JP 2016053041A JP 5967327 B1 JP5967327 B1 JP 5967327B1
Authority
JP
Japan
Prior art keywords
insulation resistance
battery
power supply
measurement
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016053041A
Other languages
Japanese (ja)
Other versions
JP2017167005A (en
Inventor
泰弘 高林
泰弘 高林
謙二 馬場
謙二 馬場
徹 引地
徹 引地
陽介 樋口
陽介 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016053041A priority Critical patent/JP5967327B1/en
Application granted granted Critical
Publication of JP5967327B1 publication Critical patent/JP5967327B1/en
Publication of JP2017167005A publication Critical patent/JP2017167005A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】多数の単電池を直並列接続して構成した非接地の電池電源から給電電路を介して多数の負荷に給電するようにした直流給電回路において絶縁抵抗が低下したとき、電池電源の絶縁不良が生じた列電池および単電池、および絶縁不良を生じた分岐回路および負荷を特定することの可能な絶縁抵抗測定方法を提供する。【解決手段】給電電路の絶縁抵抗測定するモードおよび電池電源の絶縁抵抗を測定するモードにより、それぞれ、給電電路および電池電源の絶縁抵抗を測定し、絶縁抵抗の低下が検出されたとき、給電電路に接続された分岐スイッチ、または電池電源の電池スイッチを1つずつ順次切断することにより、給電電路および電池電源の絶縁抵抗の回復処理を行うことにより、絶縁抵抗が低下する絶縁不良の発生個所を特定する。【選択図】図6Insulation of a battery power source when an insulation resistance is lowered in a DC power supply circuit in which a large number of single cells are connected in series and parallel to supply power to a large number of loads from a non-grounded battery power source via a power feeding circuit. Provided is an insulation resistance measurement method capable of specifying a column battery and a single battery in which a failure has occurred, and a branch circuit and a load in which an insulation failure has occurred. When the insulation resistance of the power supply circuit and the battery power source are measured by the mode for measuring the insulation resistance of the power supply circuit and the mode of measuring the insulation resistance of the battery power supply, respectively, and when a decrease in the insulation resistance is detected, the power supply circuit By disconnecting the branch switch connected to the battery or the battery switch of the battery power supply one by one one after another, the insulation resistance of the power supply circuit and the battery power supply is recovered, so that the location of the insulation failure where the insulation resistance is reduced Identify. [Selection] Figure 6

Description

この発明は、船舶の電気推進システムや、太陽光発電システムのように、複数の単電池を直列接続して形成した列電池を単数または複数並列接続して構成した電池電源から負荷へ給電する直流給電回路における絶縁抵抗を測定し、絶縁抵抗が低下して絶縁不良となる個所を特定することを可能にした絶縁抵抗測定方法に関する。   The present invention provides a direct current that supplies power to a load from a battery power source configured by connecting one or a plurality of battery cells connected in series, such as a ship electric propulsion system or a photovoltaic power generation system. The present invention relates to an insulation resistance measurement method capable of measuring an insulation resistance in a power feeding circuit and identifying a location where insulation resistance is lowered and insulation failure occurs.

この発明が対象とする、特に、船舶の電気推進システムは、給電電路を接地しない非接地給電電路とすることが原則であり、該当する規格等で規定されている。 また、船舶の電気推進システムに用いる電池電源は高電圧大電流の大容量を必要とするため、ユニット化された単電池を多数直並列接続して構成する。
この電池電源および電池電源からの給電電路には多数の電気機器、装置が接続される。従って、電池電源を構成する多数個の単電池、並びに電池電源からの給電電路およびこれに接続される多数の電気機器、装置の一部に、絶縁抵抗が低下して絶縁不良が発生すると地絡や短絡事故に発展する恐れがあり、極めて危険である。
しかし、これまで知られている、例えば特許文献1に示すような従来の絶縁抵抗測定装置では、電池電源から負荷へ給電するための接地されない給電電路の絶縁抵抗を測定することしか行われていなかった。
In particular, the electric propulsion system for ships, which is the object of the present invention, is in principle a non-grounded power supply circuit that does not ground the power supply circuit, and is defined in the relevant standards. Moreover, since the battery power source used for the electric propulsion system of a ship requires large capacity of high voltage and large current, a large number of unitized single cells are connected in series and parallel.
A large number of electric devices and devices are connected to the battery power source and a power supply path from the battery power source. Accordingly, when a large number of single cells constituting a battery power source, a power supply circuit from the battery power source, and a large number of electrical devices and devices connected thereto, a part of the electrical resistance and the device have a low insulation resistance and an insulation failure occurs, a ground fault occurs. There is a risk that it may develop into a short circuit accident, which is extremely dangerous.
However, in the conventional insulation resistance measuring apparatus known so far, for example, as shown in Patent Document 1, only the insulation resistance of a power supply circuit that is not grounded for supplying power from a battery power supply to a load is measured. It was.

前記特許文献1に示された従来の絶縁抵抗測定装置は、図8に示すように構成されている。
この図8に示す従来の絶縁抵抗測定装置は、検出抵抗101〜105によってT型検出回路を構成し、抵抗102、104および105の各々から信号106(電圧V1)、108(電圧V2)および107(電圧V3)をそれぞれ得る。これら信号106〜108は絶縁変換器109、110、111の一次側に入力され、それぞれ絶縁変換されて二次信号112〜114となる。
The conventional insulation resistance measuring apparatus disclosed in Patent Document 1 is configured as shown in FIG.
In the conventional insulation resistance measuring apparatus shown in FIG. 8, detection resistors 101 to 105 constitute a T-type detection circuit, and signals 106 (voltage V 1), 108 (voltage V 2) and 107 are respectively output from resistors 102, 104 and 105. (Voltage V3) is obtained. These signals 106 to 108 are input to the primary sides of the isolation converters 109, 110, and 111, respectively, and are converted to secondary signals 112 to 114, respectively.

二次信号112〜114は、ローパスフィルタ115、116、118により高調波成分が除去されて信号119〜121となり、そのうち信号119と120が正極側割算器125に、また信号120と121が負極側割算器126に入力され、割算が実行される。また、極性判別器122は信号120の極性を判別し、信号120が正(+)極性のとき、すなわち電圧V3が(+)極性のときは信号123をオンとする出力を発生し、負(−)極性のときは信号124をオンとする出力を発生する。   Harmonic components are removed from the secondary signals 112 to 114 by the low-pass filters 115, 116, and 118 to become signals 119 to 121, of which the signals 119 and 120 are the positive divider 125, and the signals 120 and 121 are the negative electrodes. Input to the side divider 126 and division is performed. The polarity discriminator 122 discriminates the polarity of the signal 120. When the signal 120 has a positive (+) polarity, that is, when the voltage V3 has a (+) polarity, an output that turns on the signal 123 is generated and negative ( -) When polar, an output that turns on the signal 124 is generated.

極性判別器122(PC)が(+)極性の信号123を出力したときは、正極側の演算器125,131や表示装置135,警報装置136を動作させ、負極側をロックする。
同様に、極性判別器122が(−)極性の信号124を出力したときは、負極側の演算器126,132や表示装置135,警報装置136を動作させ、正極側をロックする。
When the polarity discriminator 122 (PC) outputs the signal 123 having the (+) polarity, the positive side calculators 125 and 131, the display device 135, and the alarm device 136 are operated to lock the negative side.
Similarly, when the polarity discriminator 122 outputs the (−) polarity signal 124, the negative side calculators 126 and 132, the display device 135, and the alarm device 136 are operated to lock the positive side.

以下、極性判別器122(PC)が(+)極性の信号123を出力し、正極側電路の絶縁抵抗を測定する場合について説明する。   Hereinafter, a case where the polarity discriminator 122 (PC) outputs the (+) polarity signal 123 and measures the insulation resistance of the positive-side electric circuit will be described.

正極側電路の絶縁抵抗を測定する場合について,図9の絶縁抵抗の測定動作説明図を参照して説明する。   The case of measuring the insulation resistance of the positive electrode side electric circuit will be described with reference to the measurement operation explanatory diagram of the insulation resistance of FIG.

ここで、正極側の抵抗101の抵抗値R11対抵抗102の抵抗値R12、または、負極側の抵抗103の抵抗値R21対抵抗104の抵抗値R22の抵抗値の比をそれぞれ1:1/100〜1:1/25程度とするが、これは測定しようとする回路の電圧値、または測定しようとする絶縁抵抗値の範囲などによって最適な値を選定する。   Here, the ratio of the resistance value R11 of the positive-side resistor 101 to the resistance value R12 of the resistor 102 or the resistance value R21 of the negative-side resistor 103 to the resistance value R22 of the resistor 104 is 1: 1/100, respectively. Although it is about ˜1: 1/25, an optimum value is selected depending on the voltage value of the circuit to be measured or the range of the insulation resistance value to be measured.

例えば、直流電圧500V回路の絶縁抵抗を測定する場合、検出抵抗101、103の抵抗値R11、R21を1MΩ、検出抵抗102、104の抵抗値R12,R22を10KΩに選定したとき、正極側の電路と大地Eとの間の絶縁抵抗RPXの抵抗値RPxが無限大(RPx=∞)であるとすると、図9に示す絶縁抵抗RPXに流れる電流IPXは0となり、流れない。その結果、検出抵抗102,104の両端電圧V1,V2はV1=V2で、検出抵抗101、102,103,104に流れる電流ISは、電池電源100の電圧をVとすると、
IS≒V÷(R11+R12+R21+R22)
であり、M電位はVP=VN=250Vで、抵抗101と102の抵抗比は1:1/100であるから、抵抗102,104には、
V1=V2=250V/100≒2.5V
の電圧が発生することになる。
For example, when measuring the insulation resistance of a DC voltage 500V circuit, when the resistance values R11 and R21 of the detection resistors 101 and 103 are selected to be 1 MΩ, and the resistance values R12 and R22 of the detection resistors 102 and 104 are selected to be 10 KΩ, 9 is infinite (RPx = ∞), the current IPX flowing through the insulation resistance RPX shown in FIG. 9 is 0 and does not flow. As a result, both-end voltages V1 and V2 of the detection resistors 102 and 104 are V1 = V2, and the current IS flowing through the detection resistors 101, 102, 103, and 104 is V.
IS≈V / (R11 + R12 + R21 + R22)
Since the M potential is VP = VN = 250V and the resistance ratio of the resistors 101 and 102 is 1: 1/100, the resistors 102 and 104 have
V1 = V2 = 250V / 100 ≒ 2.5V
Will be generated.

いま、給電回路の正極側電路Pの絶縁抵抗RPXの抵抗値RPxが低下したとすると、接地回路には、
IPX=V÷(RPx+R3+R21+R22)
となる接地電流IPXが流れ、検出抵抗105の両端には
V3=IPX×R3
の電圧が発生する。
このとき、検出抵抗102の両端電圧V1は電流ISで決定され、検出抵抗105の両端電圧V3は電流IPXで決定される。すなわち、抵抗101、絶縁抵抗RPXの抵抗値がそれぞれ抵抗102、105の抵抗値よりも充分に大きい場合、R12=R3とすれば、V1とV3の電圧値の割合は検出抵抗101の抵抗値R11と絶縁抵抗RPXの抵抗値RPxの割合の逆数と考えられるから、V1とV3の電圧比n(=V1/V3)を求め、この比nに検出抵抗101の抵抗値R11を乗じると、すなわち、
n×R11=RPx
から絶縁抵抗値RPxを求めることができる。
Now, assuming that the resistance value RPx of the insulation resistance RPX of the positive circuit P of the power feeding circuit has decreased,
IPX = V ÷ (RPx + R3 + R21 + R22)
A ground current IPX flows, and both ends of the detection resistor 105 are V3 = IPX × R3
Is generated.
At this time, the voltage V1 across the detection resistor 102 is determined by the current IS, and the voltage V3 across the detection resistor 105 is determined by the current IPX. That is, when the resistance values of the resistor 101 and the insulation resistor RPX are sufficiently larger than the resistance values of the resistors 102 and 105, respectively, if R12 = R3, the ratio of the voltage values of V1 and V3 is the resistance value R11 of the detection resistor 101. Therefore, the voltage ratio n (= V1 / V3) between V1 and V3 is obtained, and the ratio n is multiplied by the resistance value R11 of the detection resistor 101, that is,
n × R11 = RPx
From this, the insulation resistance value RPx can be obtained.

以上のことは、図8の回路では、以下のように実行される。   The above is performed as follows in the circuit of FIG.

すなわち、検出抵抗102の両端電圧V1を示す信号106が、絶縁変換器109→信号112→ローパスフィルタ115を介して信号119となり、割算器125の一方に入力される。また、電流IPXによって発生する検出抵抗105の両端電圧V3を示す信号107が絶縁変換器110→信号113→ローパスフィルタ116を介して信号120となり、割算器125の他方に入力されるとともに、極性判別器122へ入力される。   That is, the signal 106 indicating the voltage V1 across the detection resistor 102 becomes a signal 119 via the insulation converter 109 → the signal 112 → the low-pass filter 115 and is input to one of the dividers 125. Further, the signal 107 indicating the voltage V3 across the detection resistor 105 generated by the current IPX becomes the signal 120 via the insulation converter 110 → the signal 113 → the low-pass filter 116, and is input to the other of the divider 125, and the polarity Input to the discriminator 122.

このときは、信号120が正(+)極性であるから、極性判別器122が(+)極性を判別してオンとなる信号123を出力し、割算器125および掛算器131を演算状態とし、表示装置135および警報装置136を正極側に切替える。また、オフとなる信号124により、割算器126および掛算器132を非演算状態とし、負極側の表示装置135および警報装置136の動作をロックする。   At this time, since the signal 120 has a positive (+) polarity, the polarity discriminator 122 discriminates the (+) polarity and outputs a signal 123 which is turned on, and the divider 125 and the multiplier 131 are put in the calculation state. The display device 135 and the alarm device 136 are switched to the positive electrode side. Further, the signal 124 that is turned off causes the divider 126 and the multiplier 132 to be in a non-computation state, and locks the operations of the display device 135 and the alarm device 136 on the negative electrode side.

上記切替えによって、割算器125では信号119と信号120との比nであるV1/V3を示す信号127を出力し、掛算器131の一方に入力する。定数設定器129は、設定値Kを検出抵抗R11およびR21と同値とする信号130を出力し、掛算器131の他方に入力する。従って、掛算器131は割算器125からの出力信号127と、定数設定器129からの定数Kを示す信号130とを掛け合わせ、信号133を出力する。   By the above switching, the divider 125 outputs a signal 127 indicating V1 / V3, which is the ratio n of the signal 119 and the signal 120, and inputs the signal 127 to one of the multipliers 131. The constant setter 129 outputs a signal 130 for setting the set value K to the same value as the detection resistors R11 and R21, and inputs the signal 130 to the other of the multiplier 131. Therefore, the multiplier 131 multiplies the output signal 127 from the divider 125 and the signal 130 indicating the constant K from the constant setter 129 and outputs a signal 133.

信号133は、絶縁抵抗値RPxを示し、
RPx=n×K=(V1/V3)×R11 (1)
で求められる。
この(1)式で、nはV1/V3、Kは抵抗101の抵抗値R11と等しい値の定数である。
The signal 133 indicates an insulation resistance value RPx,
RPx = n × K = (V1 / V3) × R11 (1)
Is required.
In this equation (1), n is V1 / V3, and K is a constant having a value equal to the resistance value R11 of the resistor 101.

この絶縁抵抗値RPxを示す信号133は、表示装置135に与えられて表示される一方、警報装置136に与えられ、これが予め設定した絶縁抵抗値よりも低下したらこれから警報を発する。警報装置136からの警報を示す出力信号137は絶縁抵抗値RPxを示す信号133とともに適宜の記録装置に時系列に記録することにより絶縁抵抗値の時系列の変化を記録するなど、安全管理のための処理をする。なお、図8のように、測定用電源138および電源スイッチ139を設けておけば、これらを使用することで無通電状態、つまり活線状態でない状態での給電電路、機器または装置の絶縁抵抗の測定が可能となる。   The signal 133 indicating the insulation resistance value RPx is given to the display device 135 and displayed, while it is given to the alarm device 136, and an alarm is issued when it falls below the preset insulation resistance value. For safety management, an output signal 137 indicating an alarm from the alarm device 136 is recorded in an appropriate recording device together with a signal 133 indicating the insulation resistance value RPx in order to record a time-series change in the insulation resistance value. Process. If a measurement power source 138 and a power switch 139 are provided as shown in FIG. 8, the insulation resistance of the power supply circuit, device or apparatus in a non-energized state, that is, not in a live line state can be obtained by using these. Measurement is possible.

次に、負極側電路の絶縁抵抗を測定する場合について説明する。
この場合、測定しようとする絶縁抵抗RNXに電流INXが流れることにより、抵抗102を抵抗104に置き換えることで上記と同様の関係から、求めるべき絶縁抵抗値RNxは、
RNx=n×K=(V2/V3)×R21 (2)
として求めることができる。この(2)式において、nはV2/V3であり、Kは抵抗103の抵抗値R21と等しい値の定数である。
Next, a case where the insulation resistance of the negative electrode side electric circuit is measured will be described.
In this case, since the current INX flows through the insulation resistance RNX to be measured and the resistance 102 is replaced with the resistance 104, the insulation resistance value RNx to be obtained from the same relationship as described above is
RNx = n × K = (V2 / V3) × R21 (2)
Can be obtained as In this equation (2), n is V2 / V3, and K is a constant having a value equal to the resistance value R21 of the resistor 103.

図8の回路における、信号106,112,119,127および133を信号108,114,121,128および134に、演算回路125,131を演算回路126,132に、また信号123をオフ,信号124をオンにそれぞれ置き換えることにより、正極側電路Pの絶縁抵抗RPXの抵抗値RPxを測定する場合と全く同様にして負極側電路Nの絶縁抵抗RNXの抵抗値RNxを測定することができる。   In the circuit of FIG. 8, the signals 106, 112, 119, 127, and 133 are converted to the signals 108, 114, 121, 128, and 134, the arithmetic circuits 125 and 131 are switched to the arithmetic circuits 126 and 132, the signal 123 is turned off, and the signal 124 is switched off. , And the resistance value RNx of the insulation resistance RNX of the negative-side electric circuit N can be measured in exactly the same manner as when measuring the resistance value RPx of the insulation resistance RPX of the positive-side electric circuit P.

絶縁抵抗の抵抗値RPxが1MΩであるとし、R11=RPx=1MΩ、R12=R3=10KΩとすると、図9からV1とV3は等しく、およそ1.65Vとなり、両電圧の比nは、n=V1/V3=1.65/1.65=1となるので、正極側電路の絶縁抵抗値RPxとして、前記(1)式から、1MΩを求めることができる。   Assuming that the resistance value RPx of the insulation resistance is 1 MΩ, R11 = RPx = 1 MΩ, and R12 = R3 = 10 KΩ, from FIG. 9, V1 and V3 are equal to approximately 1.65 V, and the ratio n of both voltages is n = Since V1 / V3 = 1.65 / 1.65 = 1, 1 MΩ can be obtained from the equation (1) as the insulation resistance value RPx of the positive-side electric circuit.

同様に、電圧比n=V1/V3=10では、絶縁抵抗値RPxとして、(1)式から
RPx=(K=1MΩ)×(n=10)=10MΩ
が求まる。
同様に、電圧比n=V1/V3=100では、
RPx=(K=1MΩ)×(n=100)=100MΩ、
電圧比n=0.1では、
RPx=(K=1MΩ)×(n=0.1)=0.1MΩ
を求めることができる。
Similarly, when the voltage ratio n = V1 / V3 = 10, the insulation resistance value RPx is obtained from the equation (1) as follows: RPx = (K = 1 MΩ) × (n = 10) = 10 MΩ
Is obtained.
Similarly, for a voltage ratio n = V1 / V3 = 100,
RPx = (K = 1 MΩ) × (n = 100) = 100 MΩ,
At a voltage ratio n = 0.1,
RPx = (K = 1 MΩ) × (n = 0.1) = 0.1 MΩ
Can be requested.

なお、給電回路の電源100の電圧が変動した場合、これに比例して電流IS,IPXおよびINXが変動してV1,V2およびV3も変動するが、電圧比n=V1/V3およびn=V2/V3は変わらない。従って、この従来装置によれば、測定しようとする給電回路の電圧が変動しても測定値はその影響を受けないで、安定して絶縁抵抗の測定ができる利点が得られる。   When the voltage of the power supply 100 of the power feeding circuit varies, the currents IS, IPX and INX vary in proportion to this, and V1, V2 and V3 also vary, but the voltage ratios n = V1 / V3 and n = V2 / V3 does not change. Therefore, according to this conventional apparatus, even if the voltage of the power supply circuit to be measured fluctuates, the measurement value is not affected by this, and the advantage that the insulation resistance can be measured stably is obtained.

特許第4525630号公報Japanese Patent No. 4525630

しかしながら、上記特許文献1に記載の従来装置では、正極側電路と負極側電路の絶縁抵抗の測定することはできるが、接地されていない電池電源の絶縁抵抗を測定すること、および複数の単電池を直列接続した列電池のどの位置に絶縁抵抗が低下する絶縁不良が発生したかを特定すること、ならびに給電電路においてどの負荷で絶縁抵抗が低下する絶縁不良が発生したかを特定することは行われていない。   However, in the conventional device described in Patent Document 1, the insulation resistance of the positive-side electric circuit and the negative-side electric circuit can be measured, but the insulation resistance of a battery power supply that is not grounded is measured, and a plurality of unit cells It is not possible to specify at which position of a series battery connected in series an insulation failure that reduces the insulation resistance, and to identify at which load the insulation failure that causes a reduction in insulation resistance occurs in the power supply circuit. I have not been told.

大容量の電池電源は、多数の単電池を直並列接続して構成されるため、絶縁抵抗の測定によって電池電源に絶縁抵抗が低下する絶縁不良の発生を検出するだけでなく、直列接続した複数の単電池で構成された列電池のどの位置の単電池に絶縁不良が生じているかを特定することができれば、この絶縁不良となった単電池を絶縁抵抗の正常な単電池と交換することにより、電池電源の絶縁不良を、容易かつ迅速に修復することができる。
また、同様に多数の各種の負荷が接続された給電電路においても、絶縁抵抗が低下する絶縁不良の発生が検出されたとき、この給電電路のどの位置の分岐電路または負荷に絶縁不良が生じているかを特定することができれば、この絶縁不良となった分岐電路または負荷を絶縁抵抗の正常な分岐電路または負荷と交換することにより、給電電路の絶縁不良を、容易かつ迅速に修復することができる。
A large-capacity battery power supply is configured by connecting a large number of single cells in series and parallel, so that not only the occurrence of an insulation failure in which the insulation resistance decreases due to the measurement of insulation resistance, but also a plurality of series-connected batteries If it is possible to identify the position of a single cell in a row battery made up of single cells, the defective cell is replaced with a single cell having a normal insulation resistance. Insulation failure of the battery power supply can be repaired easily and quickly.
Similarly, in a power supply circuit to which a large number of various loads are connected, when the occurrence of an insulation failure that reduces the insulation resistance is detected, an insulation failure has occurred in any branch circuit or load in the power supply circuit. If it is possible to identify whether the insulation failure of the power supply circuit is easily or quickly, the insulation failure of the power feeding circuit can be repaired easily and by replacing the branch circuit or load having the insulation failure with a branch circuit or load having a normal insulation resistance. .

このため、この発明は、多数の単電池を直並列接続して構成した非接地の電池電源から給電電路を介して多数の負荷に給電するようにした直流給電回路において、電池電源から負荷へ給電する給電電路の絶縁抵抗だけでなく、電池電源自身の絶縁抵抗の測定ができ、かつ電池電源、または給電電路において絶縁抵抗が低下する絶縁不良が生じたとき、その発生個所、すなわち、電池電源の絶縁不良を生じた列電池およびその列電池における単電池を特定すること、並びに絶縁不良が生じた給電電路および負荷を特定することの可能な絶縁抵抗測定方法を提供することを課題とするものである。   For this reason, the present invention provides power supply from a battery power source to a load in a DC power supply circuit that feeds a large number of loads via a power supply circuit from an ungrounded battery power source configured by connecting a large number of single cells in series and parallel. The insulation resistance of the battery power supply itself can be measured as well as the insulation resistance of the power supply circuit. It is an object of the present invention to provide an insulation resistance measurement method capable of specifying a column battery in which an insulation failure has occurred and a single cell in the row battery, and a power supply circuit and a load in which the insulation failure has occurred. is there.

このような課題を解決するため、請求項1の発明は、複数の単電池を直列接続して列電池を構成し、この列電池を、それぞれ電池スイッチを介して複数並列接続して構成した電池電源を備え、この電池電源に給電スイッチを介して給電電路を接続し、この給電電路にそれぞれ分岐スイッチを介して接続した複数の分岐電路を通し各機器へ給電するようにした直流給電回路において、
測定モードを給電電路の絶縁抵抗を測定する給電電路測定モードと電池電源の絶縁抵抗を測定する電池電源測定モードに切り換えて絶縁抵抗の測定を行うように構成した絶縁抵抗測定装置を、前記電池電源に接続された前記給電電路の前記給電スイッチより前記電池電源側の位置に接続し、前記電池電源に給電電路および分岐電路を介して前記各機器を接続した状態において、前記絶縁抵抗測定装置を給電電路測定モードにしてこの絶縁抵抗測定装置により前記直流給電回路の絶縁抵抗を測定、監視し、この測定した絶縁抵抗の絶縁抵抗値が絶縁抵抗の基準絶縁抵抗値以下に低下する絶縁抵抗低下が検知されたとき、前記電池電源、給電電路および分岐電路に挿入された前記電池スイッチ、給電スイッチおよび分岐スイッチを前記電池電源からみて下流側のスイッチから順に1つずつ切断しながら前記直流給電回路の絶縁抵抗の測定を、前記絶縁抵抗が基準絶縁抵抗値以上の値に回復するまで繰返して行うことにより、前記直流給電回路における絶縁抵抗低下の発生した給電電路を特定することを特徴とするものである。
In order to solve such a problem, the invention of claim 1 is a battery in which a plurality of single cells are connected in series to form a column battery, and a plurality of the column batteries are connected in parallel via battery switches. In a DC power supply circuit comprising a power supply, connecting a power supply circuit to the battery power supply via a power supply switch, and supplying power to each device through a plurality of branch circuits connected to the power supply circuit via branch switches,
An insulation resistance measuring device configured to measure an insulation resistance by switching a measurement mode to a power supply circuit measurement mode for measuring an insulation resistance of a power supply circuit and a battery power supply measurement mode for measuring an insulation resistance of a battery power supply. The insulation resistance measuring device is fed in a state where the feeder switch is connected to a position closer to the battery power source than the feed switch of the feed feeder connected to the battery power source, and the devices are connected to the battery power source via a feeder feeder and a branch feeder. The insulation resistance measurement device measures and monitors the insulation resistance of the DC power feeding circuit with this insulation resistance measurement device in the electric circuit measurement mode, and the insulation resistance drop that the insulation resistance value of the measured insulation resistance falls below the reference insulation resistance value of the insulation resistance is detected. The battery switch, the power supply switch and the branch switch inserted in the battery power supply, the power supply circuit and the branch circuit are connected to the battery power supply. In this case, the measurement of the insulation resistance of the DC power supply circuit is repeated until the insulation resistance recovers to a value equal to or higher than the reference insulation resistance value while cutting one by one from the downstream switch. It is characterized in that a feeding electric circuit in which a decrease in insulation resistance occurs is specified.

請求項2の発明は、請求項1の発明において、前記分岐スイッチおよび前記給電スイッチを全部切断しても絶縁抵抗が回復しないときは、前記縁抵抗測定装置の測定モードを電池電源測定モードに切り換え、かつ、前記電池電源の各列電池の電池スイッチを順に1つずつ切断しながら絶縁抵抗を測定する操作を、前記測定した絶縁抵抗が、前記絶縁抵抗の基準絶縁抵抗値以上の値に回復するまで繰返して行うことにより、前記電池電源における絶縁抵抗低下の発生した列電池を特定することを特徴とするものである。   The invention of claim 2 switches the measurement mode of the edge resistance measurement device to the battery power supply measurement mode when the insulation resistance does not recover even if the branch switch and the power supply switch are all disconnected in the invention of claim 1 In addition, in the operation of measuring the insulation resistance while sequentially cutting the battery switches of each battery in the battery power source one by one, the measured insulation resistance is restored to a value equal to or higher than the reference insulation resistance value of the insulation resistance. It is characterized by identifying the column battery in which the insulation resistance drop in the battery power source has occurred by repeating the above.

請求項3の発明は、請求項2の発明において、絶縁抵抗低下の発生が特定された列電池について前記絶縁抵抗測定装置により、絶縁抵抗測定を行い、測定した絶縁抵抗値に基づいて前記列電池における絶縁抵抗低下の発生した単電池を特定することを特徴とするものである。   According to a third aspect of the invention, in the second aspect of the invention, the column battery in which the occurrence of a decrease in insulation resistance is specified is measured by the insulation resistance measuring device, and the column battery is measured based on the measured insulation resistance value. The single cell in which the insulation resistance lowering occurs is specified.

この発明は、単電池を複数直列接続して列電池を構成し、この列電池を複数並列接続して構成した電池電源を備え、この電池電源に給電電路および分岐電路を介して負荷と接続した直流給電回路に、絶縁抵抗測定装置を接続して直流給電回路の絶縁抵抗を測定、監視し、この測定した絶縁抵抗の絶縁抵抗値が絶縁抵抗の基準絶縁抵抗値以下に低下する絶縁抵抗の低下が検知されたとき、直流給電回路の各スイッチを電池電源からみて下流側から順に1つずつ切断して前記直流給電回路の絶縁抵抗を測定する操作を、前記絶縁抵抗が前記絶縁抵抗の基準絶縁抵抗値以上の値に回復するまで繰返し行うことにより、絶縁抵抗の低下の発生した分岐回路等の特定を行うものである。このため、この発明によれば、直流給電回路の絶縁抵抗を測定できるだけでなく、給電電路における絶縁抵抗の低下の発生した分岐電路、または電池電源における絶縁抵抗の低下の発生した列電池およびこの列電池内の単電池を容易に特定することができるので、電池電源を備えた直流給電回路の安全を確保できるとともに、絶縁抵抗修復作業を容易かつ迅速に行うことができる効果が得られる。   The present invention includes a battery power source configured by connecting a plurality of single cells in series to form a column battery, and connecting a plurality of the column cells in parallel, and the battery power source is connected to a load via a power feeding circuit and a branch circuit. Insulation resistance measurement device is connected to the DC power supply circuit to measure and monitor the insulation resistance of the DC power supply circuit, and the insulation resistance value of the measured insulation resistance falls below the reference insulation resistance value of the insulation resistance. Is detected, and each switch of the DC power supply circuit is cut one by one in order from the downstream side when viewed from the battery power source, and the insulation resistance of the DC power supply circuit is measured. By repeatedly performing the process until it recovers to a value equal to or higher than the resistance value, the branch circuit or the like in which the insulation resistance is reduced is specified. Therefore, according to the present invention, not only can the insulation resistance of the DC power supply circuit be measured, but also the branch circuit in which the insulation resistance in the power supply circuit is reduced, or the column battery in which the insulation resistance in the battery power supply is reduced, and this column Since the single cell in the battery can be easily identified, it is possible to ensure the safety of the DC power supply circuit equipped with the battery power source and to easily and quickly perform the insulation resistance repair work.

この発明に使用する絶縁抵抗測定装置の実施例を示す回路構成図。The circuit block diagram which shows the Example of the insulation resistance measuring apparatus used for this invention. この発明における電池電源の単列の列電池の絶縁抵抗の測定動作の説明図。Explanatory drawing of the measurement operation | movement of the insulation resistance of the single row battery of the battery power supply in this invention. この発明における電池電源の複列の列電池の絶縁抵抗の測定動作の説明図。Explanatory drawing of the measurement operation | movement of the insulation resistance of the double row | line | column battery of the battery power supply in this invention. この発明による給電電路の絶縁抵抗の測定動作の説明図。Explanatory drawing of the measurement operation | movement of the insulation resistance of the electric power feeding circuit by this invention. この発明に使用する絶縁抵抗測定装置の測定特性を示す図。The figure which shows the measurement characteristic of the insulation resistance measuring apparatus used for this invention. この発明により絶縁抵抗の測定、監視を行う直流給電回路の例を示す構成図。The block diagram which shows the example of the DC electric power feeding circuit which measures and monitors insulation resistance by this invention. この発明の処理手順の実施例を示すフロー図。The flowchart which shows the Example of the process sequence of this invention. 従来の絶縁抵抗測定装置を示す回路構成図。The circuit block diagram which shows the conventional insulation resistance measuring apparatus. 従来の絶縁抵抗測定装置の測定動作の説明図。Explanatory drawing of the measurement operation | movement of the conventional insulation resistance measuring apparatus.

この発明の実施の形態を図に示す実施例について説明する。
この発明が対象とする船舶の電気推進システムの直流給電回路における給電電路は、接地しない非接地給電電路とすることが原則である。 また、船舶の電気推進システムに用いる電池電源は大容量となるため、ユニット化された多数の単電池を直並列接続して、高電圧、大電流の直流電力の出力が可能な構成となっている。
この電池電源から直流電力を給電する給電電路には多数の電気機器および装置が接続される。
Embodiments of the present invention will be described with reference to the embodiments shown in the drawings.
In principle, the power supply circuit in the DC power supply circuit of the ship's electric propulsion system targeted by the present invention is a non-grounded power supply circuit that is not grounded. In addition, since the battery power source used in the electric propulsion system for ships has a large capacity, it is possible to output a high voltage, large current DC power by connecting a large number of unit cells in series and parallel. Yes.
A large number of electric devices and devices are connected to a power supply circuit for supplying DC power from the battery power source.

図1は、電気推進システムの直流給電回路に適用することのできるこの発明で使用する絶縁抵抗測定装置の実施例を示す回路構成図である。
まず、この絶縁抵抗測定装置の構成および基本的な絶縁抵抗の測定動作を説明する。
FIG. 1 is a circuit configuration diagram showing an embodiment of an insulation resistance measuring apparatus used in the present invention which can be applied to a DC power feeding circuit of an electric propulsion system.
First, the configuration of this insulation resistance measuring apparatus and the basic measurement operation of insulation resistance will be described.

図1において、B1およびB2は、m(mは2以上の整数)個のユニット化された単電池B11〜B1m、およびB21〜B2mを直列に接続して構成した直列電池群(ここでは列電池と称する)である。列電池B1、B2を複数個(ここでは2個)並列接続して電池電源Bを構成する。列電池B1、B2の正(P)極端子はそれぞれ、電池スイッチ1、2を介して電池電源Bの正(P)極出力端子Pに並列接続され、負(N)極端子は負(N)極出力端子Nに並列接続される。電池電源Bの出力端子P、Nにはそれぞれ電路スイッチ5を介して正(P)極給電電路LPおよび負(N)極給電電路LNが接続される。給電電路LP、LN間には、ここには図示されない多数の負荷となる電気機器および装置が、それぞれ分岐スイッチを備えた分岐電路を介して接続され、電池電源Bから給電電路LP、LNを介して負荷となる電気機器および装置に直流電力が給電される。   In FIG. 1, B1 and B2 are series battery groups (in this case, column batteries) configured by connecting m (m is an integer of 2 or more) unit cells B11 to B1m and B21 to B2m connected in series. Called). A plurality of (in this case, two) battery cells B1 and B2 are connected in parallel to form a battery power source B. The positive (P) pole terminals of the column batteries B1 and B2 are respectively connected in parallel to the positive (P) pole output terminal P of the battery power supply B via the battery switches 1 and 2, and the negative (N) pole terminal is negative (N ) It is connected in parallel to the pole output terminal N. A positive (P) pole feeding circuit LP and a negative (N) pole feeding circuit LN are connected to the output terminals P and N of the battery power source B via the circuit switch 5 respectively. Between the power supply circuits LP and LN, a large number of electric devices and devices (not shown) are connected via branch circuits each having a branch switch, and the battery power supply B passes through the power supply circuits LP and LN. Then, DC power is supplied to the electrical equipment and devices that are the loads.

絶縁抵抗測定部IRMは、高抵抗値の第1抵抗器R11、R21と低抵抗値の第2抵抗器R12、R22とをそれぞれ直列接続して構成した2組の正(P)極側電圧検出回路11および負(N)極側電圧検出回路12を備える。2組の電圧検出回路11と12は、直列接続して、電池電源Bの正、負極出力端子P、N間に接続される。電圧検出回路11、12の第2抵抗器R12、R22の両端に生じる、基準電流ISに依存した電圧は、絶縁検出器13、14を介して基準電圧V1、V2として取り出される。   The insulation resistance measuring unit IRM includes two sets of positive (P) pole side voltage detections configured by connecting first resistors R11 and R21 having high resistance values and second resistors R12 and R22 having low resistance values in series. A circuit 11 and a negative (N) pole side voltage detection circuit 12 are provided. The two sets of voltage detection circuits 11 and 12 are connected in series and connected between the positive and negative output terminals P and N of the battery power source B. Voltages depending on the reference current IS generated at both ends of the second resistors R12 and R22 of the voltage detection circuits 11 and 12 are taken out as reference voltages V1 and V2 via the insulation detectors 13 and 14, respectively.

また、絶縁抵抗測定部IRMは、大地Eを通して流れる正(P)極性接地電流IPXと負(N)極性接地電流INXを検出するために、2組の接地電流検出回路15、16を備える。接地電流検出回路15、16は、それぞれ、検出抵抗器R31、ダイオードDP、スイッチPa2、および検出抵抗器R32、ダイオードDN、スイッチNa2を直列接続して構成される。
そして、この2組の検出回路15、16は、相互にダイオードDP、DNを逆極性にして並列接続され、電圧検出回路11と12の中間接続点Mと、接地点Eとの間に接続される。検出抵抗器R31、R32の両端に生じた、接地電流IPX,INXに依存した電圧V31、V32は、絶縁検出器17、18を介して取り出される。
The insulation resistance measuring unit IRM includes two sets of ground current detection circuits 15 and 16 for detecting a positive (P) polarity ground current IPX and a negative (N) polarity ground current INX flowing through the ground E. The ground current detection circuits 15 and 16 are configured by connecting a detection resistor R31, a diode DP, a switch Pa2, and a detection resistor R32, a diode DN, and a switch Na2, respectively.
The two sets of detection circuits 15 and 16 are connected in parallel with the opposite polarity of the diodes DP and DN, and are connected between the intermediate connection point M of the voltage detection circuits 11 and 12 and the ground point E. The The voltages V31 and V32 generated at both ends of the detection resistors R31 and R32 and depending on the ground currents IPX and INX are taken out via the insulation detectors 17 and 18.

割算部23、24、32、演算部25、26、加算部31、掛算部27、28、33,38、定数設定器34、39は、前記の検出回路で検出された電圧V1、V2、V31、V32から電池電源B、給電電路LP、LNおよび負荷を含む直流給電回路の絶縁抵抗値を演算により求めるとともに、絶縁抵抗が低下し絶縁不良となった給電電路の部位、または電池電源の列電池および単電池を演算により特定する測定演算部を構成する。   The division units 23, 24, 32, the calculation units 25, 26, the addition unit 31, the multiplication units 27, 28, 33, 38, and the constant setting units 34, 39 are voltages V 1, V 2, detected by the detection circuit, The insulation resistance value of the DC power supply circuit including the battery power supply B, the power supply circuits LP and LN, and the load is obtained by calculation from V31 and V32, and the part of the power supply circuit where the insulation resistance is reduced to cause the insulation failure, or the battery power supply column A measurement calculation unit that specifies a battery and a single cell by calculation is configured.

測定モード切換器35は、絶縁抵抗の測定モードを電池電源Bの絶縁抵抗を測定する電池電源測定モード、または給電電路LP、LNの絶縁抵抗を測定する給電電路測定モードに選択的に切り換えるスイッチである。
測定モード切換器35で「電池電源」位置を選択すると電池電源測定モードとなり、単電池を直並列接続して構成した電池電源Bの絶縁抵抗の測定と、絶縁抵抗の低下した絶縁不良個所を特定する測定が指令される。
また、測定モード切換器35で「給電電路」位置を選択すると給電電路測定モードとなり、電池電源Bから給電される給電電路の正(P)極側給電電路LPと大地Eとの間、および負(N)極側給電電路LNと大地E間の絶縁抵抗の測定が指令される。この給電電路測定モードでは、電池電源B、給電電路LP、LN、分岐電路および負荷を含む直流給電回路全体の絶縁抵抗の測定を行うことになる。
The measurement mode switch 35 is a switch that selectively switches the insulation resistance measurement mode to the battery power supply measurement mode for measuring the insulation resistance of the battery power supply B or the power supply circuit measurement mode for measuring the insulation resistance of the power supply circuits LP and LN. is there.
When the “battery power” position is selected with the measurement mode switch 35, the battery power measurement mode is entered. Measurement of the insulation resistance of the battery power source B configured by connecting the cells in series and parallel, and identifying the insulation failure point where the insulation resistance is reduced Measurement to be commanded.
Further, when the “feeding circuit” position is selected by the measurement mode switch 35, the feeding circuit measurement mode is set, and the positive (P) pole side feeding circuit LP of the feeding circuit fed from the battery power source B and the ground E and the negative (N) The measurement of the insulation resistance between the pole-side power supply circuit LN and the ground E is commanded. In this power supply circuit measurement mode, the insulation resistance of the entire DC power supply circuit including the battery power supply B, the power supply circuits LP and LN, the branch circuit, and the load is measured.

測定極性切換器36は、P極側での測定と、N極側での測定とを周期的に交互に切り換え指令する切換器であり、P極側測定を指令するときは、「1」信号の指令信号PSSを出力し、N極側測定を指令するときは「1」信号の指令信号NSSを出力する。   The measurement polarity switching unit 36 is a switching unit that periodically and alternately switches the measurement on the P pole side and the measurement on the N pole side. When commanding the P pole side measurement, the “1” signal is used. Command signal PSS is output, and when the N pole side measurement is commanded, a command signal NSS of “1” signal is output.

また、電池電源Bの絶縁抵抗の測定を、1列の列電池(単列電池)で行うか、または並列にした複数の列電池(複列電池)で行うかを切り換えて指令する単列・複列測定切換器37を備える。この単列・複列測定切換器37は、単列電池で絶縁抵抗の測定を指令するときは、出力の指令信号SPSを「0」信号にし、複列電池の絶縁抵抗の測定を指令するときは、この指令信号SPSを「1」信号に切り換える。   In addition, it is possible to switch and instruct whether to measure the insulation resistance of the battery power source B with one row battery (single row battery) or with a plurality of parallel row batteries (double row batteries). A double-row measurement switching unit 37 is provided. This single-row / double-row measurement switching unit 37 sets the output command signal SPS to “0” signal when commanding measurement of insulation resistance with a single-row battery, and commands measurement of insulation resistance of the double-row battery. Switches the command signal SPS to the “1” signal.

制御部30は、測定モード切換器35、測定極性切換器36および単列・複列測定切換器37からの各種指令信号に基づいて、検出回路および測定演算部に設けた切換スイッチPa1、Pa2、Pa3、Na1、Na2、Na3の切り換えを制御するとともに測定演算部の演算動作を制御する。   Based on various command signals from the measurement mode switching unit 35, the measurement polarity switching unit 36, and the single row / double row measurement switching unit 37, the control unit 30 is provided with changeover switches Pa1, Pa2, It controls switching of Pa3, Na1, Na2, and Na3 and controls the calculation operation of the measurement calculation unit.

さらに、監視・記録部40は、測定演算部で求められた測定値を時系列に記録し、かつ、測定値を常時監視し、正常となる範囲から外れたことが検知されたときは、表示装置41に表示したり、警報装置42を介して警報したりすることにより電池電源を備えた直流給電回路の安全を管理するものである、   Further, the monitoring / recording unit 40 records the measurement values obtained by the measurement calculation unit in time series, and constantly monitors the measurement values, and displays a display when it is detected that the measurement value is out of the normal range. It manages the safety of the DC power supply circuit equipped with a battery power source by displaying on the device 41 or giving an alarm via the alarm device 42.

このように構成されたこの発明の絶縁抵抗測定装置は、(1)給電電路の絶縁抵抗を測定するモード、(2)電池電源の絶縁抵抗を測定するモードの各モードで絶縁抵抗の測定を実行する。
以下に、前記各測定モードにおけるこの発明の絶縁抵抗測定装置の動作を説明する。
The insulation resistance measuring device of the present invention configured as described above performs insulation resistance measurement in each mode of (1) a mode for measuring the insulation resistance of the power feeding circuit and (2) a mode for measuring the insulation resistance of the battery power source. To do.
The operation of the insulation resistance measuring device of the present invention in each measurement mode will be described below.

絶縁抵抗測定部IRMの動作は、給電電路の絶縁抵抗の測定モードから説明すべきところであるが、絶縁抵抗測定部IRMの内部の動作を説明する都合上、まず、電池電源の絶縁抵抗の測定モードの動作を説明する。   The operation of the insulation resistance measurement unit IRM should be explained from the measurement mode of the insulation resistance of the power supply circuit. For convenience of explaining the internal operation of the insulation resistance measurement unit IRM, first, the measurement mode of the insulation resistance of the battery power supply The operation of will be described.

(1)電池電源絶縁抵抗測定モード
この測定モードでは、測定モード切換器35を「電池電源」位置に切り換えて、電池電源絶縁抵抗測定モード(電池電源測定モードと称することもある)を選択する。このとき、電池電源Bと給電電路LP、LNとを接続する電路スイッチ5は、投入されていても、切断されていてもどちらでもよい。
測定モード切換器35を「電池電源」位置に切り換えると、切換信号SSが「1」信号となり、制御部30および監視・記録部40に、電池電源の絶縁抵抗測定が指令される。この切換信号SSを受けて、制御部30は、給電電路側の絶縁抵抗の演算を行う割算部23、24への信号S1P、S1Nを「1」から「0」信号に切り換えて出力する。これにより割算部23、24の演算動作がロック(停止)されるので、給電電路の絶縁抵抗測定動作が停止される。
(1) Battery Power Insulation Resistance Measurement Mode In this measurement mode, the measurement mode switch 35 is switched to the “battery power” position to select a battery power insulation resistance measurement mode (sometimes referred to as a battery power measurement mode). At this time, the electric circuit switch 5 that connects the battery power source B and the electric power supply circuits LP and LN may be turned on or off.
When the measurement mode switch 35 is switched to the “battery power” position, the switching signal SS becomes a “1” signal, and the control unit 30 and the monitoring / recording unit 40 are instructed to measure the insulation resistance of the battery power source. In response to this switching signal SS, the control unit 30 switches the signals S1P and S1N to the division units 23 and 24 for calculating the insulation resistance on the power feeding circuit side from “1” to “0” signal and outputs them. As a result, the calculation operation of the division units 23 and 24 is locked (stopped), so that the operation of measuring the insulation resistance of the power feeding circuit is stopped.

また、制御部30は、電池電源側の絶縁抵抗の測定に必要な演算を行う演算部31には、電池電源側の絶縁抵抗の測定を指令する信号S2を「1」信号にして出力する。これにより、演算部31は、動作ロック状態が解除され、演算動作状態となる。   In addition, the control unit 30 outputs a signal S2 for instructing measurement of the insulation resistance on the battery power supply side as a “1” signal to the calculation unit 31 that performs calculations necessary for measurement of the insulation resistance on the battery power supply side. Thereby, the operation unit 31 is released from the operation lock state and enters the operation state.

測定極性切換器36は、電池電源Bの正(P)極側の絶縁抵抗測定を指令する信号PSSと、負(N)極側の絶縁抵抗測定を指令する信号NSSを適宜の周期で交互に「1」信号にして制御部30に与える。   The measurement polarity switcher 36 alternately alternates a signal PSS for instructing measurement of the insulation resistance on the positive (P) pole side of the battery power supply B and a signal NSS for instructing measurement of the insulation resistance on the negative (N) pole side at appropriate cycles. A “1” signal is applied to the control unit 30.

制御部30は、「1」信号のP極側測定指令信号PSSを受信すると、P極測定選択信号PSを出力し、N極測定選択信号NSを停止する。これにより、P極側測定回路では、選択スイッチPa1、Pa2、Pa3がオンとなる。そして、N極側測定回路では、選択スイッチNa1、Na2、Na3がオフとなる。このため、抵抗器R11が短絡され、P極側の接地電流検出回路15がオンにされ、N極側の接地電流検出回路16がオフにされ、測定回路は、電池電源BのP極側の絶縁抵抗の測定を行う状態となる。   When receiving the P pole side measurement command signal PSS of the “1” signal, the control unit 30 outputs the P pole measurement selection signal PS and stops the N pole measurement selection signal NS. Thereby, in the P pole side measurement circuit, the selection switches Pa1, Pa2, and Pa3 are turned on. In the N pole side measurement circuit, the selection switches Na1, Na2, and Na3 are turned off. For this reason, the resistor R11 is short-circuited, the ground current detection circuit 15 on the P pole side is turned on, the ground current detection circuit 16 on the N pole side is turned off, and the measurement circuit is connected to the P pole side of the battery power source B. The insulation resistance is measured.

また、制御部30は、N極測定指令NSSを受信すると、N極測定選択信号NSを出力して、P極測定選択信号PSを停止するので、N極測定回路では、選択スイッチNa1、Na2、Na3がオンとなり、そして、P極測定回路では、選択スイッチPa1、Pa2、Pa3がオフとなり、測定回路をN極側の絶縁抵抗の測定を行う状態となる。   Further, when the N pole measurement command NSS is received, the control unit 30 outputs the N pole measurement selection signal NS and stops the P pole measurement selection signal PS. Therefore, in the N pole measurement circuit, the selection switches Na1, Na2, Na3 is turned on, and in the P pole measurement circuit, the selection switches Pa1, Pa2, Pa3 are turned off, and the measurement circuit enters a state of measuring the insulation resistance on the N pole side.

(1−1)単列電池の絶縁抵抗測定モード
複数の列電池を並列に接続して構成した電池電源Bのうちの1つの列電池、たとえば、列電池B1を選択して絶縁抵抗の測定を行う(ここでは、これを単列電池測定と呼ぶ)場合と、並列接続された複数の列電池B1、B2の絶縁抵抗を測定する(ここでは、これを複列電池測定と呼ぶ)場合があり、単列・複列測定切換器37により、これらを選択する。
(1-1) Insulation resistance measurement mode of single-column battery One column battery, for example, column battery B1, is selected from battery power sources B configured by connecting a plurality of column batteries in parallel, and the insulation resistance is measured. There are cases where the measurement is performed (here, this is referred to as single-row battery measurement), and cases where the insulation resistance of a plurality of column batteries B1, B2 connected in parallel is measured (here, this is referred to as double-row battery measurement). These are selected by the single row / double row measurement switching unit 37.

複列電池測定を選択する場合は、図1の実施例においては、絶縁抵抗測定時に、2つの電池スイッチ1、2を共にオンにし、単列電池測定を選択するときは、2つの電池スイッチ1、2の何れか一方、例えば、列電池B1側の電池スイッチ1だけをオンにし、他方の電池スイッチ2をオフにする。そして、電池スイッチ1、2の操作により単列電池測定を選択したときは、単列・複列測定切換器37を、単列電池測定が指令されるように切換設定する。単列・複列測定切換器37から単列電池測定が指令されたときは、単列・複列測定切換器37から出力される指令信号SPSが「0」信号となり、複列電池測定が指令されたときは、この指令信号SPSが「1」信号となる。   In the case of selecting the double-row battery measurement, in the embodiment of FIG. 1, when the insulation resistance measurement, both the battery switches 1 and 2 are turned on, and when selecting the single-row battery measurement, the two battery switches 1 2, for example, only the battery switch 1 on the side of the column battery B 1 is turned on, and the other battery switch 2 is turned off. When the single-row battery measurement is selected by operating the battery switches 1 and 2, the single-row / double-row measurement switching unit 37 is set so that the single-row battery measurement is commanded. When single row battery measurement is commanded from the single row / double row measurement switching device 37, the command signal SPS output from the single row / double row measurement switching device 37 becomes a “0” signal, and the double row battery measurement is commanded. When this is done, the command signal SPS becomes a “1” signal.

単列・複列測定切換器37から出力される指令信号SPSは、乗算器38に動作指令として加えられる。指令信号SPSが「1」のときは、乗算器38は、演算動作状態にされ、「0」のときは、演算動作がロックされて演算動作を停止する状態となる。   The command signal SPS output from the single row / double row measurement switching unit 37 is applied to the multiplier 38 as an operation command. When the command signal SPS is “1”, the multiplier 38 is set in the calculation operation state, and when it is “0”, the calculation operation is locked and the calculation operation is stopped.

ここでは、単列電池測定が選択されているので、単列・複列測定切換器37から、「0」信号の指令信号SPSが出力され、乗算器38に与えられるため、この乗算器38は、演算部31の出力に定数設定器39に設定された定数1/2を乗算する動作を停止する。   Here, since single-row battery measurement is selected, the command signal SPS of the “0” signal is output from the single-row / double-row measurement switching device 37 and is supplied to the multiplier 38. Then, the operation of multiplying the output of the arithmetic unit 31 by the constant 1/2 set in the constant setting unit 39 is stopped.

図2に、電池電源Bの単列電池の絶縁抵抗測定状態を示すので、これを用いて動作を説明する。
測定極性切換器36からP極側絶縁抵抗測定を指令する信号PSSが出力されると、制御部30が、P極測定選択信号PSを「1」をにし、N極測定選択信号NSを「0」にする。これにより、スイッチPa1、Pa2、Pa3がオンにされ、スイッチNa1、Na2、Na3がオフにされ、P極側絶縁抵抗測定状態となる。
この状態では、スイッチPa1がオンされることにより、抵抗器R11が短絡されるので、抵抗器R12、R21、R22を通して基準電流ISが流れ、抵抗器R12から基準電圧V1を得る。
FIG. 2 shows an insulation resistance measurement state of the single row battery of the battery power source B, and the operation will be described using this state.
When the signal PSS commanding the P-pole side insulation resistance measurement is output from the measurement polarity switch 36, the control unit 30 sets the P-pole measurement selection signal PS to “1” and the N-pole measurement selection signal NS to “0”. " As a result, the switches Pa1, Pa2, and Pa3 are turned on, the switches Na1, Na2, and Na3 are turned off, and the P pole side insulation resistance measurement state is set.
In this state, when the switch Pa1 is turned on, the resistor R11 is short-circuited. Therefore, the reference current IS flows through the resistors R12, R21, and R22, and the reference voltage V1 is obtained from the resistor R12.

ここで、抵抗器R11、R12、R21、R22の抵抗値を、それぞれr11、r12、r21、r22とし、電池電源Bの電圧をVBとすると、基準電流ISは、次の(3)式のとおりとなる。そして、抵抗器R11とR21の抵抗値r11とr21は、互いに等しい高い抵抗値に選ばれ、抵抗器R12とR22の抵抗値r12とr22は、互いに等しい低い抵抗値に選ばれている。そして、接地電流検出回路15,16の検出抵抗器R31、R32の抵抗値r31、r32は、抵抗器R12、R22の抵抗値r12、r22と等しい抵抗値に選ばれている。
したがって、r11=r21≫r12=r22=r31=r32の関係となる。
IS=VB÷(r12+r22+r21)≒VB÷r21 ・・・(3)
∵ r12+r22 ≪ r21
したがって、抵抗器R12の両端に発生する基準電圧V1は、
V1=r12×IS ・・・(4)
となる。
Here, when the resistance values of the resistors R11, R12, R21, and R22 are r11, r12, r21, and r22, respectively, and the voltage of the battery power source B is VB, the reference current IS is expressed by the following equation (3). It becomes. The resistance values r11 and r21 of the resistors R11 and R21 are selected to be equal high resistance values, and the resistance values r12 and r22 of the resistors R12 and R22 are selected to be equal low resistance values. The resistance values r31 and r32 of the detection resistors R31 and R32 of the ground current detection circuits 15 and 16 are selected to be equal to the resistance values r12 and r22 of the resistors R12 and R22.
Therefore, r11 = r21 >> r12 = r22 = r31 = r32.
IS = VB ÷ (r12 + r22 + r21) ≈VB ÷ r21 (3)
12 r12 + r22 ≪ r21
Therefore, the reference voltage V1 generated across the resistor R12 is
V1 = r12 × IS (4)
It becomes.

また、測定極性切換器36からN極側絶縁抵抗測定を指令する信号NSSが出力されると、制御部30が、P極測定選択信号PSを「0」にし、N極測定選択信号NSを「1」にする。これにより、スイッチNa1、Na2、Na3がオンにされ、スイッチPa1、Pa2、Pa3がオフにされてN極側絶縁抵抗測定状態となる。   When the signal NSS commanding the N-pole side insulation resistance measurement is output from the measurement polarity switch 36, the control unit 30 sets the P-pole measurement selection signal PS to “0” and sets the N-pole measurement selection signal NS to “ 1 ”. As a result, the switches Na1, Na2, and Na3 are turned on, and the switches Pa1, Pa2, and Pa3 are turned off to enter the N-pole side insulation resistance measurement state.

この状態では、スイッチNa1がオンにされることにより、抵抗器R21が短絡されるので、抵抗器R11、R12、R22を通して、(5)式に示す基準電流ISを流し、抵抗器R22の両端から基準電圧V2を得る。
IS=VB÷(r11+r12+r22)≒VB÷r11 ・・・(5)
∵ r12+r22 ≪ r11
したがって、抵抗器R22の両端に発生する基準電圧V2は、
V2=r22×IS ・・・(6)
となる。
ここで、r11=r21であるからP極側測定とN極側測定を切り換えても、基準電圧V1とV2は等しくなる。
In this state, when the switch Na1 is turned on, the resistor R21 is short-circuited. Therefore, the reference current IS shown in the equation (5) is passed through the resistors R11, R12, and R22, and from both ends of the resistor R22. A reference voltage V2 is obtained.
IS = VB ÷ (r11 + r12 + r22) ≈VB ÷ r11 (5)
12 r12 + r22 ≪ r11
Therefore, the reference voltage V2 generated across the resistor R22 is
V2 = r22 × IS (6)
It becomes.
Here, since r11 = r21, the reference voltages V1 and V2 are equal even when the P pole side measurement and the N pole side measurement are switched.

P極側測定のときに、図2に示すように、列電池B1の単電池B11とB12の間の接地点S1で、何らかの原因で、絶縁抵抗RX1を介して接地されることにより絶縁抵抗が低下する絶縁不良が生じると、電池電源Bの列電池B1のP極→スイッチPa1→抵抗器R12→抵抗器R31→ダイオードDP→スイッチPa2→大地E→接地抵抗RX1→列電池B1の接続点S1→単電池B11のN極の経路で接地電流IPX1が流れる。この接地電流IPX1は、次の(7)式のとおりとなる。
IPX1=VB1(1-S1)÷(r11+r31+Rx1) ・・・(7)
ここで、VB1(1-S1)は接地点S1と列電池B1のP極との間の単電池の合計電圧、r11は抵抗器R11の抵抗値、r31は抵抗器R31の抵抗値、Rx1は絶縁抵抗RX1の絶縁抵抗値である。
At the time of measurement on the P pole side, as shown in FIG. 2, the insulation resistance is reduced by being grounded via the insulation resistance RX1 for some reason at the ground point S1 between the cells B11 and B12 of the column battery B1. When the insulation failure is lowered, the P pole of the battery cell B1 of the battery power source B → the switch Pa1 → the resistor R12 → the resistor R31 → the diode DP → the switch Pa2 → the ground E → the ground resistance RX1 → the connection point S1 of the battery cell B1. → The ground current IPX1 flows through the path of the N pole of the cell B11. The ground current IPX1 is expressed by the following equation (7).
IPX1 = VB1 (1-S1) ÷ (r11 + r31 + Rx1) (7)
Here, VB1 (1-S1) is the total voltage of the cells between the ground point S1 and the P pole of the column battery B1, r11 is the resistance value of the resistor R11, r31 is the resistance value of the resistor R31, and Rx1 is This is the insulation resistance value of the insulation resistance RX1.

接地電流検出回路15の検出抵抗器R31によって検出される電圧V31は、次の(8)式で示される。
V31=IPX1×r31 ・・・(8)
The voltage V31 detected by the detection resistor R31 of the ground current detection circuit 15 is expressed by the following equation (8).
V31 = IPX1 × r31 (8)

次のN極側測定のときは、スイッチPa1およびPa2がオフされ、スイッチNa1およびNa2がオンされる。このため、この場合は、電池接地点S1→絶縁抵抗RX1→大地E→スイッチNa2→ダイオードDN→抵抗器R32→抵抗器R22→スイッチNa1→列電池B1のN極の経路で接地電流INX1が流れる。この接地電流INX1は、次の(9)式で示される。
INX1=VB1(S1-m)÷(Rx1+r32+r22) ・・・(9)
ここで、VB1(S1-m)は列電池B1の接地点S1と電池電源N極の間の単電池の合計電圧、r32は抵抗器R32の抵抗値である。
In the next N pole side measurement, the switches Pa1 and Pa2 are turned off, and the switches Na1 and Na2 are turned on. Therefore, in this case, the ground current INX1 flows through the path of the N pole of the battery ground point S1, the insulation resistance RX1, the ground E, the switch Na2, the diode DN, the resistor R32, the resistor R22, the switch Na1, and the column battery B1. . The ground current INX1 is expressed by the following equation (9).
INX1 = VB1 (S1-m) ÷ (Rx1 + r32 + r22) (9)
Here, VB1 (S1-m) is the total voltage of the cells between the ground point S1 of the battery cell B1 and the battery power supply N pole, and r32 is the resistance value of the resistor R32.

接地電流検出回路16の検出抵抗器R32の両端から、次の(10)式で示されるように接地電流INX1に依存した検出電圧V32が検出される。
V32=INX1×r32 ・・・(10)
A detection voltage V32 depending on the ground current INX1 is detected from both ends of the detection resistor R32 of the ground current detection circuit 16 as shown in the following equation (10).
V32 = INX1 × r32 (10)

列電池B1の接地点S5で、絶縁抵抗RX5を通して接地されるような絶縁不良が生じた場合は、接地点S5と列電池B1のP極との間の単電池合計電圧VB1(1-S5)、および接地点S5と列電池B1のN極との間の単電池合計電圧VB1(5-m)によって流れるP極側接地電流IPX5およびN極側接地電流INX5が、それぞれP極、N極接地電流検出回路15、16の検出抵抗器R31およびR32によって検出電圧V31およびV32として検出される。   When an insulation failure such as grounding through the insulation resistance RX5 occurs at the grounding point S5 of the column battery B1, the single cell total voltage VB1 (1-S5) between the grounding point S5 and the P pole of the column battery B1 , And the P pole side ground current IPX5 and the N pole side ground current INX5 flowing by the unit cell total voltage VB1 (5-m) between the ground point S5 and the N pole of the column battery B1 are the P pole and the N pole ground, respectively. Detection voltages V31 and V32 are detected by detection resistors R31 and R32 of the current detection circuits 15 and 16, respectively.

また、接地事故等により絶縁抵抗低下が接地点S9で発生した場合は、接地点S9と列電池B1のP極間の単電池の合計電圧VB1(1-S9)、および接地点S9と列電池B1のN極との間の単電池合計電圧VB1(S9-m)によるP極側接地電流IPX9およびN極側接地電流INX9がそれぞれ検出抵抗器R31およびR32によって検出電圧V31およびV32として検出される。   If a decrease in insulation resistance occurs at the grounding point S9 due to a grounding accident or the like, the total voltage VB1 (1-S9) of the cells between the grounding point S9 and the P pole of the column battery B1, and the grounding point S9 and the column battery The P pole side ground current IPX9 and the N pole side ground current INX9 based on the unit cell total voltage VB1 (S9-m) between the N poles of B1 are detected as detection voltages V31 and V32 by the detection resistors R31 and R32, respectively. .

ここで、各抵抗器の抵抗値r11、r21とr12、r22は、r11=r21≫r12=r22であるので、前記の通りP極側測定とN極側測定とを交互に切り換えても基準電流IS、基準電圧V1、V2は変化せず、また、基準電流ISは接地電流IPX1、IPX5、IPX9、INX1、INX5、INX9に対して十分大きな電流を流しておけば、接地電流IPX、INXが基準電流ISと重畳しても基準電圧V1、V2の変動を極めて小さくすることができる。   Here, since the resistance values r11, r21 and r12, r22 of each resistor are r11 = r21 >> r12 = r22, even if the P-pole side measurement and the N-pole side measurement are alternately switched as described above, the reference current If the IS and the reference voltages V1 and V2 do not change and the reference current IS is sufficiently large with respect to the ground currents IPX1, IPX5, IPX9, INX1, INX5, and INX9, the ground currents IPX and INX are the reference Even if superimposed with the current IS, the fluctuations of the reference voltages V1 and V2 can be made extremely small.

検出電圧V31、V32から絶縁抵抗値を求めるための演算処理について図1を用いて説明する。
P極側測定のときは、制御部30からのP極側選択信号PSによりスイッチPa1、Pa2、Pa3がオンされ、スイッチNa1、Na2、Na3がオフされているので、P極側基準電圧V1(=r12×IS)は、絶縁検出器13→ローパスフィルタ19→スイッチPa3を通して割算部32に与えられる。そして、検出電圧V31(=r31×IPX1)は、絶縁検出器17→ローパスフィルタ21を通して割算部23、演算部25および加算部31に与えられる。
A calculation process for obtaining an insulation resistance value from the detection voltages V31 and V32 will be described with reference to FIG.
In the P pole side measurement, the switches Pa1, Pa2 and Pa3 are turned on by the P pole side selection signal PS from the control unit 30 and the switches Na1, Na2 and Na3 are turned off, so that the P pole side reference voltage V1 ( = R12 × IS) is given to the division unit 32 through the insulation detector 13 → the low pass filter 19 → the switch Pa3. The detection voltage V31 (= r31 × IPX1) is supplied to the division unit 23, the calculation unit 25, and the addition unit 31 through the insulation detector 17 → the low-pass filter 21.

N極側測定のときは、制御部30からのN極側選択信号NSによりスイッチNa1、Na2、Na3がオンされ、スイッチPa1、Pa2、Pa3がオフにされているので、N極側基準電圧V2(=r22×IS)は絶縁検出器14→ローパスフィルタ20→スイッチNa3を通して割算部32に与えられる。そして、検出電圧V32(=r32×INX1)は、絶縁検出器18→ローパスフィルタ22を通して割算部24、演算部26および加算部31に与えられる。   In the N pole side measurement, the switches Na1, Na2, and Na3 are turned on by the N pole side selection signal NS from the control unit 30, and the switches Pa1, Pa2, and Pa3 are turned off. (= R22 × IS) is given to the division unit 32 through the insulation detector 14 → the low-pass filter 20 → the switch Na3. The detection voltage V32 (= r32 × INX1) is given to the division unit 24, the calculation unit 26, and the addition unit 31 through the insulation detector 18 → the low-pass filter 22.

測定モード切換器35は、「電池電源」位置に切り換えられているので、制御部30から加算部31に指令信号S2が与えられ、加算部31は加算演算動作状態にある。
また、制御部30は測定極性切換器36からの切換指令信号PSS、NSSに同期する読み取り信号S3を加算部31に与える。これにより、加算部31は、読み取り信号S3に同期して、P極側検出電圧V31とN極側検出電圧V32を読み取って、記憶し、1サイクル毎に記憶した両検出電圧を加算する動作をし、合計電圧VE(=V31+V32)を求め、割算部32に出力する。
Since the measurement mode switch 35 is switched to the “battery power supply” position, the command signal S2 is given from the control unit 30 to the adding unit 31, and the adding unit 31 is in an addition operation state.
Further, the control unit 30 gives the addition unit 31 a read signal S3 that is synchronized with the switching command signals PSS and NSS from the measurement polarity switching unit 36. Thereby, the adding unit 31 reads and stores the P-pole side detection voltage V31 and the N-pole side detection voltage V32 in synchronization with the read signal S3, and adds the both detection voltages stored in each cycle. Then, the total voltage VE (= V31 + V32) is obtained and output to the division unit 32.

割算部32は、合計電圧VE(=V31+V32)と、基準電圧V1との割算(V1÷VE)および基準電圧V2との割算(V2÷VE)を実行して、基準電圧と合計電圧VEとの電圧比VEDを求める。この電圧比VEDは、乗算器33に加えられ、ここで抵抗器R11(R21)の抵抗値r11(r21)と等しい値に設定された定数設定器34の定数Kと乗算することにより絶縁抵抗値Rxを求めることができる。
すなわち、絶縁抵抗RXの絶縁抵抗値Rxは、次の(11)で求めることができる。
Rx=V1÷VE×r11=V2÷VE×r21 ・・・(11)
The division unit 32 executes the division of the total voltage VE (= V31 + V32) with the reference voltage V1 (V1 ÷ VE) and the division of the reference voltage V2 (V2 ÷ VE) to obtain the reference voltage and the total voltage. A voltage ratio VED with VE is obtained. This voltage ratio VED is applied to a multiplier 33, where it is multiplied by a constant K of a constant setter 34 which is set to a value equal to the resistance value r11 (r21) of the resistor R11 (R21). Rx can be determined.
That is, the insulation resistance value Rx of the insulation resistance RX can be obtained by the following (11).
Rx = V1 ÷ VE × r11 = V2 ÷ VE × r21 (11)

図5は、縦軸に基準電圧V1、V2と検出電圧の合計電圧VEとの電圧比VED(=V1/VE、=V2/VE)をとり、横軸に絶縁抵抗値Rxをとって相互の関係を示す測定特性線である。
この図5から、基準電圧V1、V2と検出電圧の合計電圧VEとの電圧比VEDが1であれば、絶縁抵抗値は1MΩ、電圧比VEDが0.5であれば0.5MΩ、電圧比VEDが2であれば2MΩのように電圧比VEDの値から絶縁抵抗値Rxを読み取ることができる。したがって、割算部32の出力である基準電圧と検出電圧との電圧比を示すVEDが絶縁抵抗値を示すことになる。
In FIG. 5, the vertical axis represents the voltage ratio VED (= V1 / VE, = V2 / VE) between the reference voltages V1 and V2 and the total detection voltage VE, and the horizontal axis represents the insulation resistance value Rx. It is a measurement characteristic line which shows a relationship.
From FIG. 5, if the voltage ratio VED between the reference voltages V1 and V2 and the total voltage VE of the detection voltage is 1, the insulation resistance value is 1 MΩ, and if the voltage ratio VED is 0.5, the voltage ratio is 0.5 MΩ. If VED is 2, the insulation resistance value Rx can be read from the value of the voltage ratio VED as 2 MΩ. Therefore, VED indicating the voltage ratio between the reference voltage and the detection voltage, which is the output of the division unit 32, indicates the insulation resistance value.

この電圧比VEDを乗算部33に与え、絶縁抵抗値の補正が必要なときに定数設定器34に設定した定数Kを乗算部33乗算することによって電圧比VEDの補正を行った信号VEMを出力し、監視・記録部40で記録する。   The voltage ratio VED is given to the multiplier 33, and when the insulation resistance value needs to be corrected, the signal VEM corrected by the voltage ratio VED is output by multiplying the multiplier 33 by the constant K set in the constant setter 34. And recorded by the monitoring / recording unit 40.

ここで、加算部31におけるP極側検出電圧V31とN極側検出電圧V32を加算(VE=V31+V32)して合計電圧VEを求める理由について説明する。
図2の接地点S1で絶縁抵抗低下(絶縁不良)が生じたときの電池のP極側から流れるP極側接地電流IPX1および検出電圧V31は、前記のように(7)式および(8)式で示され、電池電源のN極側から流れるN極側接地電流INX1および検出電圧V32は、同様に(9)式および(10)式で示される
IPX1=VB1(1-S1)÷(r11+r31+Rx1) ・・・(7)
V31=IPX1×r31 ・・・(8)
INX1=VB1(S1-m)÷(Rx1+r32+r22) ・・・(9)
V32=INX1×r32 ・・・(10)
Here, the reason why the total voltage VE is obtained by adding the P pole side detection voltage V31 and the N pole side detection voltage V32 in the adder 31 (VE = V31 + V32) will be described.
As described above, the P-pole side ground current IPX1 and the detection voltage V31 flowing from the P-pole side of the battery when the insulation resistance drop (insulation failure) occurs at the ground point S1 in FIG. The N pole side ground current INX1 and the detection voltage V32 flowing from the N pole side of the battery power supply are similarly expressed by the equations (9) and (10). IPX1 = VB1 (1-S1) ÷ (r11 + r31 + Rx1 (7)
V31 = IPX1 × r31 (8)
INX1 = VB1 (S1-m) ÷ (Rx1 + r32 + r22) (9)
V32 = INX1 × r32 (10)

すなわち、P極側検出電圧V31は接地点S1からP極間の列電池B1の単電池B11の合計電圧VB1(1-S1)、N極側検出電圧V32は、接地点S1からN極間の単電池B12〜B1mの合計電圧VB1(S1-m)であるから、検出電圧の合計電圧VE=V31+V32は、列電池B1の全電圧VBを絶縁抵抗値Rxで除した接地電流に依存した電圧であることが理解できる。   That is, the P pole side detection voltage V31 is the total voltage VB1 (1-S1) of the cell B11 of the column battery B1 between the ground point S1 and the P pole, and the N pole side detection voltage V32 is between the ground point S1 and the N pole. Since the total voltage VB1 (S1-m) of the cells B12 to B1m, the total voltage VE = V31 + V32 of the detection voltage is a voltage depending on the ground current obtained by dividing the total voltage VB of the column battery B1 by the insulation resistance value Rx. I can understand.

(1−2)複列電池の絶縁抵抗測定
上記では、直列接続された1列(単列)の列電池の絶縁抵抗測定について説明したが、次に、列電池を複数並列接続した複列電池電源の絶縁抵抗を測定する場合について図3を用いて説明する。
(1-2) Insulation Resistance Measurement of Double Row Battery In the above description, the insulation resistance measurement of one row (single row) of row batteries connected in series has been described. Next, a double row battery in which a plurality of row batteries are connected in parallel is described. The case of measuring the insulation resistance of the power supply will be described with reference to FIG.

複数の列電池が並列接続された状態での電池電源の絶縁抵抗測定は、図3に示すように、2つの電池スイッチ1、2を共にオンにして行う。ここでは、当然、測定モード切換器35は、「電池電源」位置に切り換えられている。
第1列の列電池B1の接地点S1で、接地事故等により絶縁抵抗RX1の低下が生じると、P極側測定(スイッチPa1、Pa2、Pa3がオン、スイッチNa1、Na2、Na3がオフ)のときには、第1列の列電池B1から、(7)式で示す接地電流IPX1が流れる。
IPX1=VB1(1-S1)÷(r12+r31+Rx1) ・・・(7)
また、第2列の列電池B2からは、次の(11)で示す接地電流IPX2が流れる。
IPX2=[(VB21+VB22+…+VB2m)
−(VB12+…+VB1m)]÷(r12+r31+Rx1)・・・(11)
The insulation resistance measurement of the battery power supply in a state where a plurality of column batteries are connected in parallel is performed with both the battery switches 1 and 2 turned on as shown in FIG. Here, naturally, the measurement mode switch 35 is switched to the “battery power” position.
When the insulation resistance RX1 decreases due to a grounding accident or the like at the grounding point S1 of the battery cell B1 in the first row, the P pole side measurement (switches Pa1, Pa2, Pa3 are on, switches Na1, Na2, Na3 are off) Sometimes, the ground current IPX1 expressed by the equation (7) flows from the first row battery B1.
IPX1 = VB1 (1-S1) / (r12 + r31 + Rx1) (7)
Further, the ground current IPX2 shown by the following (11) flows from the second row battery B2.
IPX2 = [(VB21 + VB22 + ... + VB2m)
− (VB12 +... + VB1m)] / (r12 + r31 + Rx1) (11)

ここで、列電池B1と列電池B2の電池電圧が等しいとすれば、(11)式の分子の電池電圧は、1段目の単電池B21の電圧VB21となるから、接地電流IPX2は(12)式のようになる(接地電流の流れる経路は図3参照)。
IPX2=VB21÷(r12+r31+Rx1) ・・・(12)
すなわち、各単電池の電池電圧が等しいとすれば、検出抵抗器R31には、第1列の列電池B1からIPX1と、第2列電池B2からIPX2とが流れるから、単列電池の測定を行う場合の2倍の電流が流れることになり、測定誤差が生じる。
Here, if the battery voltages of the column battery B1 and the column battery B2 are equal, the battery voltage of the numerator of the equation (11) becomes the voltage VB21 of the first-stage unit cell B21, so the ground current IPX2 is (12 (See FIG. 3 for the path through which the ground current flows).
IPX2 = VB21 ÷ (r12 + r31 + Rx1) (12)
That is, if the battery voltages of the single cells are equal, the detection resistor R31 flows from the first row of column batteries B1 to IPX1 and from the second row of cells B2 to IPX2. A current twice as much as that in the case of conducting will flow, resulting in a measurement error.

N極側測定のときも、同様に検出抵抗器R32には、(13)式で示す第1列電池B1からの接地電流INX1と、(14)式で示す第2列電池B2lからの接地電流INX2とが流れる(接地電流の流れる経路は図3参照)。
INX1=(=VB12+…+VB1m)÷
(Rx1+r32+r22)
=VBA9÷(Rx1+r32+r22) ・・・(13)
この(13)式において、VBA9は、(VB12+…+VB1m)である。
INX2=[(VB21+…+VB2m)−VB11]
÷(Rx1+r32+r22)
=VBB9÷(Rx1+r32+r22) ・・・(14)
この(14)式において、VBB9は[(VB21+…+VB2m)−VB11]である。
この場合も、各電池の電池電圧が等しいとすれば、検出抵抗器R32には、第1列電池B1から接地電流INX1が流れ、第2列電池B2から接地電流INX2が流れるから、単列電池の測定の場合の2倍の電流が流れることになり、測定誤差が生じる。
Similarly, in the N-pole side measurement, the detection resistor R32 includes a ground current INX1 from the first column battery B1 expressed by the equation (13) and a ground current from the second column battery B2l expressed by the equation (14). INX2 flows (see FIG. 3 for the path through which the ground current flows).
INX1 = (= VB12 +... + VB1m) /
(Rx1 + r32 + r22)
= VBA9 ÷ (Rx1 + r32 + r22) (13)
In this equation (13), VBA9 is (VB12 +... + VB1m).
INX2 = [(VB21 +... + VB2m) −VB11]
÷ (Rx1 + r32 + r22)
= VBB9 ÷ (Rx1 + r32 + r22) (14)
In this equation (14), VBB9 is [(VB21 +... + VB2m) −VB11].
Also in this case, if the battery voltages of the respective batteries are equal, the ground current INX1 flows from the first column battery B1 and the ground current INX2 flows from the second column battery B2 to the detection resistor R32. As a result, twice as much current flows as in the case of the measurement, and a measurement error occurs.

また、列電池が2個以上であっても電池電圧が等しければ、検出抵抗器R31、R32に流れる接地電流の合計値は単列電池の場合の2倍の電流にしかならない。   In addition, even if there are two or more column batteries, if the battery voltages are equal, the total value of the ground currents flowing through the detection resistors R31 and R32 is only twice that of the single column battery.

そこで、列電池を複数個並列接続した電池電源の絶縁抵抗RXを複列接続のまま測定する複列電池測定の場合は、図1に示す単列・複列測定切換器37を「複列測定」位置に切り換えて、乗算動作を指令する信号SPSを乗算部38に与える。これにより、乗算部38は、検出電圧合計値VE(=V31+V32)に定数設定器39に設定された定数「1/2」を乗算する演算を実行し、VEの1/2の信号VEhを得る。この出力信号VEhを合計値信号VEの代わりに用いて、前記の単列電池測定の場合と同様に割算部32で基準電圧V1、V2との比を求めることにより、電池電源Bの絶縁抵抗値Rxを測定することができる。   Therefore, in the case of the double-row battery measurement in which the insulation resistance RX of the battery power source in which a plurality of row batteries are connected in parallel is measured with the double-row connection, the single-row / double-row measurement switching device 37 shown in FIG. ”And a signal SPS for instructing a multiplication operation is supplied to the multiplication unit 38. Thereby, the multiplication unit 38 performs an operation of multiplying the detection voltage total value VE (= V31 + V32) by the constant “1/2” set in the constant setting unit 39, and obtains a signal VEh that is ½ of VE. . The output signal VEh is used instead of the total value signal VE, and the ratio of the reference voltages V1 and V2 is obtained by the division unit 32 in the same manner as in the case of the single-row battery measurement, whereby the insulation resistance of the battery power supply B is obtained. The value Rx can be measured.

なお、複列電池測定において、絶縁抵抗の低下した列電池を特定する場合は、図1に示す各列電池に設けた電池スイッチ1または2の何れかをオフにしたとき、絶縁抵抗の低下が検出されず、絶縁抵抗が回復したことが検出されれば、電池スイッチをオフした側の列電池が、絶縁抵抗の低下した絶縁不良の発生した列電池であると特定することができる。   In the double-row battery measurement, when specifying a column battery having a reduced insulation resistance, when either the battery switch 1 or 2 provided in each column battery shown in FIG. If it is not detected and it is detected that the insulation resistance has been recovered, the column battery on which the battery switch is turned off can be identified as a column battery in which insulation failure has occurred and the insulation resistance has decreased.

(1−3)電池電源絶縁不良の発生個所測定
次に、電池電源における絶縁抵抗の低下した絶縁不良(接地)の発生個所を特定する測定について図1を用いて説明する。
(1-3) Measurement of location where battery power supply insulation failure occurs Next, measurement for specifying a location where an insulation failure (grounding) with reduced insulation resistance in the battery power supply is described will be described with reference to FIG.

単列電池の絶縁抵抗測定において、絶縁不良の発生位置(個所)を特定する場合は、P極側からの位置特定は、演算部25で、そしてN極側からの位置特定は演算部26での演算により実行する。
P極側から絶縁抵抗の低下した絶縁不良の発生した電池位置を特定する演算部25は、(15)式の演算により、絶縁不良位置がP極から何(m)個目の電池であるかを求める。
m(P)=(V31÷VE)×M ・・・(15)
ここで、V31はP極側検出回路15の検出電圧、VEは、P極側検出電圧V31とN極側検出電圧V32を加算した合計電圧(VE=V31+V32)、Mは列電池の単電池直列接続個数である。なお、複列電池測定においては、前記した理由により、検出電圧の合計電圧VEは、VE=(V31+V32)×1/2とする必要がある。
In the measurement of the insulation resistance of a single-row battery, when specifying the position (location) where an insulation failure occurs, the position specification from the P pole side is performed by the calculation unit 25, and the position specification from the N pole side is performed by the calculation unit 26. It is executed by the operation.
The calculation unit 25 that identifies the position of the battery where the insulation failure with reduced insulation resistance has occurred from the P-pole side is the (m) th battery whose insulation failure position is from the P-pole by the calculation of equation (15). Ask for.
m (P) = (V31 ÷ VE) × M (15)
Here, V31 is a detection voltage of the P-pole side detection circuit 15, VE is a total voltage (VE = V31 + V32) obtained by adding the P-pole side detection voltage V31 and the N-pole side detection voltage V32, and M is a single cell series of column batteries. The number of connections. In the double-row battery measurement, the total voltage VE of the detection voltages needs to be VE = (V31 + V32) × 1/2 for the reason described above.

演算部25におけるV31÷VEの演算値Vmは、絶縁抵抗低下が生じた電池の接地点S1のP極側検出電圧V31(地絡した電池B11の電圧VB11と等価値)と列電池の全電圧に相当する値VEとの比であるから、これに列電池の電池直列接続個数Mを乗算することによって、絶縁抵抗低下が生じた絶縁不良の単電池がP極からm個目であることを算出することができる。   The calculation value Vm of V31 / VE in the calculation unit 25 is the P pole side detection voltage V31 (equivalent to the voltage VB11 of the grounded battery B11) and the total voltage of the column battery. Therefore, by multiplying this by the number M of the battery cells connected in series in the column battery, it is confirmed that the number of cells with poor insulation in which the insulation resistance is reduced is the mth from the P pole. Can be calculated.

また、演算部26も同様に、N極側測定の検出電圧V32とP、N両極検出電圧の合計電圧VE(=V31+V32)とに基づいて、(16)式の演算をすることにより、絶縁抵抗低下が生じた絶縁不良の単電池がN極側からのm個目であることを求めることができる。
m(N)=(V32÷VE)×M ・・・(16)
Similarly, the calculation unit 26 calculates the expression (16) based on the detection voltage V32 of the N pole side measurement and the total voltage VE (= V31 + V32) of the P and N bipolar detection voltages, thereby obtaining the insulation resistance. It can be determined that the unit cell with poor insulation in which the decrease has occurred is the mth cell from the N-pole side.
m (N) = (V32 ÷ VE) × M (16)

(2)給電電路絶縁抵抗測定モード
次に、測定モード切換器35を「給電電路」位置に切り換えて給電電路の絶縁抵抗の測定を行う給電電路絶縁抵抗測定モード(給電電路測定モードと称することもある)について説明する。
なお、図1の絶縁測定装置における各部の括弧内に示す出力信号は、この給電電路絶縁抵抗測定モードを選択したときの出力信号である。
測定モード切換器35を「給電電路」位置に切り換えると、図4に示すように、電池電源Bから給電されるP極側給電電路LPと大地Eとの間の絶縁抵抗RXP、またはN極側電路LNと大地Eとの間の絶縁抵抗RXNの抵抗値RxP、またはRxNを測定することができる。両極の給電電路LP、LNには電池電源Bおよびここには図示されない負荷となる各種の機器が接続されているので、この測定モードでは電池電源Bおよび各種機器を含む直流給電回路全体の絶縁抵抗を測定することになる。
(2) Feeding Line Insulation Resistance Measurement Mode Next, the feeding mode insulation resistance measurement mode (also referred to as the feeding line measurement mode) in which the measurement mode switch 35 is switched to the “feeding line” position and the insulation resistance of the feeding line is measured. Exist).
In addition, the output signal shown in the parenthesis of each part in the insulation measuring apparatus of FIG. 1 is an output signal when this power feeding circuit insulation resistance measurement mode is selected.
When the measurement mode switch 35 is switched to the “feeding electric circuit” position, as shown in FIG. 4, the insulation resistance RXP between the P pole side feeding electric circuit LP fed from the battery power source B and the ground E, or the N pole side The resistance value RxP or RxN of the insulation resistance RXN between the electric circuit LN and the ground E can be measured. Since the battery power supply B and various devices that are not shown here are connected to the bipolar power supply circuits LP and LN, in this measurement mode, the insulation resistance of the entire DC power supply circuit including the battery power supply B and the various devices Will be measured.

この場合は、図4に示すように、電池スイッチ1、2および電路スイッチ5をオンにして、電池電源Bから給電電路LP、LNを介して図示しない負荷となる機器に直流電力を給電する状態にする。P極側絶縁抵抗RXPを測定する場合は、測定極性切換器36から「1」信号の信号PSSが入力されたとき、制御部30は、前記した電池電源測定モードで出力されるP極側を選択する信号PSの代わりに、N極側を選択する信号NSを出力する。測定極性切換器36がN極側絶縁抵抗RXNを測定するための信号NSSに切り換えると、制御部30はP極側を選択する信号PSを出力する。   In this case, as shown in FIG. 4, the battery switches 1 and 2 and the electric circuit switch 5 are turned on, and the DC power is supplied from the battery power source B to a device (not shown) via the electric supply circuits LP and LN. To. When measuring the P pole side insulation resistance RXP, when the signal PSS of “1” signal is input from the measurement polarity switch 36, the control unit 30 determines the P pole side output in the battery power measurement mode described above. Instead of the signal PS to be selected, a signal NS for selecting the N pole side is output. When the measurement polarity switch 36 switches to the signal NSS for measuring the N-pole side insulation resistance RXN, the control unit 30 outputs a signal PS for selecting the P-pole side.

このため、P極側絶縁抵抗RXPを測定する場合は、信号NSによりスイッチNa1、Na2、Na3がオンし、スイッチPa1、Pa2,Pa3がオフする。これは、接地電流IPXが前記の電池電源の絶縁抵抗測定のP極側測定電流(接地電流)IPX1とは電流極性が逆になるから、P極側の給電電路絶縁抵抗RXPを測定する場合は、N極側測定回路16で測定を行う必要があるためである。   For this reason, when the P-pole side insulation resistance RXP is measured, the switches Na1, Na2, and Na3 are turned on by the signal NS, and the switches Pa1, Pa2, and Pa3 are turned off. This is because the current polarity of the ground current IPX is opposite to that of the P-pole-side measured current (ground current) IPX1 in the insulation resistance measurement of the battery power source. This is because it is necessary to perform measurement by the N pole side measurement circuit 16.

このときは、スイッチNa1がオンするため、抵抗器R21は短絡される。これにより、給電電路LP→絶縁抵抗RXP→大地E→スイッチNa2→ダイオードDN→検出抵抗器R32→基準抵抗器R22→電池電源N極の経路で接地電流IPXが流れ、抵抗器R22で検出した基準電圧V2と、検出抵抗器R32で検出した検出電圧V32から、P極側絶縁抵抗RXPの絶縁抵抗値RxPを求める処理を行う。
これは、N極側の割算器24で、基準電圧V2を検出電圧V32で割算して、両電圧比VEPを求め、これに乗算器28で、定数設定器34に設定された抵抗器R21の抵抗値r21と等しい値の定数Kを乗算して絶縁抵抗値RxPを求める処理である。
給電電路の絶縁抵抗を測定する場合は、電池電源Bの全電圧VBに基づく絶縁抵抗RXによる接地電流IXを検出抵抗器R3で検出するので、検出回路15と16の何れか一方の検出回路の検出電圧V3に基づいて、絶縁抵抗値を求めることができる。
At this time, since the switch Na1 is turned on, the resistor R21 is short-circuited. As a result, the ground current IPX flows through the path of the feed circuit LP → insulation resistance RX → ground E → switch Na2 → diode DN → detection resistor R32 → reference resistor R22 → battery power supply N pole, and the reference detected by the resistor R22 From the voltage V2 and the detection voltage V32 detected by the detection resistor R32, a process for obtaining the insulation resistance value RxP of the P-pole side insulation resistance RXP is performed.
This is because the divider 24 on the N pole side divides the reference voltage V2 by the detection voltage V32 to obtain the voltage ratio VEP, and the resistor 28 is set in the constant setting unit 34 by the multiplier 28. This is a process for obtaining an insulation resistance value RxP by multiplying a constant K having a value equal to the resistance value r21 of R21.
When measuring the insulation resistance of the power supply circuit, the detection resistor R3 detects the ground current IX due to the insulation resistance RX based on the total voltage VB of the battery power supply B, so that either of the detection circuits 15 and 16 is detected. The insulation resistance value can be obtained based on the detection voltage V3.

すなわち、P極側給電電路LPの絶縁抵抗測定は、電池電源のN極側検出回路16を用いて測定し、また、給電電路のN極側絶縁抵抗測定は、電池電源のP極側検出回路15を用いて行う。
そのため、測定モード切換器35を、「給電電路」位置へ切り換えたときは、P極側・N極側測定切換器36の切換動作を逆動作にして、P極側に切換えたきはN極側スイッチNa1、Na2をオンにし、かつ指令信号S1Nをオンにして、V2÷V32=VENを演算する割算部24を動作させ、その出力を乗算部28に与える。乗算部28は、電圧比VENに定数設定器34に設定された、抵抗器R21と等しい抵抗値(r21)に設定された定数Kを乗算して、絶縁抵抗の絶縁抵抗値RxPを求め、P極側絶縁抵抗値VEPXとして出力し、監視・記録部40に記録し、表示、警報を行う。
That is, the insulation resistance measurement of the P pole side feeding circuit LP is measured by using the N pole side detection circuit 16 of the battery power source, and the N pole side insulation resistance measurement of the feeding circuit is measured by the P pole side detection circuit of the battery power source. 15 is used.
Therefore, when the measurement mode switching device 35 is switched to the “feeding circuit” position, the switching operation of the P-pole side / N-pole side measurement switching device 36 is reversed to switch to the P-pole side. The switches Na1 and Na2 are turned on and the command signal S1N is turned on to operate the division unit 24 for calculating V2 ÷ V32 = VEN, and the output is supplied to the multiplication unit 28. The multiplier 28 multiplies the voltage ratio VEN by the constant K set to the resistance value (r21) set in the constant setter 34 and equal to the resistor R21 to obtain the insulation resistance value RxP of the insulation resistance. The pole-side insulation resistance value VEPX is output, recorded in the monitoring / recording unit 40, and displayed and alarmed.

また、N極側測定を行うときは、P極側スイッチPa1、Pa2をオンにし、指令信号S1PをオンにしてV1÷V31=VEPを演算する割算部23を動作させ、その出力を乗算部27に与える。乗算部27は、電圧比VEPに定数設定器34に設定された、抵抗器R11と等しい抵抗値(r11)に設定された定数Kを乗算して、N極給電電路LNの絶縁抵抗RXNの絶縁抵抗値RxNを求め、N極側絶縁抵抗値VENXとして出力し、監視・記録部40に記録し、表示、警報を行う。   Also, when performing the N pole side measurement, the P pole side switches Pa1 and Pa2 are turned on, the command signal S1P is turned on, the division unit 23 for calculating V1 ÷ V31 = VEP is operated, and the output is multiplied by the multiplication unit 27. The multiplier 27 multiplies the voltage ratio VEP by a constant K set to a resistance value (r11) set in the constant setter 34 and equal to the resistor R11 to insulate the insulation resistance RXN of the N-pole power supply circuit LN. The resistance value RxN is obtained, output as the N pole side insulation resistance value VENX, recorded in the monitoring / recording unit 40, and displayed and alarmed.

監視・記録部40は、絶縁抵抗の測定モード切換器35からの切換信号SSによって電池電源または給電電路の各絶縁抵抗測定データを時系列に記録・表示して絶縁抵抗変化を監視できるようにし、また、測定した絶縁抵抗値が予め設定した基準絶縁抵抗値より低下したときは絶縁不良が発生したことを示す警報を発する。これにより、電気推進システムにおける電池電源、給電電路の絶縁抵抗を常時監視することができるので、直流給電回路の安全を管理することができる。   The monitoring / recording unit 40 can record and display each insulation resistance measurement data of the battery power supply or the power feeding circuit in time series by the switching signal SS from the insulation resistance measurement mode switch 35 so that the insulation resistance change can be monitored. In addition, when the measured insulation resistance value is lower than a preset reference insulation resistance value, an alarm indicating that an insulation failure has occurred is issued. Thereby, since the battery power supply in the electric propulsion system and the insulation resistance of the power feeding circuit can be constantly monitored, the safety of the DC power feeding circuit can be managed.

このようにこの発明で使用する絶縁抵抗測定装置は、電池電源の絶縁抵抗を測定する電池電源測定モードと、給電電路の絶縁抵抗を測定する給電電路測定モードとを切換えて電池電源と給電電路を有する直流給電回路の絶縁抵抗の測定を行うものである。   As described above, the insulation resistance measuring apparatus used in the present invention switches between the battery power supply measurement mode for measuring the insulation resistance of the battery power supply and the power supply circuit measurement mode for measuring the insulation resistance of the power supply circuit. The insulation resistance of the DC power supply circuit is measured.

次に、このような絶縁抵抗測定装置を用い直流給電回路の絶縁抵抗の測定を行い、絶縁抵抗の低下が検知された際に、この発明によって絶縁抵抗が低下した絶縁不良の発生個所を特定する方法について説明する。   Next, the insulation resistance of the DC power supply circuit is measured using such an insulation resistance measuring device, and when a decrease in the insulation resistance is detected, the location of the insulation failure in which the insulation resistance has been reduced by the present invention is specified. A method will be described.

図6は、この発明による絶縁抵抗の監視対象となる直流給電回路の例を示す。ここに示す直流給電回路は、電気推進船舶に適用された直流給電回路の例である。
この直流給電回路における電池電源Bは、複数個の単電池を直列接続して構成した複数の列電池B1〜Bnを、それぞれ電池スイッチSB1〜SBnを介して並列接続して構成される。この電池電源Bの出力端Oには主給電スイッチSMFおよび補機給電スイッチSAFを介して主給電電路LMFおよび補機給電電路LAFが並列接続される。
FIG. 6 shows an example of a DC power supply circuit to be monitored for insulation resistance according to the present invention. The DC power supply circuit shown here is an example of a DC power supply circuit applied to an electric propulsion ship.
The battery power source B in this DC power supply circuit is configured by connecting a plurality of column batteries B1 to Bn, each of which is formed by connecting a plurality of single cells in series, in parallel via battery switches SB1 to SBn, respectively. The main power supply circuit LMF and the auxiliary machine power supply circuit LAF are connected in parallel to the output terminal O of the battery power source B via the main power supply switch SMF and the auxiliary machine power supply switch SAF.

さらに、主給電電路LMFには、分岐スイッチSM1、SM2を介して、船舶の推進機Prを駆動する電動機M1、M2を備えた駆動装置に給電する分岐電路が接続される。電動機M1、M2は、それぞれ制御用のインバータINV1、INV2を備える。
主給電電路LMFには、分岐スイッチSCを介して、電池電源Bの電池を充電するための交流発電機Gと整流器RECとで構成された充電装置CHを有する分岐電路も接続される。
また、補機給電電路LAFには、それぞれ分岐スイッチSA1〜SAnを介して、負荷となる各種の補助機器AL1〜ALnに給電する分岐電路が接続される。
Further, a branch electric circuit for supplying electric power to a driving device including electric motors M1 and M2 for driving a marine vessel propulsion device Pr is connected to the main electric supply electric circuit LMF via branch switches SM1 and SM2. The electric motors M1 and M2 include control inverters INV1 and INV2, respectively.
A branch electric circuit having a charging device CH composed of an AC generator G and a rectifier REC for charging a battery of the battery power source B is also connected to the main power supply electric circuit LMF via a branch switch SC.
Further, the auxiliary power supply circuit LAF is connected to branch circuits that supply power to the various auxiliary devices AL1 to ALn serving as loads via the branch switches SA1 to SAn, respectively.

このように直流給電回路は、電池電源Bに、主給電スイッチSMFおよび補機給電スイッチSAFを介して接続された主給電電路LMFおよび補機給電電路LAFに、それぞれ分岐スイッチSM1、SM2、SCおよびSA1〜SAnを介して、負荷となる推進電動機M1、M2、充電装置CHおよび各種補助機器AL1〜ALnを有する分岐電路を接続して構成される。   In this way, the DC power supply circuit is connected to the battery power source B via the main power supply switch SMF and the auxiliary power supply switch SAF, and to the main power supply circuit LMF and the auxiliary power supply circuit LAF. A branch electric circuit having propulsion motors M1 and M2, a charging device CH, and various auxiliary devices AL1 to ALn serving as loads is connected via SA1 to SAn.

そして、このような直流給電回路の主給電スイッチSMF、補機給電スイッチSAFより上流位置(電池電源側の位置)に絶縁抵抗測定部IRMが接続される。この絶縁抵抗測定部IRMは、電池電源測定モードと給電電路測定モードとを切り換えるための測定モード切換器35、測定装置IRMでの測定結果の記録、表示、警報を行うための監視・記録部40および絶縁不良による絶縁抵抗の低下が検出されとき、その絶縁不良の発生個所を特定する操作を行うときに、主給電スイッチ、補機給電スイッチ、分岐スイッチ、電池スイッチ等の各スイッチの切断情報を読取るスイッチ状態読取部50を備える。   The insulation resistance measuring unit IRM is connected to a position upstream of the main power supply switch SMF and the auxiliary power supply switch SAF of the DC power supply circuit (position on the battery power supply side). The insulation resistance measuring unit IRM includes a measurement mode switching unit 35 for switching between a battery power supply measurement mode and a power feeding circuit measurement mode, and a monitoring / recording unit 40 for recording, displaying, and alarming measurement results in the measurement device IRM. When a decrease in insulation resistance due to insulation failure is detected, disconnection information for each switch such as the main power supply switch, auxiliary power supply switch, branch switch, battery switch, etc., when performing an operation to identify the location where the insulation failure has occurred. A switch state reading unit 50 for reading is provided.

図7に、絶縁不良(絶縁抵抗低下)の発生個所を特定するために絶縁抵抗測定部IRMの制御部30において実行される処理手順の実施例を示す。
図6の直流給電回路の絶縁抵抗の測定は、電池スイッチSB1〜SBn、主給電スイッチSMF、補機給電スイッチSAFおよび分岐スイッチSM1、SM2,SC,SA1〜SAnを投入し、電池電源Bから主給電電路LMFおよび補機給電電路LAFを通して各分岐回路の負荷となる推進電動機M1、M2および補助機器AL1〜ALnに給電、または充電装置CHにより電池電源Bの電池を充電している、いわゆる活線状態で行う。
FIG. 7 shows an example of a processing procedure executed in the control unit 30 of the insulation resistance measurement unit IRM in order to specify the location where the insulation failure (insulation resistance drop) occurs.
The measurement of the insulation resistance of the DC power supply circuit of FIG. 6 is performed by turning on the battery switches SB1 to SBn, the main power supply switch SMF, the auxiliary power supply switch SAF, and the branch switches SM1, SM2, SC, SA1 to SAn. A so-called live line in which power is supplied to the propulsion motors M1 and M2 and auxiliary devices AL1 to ALn serving as loads of the branch circuits through the power supply circuit LMF and the auxiliary power supply circuit LAF, or the battery of the battery power source B is charged by the charging device CH. Do in state.

この状態において、絶縁抵抗測定が開始されると、ステップS1で、測定モード切換器35を「給電電路」位置または「電池電源」位置に切り替えて、給電電路の絶縁抵抗を測定する給電電路測定モード、または電池電源の絶縁抵抗を測定する電池電源測定モードを選択する切換操作を行う。
ステップS2で測定モード切換器35の切換状態を読み取って、給電電路測定モードであるか否かの判定を行う。ステップS2で電路測定モードであると判定された場合は、YES分岐から、ステップS13へ進んで、給電電路測定モードが実行される。
ここで、電路測定モードではないと判定された場合は、電池電源測定モードであるので、NO分岐からステップS23へ進んで、電池電源測定モードが実行される。
In this state, when the insulation resistance measurement is started, in step S1, the measurement mode switch 35 is switched to the “power supply circuit” position or the “battery power supply” position to measure the insulation resistance of the power supply circuit. Or, a switching operation for selecting a battery power measurement mode for measuring the insulation resistance of the battery power is performed.
In step S2, the switching state of the measurement mode switching unit 35 is read, and it is determined whether or not the power feeding circuit measurement mode is set. When it is determined in step S2 that the electric circuit measurement mode is selected, the process proceeds from the YES branch to step S13, and the electric power supply circuit measurement mode is executed.
Here, when it is determined that the current measurement mode is not the battery circuit measurement mode, the battery power supply measurement mode is selected, so that the process proceeds from the NO branch to step S23 to execute the battery power supply measurement mode.

ステップS2で、電路測定モードの選択であると判定された場合は、ステップS2のYES分岐から給電電路測定モードのステップS13へ進み、絶縁抵抗測定部IRMで、前記の「(2)給電電路の絶縁抵抗測定モード」の項に示された方法により給電電路の絶縁抵抗RXLの測定が実行される。これによって測定された給電電路の絶縁抵抗値RxLは、監視・記録部40に記録される。そして、ステップS14では、記録した絶縁抵抗値RxLを、予め設定された基準絶縁抵抗値RxSと比較し、絶縁抵抗値RxLがこの基準縁抵抗値RxSより低下しているか否かを判定して、絶縁抵抗低下の発生を検知する。   If it is determined in step S2 that the electric circuit measurement mode is selected, the process proceeds from the YES branch of step S2 to step S13 of the power supply circuit measurement mode, and the insulation resistance measurement unit IRM performs the above-mentioned “(2) of the power supply circuit”. Measurement of the insulation resistance RXL of the power feeding circuit is performed by the method shown in the section “Insulation Resistance Measurement Mode”. The insulation resistance value RxL of the power feeding circuit measured in this way is recorded in the monitoring / recording unit 40. In step S14, the recorded insulation resistance value RxL is compared with a preset reference insulation resistance value RxS to determine whether the insulation resistance value RxL is lower than the reference edge resistance value RxS. Detects a decrease in insulation resistance.

給電電路LMFおよびLAF、ならびにこれらの給電電路に接続された分岐回路および分岐回路に接続された各種機器の絶縁が正常に保たれている場合は、測定した絶縁抵抗値RxLが基準抵抗値RxSより大きくなり、絶縁抵抗の低下は検知されない。したがって、この場合は、ステップS14では、絶縁抵抗の低下の発生がないと判定され、NO分岐から、電池電源測定モードのステップS23へ移行し、電池電源の絶縁抵抗測定に移行する。   When the insulation of the feeder circuits LMF and LAF and the branch circuits connected to these feeder circuits and the various devices connected to the branch circuits are normally maintained, the measured insulation resistance value RxL is obtained from the reference resistance value RxS. It becomes larger and no decrease in insulation resistance is detected. Therefore, in this case, in step S14, it is determined that there is no decrease in insulation resistance, the process proceeds from the NO branch to step S23 in the battery power measurement mode, and the process proceeds to measurement of insulation resistance of the battery power.

この電池電源測定モードにおけるステップS23では、主として前記の「(1−2)複列電池の絶縁抵抗測定」の項で説明した方法により複数の列電池B1〜Bnを並列に接続したまま電池電源Bの絶縁抵抗値RxBの測定を行う。   In step S23 in this battery power supply measurement mode, the battery power supply B is connected while the plurality of battery cells B1 to Bn are connected in parallel mainly by the method described in the section "(1-2) Measurement of insulation resistance of the double-row battery". The insulation resistance value RxB is measured.

このステップS23で測定した絶縁抵抗値RxBは、給電電路測定モードにおける場合と同様に、その都度、監視・記録部40に記録され、ステップ24で、記録した絶縁抵抗値RxBが、基準絶縁抵抗値RxSより低下しているか否かを判定して、絶縁抵抗の低下の発生を検知する。
ステップS24では、監視・記録部40に記録した絶縁抵抗値Rxnを、予め設定された基準絶縁抵抗値RxSと比較し、絶縁抵抗値Rxnがこの基準縁抵抗値RxSより低下しているか否かにより、絶縁抵抗低下の発生を検知する。
The insulation resistance value RxB measured in step S23 is recorded in the monitoring / recording unit 40 each time as in the power feeding circuit measurement mode, and the recorded insulation resistance value RxB is recorded in step 24 as the reference insulation resistance value. It is determined whether or not it is lower than RxS, and occurrence of a decrease in insulation resistance is detected.
In step S24, the insulation resistance value Rxn recorded in the monitoring / recording unit 40 is compared with a preset reference insulation resistance value RxS, and whether or not the insulation resistance value Rxn is lower than the reference edge resistance value RxS is determined. Detects the occurrence of a decrease in insulation resistance.

列電池B1〜Bnの絶縁が正常に保たれている場合は、測定した絶縁抵抗値RxBが基準抵抗値RxSより大きくなり、絶縁抵抗の低下は検知されない。このためステップS24では、絶縁抵抗の低下の発生がないと判定され、NO分岐から、ステップS13へ戻って、再び給電電路の絶縁抵抗の測定を測定する給電電路測定モードへ移行する。   When the insulation of the row batteries B1 to Bn is normally maintained, the measured insulation resistance value RxB is larger than the reference resistance value RxS, and a decrease in insulation resistance is not detected. For this reason, in step S24, it is determined that there is no occurrence of a decrease in insulation resistance, and from the NO branch, the process returns to step S13, and shifts again to the power supply circuit measurement mode for measuring the measurement of the insulation resistance of the power supply circuit.

このような給電電路測定モードにおけるステップS13およびS14による給電電路の絶縁抵抗測定と、電池電源測定モードにおけるステップS23およびS24による電池電源の絶縁抵抗測定は、何れかの測定において絶縁不良による絶縁抵抗の低下の発生が検知されるまで、繰り返し実行される。これによって、給電電路と電池電源の絶縁抵抗を監視することができる。   In the measurement of the insulation resistance of the power supply circuit in steps S13 and S14 in the power supply circuit measurement mode and the measurement of the insulation resistance of the battery power supply in steps S23 and S24 in the battery power supply measurement mode, the insulation resistance due to an insulation failure is measured in either measurement. It is repeatedly executed until the occurrence of a drop is detected. Thereby, it is possible to monitor the insulation resistance between the power feeding circuit and the battery power source.

このように給電電路と電池電源の絶縁抵抗を監視するなかで、給電電路LMF、LAF、ならびにこれらの給電電路に接続された分岐回路および各種機器の何れかに絶縁不良が発生した場合は、電路測定モードにおけるステップS13において測定した給電電路絶縁抵抗RXLの測定値RxLが、基準絶縁抵抗値RxS以下に低下する。これにより、給電電路測定モードにおけるステップS14で、絶縁抵抗低下の発生が検知されると、このステップS14のYES分岐から、次のステップS15へ進む。   In this way, when the insulation resistance between the power supply circuit and the battery power supply is monitored, if an insulation failure occurs in any of the power supply circuits LMF, LAF, and the branch circuit and various devices connected to these power supply circuits, The measured value RxL of the power feeding circuit insulation resistance RXL measured in step S13 in the measurement mode falls below the reference insulation resistance value RxS. Thereby, when the occurrence of a decrease in insulation resistance is detected in step S14 in the power feeding circuit measurement mode, the process proceeds from the YES branch of step S14 to the next step S15.

ステップS15は、絶縁抵抗の低下した絶縁不良の発生個所を特定する処理ステップである。ここでは、主給電電路MFLに接続された分岐スイッチSM1、SM2、SCおよび補機給電電路LAFに接続された分岐スイッチSA1〜SAnを、電池電源Bからみて下流側の末端の分岐スイッチから1つずつ切断することにより、給電電路から分岐回路を順次1つずつ切り離しながら、給電電路の絶縁抵抗RXLの測定を行う。   Step S15 is a processing step for identifying a location where an insulation failure has occurred with reduced insulation resistance. Here, the branch switches SM1, SM2, SC connected to the main power supply circuit MFL and one of the branch switches SA1 to SAn connected to the auxiliary power supply circuit LAF from the branch switch at the downstream side when viewed from the battery power source B are provided. The insulation resistance RXL of the power feeding circuit is measured while disconnecting the branch circuits one by one from the power feeding circuit one by one.

ここで測定された絶縁抵抗値RxLを、前記同様、監視・記録部40に記録し、ステップS16で基準絶縁抵抗値RxSと比較することにより、絶縁抵抗値RxLが基準絶縁抵抗値RxSより大きい正常な絶縁抵抗値に回復した否かの判定処理を行う。
これによって絶縁抵抗の回復が検知されなければ、まだ、給電電路LMF,LAFに絶縁不良により絶縁抵抗の低下の発生した分岐回路が接続されていることになるので、ステップS16のNO分岐からステップS20へ進む。
The insulation resistance value RxL measured here is recorded in the monitoring / recording unit 40 as described above, and the insulation resistance value RxL is larger than the reference insulation resistance value RxS by comparing with the reference insulation resistance value RxS in step S16. Judgment processing of whether or not the insulation resistance value has been recovered is performed.
If the recovery of the insulation resistance is not detected by this, the branch circuit in which the insulation resistance is reduced due to the insulation failure is still connected to the feed lines LMF, LAF, and therefore, from the NO branch of step S16 to step S20. Proceed to

このステップS20では、図6におけるスイッチ状態読取部50で、ステップ15で給電電路の切断操作されたスイッチをその都度読み込んで、その履歴から、給電電路の全部のスイッチが切断されたか否かを判定する。ステップS20で、給電電路の全部のスイッチは切断されていないと判定された場合には、NO分岐から、ステップS15に戻って、給電電路に接続された分岐スイッチの切断操作を下流側から1つずつ進めて、給電電路の絶縁抵抗を測定する処理を繰り返す。なお、先に切断されたスイッチは、この後の処理のとき、切断したままでなく、投入して元に戻してもよい。   In this step S20, the switch state reading unit 50 in FIG. 6 reads each time the switch for which the power feeding circuit has been disconnected in step 15, and determines from the history whether all the switches in the power feeding circuit have been disconnected. To do. If it is determined in step S20 that all the switches of the power feeding circuit have not been disconnected, the process returns to step S15 from the NO branch, and one disconnecting operation of the branch switch connected to the power feeding circuit is performed from the downstream side. Step by step, and repeat the process of measuring the insulation resistance of the feed circuit. It should be noted that the previously cut switch may be turned back on instead of being cut off during the subsequent processing.

給電電路のスイッチを分岐スイッチから電路スイッチまで全部のスイッチを切断して、分岐回路および給電電路を電池電源Bから切り離しても絶縁抵抗の回復が検知されないときは、給電電路に絶縁不良の発生がなく、電池電源Bに絶縁不良が発生している可能性があることが予見されることになる。
このため、ステップS20で給電回路の全スイッチの切断が検知された場合は、ステップS20のYES分岐から、電源側モードのステップS23へ進んで電池電源の絶縁抵抗を測定する電池電源測定モードへ移行することになる。
If the recovery of insulation resistance is not detected even if all the switches from the branch switch to the circuit switch are disconnected and the branch circuit and the power supply circuit are disconnected from the battery power source B, an insulation failure has occurred in the power supply circuit. Therefore, it is foreseen that there may be an insulation failure in the battery power source B.
For this reason, when disconnection of all the switches of the power feeding circuit is detected in step S20, the process proceeds from the YES branch of step S20 to step S23 of the power supply side mode and shifts to the battery power supply measurement mode for measuring the insulation resistance of the battery power supply. Will do.

前記したように、給電電路測定モードにおいて、給電電路のスイッチを下流側から1つずつ切断して絶縁抵抗を測定し、絶縁抵抗が回復したか否かを判定するステップS15とS16の処理は、給電電路の全部のスイッチが切断されるまで繰り返し実行される。
このように給電電路のスイッチを下流側から1つずつ切断しながら行う絶縁抵抗測定と、絶縁抵抗の回復の判定処理を繰り返す中で、絶縁抵抗の回復が検知されたところで、ステップS16のYES分岐から、ステップS17の処理へ進む。
As described above, in the power feeding circuit measurement mode, the switches of the power feeding circuit are disconnected one by one from the downstream side, the insulation resistance is measured, and the processes of steps S15 and S16 for determining whether or not the insulation resistance has been restored are as follows. It is repeatedly executed until all the switches of the power feeding circuit are disconnected.
In this way, while repeating the insulation resistance measurement performed while disconnecting the power supply circuit switch one by one from the downstream side and the determination process of the insulation resistance recovery, when the insulation resistance recovery is detected, the YES branch of step S16 Then, the process proceeds to step S17.

ステップS16で絶縁抵抗の回復が検知された場合、その直前に切断したスイッチの所属する分岐回路、または給電電路に絶縁不良が発生していることになる。このため、ステップS17では、切断したスイッチの読み込み履歴から、ステップS16で絶縁抵抗が回復したことが検知される直前に切断されたスイッチを特定することにより、絶縁不良の発生した分岐回路、または給電電路を特定することができる。このようにして絶縁不良の発生が特定された分岐回路、または給電電路は、監視・記録部40に記録し、表示するとともに、この給電回路の管理者に報知する。
このように、絶縁不良の発生が特定された個所を記録、表示することにより、この給電電路測定モードは終了し、絶縁不良の発生した分岐回路等について絶縁回復作業を実施する。
If the recovery of the insulation resistance is detected in step S16, an insulation failure has occurred in the branch circuit to which the switch disconnected immediately before or the power feeding circuit belongs. For this reason, in step S17, the switch that has been disconnected immediately before it is detected that the insulation resistance has been recovered in step S16 is identified from the reading history of the disconnected switch, so that the branch circuit in which the insulation failure has occurred or the power feeding is performed. The electric circuit can be specified. The branch circuit or the power feeding circuit in which the occurrence of the insulation failure is identified in this way is recorded and displayed in the monitoring / recording unit 40 and is notified to the manager of the power feeding circuit.
In this way, by recording and displaying the location where the occurrence of the insulation failure is specified, the power feeding circuit measurement mode is completed, and the insulation recovery operation is performed on the branch circuit or the like where the insulation failure has occurred.

給電電路測定モードにおけるステップS2,S14,S20等から電池電源測定モードに移行し、ステップS23で、複数の列電池を並列接続したまま電池電源Bの絶縁抵抗RXの測定を行い、このステップS23で、測定した電池電源の絶縁抵抗値Rxは、前記したとおりその都度、監視・記録部40に記録される。そして、記録された電池電源の絶縁抵抗値Rxは、ステップ24で、基準絶縁抵抗値RxSと比較し、絶縁抵抗の低下が発生したか否かの判定処理が行われる。   The process proceeds from step S2, S14, S20, etc. in the power supply circuit measurement mode to the battery power supply measurement mode, and in step S23, the insulation resistance RX of the battery power supply B is measured while a plurality of column batteries are connected in parallel. The measured insulation resistance value Rx of the battery power source is recorded in the monitoring / recording unit 40 each time as described above. Then, in step 24, the recorded insulation resistance value Rx of the battery power source is compared with the reference insulation resistance value RxS to determine whether or not the insulation resistance has decreased.

列電池B1〜Bnの絶縁が正常に保たれている場合は、測定した絶縁抵抗値Rxが基準絶縁抵抗値RxSより大きくなり、絶縁抵抗の低下は検知されない。このためステップS24では、絶縁抵抗の低下が発生していないと判定されるので、NO分岐から、電路測定モードのステップS13へ戻り、再び給電電路の絶縁抵抗の測定、監視となる。   When the insulation of the row batteries B1 to Bn is normally maintained, the measured insulation resistance value Rx becomes larger than the reference insulation resistance value RxS, and a decrease in insulation resistance is not detected. For this reason, in step S24, since it is determined that the insulation resistance has not decreased, the process returns to step S13 in the electric circuit measurement mode from the NO branch, and the measurement and monitoring of the insulation resistance of the power supply circuit are performed again.

しかし、電池電源Bのどこかに絶縁不良が発生し、絶縁抵抗値Rxが基準絶縁抵抗値RxS以下となる絶縁抵抗低下が検知されると、ステップS24のYES分岐から、ステップS25へ進んで、電池電源Bにおける絶縁不良発生個所を特定する処理が行われる。   However, if an insulation failure occurs somewhere in the battery power source B and an insulation resistance drop is detected at which the insulation resistance value Rx is equal to or less than the reference insulation resistance value RxS, the process proceeds from the YES branch of step S24 to step S25. A process for specifying the location where insulation failure occurs in the battery power source B is performed.

ステップ25では、給電電路測定モードにおけるステップ15と同様に、電池電源Bの各列電池B1〜Bnの電池スイッチSB1〜SBnを1つずつ順番に切断しながら、電池電源Bの絶縁抵抗RXの測定を行い、測定した絶縁抵抗値Rxを監視・記録部40に記録する処理を行う。   In step 25, the insulation resistance RX of the battery power source B is measured while cutting the battery switches SB1 to SBn of the battery cells B1 to Bn of the battery power source B one by one in the same manner as in step 15 in the power feeding circuit measurement mode. And the process of recording the measured insulation resistance value Rx in the monitoring / recording unit 40 is performed.

引き続き、ステップS26で、記録した絶縁抵抗値Rxについて基準絶縁抵抗値RxSとの比較を行い、絶縁抵抗が基準絶縁抵抗値RxS以上に回復したか否かの判定を行う。
この判定の結果、絶縁抵抗の回復が検知されない場合は、ステップS26のNO分岐からステップS30へ進み、各電池スイッチの切断状態が読み込まれた履歴から、電池電源Bの全部の電池スイッチ(SB1〜SBn)が切断されたか否かの判定が行われる。ここで、全部の電池スイッチ(SB1〜SBn)が切断されていないと判定された場合には、ステップS25に戻って、次の電池スイッチを切断したうえで、電池電源Bの絶縁抵抗を測定し、測定した絶縁抵抗値Rxが基準絶縁抵抗値RxS以上の正常値に回復するまで、ステップS25の絶縁抵抗測定処理(絶縁抵抗回復処理)を繰り返し実行する。
Subsequently, in step S26, the recorded insulation resistance value Rx is compared with the reference insulation resistance value RxS to determine whether or not the insulation resistance has recovered to the reference insulation resistance value RxS or more.
As a result of this determination, if recovery of insulation resistance is not detected, the process proceeds from the NO branch of step S26 to step S30, and all battery switches (SB1 to SB1) of the battery power supply B are determined from the history of reading the disconnection state of each battery switch. A determination is made whether SBn) has been disconnected. If it is determined that all the battery switches (SB1 to SBn) are not disconnected, the process returns to step S25 to disconnect the next battery switch and measure the insulation resistance of the battery power supply B. The insulation resistance measurement process (insulation resistance recovery process) in step S25 is repeatedly executed until the measured insulation resistance value Rx recovers to a normal value equal to or higher than the reference insulation resistance value RxS.

このような絶縁抵抗回復処理により、測定した電池電源Bの絶縁抵抗値Rxnが、基準絶縁抵抗値RxS以上の正常値に回復した場合は、ステップS26において、絶縁抵抗の回復が検知されるため、このステップS26のYES分岐から、次のステップS27の処理へ進む。   When the measured insulation resistance value Rxn of the battery power source B is restored to a normal value equal to or higher than the reference insulation resistance value RxS, the insulation resistance recovery is detected in step S26. From the YES branch of step S26, the process proceeds to the next step S27.

ステップ27では、給電電路測定モードにおけるステップS17と同様に、絶縁抵抗回復処理により順次切断された電池スイッチの読み込み履歴から、ステップS26で絶縁抵抗が回復したことが判定される直前に切断された電池スイッチを特定し、この特定した電池スイッチから、絶縁不良の発生した列電池を特定する処理を行う。これにより、絶縁不良の発生したことが特定された列電池は、監視・記録部40に記録、表示するとともに、この給電回路の管理者に報知する。   In step 27, similarly to step S17 in the power feeding circuit measurement mode, the battery disconnected immediately before it was determined in step S26 that the insulation resistance was recovered from the reading history of the battery switches sequentially disconnected by the insulation resistance recovery process. A switch is specified, and processing for specifying a column battery in which insulation failure has occurred is performed from the specified battery switch. As a result, the column battery identified as having an insulation failure is recorded and displayed on the monitoring / recording unit 40 and is notified to the administrator of the power feeding circuit.

ステップ27で、絶縁抵抗の低下する絶縁不良を生じた列電池の特定が終わると、ステップ28へ進む。このステップS28では、絶縁不良の発生した列電池に特定された列電池について、絶縁抵抗測定装置IRMで、前記の「(1−3)電池電源の絶縁不良位置測定」の項で説明した方法により、当該列電池の絶縁抵抗を測定し、その測定値に基づいて、絶縁抵抗の低下による絶縁不良を発生した単電池を特定するための演算を実行し、絶縁不良の発生した単電池を特定する処理を行う。
絶縁不良が発生した単電池が特定されると、これを監視・記録部40に記録するとともに表示し、この給電回路を管理する管理者に報知する。
In step 27, when the identification of the column battery in which the insulation failure in which the insulation resistance decreases is completed, the process proceeds to step 28. In this step S28, with respect to the column battery specified as the column battery in which the insulation failure has occurred, the insulation resistance measuring device IRM uses the method described in the section “(1-3) Measurement of insulation failure position of battery power source”. , Measure the insulation resistance of the cell battery, and based on the measured value, execute a calculation to identify the unit cell in which insulation failure has occurred due to a decrease in insulation resistance, and identify the unit cell in which insulation failure has occurred Process.
When the unit cell in which the insulation failure has occurred is specified, this is recorded and displayed in the monitoring / recording unit 40 and is notified to the manager who manages this power feeding circuit.

このようにして電池電源において絶縁抵抗が低下する絶縁不良が発生すると、絶縁不良を発生した列電池と、この列電池内で絶縁不良を発生した単電池の特定を行い、これを、記録し、表示することにより、電池電源測定モードにおける絶縁抵抗の測定、監視を終了し、絶縁不良の発生した列電池の単電池の交換等の絶縁回復作業を実施する。   In this way, when an insulation failure in which the insulation resistance is reduced occurs in the battery power supply, the column battery in which the insulation failure has occurred and the single cell in which the insulation failure has occurred are identified, and this is recorded. The display ends the measurement and monitoring of the insulation resistance in the battery power supply measurement mode, and performs insulation recovery work such as replacement of the cell of the column battery in which insulation failure has occurred.

B:電池電源
B1〜Bn:列電池
B11〜B1m、B21〜B2m:単電池
LP、LN:給電電路
R11、R21:高抵抗値の検出抵抗器
R12、R22:低抵抗値の検出抵抗器
R31、R32:検出抵抗器
DP、DN:ダイオード
IRM:絶縁抵抗測定部
1、2:電池スイッチ
5:電源スイッチ
11、12:電圧検出回路
13、14、17、18:絶縁電圧検出器
15、16:接地電流検出回路
19〜22:ローパスフィルタ
23、24、32:割算器
25、26、31:演算器
27、28、33、38:乗算器
30:制御部
34、39:定数設定器
35:測定モード切換器
36:測定極性切換器
37:単列・複列測定切換器
40:監視・記録部
41:表示部
42:警報部
50:スイッチ状態読取部
B: battery power sources B1 to Bn: battery cells B11 to B1m, B21 to B2m: single cell LP, LN: power supply line R11, R21: high resistance detection resistor R12, R22: low resistance detection resistor R31, R32: detection resistor DP, DN: diode IRM: insulation resistance measuring unit 1, 2: battery switch 5: power switch 11, 12: voltage detection circuits 13, 14, 17, 18: insulation voltage detectors 15, 16: ground Current detection circuits 19-22: Low-pass filters 23, 24, 32: Dividers 25, 26, 31: Calculators 27, 28, 33, 38: Multiplier 30: Control unit 34, 39: Constant setter 35: Measurement Mode switching unit 36: Measurement polarity switching unit 37: Single row / double row measurement switching unit 40: Monitoring / recording unit 41: Display unit 42: Alarm unit 50: Switch state reading unit

Claims (3)

複数の単電池を直列接続して列電池を構成し、この列電池を、それぞれ電池スイッチを介して複数並列接続して構成した電池電源を備え、この電池電源に給電スイッチを介して給電電路を接続し、この給電電路にそれぞれ分岐スイッチを介して接続した複数の分岐電路を通し各機器へ給電するようにした直流給電回路において、
測定モードを給電電路の絶縁抵抗を測定する給電電路測定モードと電池電源の絶縁抵抗を測定する電池電源測定モードに切り換えて絶縁抵抗の測定を行うように構成した絶縁抵抗測定装置を、前記電池電源に接続された前記給電電路の前記給電スイッチより前記電池電源側の位置に接続し、前記電池電源に給電電路および分岐電路を介して前記各機器を接続した状態において、前記絶縁抵抗測定装置を給電電路測定モードにしてこの絶縁抵抗測定装置により前記直流給電回路の絶縁抵抗を測定、監視し、この測定した絶縁抵抗の絶縁抵抗値が絶縁抵抗の基準絶縁抵抗値以下に低下する絶縁抵抗低下が検知されたとき、前記電池電源、給電電路および分岐電路に挿入された前記電池スイッチ、給電スイッチおよび分岐スイッチを前記電池電源からみて下流側のスイッチから順に1つずつ切断しながら前記直流給電回路の絶縁抵抗の測定を、前記絶縁抵抗が基準絶縁抵抗値以上の値に回復するまで繰返して行うことにより、前記直流給電回路における絶縁抵抗低下の発生した給電電路を特定することを特徴とする直流給電回路の絶縁抵抗測定方法。
A plurality of single cells are connected in series to form a column battery, and each column battery is provided with a battery power source configured by connecting a plurality of cells in parallel with each other through a battery switch. In a DC power feeding circuit that is connected and fed to each device through a plurality of branch circuits connected to the power supply circuit via branch switches, respectively.
An insulation resistance measuring device configured to measure an insulation resistance by switching a measurement mode to a power supply circuit measurement mode for measuring an insulation resistance of a power supply circuit and a battery power supply measurement mode for measuring an insulation resistance of a battery power supply. The insulation resistance measuring device is fed in a state where the feeder switch is connected to a position closer to the battery power source than the feed switch of the feed feeder connected to the battery power source, and the devices are connected to the battery power source via a feeder feeder and a branch feeder. The insulation resistance measurement device measures and monitors the insulation resistance of the DC power feeding circuit with this insulation resistance measurement device in the electric circuit measurement mode, and the insulation resistance drop that the insulation resistance value of the measured insulation resistance falls below the reference insulation resistance value of the insulation resistance is detected. The battery switch, the power supply switch and the branch switch inserted in the battery power supply, the power supply circuit and the branch circuit are connected to the battery power supply. In this case, the measurement of the insulation resistance of the DC power supply circuit is repeated until the insulation resistance recovers to a value equal to or higher than the reference insulation resistance value while cutting one by one from the downstream switch. A method for measuring an insulation resistance of a DC power supply circuit, wherein a power supply circuit in which a decrease in insulation resistance occurs is specified.
前記分岐スイッチおよび前記給電スイッチを全部切断しても絶縁抵抗が回復しないときは、前記縁抵抗測定装置の測定モードを電池電源測定モードに切り換え、かつ、前記電池電源の各列電池の電池スイッチを順に1つずつ切断しながら絶縁抵抗を測定する操作を、前記測定した絶縁抵抗が、前記絶縁抵抗の基準絶縁抵抗値以上の値に回復するまで繰返して行うことにより、前記電池電源における絶縁抵抗低下の発生した列電池を特定することを特徴とする請求項1に記載の直流給電回路の絶縁抵抗測定方法。   If the insulation resistance does not recover even if all of the branch switch and the power supply switch are disconnected, the measurement mode of the edge resistance measurement device is switched to the battery power supply measurement mode, and the battery switch of each column battery of the battery power supply is switched on. The operation of measuring the insulation resistance while cutting one by one in order is repeated until the measured insulation resistance is restored to a value equal to or higher than the reference insulation resistance value of the insulation resistance, thereby reducing the insulation resistance in the battery power source. The method of measuring an insulation resistance of a DC power feeding circuit according to claim 1, wherein the column battery in which the occurrence of the DC current occurs is specified. 絶縁抵抗低下の発生が特定された列電池について、前記絶縁抵抗測定装置により絶縁抵抗の測定を行い、測定した絶縁抵抗値に基づいて前記列電池における絶縁抵抗低下の発生した単電池を特定する請求項2に記載の直流給電回路の絶縁抵抗測定方法。   An insulation resistance is measured by the insulation resistance measuring device for the column battery in which the occurrence of a decrease in insulation resistance is specified, and the unit cell in which the insulation resistance is reduced in the column battery is specified based on the measured insulation resistance value. Item 3. A method for measuring an insulation resistance of a DC power feeding circuit according to Item 2.
JP2016053041A 2016-03-16 2016-03-16 Insulation resistance measurement method for DC power supply circuit Active JP5967327B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053041A JP5967327B1 (en) 2016-03-16 2016-03-16 Insulation resistance measurement method for DC power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053041A JP5967327B1 (en) 2016-03-16 2016-03-16 Insulation resistance measurement method for DC power supply circuit

Publications (2)

Publication Number Publication Date
JP5967327B1 true JP5967327B1 (en) 2016-08-10
JP2017167005A JP2017167005A (en) 2017-09-21

Family

ID=56689526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053041A Active JP5967327B1 (en) 2016-03-16 2016-03-16 Insulation resistance measurement method for DC power supply circuit

Country Status (1)

Country Link
JP (1) JP5967327B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696581A (en) * 2017-10-24 2019-04-30 上海汽车集团股份有限公司 A kind of insulating resistor detecting circuit and its control method of power battery
JP2020512798A (en) * 2017-03-21 2020-04-23 ダンフォス・エディトロン・オーワイ Method and system for detecting the occurrence and timing of events in a power system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189076A (en) * 1997-09-08 1999-03-30 Yazaki Corp Vehicle power supply line abnormality detector and vehicle power supply device
JP2009159713A (en) * 2007-12-26 2009-07-16 Fuji Electric Systems Co Ltd Protection system of power supply circuit
JP2014145754A (en) * 2013-01-29 2014-08-14 Taiwa Denki Kogyo Kk Insulation level monitoring device of non-grounded circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189076A (en) * 1997-09-08 1999-03-30 Yazaki Corp Vehicle power supply line abnormality detector and vehicle power supply device
JP2009159713A (en) * 2007-12-26 2009-07-16 Fuji Electric Systems Co Ltd Protection system of power supply circuit
JP2014145754A (en) * 2013-01-29 2014-08-14 Taiwa Denki Kogyo Kk Insulation level monitoring device of non-grounded circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512798A (en) * 2017-03-21 2020-04-23 ダンフォス・エディトロン・オーワイ Method and system for detecting the occurrence and timing of events in a power system
JP7075412B2 (en) 2017-03-21 2022-05-25 ダンフォス・エディトロン・オーワイ Methods and systems for detecting the occurrence and timing of events in power systems
CN109696581A (en) * 2017-10-24 2019-04-30 上海汽车集团股份有限公司 A kind of insulating resistor detecting circuit and its control method of power battery

Also Published As

Publication number Publication date
JP2017167005A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
EP3627161B1 (en) High-voltage interlock system and monitoring method thereof
EP1928082B1 (en) Power system fault characterization using transformed values
US20170373498A1 (en) Distribution of electric energy on a vessel
US9874592B2 (en) Abnormality detection circuit for power storage device, and power storage device including same
CN102576040B (en) Voltage monitoring apparatus
US20110248670A1 (en) Charging power source apparatus
CN103091643B (en) The method of supply unit and diagnosis supply unit
US10189367B2 (en) Electric vehicle quick charge control apparatus
JP2012238716A (en) Abnormality detection device for solar cell panel
JP6061048B1 (en) Method and apparatus for measuring insulation resistance of battery power supply
CN108001270B (en) Direct current charging circuit and direct current charging detection method
JP2013219955A (en) Power supply device
CA2750350A1 (en) System and method for detection of open connections between an integrated circuit and a multi-cell battery pack
JP2008079415A (en) Voltage detection device
JP5967327B1 (en) Insulation resistance measurement method for DC power supply circuit
JPWO2016157721A1 (en) Failure detection device
JP2018121434A (en) Arc failure detector
JP5073002B2 (en) DC circuit ground fault search device and DC circuit ground fault accident location search method
CN104730373A (en) Capacitor failure indication circuit, a plurality of capacitor failure indicator circuit and system
JP2014090635A (en) Power storage system
JP6695032B2 (en) Anomaly detection device
CN107359695A (en) A kind of uninterruption power source, method of supplying power to and data center
JP2008206229A (en) Dc earth fault detection device and doubled dc power supply circuit
JP2016123232A (en) Solar cell inspection method and device for the same, and signal source used for solar cell inspection device
CN110133374B (en) Detection circuit and power supply circuit

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5967327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250