JP2015167149A - Rectangular lithium secondary battery - Google Patents

Rectangular lithium secondary battery Download PDF

Info

Publication number
JP2015167149A
JP2015167149A JP2015133877A JP2015133877A JP2015167149A JP 2015167149 A JP2015167149 A JP 2015167149A JP 2015133877 A JP2015133877 A JP 2015133877A JP 2015133877 A JP2015133877 A JP 2015133877A JP 2015167149 A JP2015167149 A JP 2015167149A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
metal foil
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015133877A
Other languages
Japanese (ja)
Other versions
JP6117285B2 (en
Inventor
石津 竹規
Takenori Ishizu
竹規 石津
貴宏 相馬
Takahiro Soma
貴宏 相馬
八木 陽心
Yoshin Yagi
陽心 八木
丸山 昭彦
Akihiko Maruyama
昭彦 丸山
満 小関
Mitsuru Koseki
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015133877A priority Critical patent/JP6117285B2/en
Publication of JP2015167149A publication Critical patent/JP2015167149A/en
Application granted granted Critical
Publication of JP6117285B2 publication Critical patent/JP6117285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a rectangular lithium secondary battery in which exfoliation and cracking of a negative electrode active material on the innermost periphery of a wound electrode group are prevented without lowering the productivity.SOLUTION: A rectangular lithium secondary battery includes a flat wound electrode group formed by winding a sheet-like positive electrode and a sheet-like negative electrode while sandwiching a separator, and having corners at both ends, and a battery container for housing the wound electrode group. The negative electrode is arranged on the inner peripheral side of the positive electrode on the center side of the wound electrode group. A negative electrode active material mixture layer having a single side thickness of 50 μm or less is formed on both sides of the metal foil of the negative electrode. Adhesion strength of the negative electrode active material mixture layer and negative electrode metal foil is set to 0.05 N/mm or more, and the radius of curvature with reference to the inner surface of the metal foil of the negative electrode at the corner is set to 0.15 mm or more.

Description

本発明は、角形リチウム二次電池に関する。   The present invention relates to a prismatic lithium secondary battery.

従来から、高エネルギー密度を有する小型民生用リチウム二次電池は、携帯電話やノー
トパソコン向けに広く普及している。近年は、電気自動車(EV)、ハイブリッド電気自
動車(HEV)の電源として高容量で高出力なリチウム二次電池、たとえば、高電圧を有
する非水溶液系のリチウム二次電池が注目されている。特に角形リチウム二次電池はパッ
ク化した際の体積効率が優れているため、HEV用あるいはEV用の高容量角形リチウム
二次電池の開発への期待が高まっている。
Conventionally, small-sized consumer lithium secondary batteries having a high energy density have been widely used for mobile phones and notebook computers. In recent years, lithium secondary batteries with high capacity and high output, for example, non-aqueous lithium secondary batteries having a high voltage have attracted attention as power sources for electric vehicles (EV) and hybrid electric vehicles (HEV). In particular, since the prismatic lithium secondary battery has excellent volumetric efficiency when packed, expectations for development of a high capacity prismatic lithium secondary battery for HEV or EV are increasing.

高容量化、すなわち扁平形捲回電極群の体積あたりの電極占有率を上げるために、一般
に電極群として、内周部に空間を持たない扁平形捲回電極群が採用されるが、最内周電極
のコーナー部の活物質合剤層が割れる、あるいは脱落するという問題がある。このように
割れ、脱落した活物質合剤はセパレータを貫通し、短絡を引き起こすことがある。
In order to increase the capacity, that is, to increase the electrode occupancy per volume of the flat wound electrode group, a flat wound electrode group having no space in the inner periphery is generally adopted as the electrode group. There is a problem that the active material mixture layer at the corner portion of the peripheral electrode breaks or falls off. The active material mixture thus cracked and dropped may penetrate the separator and cause a short circuit.

そこで、活物質合剤層の割れや脱落を防止するために、コーナー部の活物質合剤層をあ
らかじめ欠落・剥離して捲回電極群を作製する手法(特許文献1)が提案されている。
Therefore, in order to prevent the active material mixture layer from cracking or falling off, a method (Patent Document 1) has been proposed in which a wound electrode group is prepared by previously missing and peeling off the active material mixture layer at the corner. .

特開平10−253263号公報Japanese Patent Laid-Open No. 10-253263

特許文献1の角形リチウム二次電池は、電極作製時にわずか数ミリメートルのみ欠落・
剥離した電極を作製するため極めて難しく、また欠落・剥離した箇所を捲回電極群の最内
周のコーナー部に配置することは、その位置精度の観点から極めて生産性が低い。
The prismatic lithium secondary battery of Patent Document 1 is missing only a few millimeters at the time of electrode production.
It is extremely difficult to produce a peeled electrode, and disposing the missing / peeled portion at the innermost peripheral corner of the wound electrode group is extremely low in productivity from the viewpoint of positional accuracy.

(1)本発明による角形リチウム二次電池は、シート状の正極とシート状の負極とをセパレータを介して扁平形状に捲回し、両端にコーナー部を形成した扁平形状の捲回電極群と、前記捲回電極群を収納する電池容器とを備え、前記負極は、前記捲回電極群の中心側において前記正極よりも内周側に配置され、前記負極の金属箔の両面に片側厚み50μm以下の負極活物質合剤層を形成し、前記負極活物質合剤層と前記負極金属箔との密着強度を0.05N/mm以上とし、前記コーナー部における前記負極の金属箔の内側表面を基準とした曲率半径を0.15mm以上としたことを特徴とする。
(2)請求項2の発明は、請求項1記載の角形リチウム二次電池において、前記コーナー
部における前記負極金属箔の内側表面を基準とした曲率半径が0.5mm以上であること
を特徴とする。
(3)請求項3の発明は、請求項1記載の角形リチウム二次電池において、前記負極活物
質合剤層の片側厚みは30μm以上であることを特徴とする。
(1) A rectangular lithium secondary battery according to the present invention is a flat wound electrode group in which a sheet-like positive electrode and a sheet-like negative electrode are wound into a flat shape via a separator, and corner portions are formed at both ends; A negative electrode is disposed on the inner peripheral side of the positive electrode at the center side of the wound electrode group, and the thickness of one side is 50 μm or less on both surfaces of the metal foil of the negative electrode. The negative electrode active material mixture layer is formed, the adhesion strength between the negative electrode active material mixture layer and the negative electrode metal foil is 0.05 N / mm or more, and the inner surface of the negative electrode metal foil at the corner is used as a reference The curvature radius is 0.15 mm or more.
(2) The invention according to claim 2 is the prismatic lithium secondary battery according to claim 1, wherein a radius of curvature with respect to the inner surface of the negative electrode metal foil in the corner portion is 0.5 mm or more. To do.
(3) The invention according to claim 3 is the prismatic lithium secondary battery according to claim 1, characterized in that the one-side thickness of the negative electrode active material mixture layer is 30 μm or more.

本発明によれば、生産性を低下することなく、捲回電極群の最内周の負極活物質の脱落
と割れを防止した角形リチウム二次電池を提供することができる。
According to the present invention, it is possible to provide a prismatic lithium secondary battery in which the innermost negative electrode active material of the wound electrode group is prevented from dropping and cracking without reducing productivity.

本発明による角形リチウム電池の実施の形態を示す斜視図である。It is a perspective view which shows embodiment of the square lithium battery by this invention. 本発明による角形リチウム電池の実施の形態の扁平形捲回電極群を示す斜視図。The perspective view which shows the flat wound electrode group of embodiment of the square lithium battery by this invention. 本発明による角形リチウム電池の実施の形態を示す分解斜視図である。It is a disassembled perspective view which shows embodiment of the square lithium battery by this invention. 同実施の形態の扁平形捲回電極群のコーナー部を示す部分断面概略図である。It is a fragmentary schematic sectional view showing the corner portion of the flat wound electrode group of the same embodiment. 同実施の形態の実施例1〜7、比較例1〜5の仕様を示す表1〜3。Tables 1 to 3 showing specifications of Examples 1 to 7 and Comparative Examples 1 to 5 of the same embodiment. 同実施の形態の実施例1〜7、比較例1〜5の評価結果を示す表4〜6。Tables 4 to 6 showing evaluation results of Examples 1 to 7 and Comparative Examples 1 to 5 of the same embodiment. 同実施の形態の変形例における扁平形捲回電極群を示す斜視図である。It is a perspective view which shows the flat wound electrode group in the modification of the embodiment.

図1〜図4を参照して、本発明による角形リチウム二次電池の実施例1〜7の構成につ
いて説明する。実施例1〜7と比較例1〜5の角形リチウム二次電池は、捲回電極群の詳
細な構成を除き、図1〜図4に示される角形リチウム二次電池である。
With reference to FIGS. 1-4, the structure of Examples 1-7 of the square lithium secondary battery by this invention is demonstrated. The prismatic lithium secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 5 are prismatic lithium secondary batteries shown in FIGS. 1 to 4 except for the detailed configuration of the wound electrode group.

図1は実施例1〜7の角形リチウム二次電池200の外観形状を示す。この角形リチウ
ム二次電池200は、図2に示す発電要素である捲回電極群20を、図3に示すように絶
縁袋18で覆いつつ電池缶19に収納して構成される。捲回電極群20は、シート状の負
極22と、シート状のセパレータ21と、シート状の正極24と、シート状のセパレータ
23とを順に積層したシート層を、負極22が捲回電極群20の最内周に位置し、かつ、
捲回電極群20の両端部に円弧部(以下、コーナー部とも呼ぶ)20Tが形成されるよう
に扁平形状に捲回したものである。
FIG. 1 shows the external shape of a prismatic lithium secondary battery 200 of Examples 1-7. The prismatic lithium secondary battery 200 is configured by storing the wound electrode group 20 as a power generation element shown in FIG. 2 in a battery can 19 while being covered with an insulating bag 18 as shown in FIG. The wound electrode group 20 includes a sheet layer in which a sheet-like negative electrode 22, a sheet-like separator 21, a sheet-like positive electrode 24, and a sheet-like separator 23 are sequentially laminated. Located on the innermost circumference of
The wound electrode group 20 is wound in a flat shape so that arc portions (hereinafter also referred to as corner portions) 20T are formed at both ends.

なお、セパレータ21、23は、正極24と負極22との間に介在し、セパレータ23
が捲回電極群20の外周面を構成する。
The separators 21 and 23 are interposed between the positive electrode 24 and the negative electrode 22, and the separator 23
Constitutes the outer peripheral surface of the wound electrode group 20.

上述したシート層を捲回して構成される捲回電極群20の外形形状は、図2および図4
に示すように、両端に形成された円弧部(以下、コーナ部とも云う)20Tと、両端円弧
部20Tの間に位置する平坦部20Pとで規定される扁平形状である。
The outer shape of the wound electrode group 20 formed by winding the sheet layer described above is shown in FIGS.
As shown in FIG. 4, the flat shape is defined by an arc portion (hereinafter also referred to as a corner portion) 20T formed at both ends and a flat portion 20P positioned between the both end arc portions 20T.

図4は、捲回電極群20の円弧部20Tの断面図を示す。捲回電極群20の最内周から
負極22,セパレータ21,正極24,セパレータ23の順に積層したシート層が捲回さ
れている。負極22は、負極金属箔22aの表裏面に負極合剤層22bを塗布して構成さ
れている。正極24は、正極金属箔24aの表裏面に正極合剤層24bを塗布して構成さ
れている。
図4においては、捲回電極群20の最内周の負極22の円弧部20Tでの曲率半径、す
なわち、負極金属箔22aの内側表面を基準とした曲率半径をrで表す。図4の符号20
cが曲率中心である。この曲率半径rは、後述する実施例1〜3、7および比較例1,4
,5では0.15mm、実施例4では0.30mm、実施例5では0.50mm、実施例
6では1.00mm、比較例2、3では0.05mmである。
FIG. 4 shows a cross-sectional view of the arc portion 20T of the wound electrode group 20. A sheet layer in which the negative electrode 22, the separator 21, the positive electrode 24, and the separator 23 are laminated in this order from the innermost periphery of the wound electrode group 20 is wound. The negative electrode 22 is configured by applying a negative electrode mixture layer 22b to the front and back surfaces of the negative electrode metal foil 22a. The positive electrode 24 is configured by applying a positive electrode mixture layer 24b to the front and back surfaces of the positive electrode metal foil 24a.
In FIG. 4, the radius of curvature at the arc portion 20T of the innermost negative electrode 22 of the wound electrode group 20, that is, the radius of curvature based on the inner surface of the negative electrode metal foil 22a is represented by r. Reference numeral 20 in FIG.
c is the center of curvature. This curvature radius r is determined in Examples 1 to 3 and 7 and Comparative Examples 1 and 4 described later.
, 5 is 0.15 mm, Example 4 is 0.30 mm, Example 5 is 0.50 mm, Example 6 is 1.00 mm, and Comparative Examples 2 and 3 are 0.05 mm.

捲回に際しては、正極24、負極22、セパレータ21,23ともシート長手方向に1
0Nの荷重をかけて伸展しつつ、電極端面およびセパレータ端面が一定位置になるように
蛇行制御した。捲回に先立って、扁平形捲回電極群20の中心に、セパレータを複数回巻
き、最内周の軸芯代わりとした。
When winding, the positive electrode 24, the negative electrode 22, and the separators 21 and 23 are all 1 in the sheet longitudinal direction.
While extending by applying a load of 0 N, meandering control was performed so that the electrode end face and the separator end face were at fixed positions. Prior to winding, a separator was wound a plurality of times around the center of the flat wound electrode group 20 to replace the innermost axis.

図2および図4を参照して捲回電極群20についてさらに詳細に説明する。
正極24は、正極合剤層24bを金属集電体、たとえばアルミニウム箔24aの両面に
配し、正極合剤層24bを巻き始め端部から巻き終わり端部まで配したシートである。銅
アルミニウム箔24aの長手方向に延在する一端縁には正極合剤層24bが塗布されない
正極未塗工部24cが形成され、正極リードとして用いられる。負極22は、負極合剤層
22bを金属集電体、たとえば銅箔22aの両面に配し、負極合剤層22bを巻き始め端
部から巻き終わり端部まで配したシートである。銅箔22aの長手方向に延在する他端縁
には負極合剤層22bが塗布されない負極未塗工部22cが形成され、負極リードとして
用いられる。
The wound electrode group 20 will be described in more detail with reference to FIGS. 2 and 4.
The positive electrode 24 is a sheet in which the positive electrode mixture layer 24b is disposed on both sides of a metal current collector, for example, an aluminum foil 24a, and the positive electrode mixture layer 24b is disposed from the winding start end to the winding end end. A positive electrode uncoated portion 24c to which the positive electrode mixture layer 24b is not applied is formed on one end edge extending in the longitudinal direction of the copper aluminum foil 24a, and is used as a positive electrode lead. The negative electrode 22 is a sheet in which the negative electrode mixture layer 22b is disposed on both sides of a metal current collector, for example, a copper foil 22a, and the negative electrode mixture layer 22b is disposed from the winding start end to the winding end end. A negative electrode uncoated portion 22c to which the negative electrode mixture layer 22b is not applied is formed on the other end edge extending in the longitudinal direction of the copper foil 22a, and is used as a negative electrode lead.

図3を参照すると、捲回電極群20の正極未塗工部24cには、アルミニウム製の正極
集電リード部9の接合部11が超音波溶接によって接続され、負極未塗工部22cには、
銅の負極集電リード部10の接合部12が超音波溶接によって接続されている。集電リー
ド部9、10は、電池蓋17に装着された正極端子13および負極端子14にそれぞれ接
続され、これによって、捲回電極群20は、電池蓋17によって支持されるとともに、正
極端子13および負極端子14からの充放電が可能となる。
Referring to FIG. 3, the joint 11 of the positive electrode current collector lead 9 made of aluminum is connected to the positive electrode uncoated portion 24c of the wound electrode group 20 by ultrasonic welding, and the negative electrode uncoated portion 22c is connected to the negative electrode uncoated portion 22c. ,
The joint portion 12 of the copper negative electrode current collecting lead portion 10 is connected by ultrasonic welding. The current collecting leads 9 and 10 are respectively connected to the positive electrode terminal 13 and the negative electrode terminal 14 attached to the battery lid 17, whereby the wound electrode group 20 is supported by the battery lid 17 and the positive electrode terminal 13. And charging / discharging from the negative electrode terminal 14 is attained.

電池蓋17には、電解液を注入するための注液口15が設けられ、さらに、内部圧力が
基準値を超えて上昇した際に、圧力を抜くためのガス破裂弁16が設けられている。注液
口15は電解液注入後にレーザ溶接によって塞がれる。レーザ溶接によって電池蓋17を
電池缶19に溶接することにより、電池缶19が封止される。
なお、非水電解液には、エチレンカーボネートとジメチルカーボネートとを体積比で1
:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF6)を1モル/リ
ットルの濃度で溶解したものを用いた。
The battery lid 17 is provided with a liquid injection port 15 for injecting an electrolytic solution, and further provided with a gas rupture valve 16 for releasing the pressure when the internal pressure rises above a reference value. . The liquid injection port 15 is closed by laser welding after the electrolyte injection. The battery can 19 is sealed by welding the battery lid 17 to the battery can 19 by laser welding.
The non-aqueous electrolyte includes ethylene carbonate and dimethyl carbonate in a volume ratio of 1
: A solution obtained by dissolving lithium hexafluorophosphate (LiPF6) at a concentration of 1 mol / liter in a mixed solution mixed at a ratio of 2 was used.

正極24の作製に際しては、正極活物質としてリチウム含有複酸化物粉末と、導電材と
して鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)とを重量比85:1
0:5で混合し、これに分散溶媒であるN−メチルピロリドン(NMP)を添加、混練し
たスラリを作成し、厚さ20μmのアルミニウム箔の両面に塗布した。
その後、乾燥、プレス、裁断することにより活物質合剤層が配された部分の幅80mm
、厚さ100μm、長さ4mの正極24を得た。
In preparing the positive electrode 24, a lithium-containing double oxide powder as a positive electrode active material, scaly graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder in a weight ratio of 85: 1.
The mixture was mixed at 0: 5, N-methylpyrrolidone (NMP) as a dispersion solvent was added thereto, and a kneaded slurry was prepared and applied to both sides of an aluminum foil having a thickness of 20 μm.
Then, the width of the portion where the active material mixture layer is arranged by drying, pressing, and cutting is 80 mm.
A positive electrode 24 having a thickness of 100 μm and a length of 4 m was obtained.

負極22の作製に際しては、負極活物質としての非晶質炭素粉末と、結着剤としてのP
VDFを、後述するように各実施例、比較例ごとに設定した重量比で混練し、これに分散
溶媒のNMPを添加して得られたスラリを、厚さ10μmの圧延銅箔の両面に塗布した。
その後、乾燥プレス、裁断することにより活物質合剤層が配された部分の幅84mm、
長さ4.4m、所定の厚さ、所定の密着強度とした負極22を得た。
In producing the negative electrode 22, amorphous carbon powder as the negative electrode active material and P as the binder are used.
As described later, VDF was kneaded at a weight ratio set for each example and comparative example, and a slurry obtained by adding NMP as a dispersion solvent to this was applied to both surfaces of a rolled copper foil having a thickness of 10 μm. did.
Then, the width 84mm of the portion where the active material mixture layer was arranged by drying press, cutting,
A negative electrode 22 having a length of 4.4 m, a predetermined thickness, and a predetermined adhesion strength was obtained.

図1〜図4を参照して説明した角形リチウム電池20の実施例について説明する。なお
、比較のために作製した比較例の電池についても併記する。
図5(表1〜3)に、実施例及び比較例の各電池の仕様を示す。
An embodiment of the prismatic lithium battery 20 described with reference to FIGS. 1 to 4 will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.
FIG. 5 (Tables 1 to 3) shows the specifications of the batteries of Examples and Comparative Examples.

[実施例1]
実施例1では、負極活物質である非晶質炭素と結着剤であるPVDFの重量比率を90
対10とし、負極合剤層22bの片側厚みを30μm(負極厚み70μm)、負極金属箔
22aと負極合剤層22bの密着強度を0.05N/mmとした負極22を用い、セパレ
ータを複数枚巻いて最内周の軸芯代わりとし、扁平形捲回電極群20のコーナー部20T
における負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.15m
mとして角形リチウム電池20を作製した。
[Example 1]
In Example 1, the weight ratio of amorphous carbon, which is a negative electrode active material, and PVDF, which is a binder, is 90%.
A negative electrode 22 having a negative electrode mixture layer 22b with a thickness of 30 μm (negative electrode thickness 70 μm) and an adhesion strength of the negative electrode metal foil 22a and the negative electrode mixture layer 22b of 0.05 N / mm is used. The corner portion 20T of the flat wound electrode group 20 is wound around as the innermost axis.
The radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a is 0.15 m.
A square lithium battery 20 was prepared as m.

[実施例2]
実施例2が実施例1と相違するのは、負極合剤層22bの片側厚みを40μm(負極厚
み90μm)とした点であり、その他は同一である。
[Example 2]
Example 2 is different from Example 1 in that the one-side thickness of the negative electrode mixture layer 22b is 40 μm (negative electrode thickness 90 μm), and the other is the same.

[実施例3]
実施例3が実施例1と相違するのは、負極合剤層22bの片側厚みを50μm(負極厚
み90μm)とした点であり、その他は同一である。
[Example 3]
Example 3 is different from Example 1 in that the one-side thickness of the negative electrode mixture layer 22b is 50 μm (negative electrode thickness 90 μm), and the others are the same.

[比較例1]
比較例1が実施例1と相違するのは、負極合剤層22bの片側厚みを60μm(負極厚
み90μm)とした点であり、その他は同一である。
[Comparative Example 1]
Comparative Example 1 is different from Example 1 in that the one-side thickness of the negative electrode mixture layer 22b is 60 μm (negative electrode thickness 90 μm), and the others are the same.

[実施例4]
実施例4が実施例1と相違するのは、扁平形捲回電極群20のコーナー部20Tにおけ
る負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.3mmした点
であり、その他は同一である。
[Example 4]
Example 4 is different from Example 1 in that the radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 is 0.3 mm. And others are the same.

[実施例5]
実施例5が実施例1と相違するのは、扁平形捲回電極群20のコーナー部20Tにおけ
る負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.5mmした点
であり、その他は同一である。
[Example 5]
Example 5 is different from Example 1 in that the radius of curvature r (see FIG. 4) with respect to the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 is 0.5 mm. And others are the same.

[実施例6]
実施例6が実施例1と相違するのは、扁平形捲回電極群20のコーナー部20Tにおけ
る負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を1.0mmした点
であり、その他は同一である。
[Example 6]
Example 6 is different from Example 1 in that the radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 is 1.0 mm. And others are the same.

[比較例2]
比較例2では、負極活物質である非晶質炭素と結着剤であるPVDFの重量比率を90
対10とし、負極合剤層22bの片側厚みを50μm(負極厚み110μm)、負極金属
箔22aと負極合剤層22bの密着強度を0.05N/mmとした負極22を用い、セパ
レータを複数枚巻いて最内周の軸芯代わりとし、扁平形捲回電極群20のコーナー部20
Tにおける負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.05
mmとしたものである。
すなわち、比較例2が実施例3と相違するのは、扁平形捲回電極群20のコーナー部2
0Tにおける負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.0
5mmとした点である。
[Comparative Example 2]
In Comparative Example 2, the weight ratio of amorphous carbon, which is a negative electrode active material, and PVDF, which is a binder, is 90%.
A negative electrode 22 having a negative electrode mixture layer 22b having a thickness of 50 μm (negative electrode thickness 110 μm) and an adhesion strength of the negative electrode metal foil 22a and the negative electrode mixture layer 22b of 0.05 N / mm is used. The corner portion 20 of the flat wound electrode group 20 is wound around as the innermost axis.
A radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a at T is 0.05.
mm.
That is, the comparative example 2 is different from the example 3 in that the corner portion 2 of the flat wound electrode group 20 is different.
The curvature radius r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a at 0T is 0.0.
The point is 5 mm.

[比較例3]
比較例3では、負極活物質である非晶質炭素と結着剤であるPVDFの重量比率を90
対10とし、負極合剤層22bの片側厚みを30μm(負極厚み70μm)、負極金属箔
22aと負極合剤層22bの密着強度を0.05N/mmとした負極22を用い、セパレ
ータを複数枚巻いて最内周の軸芯代わりとし、扁平形捲回電極群20のコーナー部20T
における負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.05m
mとしたこと以外は、実施例1と同様に電池を作製した。
すなわち、比較例2が比較例3と相違するのは、負極合剤層22bの片側厚みを30μ
m(負極厚み70μm)とした点である。
[Comparative Example 3]
In Comparative Example 3, the weight ratio of amorphous carbon, which is a negative electrode active material, and PVDF, which is a binder, is 90%.
A negative electrode 22 having a negative electrode mixture layer 22b with a thickness of 30 μm (negative electrode thickness 70 μm) and an adhesion strength of the negative electrode metal foil 22a and the negative electrode mixture layer 22b of 0.05 N / mm is used. The corner portion 20T of the flat wound electrode group 20 is wound around as the innermost axis.
The radius of curvature r (see FIG. 4) with respect to the inner surface of the negative electrode metal foil 22a is 0.05 m.
A battery was fabricated in the same manner as in Example 1 except that m was set.
That is, Comparative Example 2 is different from Comparative Example 3 in that the thickness of one side of the negative electrode mixture layer 22b is 30 μm.
m (negative electrode thickness 70 μm).

[実施例7]
実施例7では、負極活物質である非晶質炭素と結着剤であるPVDFの重量比率を85
対15とし、負極合剤層22bの片側厚みを50μm(負極厚み110μm)、負極金属
箔22aと負極合剤層22bの密着強度を0.08N/mmとした負極22を用い、セパ
レータを複数枚巻いて最内周の軸芯代わりとし、扁平形捲回電極群20のコーナー部20
Tにおける負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.15
mmとしたこと以外は、実施例1と同様に電池を作製した。
すなわち、実施例7が実施例3と相違するのは、負極金属箔22aと負極合剤層22b
の密着強度を0.08N/mmとした点である。
[Example 7]
In Example 7, the weight ratio of amorphous carbon as the negative electrode active material and PVDF as the binder was 85.
A plurality of separators were used using a negative electrode 22 in which the negative electrode mixture layer 22b had a thickness of 50 μm (negative electrode thickness 110 μm) and the adhesion strength of the negative electrode metal foil 22a and negative electrode mixture layer 22b was 0.08 N / mm. The corner portion 20 of the flat wound electrode group 20 is wound around as the innermost axis.
The radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a at T is 0.15.
A battery was produced in the same manner as in Example 1 except that the thickness was mm.
That is, Example 7 is different from Example 3 in that the negative electrode metal foil 22a and the negative electrode mixture layer 22b.
This is the point where the adhesion strength of the steel was 0.08 N / mm.

[比較例4]
比較例4では、負極活物質である非晶質炭素と結着剤であるPVDFの重量比率を95
対5とし、負極合剤層22bの片側厚みを50μm(負極厚み110μm)、負極金属箔
22aと負極合剤層22bの密着強度を0.02N/mmとした負極22を用い、セパレ
ータを複数枚巻いて最内周の軸芯代わりとし、扁平形捲回電極群20のコーナー部20T
における負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.15m
mとしたこと以外は、実施例1と同様に電池を作製した。
すなわち、比較例4が実施例7と相違するのは、負極金属箔22aと負極合剤層22b
の密着強度を0.02N/mmとした点である。
[Comparative Example 4]
In Comparative Example 4, the weight ratio of amorphous carbon as the negative electrode active material and PVDF as the binder was 95.
A negative electrode 22 having a negative electrode mixture layer 22b having a thickness of 50 μm (negative electrode thickness 110 μm) and an adhesion strength of the negative electrode metal foil 22a and the negative electrode mixture layer 22b of 0.02 N / mm was used. The corner portion 20T of the flat wound electrode group 20 is wound around as the innermost axis.
The radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a is 0.15 m.
A battery was fabricated in the same manner as in Example 1 except that m was set.
That is, Comparative Example 4 is different from Example 7 in that the negative electrode metal foil 22a and the negative electrode mixture layer 22b.
This is the point at which the adhesion strength of 0.02 N / mm.

[比較例5]
比較例5では、負極活物質である非晶質炭素と結着剤であるPVDFの重量比率を95
対5とし、負極合剤層22bの片側厚みを30μm(負極厚み70μm)、負極金属箔2
2aと負極合剤層22bの密着強度を0.02N/mmとした負極22を用い、セパレー
タを複数枚巻いて最内周の軸芯代わりとし、扁平形捲回電極群20のコーナー部20Tに
おける負極金属箔22aの内側表面を基準とした曲率半径r(図4参照)を0.15mm
としたこと以外は、実施例1と同様に電池を作製した。
すなわち、比較例5が実施例7と相違するのは、負極合剤層22bの片側厚みを30μ
m(負極厚み70μm)とした点、および、負極金属箔22aと負極合剤層22bの密着
強度を0.02N/mmとした点である。
[Comparative Example 5]
In Comparative Example 5, the weight ratio of amorphous carbon as the negative electrode active material and PVDF as the binder was 95.
The thickness of one side of the negative electrode mixture layer 22b is 30 μm (negative electrode thickness 70 μm), and the negative electrode metal foil 2
In the corner portion 20T of the flat wound electrode group 20, the negative electrode 22 having an adhesion strength of 2a and the negative electrode mixture layer 22b of 0.02 N / mm is used, and a plurality of separators are wound to replace the innermost axis. The radius of curvature r (see FIG. 4) based on the inner surface of the negative electrode metal foil 22a is 0.15 mm.
A battery was fabricated in the same manner as in Example 1 except that.
That is, Comparative Example 5 is different from Example 7 in that the thickness of one side of the negative electrode mixture layer 22b is 30 μm.
m (negative electrode thickness 70 μm), and the adhesion strength between the negative electrode metal foil 22a and the negative electrode mixture layer 22b was 0.02 N / mm.

−試験・評価−
以上の実施例および比較例について、電池を10本ずつ作製し、1時間率の電流で、充
電は、充電終止電圧4.1Vまでの定電流充電、放電は、放電終止電圧2.7Vまでの定電
流放電の条件で充放電サイクル試験を5サイクル実施し、5サイクル後の電池を3.6V
まで充電し、その後30日間の電圧低下量を測定した。そして30日後の電池電圧が3.
55V以上の電池は内部微小短絡なし、電池電圧が3.55V未満の電池は内部微小短絡あ
りと判断した。
-Test and evaluation-
For the above examples and comparative examples, 10 batteries were manufactured, and charging was performed at a constant current rate of up to 4.1 V, and discharging was performed at a current of 1 hour rate. 5 charge / discharge cycle tests were conducted under constant current discharge conditions, and the battery after 5 cycles was 3.6V.
And then the amount of voltage drop for 30 days was measured. The battery voltage after 30 days is 3.
It was judged that batteries with a voltage of 55 V or more had no internal micro short circuit, and batteries with a battery voltage of less than 3.55 V had an internal micro short circuit.

さらに、これら電圧低下量測定後の電池を解体して最内周に配置した負極22の負極活
物質合剤層22bの内側と外側を外観観察し、負極金属箔22aと活物質合剤層22bの
剥離、および活物質合剤層22bの亀裂の有無を調査した。
以上の試験・評価結果を図6(表4〜6)に示す。
Further, the batteries after the voltage drop amount measurement was disassembled and the inside and outside of the negative electrode active material mixture layer 22b of the negative electrode 22 arranged on the innermost periphery were externally observed, and the negative electrode metal foil 22a and the active material mixture layer 22b were observed. And the presence or absence of cracks in the active material mixture layer 22b were investigated.
The above test and evaluation results are shown in FIG. 6 (Tables 4 to 6).

図6の表4に実施例1〜3と比較例1の二次電池における試験結果を示す。実施例1〜
3、比較例1の扁平形捲回電極群20では、
(a)負極金属箔と負極合剤層22bの密着強度を0.05N/mmとし、
(b)扁平形捲回電極群20のコーナー部20Tにおける負極金属箔22aの内側表面を
基準とした曲率半径を0.15mmとし、
(c)負極合剤層22bの片側厚みをそれぞれ30,40,50,60μmとした。
Table 4 in FIG. 6 shows test results in the secondary batteries of Examples 1 to 3 and Comparative Example 1. Example 1
3. In the flat wound electrode group 20 of Comparative Example 1,
(A) The adhesion strength between the negative electrode metal foil and the negative electrode mixture layer 22b is 0.05 N / mm,
(B) The curvature radius with respect to the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 is set to 0.15 mm,
(C) The thickness of one side of the negative electrode mixture layer 22b was 30, 40, 50, and 60 μm, respectively.

負極合剤層22bの片側厚みを30μm以上とした実施例1〜3の二次電池では、内側
と外側の負極合剤層22bの剥離もなく、内部微小短絡もなかった。比較例1の二次電池
では、2個の二次電池で内部微小短絡が発生し、3個の二次電池で外側合剤層が剥離した
。なお、実施例1〜3および比較例1のいずれにおいても、製作した全ての二次電池にお
いて、内側合剤層と外側合剤層に亀裂が発生した。
In the secondary batteries of Examples 1 to 3 in which the one-side thickness of the negative electrode mixture layer 22b was 30 μm or more, the inner and outer negative electrode mixture layers 22b were not peeled off and there was no internal micro short circuit. In the secondary battery of Comparative Example 1, an internal micro short circuit occurred in two secondary batteries, and the outer mixture layer was peeled off in three secondary batteries. In all of Examples 1 to 3 and Comparative Example 1, in all the manufactured secondary batteries, cracks occurred in the inner mixture layer and the outer mixture layer.

図6の表5に実施例3〜6と比較例2および3の二次電池における試験結果を示す。実
施例3〜6と比較例2および3の扁平形捲回電極群20では、
(a)負極金属箔22aと負極合剤層22bの密着強度を0.05N/mmとし、
(b)負極合剤層22bの片側厚みを50μm以下とし、
(c)扁平形捲回電極群20のコーナー部20Tにおける負極金属箔22aの内側表面を
基準とした曲率半径を0.15mm以上とした。
Table 5 in FIG. 6 shows test results in the secondary batteries of Examples 3 to 6 and Comparative Examples 2 and 3. In the flat wound electrode group 20 of Examples 3 to 6 and Comparative Examples 2 and 3,
(A) The adhesion strength between the negative electrode metal foil 22a and the negative electrode mixture layer 22b is 0.05 N / mm,
(B) The one-side thickness of the negative electrode mixture layer 22b is 50 μm or less,
(C) The curvature radius with respect to the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 was set to 0.15 mm or more.

実施例3〜6の二次電池では、内部微小短絡と、内側および外側の負極合剤層22bの
剥離のいずれもが発生していないことがわかった。特に実施例5と実施例6のように曲率
半径を0.50mm以上とすることにより、内側と外側の負極合剤層22bの亀裂も生じ
ないことがわかった。
In the secondary batteries of Examples 3 to 6, it was found that neither an internal micro short circuit nor peeling of the inner and outer negative electrode mixture layers 22b occurred. In particular, it was found that when the radius of curvature was 0.50 mm or more as in Example 5 and Example 6, the inner and outer negative electrode mixture layers 22b were not cracked.

実施例3の二次電池では、全ての二次電池に内側合剤層と外側合剤層に亀裂が発生した
。実施例4では、4個の二次電池で内側合剤層に亀裂が発生し、3個の二次電池で外側合
剤層に亀裂が発生した。
In the secondary battery of Example 3, cracks occurred in the inner mixture layer and the outer mixture layer in all the secondary batteries. In Example 4, cracks occurred in the inner mixture layer in four secondary batteries, and cracks occurred in the outer mixture layer in three secondary batteries.

比較例2の二次電池では、2個の二次電池で内部微小短絡が発生し、比較例3の二次電
池では、1個の二次電池で内部微小短絡が発生した。また、比較例2および3の全ての二
次電池において、外側合剤層が剥離し、内側合剤層と外側合剤層に亀裂が発生した。
In the secondary battery of Comparative Example 2, an internal micro short circuit occurred in two secondary batteries, and in the secondary battery of Comparative Example 3, an internal micro short circuit occurred in one secondary battery. In all the secondary batteries of Comparative Examples 2 and 3, the outer mixture layer was peeled off, and cracks occurred in the inner mixture layer and the outer mixture layer.

図6の表6に実施例3および7と比較例4および5の二次電池における試験結果を示す
。実施例3および7と比較例4および5の扁平形捲回電極群20では、
(a)負極合剤層22bの片側厚みを50μm以下とし、
(b)扁平形捲回電極群のコーナー部20Tにおける負極金属箔22aの内側表面を基準
とした曲率半径を0.15mmとし、
(c)負極金属箔22aと負極合剤層22bの密着強度を、実施例3では0.05N/m
m、実施例7では0.08N/mm、比較例4および5では0.03N/mmとした。
Table 6 in FIG. 6 shows the test results of the secondary batteries of Examples 3 and 7 and Comparative Examples 4 and 5. In the flat wound electrode group 20 of Examples 3 and 7 and Comparative Examples 4 and 5,
(A) The one-side thickness of the negative electrode mixture layer 22b is 50 μm or less,
(B) The curvature radius with respect to the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group is 0.15 mm,
(C) The adhesion strength between the negative electrode metal foil 22a and the negative electrode mixture layer 22b is 0.05 N / m in Example 3.
m, 0.08 N / mm in Example 7, and 0.03 N / mm in Comparative Examples 4 and 5.

実施例3および7の二次電池では、内側と外側の負極合剤層22bの剥離がなく、内部
微小短絡も発生していないことがわかった。
比較例4の二次電池では、3個の二次電池で内部微小短絡が発生し、比較例5の二次電
池では、2個の二次電池で内部微小短絡が発生した。また、比較例4および5の全ての二
次電池において、外側合剤層が剥離し、内側合剤層と外側合剤層に亀裂が発生した。また
、比較例4の7個の二次電池において内側合剤層が剥離し、比較例5の3個の二次電池に
おいて内側合剤層が剥離した。
In the secondary batteries of Examples 3 and 7, it was found that the inner and outer negative electrode mixture layers 22b were not peeled off and no internal micro short circuit occurred.
In the secondary battery of Comparative Example 4, internal micro short circuits occurred in three secondary batteries, and in the secondary battery of Comparative Example 5, internal micro short circuits occurred in two secondary batteries. In all the secondary batteries of Comparative Examples 4 and 5, the outer mixture layer was peeled off, and cracks occurred in the inner mixture layer and the outer mixture layer. In addition, the inner mixture layer was peeled off in the seven secondary batteries of Comparative Example 4, and the inner mixture layer was peeled off in the three secondary batteries of Comparative Example 5.

以上のことから、正極24と、セパレータ21、23と、負極22とを積層したシート
層を扁平形状に捲回した捲回電極群20を有する角形リチウム二次電池において、
(a)負極金属箔22aの両面に片側厚み50μm以下の負極活物質合剤層を形成し、
(b)負極活物質合剤層22bと負極金属箔22aとの密着強度を0.05N/mm以上
と、
(c)負極が捲回電極群20の最内周に位置し、
(d)扁平形捲回電極群20のコーナー部20Tにおける負極金属箔22aの内側表面を
基準とした曲率半径を0.15mm以上とすることにより、
負極合剤層22bの剥離がなく、内部微小短絡を生じない安全性に優れた、かつ生産性
に優れた角形リチウム二次電池を提供することができる。
From the above, in the prismatic lithium secondary battery having the wound electrode group 20 in which the sheet layer obtained by laminating the positive electrode 24, the separators 21, 23, and the negative electrode 22 is wound into a flat shape,
(A) A negative electrode active material mixture layer having a thickness of 50 μm or less on one side is formed on both surfaces of the negative electrode metal foil 22a,
(B) The adhesion strength between the negative electrode active material mixture layer 22b and the negative electrode metal foil 22a is 0.05 N / mm or more,
(C) the negative electrode is located on the innermost circumference of the wound electrode group 20,
(D) By setting the radius of curvature based on the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 to 0.15 mm or more,
It is possible to provide a prismatic lithium secondary battery excellent in safety and productivity that does not peel off the negative electrode mixture layer 22b and does not cause an internal micro short circuit.

本実施例による角形リチウム二次電池は、特許文献1のような煩雑な工程を採用するこ
となく、最内周電極の活物質合剤層の剥離を防止できるので、特許文献1に比べて生産性
が高い。また、捲回電極群に最内周の負極から活物質合剤層が脱落した、割れたりしない
ので、正極活物質の対向面に負極活物質合剤層が存在しない事態が防止でき、負極にリチ
ウムデンドライドが析出すおそれがなく、もって、内部短絡を防止でき、安全性の高いリ
チウム二次電池を提供できる。
The prismatic lithium secondary battery according to the present embodiment can prevent the active material mixture layer from being peeled off from the innermost electrode without adopting a complicated process as in Patent Document 1, and thus is produced in comparison with Patent Document 1. High nature. In addition, since the active material mixture layer is not dropped or cracked from the innermost negative electrode in the wound electrode group, the situation where the negative electrode active material mixture layer does not exist on the opposite surface of the positive electrode active material can be prevented. There is no possibility that lithium dendride will precipitate, and therefore an internal short circuit can be prevented and a highly safe lithium secondary battery can be provided.

とくに、扁平形捲回電極群20のコーナー部20Tにおける負極金属箔22aの内側表
面を基準とした曲率半径を0.5mm以上とすれば、活物質合剤層の脱落に加えて、亀裂
の発生も防止でき、より一層高い安全性と生産性を兼ね備えた優れた角形リチウム二次電
池を提供することができる。
In particular, if the radius of curvature with respect to the inner surface of the negative electrode metal foil 22a in the corner portion 20T of the flat wound electrode group 20 is 0.5 mm or more, in addition to dropping off of the active material mixture layer, cracks are generated. Therefore, it is possible to provide an excellent prismatic lithium secondary battery having both higher safety and productivity.

以上説明した角形リチウム二次電池は次のように変形して実施することもできる。
(1)正極リード24c、負極リード22cの形状は本実施の形態に限定されるものでは
なく、図7に示すように、正極合剤層未塗工部22cを捲回周方向に周期的にいわゆる櫛
歯状に形成し、複数の正極リード片24Hおよび負極リード片22Hとしてもよい。
The prismatic lithium secondary battery described above can be modified as follows.
(1) The shapes of the positive electrode lead 24c and the negative electrode lead 22c are not limited to the present embodiment. As shown in FIG. 7, the positive electrode mixture layer uncoated portion 22c is periodically formed in the winding circumferential direction. A plurality of positive electrode lead pieces 24H and negative electrode lead pieces 22H may be formed in a so-called comb shape.

(2)本発明による角形リチウム電池の外観形状や構成は実施例に限定されない。扁平形
状の捲回電極群を薄型の容器内に収納する形態のリチウム電池であれば、いかなる構成の
ものでも良い。
(2) The appearance and configuration of the prismatic lithium battery according to the present invention are not limited to the examples. As long as the lithium battery has a configuration in which the flat wound electrode group is housed in a thin container, it may have any configuration.

(3)本実施の形態では、バインダとしてPVDFを例示したが、ポリテトラフルオロエ
チレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニト
リルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセ
ルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ
化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などを使用するように
してもよい。
(3) In this embodiment, PVDF is exemplified as the binder, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose Various types of latex, polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.

(4)本実施の形態では、EC、DEC、DMCの混合溶液中にLiPF6を溶解した非
水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非
水電解液を用いるようにしてもよく、本発明は用いられるリチウム塩や有機溶媒には特に
制限されない。
例えば、電解質としては、LiClO4、LiAsF6、LiBF4、LiB(C6H
5)4、CH3SO3Li、CF3SO3Li等やこれらの混合物を用いることができる

また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−
ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等またはこれら2種類
以上の混合溶媒を用いるようにしてもよく、混合配合比についても限定されるものではな
い。
(4) In the present embodiment, a non-aqueous electrolyte solution in which LiPF6 is dissolved in a mixed solution of EC, DEC, and DMC is exemplified. However, a non-aqueous electrolyte in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent. An electrolytic solution may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used.
For example, as an electrolyte, LiClO4, LiAsF6, LiBF4, LiB (C6H
5) 4, CH3SO3Li, CF3SO3Li, etc., or a mixture thereof can be used.
Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-
Dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propiontonyl, etc. or two or more of these The mixed solvent may be used, and the mixing ratio is not limited.

本発明に係る角形リチウム二次電池は、安全性と生産性に優れておりハイブリッド自動
車、電気自動車以外、UPS、携帯電話などの携帯電子機器にも使用することができる。
The prismatic lithium secondary battery according to the present invention is excellent in safety and productivity, and can be used for portable electronic devices such as UPS and mobile phones in addition to hybrid vehicles and electric vehicles.

13 正極外部端子 14 負極外部端子
18 絶縁袋 19 電池缶
20 扁平形捲回電極群 21,23 セパレータ
22 負極 22a 銅箔
22b 負極合剤層 22c 負極リード
24 正極 24a アルミニウム箔
24b 正極合剤層 24c 正極リード
200 角形リチウム二次電池
DESCRIPTION OF SYMBOLS 13 Positive electrode external terminal 14 Negative electrode external terminal 18 Insulation bag 19 Battery can 20 Flat-shaped wound electrode group 21, 23 Separator 22 Negative electrode 22a Copper foil 22b Negative electrode mixture layer 22c Negative electrode lead 24 Positive electrode 24a Aluminum foil 24b Positive electrode mixture layer 24c Positive electrode Lead 200 prismatic lithium secondary battery

Claims (3)

シート状の正極とシート状の負極とをセパレータを介して扁平形状に捲回し、両端にコ
ーナー部を形成した扁平形状の捲回電極群と、
前記捲回電極群を収納する電池容器とを備え、
前記負極は、前記捲回電極群の中心側において前記正極よりも内周側に配置され、
前記負極の金属箔の両面に片側厚み50μm以下の負極活物質合剤層を形成し、
前記負極活物質合剤層と前記負極金属箔との密着強度を0.05N/mm以上とし、
前記コーナー部における前記負極の金属箔の内側表面を基準とした曲率半径を0.15
mm以上としたことを特徴とする角形リチウム二次電池。
A sheet-shaped positive electrode and a sheet-shaped negative electrode are wound into a flat shape via a separator, and a flat-shaped wound electrode group in which corner portions are formed at both ends,
A battery container that houses the wound electrode group;
The negative electrode is disposed on the inner peripheral side of the positive electrode on the center side of the wound electrode group,
A negative electrode active material mixture layer having a thickness of 50 μm or less on one side is formed on both surfaces of the metal foil of the negative electrode,
The adhesion strength between the negative electrode active material mixture layer and the negative electrode metal foil is 0.05 N / mm or more,
The radius of curvature based on the inner surface of the metal foil of the negative electrode at the corner is 0.15.
A prismatic lithium secondary battery characterized by having a thickness of at least mm.
請求項1記載の角形リチウム二次電池において、
前記コーナー部における前記負極金属箔の内側表面を基準とした曲率半径が0.5mm
以上であることを特徴とする角形リチウム二次電池。
The prismatic lithium secondary battery according to claim 1,
The radius of curvature based on the inner surface of the negative electrode metal foil at the corner is 0.5 mm.
A prismatic lithium secondary battery characterized by the above.
請求項1記載の角形リチウム二次電池において、
前記負極活物質合剤層の片側厚みは30μm以上であることを特徴とする角形リチウム
二次電池。
The prismatic lithium secondary battery according to claim 1,
One side thickness of the said negative electrode active material mixture layer is 30 micrometers or more, The square lithium secondary battery characterized by the above-mentioned.
JP2015133877A 2015-07-02 2015-07-02 Square lithium secondary battery Active JP6117285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133877A JP6117285B2 (en) 2015-07-02 2015-07-02 Square lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133877A JP6117285B2 (en) 2015-07-02 2015-07-02 Square lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014086096A Division JP5775195B2 (en) 2014-04-18 2014-04-18 Square lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2015167149A true JP2015167149A (en) 2015-09-24
JP6117285B2 JP6117285B2 (en) 2017-04-19

Family

ID=54257916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133877A Active JP6117285B2 (en) 2015-07-02 2015-07-02 Square lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6117285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249473A (en) * 2017-02-24 2019-09-17 三洋电机株式会社 Non-aqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273670A (en) * 1995-03-29 1996-10-18 Sumitomo Bakelite Co Ltd Nonqueous electrolyt secondary battery
JP2000021452A (en) * 1998-07-01 2000-01-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002093404A (en) * 2000-09-19 2002-03-29 Gs-Melcotec Co Ltd Flat battery
JP2006278182A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2008041581A (en) * 2006-08-10 2008-02-21 Hitachi Maxell Ltd Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP2010080427A (en) * 2008-05-22 2010-04-08 Panasonic Corp Electrode group for secondary battery and secondary battery using the same
JP2010186683A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Wound-around type electrode battery, its manufacturing method, apparatus, and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273670A (en) * 1995-03-29 1996-10-18 Sumitomo Bakelite Co Ltd Nonqueous electrolyt secondary battery
JP2000021452A (en) * 1998-07-01 2000-01-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002093404A (en) * 2000-09-19 2002-03-29 Gs-Melcotec Co Ltd Flat battery
JP2006278182A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2008041581A (en) * 2006-08-10 2008-02-21 Hitachi Maxell Ltd Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP2010080427A (en) * 2008-05-22 2010-04-08 Panasonic Corp Electrode group for secondary battery and secondary battery using the same
JP2010186683A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Wound-around type electrode battery, its manufacturing method, apparatus, and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249473A (en) * 2017-02-24 2019-09-17 三洋电机株式会社 Non-aqueous electrolyte secondary battery
CN110249473B (en) * 2017-02-24 2022-07-08 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6117285B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN107431178B (en) Cylindrical battery
CN107431179B (en) Cylindrical battery
US20160254569A1 (en) Assembled battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
JP5552398B2 (en) Lithium ion battery
JP2013016265A (en) Nonaqueous secondary battery
JP2004006264A (en) Lithium secondary battery
JP2011076785A (en) Rectangular lithium secondary battery
JP6606341B2 (en) Electrodes and batteries
JP5462304B2 (en) Battery pack using lithium-ion battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP6117285B2 (en) Square lithium secondary battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP5775195B2 (en) Square lithium secondary battery
JP2012146551A (en) Nonaqueous electrolyte battery module
JP2019114411A (en) Battery pack and battery assembly
JP2003243037A (en) Lithium ion battery
JP2011100591A (en) Square shape lithium secondary battery
WO2017138116A1 (en) Lithium ion battery and method for manufacturing same
JP2017027837A (en) Lithium ion secondary battery
JP5433484B2 (en) Lithium ion secondary battery
JP2004319308A (en) Lithium secondary battery
JP2002237283A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6117285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250