JP2015166546A - Underground water control method and system - Google Patents

Underground water control method and system Download PDF

Info

Publication number
JP2015166546A
JP2015166546A JP2014255958A JP2014255958A JP2015166546A JP 2015166546 A JP2015166546 A JP 2015166546A JP 2014255958 A JP2014255958 A JP 2014255958A JP 2014255958 A JP2014255958 A JP 2014255958A JP 2015166546 A JP2015166546 A JP 2015166546A
Authority
JP
Japan
Prior art keywords
water
pipe
groundwater
opening
aquifer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255958A
Other languages
Japanese (ja)
Other versions
JP6315700B2 (en
Inventor
笹倉 剛
Takeshi Sasakura
剛 笹倉
勝広 上本
Katsuhiro Uemoto
勝広 上本
潤 齋藤
Jun Saito
潤 齋藤
悠介 中島
Yusuke Nakajima
悠介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014255958A priority Critical patent/JP6315700B2/en
Publication of JP2015166546A publication Critical patent/JP2015166546A/en
Application granted granted Critical
Publication of JP6315700B2 publication Critical patent/JP6315700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and system capable of economically controlling underground water levels in the same aquifer.SOLUTION: There is provided an underground water control method for forming a water flow in underground aquifer 8 by: inserting a pipe 12 having a pair of water conduction holes 14, 16 that face in directions reverse to each other and are bored at aquifer depth parts into a pit 10 drilled from the ground E to the underground aquifer 8; installing, inside the pipe 12, a water barrier member 20 with an aperture 22 for partitioning the inside of the pipe 12 into a space 24 communicating with one water conduction hole 14 and a space 26 communicating with the other water conduction hole 16; and transmitting underground water W from one of the spaces 24, 26 to the other by using a water pump 30 fitted or inserted in a watertight manner into the aperture 22 of the water barrier member 20.

Description

本発明は地下水制御方法及びシステムに関し,とくに地下帯水層の地下水位を制御する方法及びシステムに関する。   The present invention relates to a groundwater control method and system, and more particularly to a method and system for controlling a groundwater level in an underground aquifer.

図7に示すように,地盤1を開削して地下構造物等を構築する工事では,山留め壁3で囲まれた開削域2の底面(掘削底面)の下方に存在する地下水Wの上向き圧力によって掘削底面にボイリングが生じるおそれ,又は掘削床面が持ち上げられるおそれがあることから,山留め壁3の内側に揚水井51を設け,掘削底面の下方の地下水Wを汲み上げて揚圧力を低減することがある(地下水位低下工法)。汲み上げた地下水Wは下水等に放流することもできるが,工事中の周辺の地下水位の変動(地盤沈下等)を避けるため,図7(A)に示すように山留め壁3,3の外側に復水井52(又は53)を設け,一旦汲み上げた地下水Wの一部又は全部を復水井52(又は53)経由で地中に戻すリチャージ工法(復水工法)が開発されている(特許文献1,2参照)。図示例の復水井52は,揚水井51により掘削底面の下方の帯水層(砂質土)8から汲み上げた地下水Wを同じ帯水層8へ戻す場合を示し,図示例の復水井53は,地下水Wを汲み上げた帯水層8と異なる帯水層6(不透水層7の上方の砂質土)へ戻す場合を示す。   As shown in FIG. 7, in the construction of excavating the ground 1 to construct an underground structure or the like, the upward pressure of the groundwater W existing below the bottom surface (excavation bottom surface) of the excavation area 2 surrounded by the retaining wall 3 Since there is a risk of boiling on the bottom of the excavation or the floor of the excavation may be lifted, a pumping well 51 can be provided inside the retaining wall 3 to pump the groundwater W below the bottom of the excavation and reduce the lifting pressure. Yes (groundwater level lowering method). The pumped-up groundwater W can be discharged into sewage, etc., but in order to avoid fluctuations in the groundwater level (ground subsidence, etc.) in the surroundings during construction, as shown in FIG. A recharge method (condensate method) has been developed in which a condensate well 52 (or 53) is provided and a part or all of the groundwater W once pumped is returned to the ground via the condensate well 52 (or 53) (Patent Document 1). , 2). The condensate well 52 in the illustrated example shows a case where the groundwater W pumped from the aquifer (sandy soil) 8 below the bottom of the excavation by the pumping well 51 is returned to the same aquifer 8, and the condensate well 53 in the illustrated example is The case where it returns to the aquifer 6 (sandy soil above the impermeable layer 7) different from the aquifer 8 which pumped up the groundwater W is shown.

また,図7(A)のように揚水井51及び復水井52(又は53)を用いるリチャージ工法に代えて,図7(B)のように地下水Wの揚水及び復水を単一の井戸(縦穴)55で行うリチャージ工法も開発されている(特許文献3〜5参照)。図7(B)のリチャージ工法は,不透水層7の上方の帯水層6に対応する深さ部位,及び下方の帯水層8に対応する深さ部位にそれぞれ通水孔が設けられたケーシングパイプを単一の井戸55内に挿入し,パイプ内の両通水孔の間の不透水層7に対応する深さ部位に仕切り部材(パッカー等)56を配置し,その仕切り部材56の上方(又は下方)にポンプ57を配置する。そして,仕切り部材56を上下に貫通する復水用配管58をポンプ57に接続し,下方の帯水層8から揚水した地下水Wを上方の帯水層6へ戻すことにより,掘削底面の地下水Wの揚圧力を低減すると共に周辺の地盤沈下等を防止する。図示例とは逆に,上方の帯水層6から揚水し,復水用配管58を介して下方の帯水層8へ地下水Wを戻す工法とする場合もある。なお,図示例のような地下水位低下工法は,開削工事だけでなく,例えば液状化対策として実施されることもある。   Moreover, instead of the recharge method using the pumping well 51 and the condensate well 52 (or 53) as shown in FIG. 7 (A), the pumping and condensing of the groundwater W can be carried out as a single well (see FIG. 7B). A recharge method using a vertical hole 55 has also been developed (see Patent Documents 3 to 5). In the recharge method shown in FIG. 7B, water holes are provided in the depth portion corresponding to the aquifer 6 above the impermeable layer 7 and the depth portion corresponding to the aquifer 8 below. The casing pipe is inserted into a single well 55, and a partition member (packer or the like) 56 is disposed at a depth corresponding to the impermeable layer 7 between the two water passage holes in the pipe. The pump 57 is disposed above (or below). Then, a condensate pipe 58 passing vertically through the partition member 56 is connected to the pump 57, and the groundwater W pumped from the lower aquifer 8 is returned to the upper aquifer 6. It reduces the lifting pressure and prevents ground subsidence. Contrary to the illustrated example, there may be a method of pumping water from the upper aquifer 6 and returning the groundwater W to the lower aquifer 8 via the condensate pipe 58. Note that the groundwater level lowering method as shown in the illustrated example is not limited to excavation work, but may be implemented, for example, as a countermeasure against liquefaction.

特開2006−077567号公報JP 2006-077567 A 特開2012−092514号公報JP2012-092514A 特公平4−000128号公報Japanese Patent Publication No. 4-000128 特開平6−088327号公報JP-A-6-088327 特開平10−259798号公報Japanese Patent Laid-Open No. 10-259798

図7のリチャージ工法によれば,地下水位低下工法における下水等への放流量を小さく抑えつつ周辺の地盤沈下等を防止することができる。ただし,揚水井51及び復水井52(53)を用いる図7(A)のリチャージ工法は,2本以上の井戸を設置するために広い敷地面積及び大きな設置コストが必要となり,工期も長くなる等の問題点がある。これに対し,単一の井戸55で揚水及び復水を行う図7(B)のリチャージ工法によれば,設置費用の低減を図ると共に,工期の短縮を図ることができる。   According to the recharge method shown in FIG. 7, it is possible to prevent ground subsidence and the like while suppressing the discharge amount to the sewage and the like in the groundwater level lowering method. However, the recharge method shown in FIG. 7 (A) using the pumping well 51 and the condensate well 52 (53) requires a large site area and a large installation cost to install two or more wells, and the construction period becomes longer. There are problems. On the other hand, according to the recharge method of FIG. 7 (B) in which pumping and condensing water are performed in a single well 55, the installation cost can be reduced and the construction period can be shortened.

しかし,図7(B)のリチャージ工法においても,地中の複数の帯水層6,8の間で地下水Wを揚水して移送するためのエネルギー(ポンプの動力等)が必要であり,井戸設置の初期費用は低く抑えられるものの,比較的大きなランニングコストを必要とする問題点がある。また,帯水層6,8の一方から揚水した地下水Wの全てを他方へ戻すことができない場合があり,過剰な地下水Wは地上に汲み上げて下水等へ放流しなければならない不経済を生じる場合もある。更に,そもそも複数の帯水層6,8の存在を前提とした工法であり,開削工事又は液状化対策の現場に単一の帯水層しか存在しない場合は,図7(A)のように揚水井51及び復水井52を用いるリチャージ工法とせざるを得ない問題点もある。単一の帯水層しか存在しないような開削工事又は液状化対策の現場においても経済的に地下水位を制御できる技術の開発が望まれている。   However, the recharge method shown in FIG. 7 (B) also requires energy (pump power, etc.) for pumping and transferring groundwater W between the aquifers 6 and 8 in the ground. Although the initial cost of installation can be kept low, there is a problem that requires a relatively large running cost. In addition, it may not be possible to return all of the groundwater W pumped from one of the aquifers 6 and 8 to the other, and the excess groundwater W will be uneconomical that must be pumped to the ground and discharged into sewage. There is also. Furthermore, the construction method is based on the premise that there are a plurality of aquifers 6 and 8, and when there is only a single aquifer at the site of excavation work or liquefaction countermeasures, as shown in Fig. 7 (A) There is also a problem that the recharge method using the pumping well 51 and the condensate well 52 is unavoidable. There is a demand for the development of a technology that can economically control the groundwater level even in the site of excavation work or liquefaction countermeasures where only a single aquifer exists.

そこで本発明の目的は,同一の帯水層内で地下水位を経済的に制御することができる方法及びシステムを提供することにある。   Accordingly, an object of the present invention is to provide a method and system that can economically control the groundwater level within the same aquifer.

図1の実施例を参照するに,本発明による地下水制御方法は,地上Eから地下帯水層8(又は帯水層6)に掘削した縦穴10内に一対の反対向きの通水孔14,16が帯水層深さ部位に穿たれたパイプ12を挿入し,パイプ12内にそのパイプ12内を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切る開口22付き遮水部材20を設置し,遮水部材20の開口22に水密に嵌め込み又は差し込んだ送水ポンプ30で両空間24,26の一方から他方へ地下水Wを送ることにより帯水層8に水流を形成してなるものである。   Referring to the embodiment of FIG. 1, the groundwater control method according to the present invention includes a pair of oppositely facing water holes 14 in a vertical hole 10 excavated from the ground E to the underground aquifer 8 (or aquifer 6). 16 is inserted into a depth of the aquifer, and a pipe 24 is inserted into a space 24 that leads to one water passage hole 14 and a space 26 that leads to the other water hole 16. An aquifer 8 is formed by installing a water shielding member 20 with an opening 22 for partitioning and sending groundwater W from one of the spaces 24 and 26 to the other with a water pump 30 fitted or inserted into the opening 22 of the water shielding member 20 in a watertight manner. It is formed by forming a water flow.

また図1のブロック図を参照するに,本発明による地下水制御システムは,地上Eから地下帯水層8(又は帯水層6)に掘削した縦穴10内に挿入され且つ一対の反対向きの通水孔14,16が帯水層深さ部位に穿たれたパイプ12,パイプ12内に設置され且つパイプ12内を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切る開口22付き遮水部材20,及び遮水部材20の開口22に水密に嵌め込み又は差し込んで両空間24,26の一方から他方へ地下水Wを送る送水ポンプ30を備え,送水ポンプ30の送水により帯水層8に水流を形成してなるものである。   Referring also to the block diagram of FIG. 1, the groundwater control system according to the present invention is inserted into a vertical hole 10 excavated from the ground E into the underground aquifer 8 (or the aquifer 6) and has a pair of oppositely facing passages. A space in which the water holes 14, 16 are installed in the pipe 12, which is drilled in the deep part of the aquifer, and the space 12 communicates with the one water hole 14 and the other water hole 16 through the pipe 12. A water-impervious member 20 having an opening 22 that is divided into 26 and a water-feed pump 30 that is fitted or inserted into the opening 22 of the water-impervious member 20 in a water-tight manner and sends ground water W from one of the spaces 24 and 26 to the other. The water flow is formed in the aquifer 8 by water supply.

好ましくは,図1(C)に示すように,一対の通水孔14,16をパイプ12の異なる深さに設け,開口22付き遮水部材20を両通水孔14,16の間の深さにパイプ中心軸と交差する向きに設置し,遮水部材20の開口22の送水ポンプ30によりパイプ中心軸と平行に地下水を送る。或いは,図2(B)に示すように,開口22付き遮水部材20をパイプ12の内側から一方の通水孔16(又は14)を覆うように設置し,遮水部材20の開口22の送水ポンプ30によりパイプ中心軸と交差する向きに地下水を送ることも可能である。図8に示すように,開口3付き遮水部材20にパイプ中心軸と心合わせしてパイプ12内に設置する筒状部材20eを含め,その筒状部材20eの周壁上に一対の通水孔14,16と対向する一対の開口22,29を設けると共にパイプ12内の周壁外側空間を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切る遮水突起20fを設け,筒状部材20eの中空部に配置した送水ポンプ30の取水口及び吐出口を開口の一方22及び他方29に差し込んでもよい。   Preferably, as shown in FIG. 1C, a pair of water passage holes 14 and 16 are provided at different depths of the pipe 12, and the water shielding member 20 with an opening 22 is formed between the water passage holes 14 and 16. In addition, it is installed in a direction crossing the pipe central axis, and groundwater is sent in parallel to the pipe central axis by the water pump 30 in the opening 22 of the water shielding member 20. Alternatively, as shown in FIG. 2 (B), the water-impervious member 20 with the opening 22 is installed from the inside of the pipe 12 so as to cover one water passage hole 16 (or 14). It is also possible to send groundwater in a direction intersecting the pipe central axis by the water supply pump 30. As shown in FIG. 8, the water-impervious member 20 with the opening 3 includes a cylindrical member 20e installed in the pipe 12 so as to be aligned with the center axis of the pipe, and a pair of water passage holes on the peripheral wall of the cylindrical member 20e. 14 and 16 is provided with a pair of openings 22 and 29 and partitions the outer wall outer space in the pipe 12 into a space 24 that communicates with one water passage hole 14 and a space 26 that communicates with the other water passage hole 16. 20 f may be provided, and the intake port and discharge port of the water supply pump 30 disposed in the hollow portion of the cylindrical member 20 e may be inserted into the one 22 and the other 29 of the opening.

更に好ましくは,図1(B)に示すように,地上Eの所定域の周縁に沿って掘削した複数の縦穴10A〜10L内にそれぞれその所定域の内側向き及び外側向きの一対の通水孔14,16が帯水層深さ部位に穿たれたパイプ12を挿入し,各パイプ12内にそれぞれ開口22付き遮水部材20を設置し,各遮水部材20の開口22の送水ポンプ30によりそれぞれ所定域の内側から外側へ地下水を送ることにより所定域内側の帯水層の地下水位を外側よりも低下させる。   More preferably, as shown in FIG. 1 (B), a plurality of vertical holes 10A to 10L excavated along the periphery of the predetermined area on the ground E, respectively, a pair of water passage holes facing inward and outward of the predetermined area, respectively. 14 and 16 are inserted into pipes 12 drilled at the depth of the aquifer, and a water shielding member 20 with an opening 22 is installed in each pipe 12, and a water feed pump 30 at the opening 22 of each water shielding member 20 is used. The groundwater level of the aquifer inside the predetermined area is lowered from the outside by sending groundwater from the inside to the outside of the predetermined area.

本発明の地下水制御方法及びシステムは,同一の帯水層内で地下水位を経済的に制御することができる。   The groundwater control method and system of the present invention can economically control the groundwater level within the same aquifer.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明の地下水制御システムの一実施例のブロック図である。 本発明の地下水制御システムの他の実施例の説明図である。 本発明において縦穴の内周面とケーシングパイプの外面との間に充填するフィルター材の説明図である。 本発明の制御方法により帯水層内に形成される地下水の流れの説明図である。 本発明においてケーシングパイプの一対の通水孔の間に地下水の局所的な循環を防止する止水壁を設けた一実施例の説明図である。 本発明においてケーシングパイプの一対の通水孔の間に地下水の局所的な循環を防止する止水壁を設けた他の実施例の説明図である。 従来の地下水位低下工法の説明図である。 本発明の地下水制御システムの更に他の実施例の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is a block diagram of one Example of the groundwater control system of this invention. It is explanatory drawing of the other Example of the groundwater control system of this invention. It is explanatory drawing of the filter material with which it fills between the internal peripheral surface of a vertical hole, and the outer surface of a casing pipe in this invention. It is explanatory drawing of the flow of groundwater formed in an aquifer by the control method of this invention. It is explanatory drawing of one Example which provided the water stop wall which prevents local circulation of groundwater between a pair of water flow holes of a casing pipe in this invention. It is explanatory drawing of the other Example which provided the water stop wall which prevents local circulation of groundwater between a pair of water flow holes of a casing pipe in this invention. It is explanatory drawing of the conventional groundwater level fall construction method. It is explanatory drawing of the further another Example of the groundwater control system of this invention.

図1は,図7と同様の地盤1の開削工事に本発明の地下水制御システムを適用した実施例を示す。図1(B)に示すように,地上Eの所定開削域2の周縁に沿って土留め壁3を造成し,山留め壁3の外側に沿って環状に並ぶ複数の縦穴10A〜10Lを地上Eから地下帯水層8の下方まで掘削し,各縦穴10A〜10Lの内部にそれぞれ本発明の地下水制御システムを設置して開削域2の下方の地下水位を低下させながら開削域2を掘削する。図1(A)は,図1(B)の開削域2の縦穴10A及び10Gを含む地表面と垂直な縦断面図を表す。   FIG. 1 shows an embodiment in which the groundwater control system of the present invention is applied to excavation work on the ground 1 similar to FIG. As shown in FIG. 1 (B), the earth retaining wall 3 is formed along the periphery of the predetermined excavation area 2 on the ground E, and a plurality of vertical holes 10A to 10L arranged in a ring shape along the outer side of the mountain retaining wall 3 are formed on the ground E. The excavation area 2 is excavated while lowering the groundwater level below the excavation area 2 by installing the groundwater control system of the present invention inside each of the vertical holes 10A to 10L. FIG. 1 (A) shows a vertical cross-sectional view perpendicular to the ground surface including the vertical holes 10A and 10G in the excavation area 2 of FIG. 1 (B).

図1(C)に示すように,本発明の地下水制御システムは,各縦穴10内に挿入するケーシングパイプ12と,そのパイプ12内に設置する開口22付き遮水部材20と,その遮水部材20の開口22に水密に嵌め込み又は差し込んだ送水ポンプ30とを有する。本発明の地下水制御システムは,図7のように帯水層8の地下水Wを揚水し又は移送するのではなく,帯水層8の内部に所望向き(図示例では開削域2の内側から外側向き)の地下水Wの流れを作り出すことにより,その水流の下流域に対して上流域の水位(開削域2の外側の水位P2に対する内側の水位P1)を低下させる。山留め壁3は,その外側から内側の地下水位を制御できるように,底部を介して帯水層8の地下水Wが流動できるように造成する。   As shown in FIG. 1 (C), the groundwater control system of the present invention includes a casing pipe 12 inserted into each vertical hole 10, a water shielding member 20 with an opening 22 installed in the pipe 12, and the water shielding member. The water supply pump 30 is fitted or inserted into the 20 openings 22 in a watertight manner. The groundwater control system according to the present invention does not pump or transfer the groundwater W of the aquifer 8 as shown in FIG. 7, but in a desired direction (in the illustrated example, from the inside to the outside of the excavation zone 2). By creating a flow of groundwater W (in the direction), the water level in the upstream area (the water level P1 inside the water level P2 outside the cut area 2) is lowered relative to the downstream area of the water flow. The retaining wall 3 is constructed so that the groundwater W of the aquifer 8 can flow through the bottom so that the inner groundwater level can be controlled from the outside.

図示例のケーシングパイプ12は,地下帯水層8に対応する深さ部位に一対の通水孔14,16を形成したものである。通水孔14,16は,パイプ中心軸から見て互いに反対向きに形成されており,図示例では一方の通水孔14を山留め壁3の内側へ向け,他方の通水孔16を山留め壁3の外側へ向けて挿入している。例えば鉄管製,ステンレス鋼管製,又は合成樹脂製の所定長さの中空パイプを中心軸方向に接続しながら縦穴10に挿入してケーシングパイプ12を形成するが,帯水層8に対応する深さ部分には中心軸を挟んで対向する一対のストレーナが反対向きに形成された中空パイプを接続し,他の部分及び底部分には通水孔のない中空パイプを接続する。通水孔14,16の断面形状は,円状、スリット状、その他の形状を任意に選択可能である。   The casing pipe 12 in the illustrated example has a pair of water holes 14 and 16 formed at a depth corresponding to the underground aquifer 8. The water passage holes 14 and 16 are formed in opposite directions as viewed from the center axis of the pipe. In the illustrated example, one water passage hole 14 faces the inside of the retaining wall 3 and the other water passage hole 16 faces the retaining wall. 3 is inserted toward the outside. For example, a casing pipe 12 is formed by inserting a hollow pipe of a predetermined length made of iron pipe, stainless steel pipe or synthetic resin into the vertical hole 10 while being connected in the direction of the central axis, and has a depth corresponding to the aquifer 8. A hollow pipe in which a pair of strainers facing each other across the central axis is connected to the part is connected in the opposite direction, and a hollow pipe without a water passage hole is connected to the other part and the bottom part. The cross-sectional shape of the water flow holes 14 and 16 can be arbitrarily selected from a circular shape, a slit shape, and other shapes.

ケーシングパイプ12の一対の通水孔14,16は,何れも同じ地下帯水層8に臨ませるものであり,例えば図2(B)及び図4(C)のようにパイプ12内の同一の深さ部位に設けることができる。ただし,帯水層8に臨む範囲内にあれば必ずしも同一の深さである必要はなく,例えば図1(C)及び図4(A),(B)のように通水孔14,16の深さを多少相違させることも可能である。また,通水孔14,16はそれぞれ1つあれば足りるが,図4(D)に示すように,必要に応じて通水孔14,16の何れか又は両者を複数設けることも可能である。   The pair of water passage holes 14 and 16 of the casing pipe 12 both face the same underground aquifer 8, for example, as shown in FIGS. 2 (B) and 4 (C). It can be provided at a depth site. However, it is not always necessary to have the same depth as long as it is within the range facing the aquifer 8. For example, as shown in FIG. 1 (C) and FIGS. 4 (A) and 4 (B), It is also possible to make the depth slightly different. Further, one water passage hole 14 and 16 is sufficient, but as shown in FIG. 4 (D), any one or both of the water passage holes 14 and 16 can be provided as necessary. .

望ましくは,図5に示すように,ケーシングパイプ12の通水孔14,16の間に,両通水孔14,16の間の地下水Wの局所的な循環を防止する止水壁11を設ける。例えば,図5(A)に示すように地上Eから地下帯水層8まで掘削した縦穴10の中心軸に沿って高圧噴射装置(図示せず)を挿入し,同図(B)のように縦穴10の中心軸から所定垂直方向(半径方向)の両側に向けてセメント系の地盤改良材を高圧で噴射して地盤を切削しながら混合・撹拌する工法(高圧噴射撹拌工法)により,同図(C)のように縦穴10の両側へ所望向き(図示例では土留め壁3と平行な向き)に延びる止水壁11を形成することができる。必要に応じて,高圧噴射ノズルを所望角度θだけ回転させながら改良材を高圧噴射することにより,止水壁11の厚さを適当に調節することができる。縦穴10の帯水層8に臨む深度に所望向きの止水壁11を形成したのち,同図(C)に示すように,その縦穴10の内側にケーシングパイプ12を挿入し,ケーシングパイプ12の通水孔14,16が止水壁11を挟んで反対側に位置付けられるように設置する。   Desirably, as shown in FIG. 5, a water blocking wall 11 is provided between the water flow holes 14, 16 of the casing pipe 12 to prevent local circulation of the ground water W between the water flow holes 14, 16. . For example, as shown in FIG. 5A, a high-pressure injection device (not shown) is inserted along the central axis of the vertical hole 10 excavated from the ground E to the underground aquifer 8, as shown in FIG. By using a method (high pressure jet agitation method) that mixes and agitates while cutting the ground by injecting cement-based ground improvement material at high pressure from the central axis of the vertical hole 10 toward both sides in the predetermined vertical direction (radial direction). As shown in (C), the water blocking walls 11 extending in a desired direction (direction parallel to the earth retaining wall 3 in the illustrated example) can be formed on both sides of the vertical hole 10. If necessary, the thickness of the water blocking wall 11 can be adjusted appropriately by high-pressure injection of the improved material while rotating the high-pressure injection nozzle by a desired angle θ. After forming a water blocking wall 11 in a desired direction at a depth facing the aquifer 8 in the vertical hole 10, a casing pipe 12 is inserted inside the vertical hole 10, as shown in FIG. It installs so that the water flow holes 14 and 16 may be located on the opposite side across the water blocking wall 11.

本発明の地下水制御システムは,後述するようにケーシングパイプ12の内側を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切り,パイプ12の内側の一方の空間24から他方の空間26へ向かう地下水Wの流れを作り出すものであるが,パイプ12の外側において地下水Wの局所的な循環,例えば通水孔16から通水孔14へ向かう不所望な循環流が発生すると,地下水Wの流れを効率的に作り出すことができなくなる。図5のように,ケーシングパイプ12の外側に通水孔14,16の間の局所的な循環を防止する止水壁11を設けることにより,所望向きの地下水Wの流れを小さなエネルギーで効率的に作り出すことが期待できる。なお,図5(C)はケーシングパイプ12の通水孔14側から見た縦穴10の縦断面図を表しており,地下水Wの流れは図面の表側から裏側へ向かうように作り出される。   As will be described later, the groundwater control system of the present invention partitions the inside of the casing pipe 12 into a space 24 that communicates with one water passage hole 14 and a space 26 that communicates with the other water passage hole 16. The flow of the groundwater W from the space 24 toward the other space 26 is created, but the local circulation of the groundwater W outside the pipe 12, for example, an undesired circulation flow from the water passage 16 to the water passage 14. If this occurs, the flow of groundwater W cannot be created efficiently. As shown in FIG. 5, by providing a water blocking wall 11 that prevents local circulation between the water flow holes 14 and 16 on the outside of the casing pipe 12, the flow of the groundwater W in a desired direction can be efficiently performed with small energy. Can be expected to produce. FIG. 5C shows a longitudinal sectional view of the vertical hole 10 as viewed from the water passage hole 14 side of the casing pipe 12, and the flow of the groundwater W is created so as to go from the front side to the back side of the drawing.

図1及び図3に示すように,少なくともケーシングパイプ12の通水孔14,16の外面と縦穴10の内周面との間には砂利等のフィルター材32を充填し,透水性を確保しながら土砂による閉塞及びパイプ12内への土砂の流入を防止することが望ましい。図3(A)〜(C)は,通水孔14,16を異なる深さに設けた場合のフィルター材32の配置を示し,通水孔のないパイプ12の外面と縦穴10の内周面との間にはセメントベントナイトその他の遮水材34を充填することを示す。図3(D)〜(F)は,通水孔14,16を同一の深さに設けた場合のフィルター材32の配置を示し,パイプ12の地下帯水層8に臨む外周面全体にフィルター材32を充填することを示す。ただし,施工の容易性の観点からは,通水孔14,16の深さの相違に拘わらず,常に図3(D)〜(F)のように帯水層8に臨む外周面全体にフィルター材32を配置することが有利である。   As shown in FIGS. 1 and 3, at least the outer surface of the water flow holes 14 and 16 of the casing pipe 12 and the inner peripheral surface of the vertical hole 10 are filled with a filter material 32 such as gravel to ensure water permeability. However, it is desirable to prevent clogging with sediment and inflow of sediment into the pipe 12. FIGS. 3A to 3C show the arrangement of the filter material 32 when the water holes 14 and 16 are provided at different depths, and the outer surface of the pipe 12 without the water holes and the inner peripheral surface of the vertical hole 10. It indicates that cement bentonite or other water shielding material 34 is filled in between. 3 (D) to 3 (F) show the arrangement of the filter material 32 when the water holes 14 and 16 are provided at the same depth, and the entire outer peripheral surface of the pipe 12 facing the underground aquifer 8 is filtered. The filling of the material 32 is shown. However, from the viewpoint of ease of construction, the filter is always applied to the entire outer peripheral surface facing the aquifer 8 as shown in FIGS. 3D to 3F regardless of the depth of the water holes 14 and 16. It is advantageous to arrange the material 32.

なお,図5のような止水壁11は,高圧噴射撹拌工法に代えて,水ガラス系や懸濁系などの改良材を注入する工法(注入工法)によって形成することもできる。所望向きの止水壁11を形成するため,指向性をもたせて改良材を注入できる工法を用いることが望ましい。また,図6に示すように,ケーシングパイプ12の通水孔14,16の間の外面に放射状(半径方向)に突出する突出羽根18を設け,その突出羽根18を通水孔14,16の間の地下水Wの局所的な循環を防止する止水壁11とすることも可能である。図6のような突出羽根18付きケーシングパイプ12を用いた場合は,高圧噴射撹拌工法等によって止水壁11を形成する必要はなく,縦穴10の内側に突出羽根18が所望向き(図示例では土留め壁3と平行な向き)となるようにケーシングパイプ12を挿入するだけで図5のような止水壁11を形成することができ,施工の簡単化・工期の短縮化を図ることができる。図6(A)〜(F)はそれぞれ図3(A)〜(F)と対応しており,図6(A)〜(C)は通水孔14,16を異なる深さに設けた場合,図6(D)〜(F)は通水孔14,16を同一の深さに設けた場合を示している。   The water blocking wall 11 as shown in FIG. 5 can be formed by a method (injection method) for injecting an improved material such as a water glass system or a suspension system instead of the high-pressure jet agitation method. In order to form the water blocking wall 11 in a desired direction, it is desirable to use a construction method that can inject improvement material with directivity. Further, as shown in FIG. 6, projecting blades 18 projecting radially (in the radial direction) are provided on the outer surface between the water passage holes 14, 16 of the casing pipe 12, and the projecting blade 18 passes through the water holes 14, 16. It is also possible to use the water blocking wall 11 that prevents local circulation of the groundwater W between them. When the casing pipe 12 with protruding blades 18 as shown in FIG. 6 is used, it is not necessary to form the water blocking wall 11 by a high-pressure jet stirring method or the like, and the protruding blades 18 are in the desired direction (in the example shown in the figure). The water stop wall 11 as shown in FIG. 5 can be formed simply by inserting the casing pipe 12 so as to be in a direction parallel to the earth retaining wall 3, thereby simplifying the construction and shortening the construction period. it can. FIGS. 6A to 6F correspond to FIGS. 3A to 3F, respectively, and FIGS. 6A to 6C show the case where the water holes 14 and 16 are provided at different depths. 6 (D) to 6 (F) show a case where the water holes 14 and 16 are provided at the same depth.

図示例のケーシングパイプ12の内側には,図1(C)に示すように,パイプ12内を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切る開口22付き遮水部材20を配置し,その遮水部材20の開口22に送水ポンプ30を水密に嵌め込み又は差し込み,送水ポンプ30の取水口を一方の空間24に臨ませると共に,送水ポンプ30の吐出口を他方の空間26に臨ませる。望ましくは,遮水部材20を着脱自在なものとし,縦穴10にパイプ12を挿入したのち,ワイヤ(図示せず)等で遮水部材20を吊り下げてパイプ12の内周面の所定位置に密着させて設置する。ただし,必要に応じて,縦穴10に挿入する前に予め遮水部材20をケーシングパイプ12の内部に固定しておくことも可能である。遮水部材20の開口22の断面形状は,円状、スリット状、その他の形状を任意に選択可能である。   As shown in FIG. 1C, an opening that partitions the inside of the pipe 12 into a space 24 that communicates with one water passage hole 14 and a space 26 that communicates with the other water passage hole 16 is formed inside the casing pipe 12 of the illustrated example. The water impervious member 20 with 22 is disposed, and the water pump 30 is fitted or inserted into the opening 22 of the water impervious member 20 in a watertight manner so that the water intake port of the water pump 30 faces the one space 24 and the water pump 30 discharges. The exit faces the other space 26. Desirably, the water-impervious member 20 is detachable, and after inserting the pipe 12 into the vertical hole 10, the water-impervious member 20 is suspended by a wire (not shown) or the like to a predetermined position on the inner peripheral surface of the pipe 12. Install in close contact. However, if necessary, the water shielding member 20 can be fixed inside the casing pipe 12 in advance before being inserted into the vertical hole 10. The cross-sectional shape of the opening 22 of the water shielding member 20 can be arbitrarily selected from a circular shape, a slit shape, and other shapes.

図1(C)及び(D)は,開口22付き遮水部材20として,膨張・収縮が可能な環状パッカー部材20aを用いた実施例を示す。図示例の環状パッカー部材20aは,環状のゴム製中空リングを有し,その中央開口22に円筒形の送水ポンプ30の周囲側面を水密に嵌め込んだものである。先ず,送水ポンプ30を開口22に嵌め込んだ環状パッカー部材20aのゴム製リングを収縮させ,その収縮させた状態で地上からパイプ12内の両通水孔14,16の間の深さにパイプ中心軸と交差する向きに水平に吊り下げる。そののち,図1(C)及び(D)に示すように,地上から適当な加圧流体を供給してゴム製リングを膨張させることにより環状パッカー部材20aをパイプ12の内周面に密着させ,パイプ12内の一方の空間24と他方の空間26とを遮断する状態とする。この状態で,開口22に水平に嵌め込んだ送水ポンプ30を駆動させ,ポンプ30の取水口から一方の空間24の地下水Wを取り入れて吐出口から他方の空間26へパイプ中心軸と平行に所定水圧で送り出すことにより,地下帯水層8の内部に開削域2の内側から外側向きの地下水Wの流れを作り出す(図4(A)の地下水Wの流れを参照)。   1C and 1D show an embodiment in which an annular packer member 20a that can be expanded and contracted is used as the water-impervious member 20 with the opening 22. FIG. The annular packer member 20a in the illustrated example has an annular rubber hollow ring, and the peripheral side surface of the cylindrical water pump 30 is fitted into the central opening 22 in a watertight manner. First, the rubber ring of the annular packer member 20a in which the water pump 30 is fitted into the opening 22 is contracted, and in the contracted state, the pipe is brought from the ground to a depth between the water flow holes 14 and 16 in the pipe 12. Suspend horizontally in a direction that intersects the central axis. Thereafter, as shown in FIGS. 1 (C) and 1 (D), an appropriate pressurized fluid is supplied from the ground to expand the rubber ring, thereby bringing the annular packer member 20a into close contact with the inner peripheral surface of the pipe 12. The one space 24 and the other space 26 in the pipe 12 are cut off. In this state, the water pump 30 fitted horizontally in the opening 22 is driven, the groundwater W in one space 24 is taken in from the intake port of the pump 30, and the predetermined distance in parallel to the central axis of the pipe is passed from the discharge port to the other space 26. By sending it out with water pressure, a flow of groundwater W directed from the inside to the outside of the excavation zone 2 is created inside the aquifer 8 (see the flow of groundwater W in FIG. 4A).

図1において,地下帯水層8の地下水Wが流動している場合でも,送水ポンプ30の送水圧を適当に調節してケーシングパイプ12内の通水孔16に通じる空間26の水圧を流動圧より高くすることにより,帯水層8に流動方向と逆向きの地下水Wの流れを作り出し,図1(B)において開削域2の内側の地下水位を外側よりも低下させることができる。ただし,図1(C)に示すように,パイプ12内の空間26の水圧を高くすると水面位も上昇してしまう。図2(A)は,遮水部材20の上方の空間26に水面位制御用パッカー28を配置し,パイプ12内の水面位の上昇を抑えつつ空間26の水圧上昇を可能とした実施例を示す。このように水面位の上昇を抑えることにより,所望向きの地下水Wの流れを作り出すために必要なエネルギー(ポンプの動力等)を小さく抑えることができる。図2(A)の遮水部材20a及び送水ポンプ30も,ケーシングパイプ12の内側にワイヤ等で吊り下げて設置できるが,予めケーシングパイプ12の内部に固定したうえで縦穴10に挿入することも可能である。   In FIG. 1, even when the groundwater W in the underground aquifer 8 is flowing, the water pressure of the water pump 30 is appropriately adjusted to adjust the water pressure in the space 26 leading to the water passage hole 16 in the casing pipe 12 to the fluid pressure. By making it higher, the flow of groundwater W in the direction opposite to the flow direction can be created in the aquifer 8, and the groundwater level inside the excavation zone 2 can be lowered from the outside in FIG. However, as shown in FIG. 1C, when the water pressure in the space 26 in the pipe 12 is increased, the water surface level also increases. FIG. 2A shows an embodiment in which a water level control packer 28 is disposed in the space 26 above the water-impervious member 20, and the water pressure in the space 26 can be increased while suppressing an increase in the water level in the pipe 12. Show. By suppressing the rise in the water level in this way, the energy (pump power, etc.) necessary to create the desired flow of groundwater W can be reduced. The water shielding member 20a and the water pump 30 in FIG. 2A can also be installed by being hung inside the casing pipe 12 with a wire or the like, but may be inserted into the vertical hole 10 after being fixed inside the casing pipe 12 in advance. Is possible.

図2(C)は,環状パッカー部材20aに代えて,開口22付き環状シール部材20bを用いた実施例を示す。図示例の環状シール部材20bは,パイプ12の内周面に密着して摺動するシールドパッキングを外周縁に取り付けた環状の遮水部材であり,その中央開口22に円筒形の送水ポンプ30の周囲側面を水密に嵌め込んだものである。地上からパイプ12の内周面にシールドパッキングを摺動させながら環状シール部材20bを下降させ,両通水孔14,16の間の深さまで下降させてパイプ中心軸と交差する向きに密着させることにより,パイプ12内の一方の空間24と他方の空間26とを遮断する状態とする。この状態で,開口22に水平に嵌め込んだ送水ポンプ30を駆動させ,一方の空間24の地下水Wを所定水圧で他方の空間26へパイプ中心軸と平行に送り出すことにより,地下帯水層8の内部に地下水Wの流れを作り出す(図4(A)の地下水Wの流れを参照)。この場合も,図2(D)に示すように,遮水部材20の上方の空間26に水面位制御用パッカー28を配置することが望ましい。また,図2(C)及び(D)の遮水部材20b及び送水ポンプ30を,予めケーシングパイプ12の内部に固定したうえで縦穴10に挿入することも可能である。   FIG. 2C shows an embodiment in which an annular seal member 20b with an opening 22 is used instead of the annular packer member 20a. The annular seal member 20b in the illustrated example is an annular water shielding member in which a shield packing that slides in close contact with the inner peripheral surface of the pipe 12 is attached to the outer peripheral edge. The surrounding side is fitted in a watertight manner. The annular seal member 20b is lowered while sliding the shield packing on the inner peripheral surface of the pipe 12 from the ground, and is lowered to the depth between the two water flow holes 14 and 16, and is brought into close contact with the pipe central axis. As a result, the one space 24 and the other space 26 in the pipe 12 are blocked. In this state, the water pump 30 fitted horizontally in the opening 22 is driven, and the groundwater W in one space 24 is sent to the other space 26 at a predetermined water pressure in parallel with the central axis of the pipe. A flow of groundwater W is created inside (see the flow of groundwater W in FIG. 4A). Also in this case, as shown in FIG. 2D, it is desirable to arrange a water surface level control packer 28 in the space 26 above the water shielding member 20. 2C and 2D can be inserted into the vertical hole 10 after being fixed inside the casing pipe 12 in advance.

図2(E)は,予めケーシングパイプ12の両通水孔14,16の間の深さのパイプ断面にパイプ中心軸と交差する向きに固定した開口22付き遮水板20cを遮水部材20とした実施例を示す。この場合は,縦穴10内にパイプ12を挿入したのち,送水ポンプ30を地上からワイヤ等で吊り下げてパイプ12内に固定された遮水板20cに着座させ,ポンプ30の吐出口(又は取水口)を遮水板20cの開口22に差し込む。ポンプ30を差し込む遮水板20cの開口22には,水密性を確保するための逆止弁23を設けることが望ましい。この状態で送水ポンプ30を駆動させ,一方の空間24の地下水Wを所定水圧で他方の空間26へパイプ中心軸と平行に送り出すことにより,地下帯水層8の内部に地下水Wの流れを作り出す(図4(B)の地下水Wの流れを参照)。この場合も,図2(F)に示すように,遮水部材20の上方の空間26に水面位制御用パッカー28を配置することが望ましい。また,図2(E)及び(F)において,送水ポンプ30を予めケーシングパイプ12の内部に固定したうえで縦穴10に挿入することも可能である。   FIG. 2E shows a water shielding member 20 having a water shielding plate 20c with an opening 22 that is fixed in advance to the pipe cross section at a depth between the two water flow holes 14 and 16 of the casing pipe 12 in a direction crossing the pipe central axis. Examples are shown. In this case, after inserting the pipe 12 into the vertical hole 10, the water pump 30 is suspended from the ground by a wire or the like and is seated on the water shielding plate 20 c fixed in the pipe 12, and the discharge port (or water intake) of the pump 30 is placed. Mouth) is inserted into the opening 22 of the water shielding plate 20c. It is desirable to provide a check valve 23 for ensuring water tightness in the opening 22 of the water shielding plate 20c into which the pump 30 is inserted. In this state, the water pump 30 is driven, and the groundwater W in one space 24 is sent to the other space 26 at a predetermined water pressure in parallel with the central axis of the pipe, thereby creating a flow of the groundwater W in the underground aquifer 8. (See the flow of groundwater W in FIG. 4B). Also in this case, as shown in FIG. 2 (F), it is desirable to dispose a water surface level control packer 28 in the space 26 above the water shielding member 20. 2 (E) and 2 (F), the water pump 30 can be inserted into the vertical hole 10 after being fixed inside the casing pipe 12 in advance.

図2(E)の実施例では,開口22付き遮水板20cをパイプ中心軸と交差する向きに固定しているが,図2(B)に示すように,予めケーシングパイプ12の内側から一方の通水孔16(又は通水孔14)を覆うように開口22付き遮水板20dを固定することも可能である。この場合も,縦穴10内にパイプ12を挿入したのち,送水ポンプ30を地上からワイヤ等で吊り下げてパイプ12内の遮水板20dに着座させ,ポンプ30の吐出口(又は取水口)を遮水板20dの開口22に差し込む。ポンプ30を差し込む遮水板20cの開口22には,水密性を確保するための逆止弁23を設けることが望ましい。この状態で送水ポンプ30を駆動させ,一方の空間24の地下水Wを所定水圧で他方の空間26へパイプ中心軸と交差する向きに送り出すことにより,地下帯水層8の内部に地下水Wの流れを作り出す(図4(C)の地下水Wの流れを参照)。この場合も,図2(F)の場合と同様に,遮水部材20の上方の空間26に水面位制御用パッカー28を配置することができる。   In the embodiment of FIG. 2 (E), the water shielding plate 20c with the opening 22 is fixed in a direction crossing the central axis of the pipe, but as shown in FIG. It is also possible to fix the water shielding plate 20d with the opening 22 so as to cover the water passage hole 16 (or the water passage hole 14). Also in this case, after inserting the pipe 12 into the vertical hole 10, the water pump 30 is suspended from the ground with a wire or the like and is seated on the water shielding plate 20d in the pipe 12, and the discharge port (or water intake port) of the pump 30 is provided. It is inserted into the opening 22 of the water shielding plate 20d. It is desirable to provide a check valve 23 for ensuring water tightness in the opening 22 of the water shielding plate 20c into which the pump 30 is inserted. In this state, the water pump 30 is driven, and the groundwater W in one space 24 is sent to the other space 26 at a predetermined water pressure in a direction crossing the central axis of the pipe, so that the flow of the groundwater W into the underground aquifer 8. (See the flow of groundwater W in FIG. 4C). Also in this case, the water level control packer 28 can be disposed in the space 26 above the water shielding member 20 as in the case of FIG.

以上説明したように,本発明の地下水制御方法及びシステムは,地上Eから地下帯水層8に掘削した縦穴10内に一対の反対向きの通水孔14,16が帯水層深さ部位に穿たれたパイプ12を挿入し,パイプ12内を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切る開口22付き遮水部材20を設置したうえで,その遮水部材20の開口22に水密に嵌め込み又は差し込んだ送水ポンプ30で両空間24,26の一方から他方へ地下水Wを送ることにより帯水層8に水流を形成するので,次の効果を奏する。   As described above, in the groundwater control method and system of the present invention, a pair of oppositely directed water holes 14 and 16 are formed in the aquifer depth region in the vertical hole 10 excavated from the ground E to the underground aquifer 8. After the perforated pipe 12 is inserted and the water-impervious member 20 with the opening 22 is divided into the space 24 communicating with the one water passage hole 14 and the space 26 communicating with the other water passage hole 16 in the pipe 12, Since the water flow is formed in the aquifer 8 by sending the groundwater W from one of the spaces 24 and 26 to the other with the water pump 30 fitted or inserted into the opening 22 of the water shielding member 20 in a watertight manner, the following effects are obtained. Play.

(イ)帯水層8に掘削した縦穴10により帯水層8に所定向きの水流を生じさせ,その水流の下流域に対して上流域の水位を低下させることができる。
(ロ)例えば,帯水層8の所定域の周縁に沿って掘削した複数の縦穴10A〜10Lによってそれぞれ内側から外側へ水流を生じさせることにより,従来の地下水位低下工法と同様に,所定域の内側の地下水位を外側よりも低下させることができる。
(ハ)帯水層8の地下水Wを揚水することなく帯水層8に水流を生じさせることで水位を制御するので,従来の地下水位低下工法では困難であった単一の帯水層しか存在しない開削工事や液状化対策の現場における揚水しない地下水位の制御が可能となる。
(ニ)また,帯水層8の地下水Wを揚水して移送する従来の地下水位低下工法に比して,少ないエネルギーで地下水位を制御することができる。
(ホ)更に,帯水層8の地下水位の制御に際して地下水Wの揚水を必要としないので,下水等への放流が必要となる過剰な地下水Wを発生する不経済を避けることができる。
(A) A water flow in a predetermined direction can be generated in the aquifer 8 by the vertical hole 10 excavated in the aquifer 8, and the water level in the upstream region can be lowered relative to the downstream region of the water flow.
(B) For example, by generating a water flow from the inside to the outside by the plurality of vertical holes 10A to 10L excavated along the periphery of the predetermined area of the aquifer 8, the predetermined area is obtained similarly to the conventional groundwater level lowering method. The groundwater level inside can be lowered than outside.
(C) Since the water level is controlled by generating a water flow in the aquifer 8 without pumping up the groundwater W of the aquifer 8, only a single aquifer that has been difficult with the conventional groundwater level lowering method can be used. It is possible to control the level of groundwater that is not pumped at the site of non-existent excavation work or liquefaction countermeasures.
(D) In addition, the groundwater level can be controlled with less energy compared to the conventional groundwater level lowering method in which the groundwater W in the aquifer 8 is pumped and transferred.
(E) Further, since the groundwater W is not required to be pumped when controlling the groundwater level of the aquifer 8, it is possible to avoid the inconvenience of generating excessive groundwater W that needs to be discharged into sewage or the like.

こうして本発明の目的である「同一の帯水層内で地下水位を経済的に制御することができる方法及びシステム」の提供を達成することができる。   Thus, the provision of “a method and system capable of economically controlling the groundwater level within the same aquifer”, which is an object of the present invention, can be achieved.

なお,図示例では本発明の地下水制御システムを開削工事の地下水位低下に適用した場合を示しているが,本発明は開削工事への適用に限らず,地下水位の制御が必要とされる様々な土木工事,例えば液状化対策に適用することも可能である。すなわち,図1(B)の場合と同様に,地上Eの液状化が懸念される所定域の周縁に沿って複数の縦穴10A〜10Lを環状に並べて掘削し,各縦穴10A〜10L内にそれぞれその内側向き及び外側向きの一対の通水孔14,16が帯水層深さ部位に穿たれたパイプ12を挿入する。そして,各パイプ12内にそれぞれ上述した開口22付き遮水部材20(図2参照)を設置し,各遮水部材20の開口22に水密に嵌め込み又は差し込んだ送水ポンプ30によってそれぞれ内側から外側へ地下水を送ることにより所定域の内側の地下水位を外側よりも低下させることにより,所定域の液状化を防止する。   In the illustrated example, the groundwater control system of the present invention is applied to lowering the groundwater level in excavation work. However, the present invention is not limited to the application to excavation work, and various groundwater level controls are required. It is also possible to apply to civil engineering works such as liquefaction countermeasures. That is, similarly to the case of FIG. 1B, a plurality of vertical holes 10A to 10L are excavated in a ring shape along the peripheral edge of a predetermined area where the liquefaction of the ground E is concerned, and each of the vertical holes 10A to 10L is drilled. The pipe 12 in which the pair of water flow holes 14 and 16 facing inward and outward is formed in the aquifer depth part is inserted. Then, the above-described water-impervious member 20 with the opening 22 (see FIG. 2) is installed in each pipe 12, and the water-feeding pump 30 fitted or inserted into the opening 22 of each water-impervious member 20 from the inside to the outside respectively. By sending the groundwater, the groundwater level inside the predetermined area is lowered from the outside, thereby preventing liquefaction in the predetermined area.

図8は,ケーシングパイプ12の内側に配置する開口22付き遮水部材20の他の実施例を示す。図示例の遮水部材20は,パイプ12の内側にパイプ中心軸と芯合わせして設置する筒状部材20eを含み,その筒状部材20eの周壁上に一対の開口22,29を設けると共に,周壁外面上の開口22,29の中間部位にパイプ12の内面に接する遮水突起20fを設けたものである。図8(A)はパイプ12を一部切欠いて内側の筒状部材20eを表した斜視図を示し,図8(B)はその鉛直断面図,図8(C)はその水平断面図を示す。なお,図示例では開口22,29を断面円状としているが,スリット状としてもよく,開口22,29の断面形状は任意に選択可能である。   FIG. 8 shows another embodiment of the water shielding member 20 with the opening 22 arranged inside the casing pipe 12. The water shielding member 20 in the illustrated example includes a cylindrical member 20e that is installed inside the pipe 12 so as to be aligned with the center axis of the pipe, and a pair of openings 22 and 29 are provided on the peripheral wall of the cylindrical member 20e. A water-impervious protrusion 20f in contact with the inner surface of the pipe 12 is provided at an intermediate portion between the openings 22 and 29 on the outer surface of the peripheral wall. 8A is a perspective view showing the inner cylindrical member 20e by partially cutting the pipe 12, FIG. 8B is a vertical sectional view thereof, and FIG. 8C is a horizontal sectional view thereof. . In the illustrated example, the openings 22 and 29 are circular in cross section, but may be slits, and the cross-sectional shapes of the openings 22 and 29 can be arbitrarily selected.

図8(A)に示すように,筒状部材20eの周壁の一対の開口22,29がパイプ12の一対の通水孔14,16と対向するように設置し,図8(C)に示すように,周壁外面上の遮水突起20fによってパイプ内の周壁外側空間(周壁外面とパイプ内面との間隙)を一方の通水孔14に通じる空間24と他方の通水孔16に通じる空間26とに仕切る。筒状部材20eは,例えば縦穴10内にケーシングパイプ12を挿入したのち地上からワイヤ等でパイプ12内に吊り下げて設置するか,或いは予めケーシングパイプ12の内部に固定したうえで縦穴10に挿入して設置することができる。   As shown in FIG. 8 (A), the pair of openings 22 and 29 on the peripheral wall of the cylindrical member 20e are installed so as to face the pair of water passage holes 14 and 16 of the pipe 12, and shown in FIG. 8 (C). As described above, the space 26 communicating with one water passage hole 14 and the space 26 communicating with the other water passage hole 16 through the outer wall outer space (gap between the outer surface of the peripheral wall and the pipe inner surface) in the pipe by the water shielding protrusions 20f on the outer wall surface. And partition. The cylindrical member 20e is installed by, for example, inserting the casing pipe 12 into the vertical hole 10 and then suspending it from the ground with a wire or the like in the pipe 12 or by fixing it in the casing pipe 12 in advance and inserting it into the vertical hole 10 Can be installed.

ケーシングパイプ12内に筒状部材20eを設置したのち,図8(B)に示すように,送水ポンプ30を地上からワイヤ等で吊り下げて筒状部材20eの中空部に配置し,ポンプ30の取水口を筒状周壁の一方の開口22に差し込み,ポンプ30の吐出口を筒状周壁の他方の開口29に差し込む。筒状周壁の開口22,29はそれぞれ複数設けることができ,その場合は図示例のように,分岐する取水配管35を介してポンプ30の取水口と複数の開口22とを接続し,分岐する吐出配管36を介してポンプ30の吐出口と複数の開口29とを接続することができる。図8(B)において,送水ポンプ30を予め筒状部材20eの中空部に配置したうえでケーシングパイプ12内に挿入し,或いは中空部に送水ポンプ30が配置された筒状部材20eを予めケーシングパイプ12内に固定したうえで縦穴10に挿入することも可能である。   After installing the cylindrical member 20e in the casing pipe 12, as shown in FIG. 8 (B), the water supply pump 30 is suspended from the ground with a wire or the like and disposed in the hollow portion of the cylindrical member 20e. The intake port is inserted into one opening 22 of the cylindrical peripheral wall, and the discharge port of the pump 30 is inserted into the other opening 29 of the cylindrical peripheral wall. A plurality of openings 22 and 29 in the cylindrical peripheral wall can be provided. In this case, as shown in the example, the intake port of the pump 30 and the plurality of openings 22 are connected via a branched intake pipe 35 to branch off. The discharge port of the pump 30 and the plurality of openings 29 can be connected via the discharge pipe 36. In FIG. 8 (B), the water pump 30 is previously placed in the hollow portion of the cylindrical member 20e and then inserted into the casing pipe 12, or the cylindrical member 20e in which the water pump 30 is placed in the hollow portion is preliminarily casing. It is also possible to insert into the vertical hole 10 after being fixed in the pipe 12.

図8(B)に示すように,取水口及び吐出口を筒状周壁の開口22,29と接続した状態で送水ポンプ30を駆動させ,周壁外側の一方の空間24の地下水Wを所定水圧で周壁外側の他方の空間26へ送り出すことにより,地下帯水層8の内部に図4(C)のような地下水Wの流れを作り出すことができる。図8のように筒状周壁の複数の開口22,29を介して地下水Wを送り出すことにより,比較的強い地下水Wの流れを作り出すことが期待できる。地下水Wの流れを効率的に作り出すため,図8(B)に示すように,周壁外面とパイプ内面との間隙の上端及び下端を水密に塞ぐ遮水蓋又はパッカー部材20g,20hを設けることが望ましい。   As shown in FIG. 8B, the water supply pump 30 is driven in a state where the water intake port and the discharge port are connected to the openings 22 and 29 of the cylindrical peripheral wall, and the ground water W in one space 24 outside the peripheral wall is kept at a predetermined water pressure. By sending it out to the other space 26 outside the peripheral wall, a flow of groundwater W as shown in FIG. 4C can be created inside the underground aquifer 8. As shown in FIG. 8, it is expected that a relatively strong flow of the groundwater W can be created by sending the groundwater W through the plurality of openings 22 and 29 in the cylindrical peripheral wall. In order to efficiently create the flow of groundwater W, as shown in FIG. 8 (B), it is necessary to provide a water shielding lid or packer member 20g, 20h that tightly closes the upper and lower ends of the gap between the outer surface of the peripheral wall and the inner surface of the pipe. desirable.

1…地盤 2…開削域
3…土留め壁 6…帯水層(砂質土)
7…不透水層(粘性土) 8…帯水層(砂質土)
9…不透水層(粘性土)
10…縦穴 11…止水壁
12…ケーシングパイプ 14…第1通水孔(取入孔)
16…第2通水孔(吐出孔) 18…突出羽根(止水壁)
20…遮水部材 20a…環状パッカー部材
20b…環状シール部材 20c…遮水板
20d…遮水板 20e…中空筒体
20f…遮水突起 20g,20h…遮水蓋又はパッカー部材
22…開口 23…逆止弁
24…第1空間 26…第2空間
28…水面位制御用パッカー 29…開口
30…送水ポンプ 32…フィルター材
34…遮水材
35…取水配管 36…吐出配管
51…揚水井 52,53…復水井
55…井戸 56…仕切り部材
57…ポンプ 58…復水用配管
E…地上 W…地下水
DESCRIPTION OF SYMBOLS 1 ... Ground 2 ... Cut-off area 3 ... Earth retaining wall 6 ... Aquifer (sandy soil)
7 ... Impervious layer (viscous soil) 8 ... Aquifer (sandy soil)
9 ... Impermeable layer (cohesive soil)
DESCRIPTION OF SYMBOLS 10 ... Vertical hole 11 ... Water stop wall 12 ... Casing pipe 14 ... 1st water flow hole (intake hole)
16 ... 2nd water flow hole (discharge hole) 18 ... Projection blade | wing (water blocking wall)
DESCRIPTION OF SYMBOLS 20 ... Water-impervious member 20a ... Annular packer member 20b ... Annular seal member 20c ... Water-impervious plate 20d ... Water-impervious plate 20e ... Hollow cylinder 20f ... Water-impervious projection 20g, 20h ... Water-impervious lid or packer member 22 ... Opening 23 ... Check valve 24 ... first space 26 ... second space 28 ... water level control packer 29 ... opening 30 ... water pump 32 ... filter material 34 ... water blocking material 35 ... intake pipe 36 ... discharge pipe 51 ... pumping well 52, 53 ... Condensate well 55 ... Well 56 ... Partition member 57 ... Pump 58 ... Condensate piping E ... Above ground W ... Groundwater

Claims (10)

地上から地下帯水層に掘削した縦穴内に一対の反対向きの通水孔が当該帯水層深さ部位に穿たれたパイプを挿入し,前記パイプ内に当該パイプ内を一方の通水孔に通じる空間と他方の通水孔に通じる空間とに仕切る開口付き遮水部材を設置し,前記遮水部材の開口に水密に嵌め込み又は差し込んだ送水ポンプで前記両空間の一方から他方へ地下水を送ることにより帯水層に水流を形成してなる地下水制御方法。 Insert a pipe with a pair of oppositely facing water holes drilled in the depth of the aquifer into a vertical hole excavated from the ground into the underground aquifer, and insert one pipe into the pipe. A water-impervious member with an opening that divides into a space communicating with the other water passage hole and a water pump fitted or inserted in the water-tight member in a water-tight manner into the opening of the water-impervious member to supply groundwater from one of the two spaces to the other. A groundwater control method that forms a water stream in an aquifer by sending it. 請求項1の方法において,前記一対の通水孔をパイプの異なる深さに設け,前記開口付き遮水部材を両通水孔の間の深さにパイプ中心軸と交差する向きに設置し,前記遮水部材の開口の送水ポンプによりパイプ中心軸と平行に地下水を送ってなる地下水制御方法。 The method according to claim 1, wherein the pair of water passage holes are provided at different depths of the pipe, and the water shielding member with an opening is installed at a depth between the water passage holes in a direction intersecting with the pipe central axis. A groundwater control method in which groundwater is sent in parallel with the central axis of a pipe by a water pump at the opening of the water shielding member. 請求項1の方法において,前記開口付き遮水部材をパイプ内側から一方の通水孔を覆うように設置し,前記遮水部材の開口の送水ポンプによりパイプ中心軸と交差する向きに地下水を送ってなる地下水制御方法。 2. The method according to claim 1, wherein the water-impervious member with an opening is installed so as to cover one water passage hole from the inside of the pipe, and groundwater is sent in a direction crossing the central axis of the pipe by a water pump at the opening of the water-impervious member. A groundwater control method. 請求項1の方法において,前記開口付き遮水部材にパイプ中心軸と心合わせしてパイプ内に設置する筒状部材を含め,その筒状周壁上に前記一対の通水孔と対向する一対の開口を設けると共にパイプ内の周壁外側空間を一方の通水孔に通じる空間と他方の通水孔に通じる空間とに仕切る遮水突起を設け,前記筒状部材の中空部に配置した送水ポンプの取水口及び吐出口を開口の一方及び他方に差し込んでなる地下水制御方法。 The method according to claim 1, wherein the water-impervious member with an opening includes a cylindrical member installed in the pipe so as to be aligned with the center axis of the pipe, and a pair of opposed water-permeable holes on the cylindrical peripheral wall. A water supply pump disposed in a hollow portion of the cylindrical member is provided with an opening and a water shielding projection for partitioning a space outside the peripheral wall in the pipe into a space communicating with one water passage hole and a space communicating with the other water passage hole. A groundwater control method in which a water intake port and a discharge port are inserted into one and the other of the openings. 請求項1から4の何れかの方法において,地上の所定域の周縁に沿って掘削した複数の縦穴内にそれぞれ当該所定域の内側向き及び外側向きの一対の通水孔が帯水層深さ部位に穿たれたパイプを挿入し,前記各パイプ内にそれぞれ前記開口付き遮水部材を設置し,前記各遮水部材の開口の送水ポンプによりそれぞれ所定域の内側から外側へ地下水を送ることにより所定域内側の帯水層の地下水位を外側よりも低下させてなる地下水制御方法。 The method according to any one of claims 1 to 4, wherein a pair of water-holes facing inward and outward of the predetermined area are respectively formed in a plurality of vertical holes excavated along the periphery of the predetermined area on the ground. By inserting pipes drilled in the site, installing the water-impervious members with openings in the pipes, and sending groundwater from the inside to the outside of the predetermined area by the water pumps at the openings of the water-impervious members, respectively. A groundwater control method in which the groundwater level of an aquifer inside a predetermined area is lowered from the outside. 地上から地下帯水層に掘削した縦穴内に挿入され且つ一対の反対向きの通水孔が当該帯水層深さ部位に穿たれたパイプ,前記パイプ内に設置され且つ当該パイプ内を一方の通水孔に通じる空間と他方の通水孔に通じる空間とに仕切る開口付き遮水部材,及び前記遮水部材の開口に水密に嵌め込み又は差し込んで前記両空間の一方から他方へ地下水を送る送水ポンプを備え,前記送水ポンプの送水により帯水層に水流を形成してなる地下水制御システム。 A pipe inserted into a vertical hole excavated from the ground into the underground aquifer and having a pair of oppositely oriented water holes drilled in the depth region of the aquifer, installed in the pipe and passing through one of the pipes A water-impervious member with an opening that partitions into a space that communicates with the water passage hole and a space that communicates with the other water passage hole, and water supply that fits or inserts water-tightly into the opening of the water-impervious member and sends ground water from one of the two spaces to the other A groundwater control system comprising a pump, wherein a water flow is formed in the aquifer by water supplied from the water pump. 請求項6のシステムにおいて,前記一対の通水孔をパイプの異なる深さに設け,前記開口付き遮水部材を両通水孔の間の深さにパイプ中心軸と交差する向きに設置し,前記遮水部材の開口の送水ポンプによりパイプ中心軸と平行に地下水を送ってなる地下水制御システム。 The system according to claim 6, wherein the pair of water passage holes are provided at different depths of the pipe, and the water shielding member with an opening is installed at a depth between the water passage holes in a direction intersecting with the pipe central axis. A groundwater control system in which groundwater is sent in parallel with the central axis of the pipe by a water pump at the opening of the water shielding member. 請求項6のシステムにおいて,前記開口付き遮水部材をパイプ内側から一方の通水孔を覆うように設置し,前記遮水部材の開口の送水ポンプによりパイプ中心軸と交差する向きに地下水を送ってなる地下水制御システム。 7. The system according to claim 6, wherein the water-impervious member with an opening is installed so as to cover one water passage hole from the inside of the pipe, and groundwater is sent in a direction crossing the central axis of the pipe by a water pump at the opening of the water-impervious member. A groundwater control system. 請求項6のシステムにおいて,前記開口付き遮水部材にパイプ中心軸と心合わせしてパイプ内に設置する筒状部材を含め,その筒状周壁上に前記一対の通水孔と対向する一対の開口を設けると共にパイプ内の周壁外側空間を一方の通水孔に通じる空間と他方の通水孔に通じる空間とに仕切る遮水突起を設け,前記筒状部材の中空部に配置した送水ポンプの取水口及び吐出口を開口の一方及び他方に差し込んでなる地下水制御システム。 7. The system according to claim 6, wherein the water-impervious member with an opening includes a cylindrical member installed in the pipe so as to be aligned with the center axis of the pipe, and a pair of opposed water-permeable holes on the cylindrical peripheral wall. A water supply pump disposed in a hollow portion of the cylindrical member is provided with an opening and a water shielding projection for partitioning a space outside the peripheral wall in the pipe into a space communicating with one water passage hole and a space communicating with the other water passage hole. A groundwater control system in which a water intake and a discharge port are inserted into one and the other of the openings. 請求項6から9の何れかのシステムにおいて,地上の所定域の周縁に沿って掘削した複数の縦穴内にそれぞれ当該所定域の内側向き及び外側向きの一対の通水孔が帯水層深さ部位に穿たれたパイプを挿入し,前記各パイプ内にそれぞれ前記開口付き遮水部材を設置し,前記各遮水部材の開口の送水ポンプによりそれぞれ所定域の内側から外側へ地下水を送ることにより所定域内側の帯水層の地下水位を外側よりも低下させてなる地下水制御システム。 The system according to any one of claims 6 to 9, wherein a pair of water-holes facing inward and outward of the predetermined area are respectively formed in a plurality of vertical holes excavated along the periphery of the predetermined area on the ground. By inserting pipes drilled in the site, installing the water-impervious members with openings in the pipes, and sending groundwater from the inside to the outside of the predetermined area by the water pumps at the openings of the water-impervious members, respectively. A groundwater control system that lowers the groundwater level of the aquifer inside the specified area from the outside.
JP2014255958A 2014-02-13 2014-12-18 Groundwater control method and system Active JP6315700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255958A JP6315700B2 (en) 2014-02-13 2014-12-18 Groundwater control method and system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014025967 2014-02-13
JP2014025967 2014-02-13
JP2014255958A JP6315700B2 (en) 2014-02-13 2014-12-18 Groundwater control method and system

Publications (2)

Publication Number Publication Date
JP2015166546A true JP2015166546A (en) 2015-09-24
JP6315700B2 JP6315700B2 (en) 2018-04-25

Family

ID=54257530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255958A Active JP6315700B2 (en) 2014-02-13 2014-12-18 Groundwater control method and system

Country Status (1)

Country Link
JP (1) JP6315700B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106638642A (en) * 2017-02-21 2017-05-10 潍坊市宏源防水材料有限公司 Underground building pit body waterproof construction precipitation treating method
CN106812147A (en) * 2017-01-25 2017-06-09 济南轨道交通集团有限公司 A kind of sand-pebble layer protects spring inverted well construction method
CN106894431A (en) * 2017-02-21 2017-06-27 潍坊市宏源防水材料有限公司 Hypogee hole body waterproof construction precipitation processing method under a kind of water resource enriched environment
CN109440795A (en) * 2018-11-26 2019-03-08 上海建工七建集团有限公司 A kind of pressure-bearing precipitation pipe well and its application method
CN109812223A (en) * 2019-03-25 2019-05-28 五冶集团上海有限公司 It is a kind of suitable for silt, the hole punched device of flour sand soil property and application method
CN113882410A (en) * 2021-09-01 2022-01-04 武汉市政工程设计研究院有限责任公司 Deep foundation pit underground water treatment structure and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935558U (en) * 1972-06-26 1974-03-29
US4260334A (en) * 1976-02-11 1981-04-07 Kelley Contract Dewatering Company Ground dewatering system
JPS611715A (en) * 1984-06-13 1986-01-07 Takenaka Komuten Co Ltd Reflux well work
US4639168A (en) * 1982-05-24 1987-01-27 Bernhard Wietek Hollow foundation body and method of making a foundation
JPS63293224A (en) * 1987-05-23 1988-11-30 Shimizu Constr Co Ltd Groundwater draining work
JPH06101236A (en) * 1992-09-21 1994-04-12 Fujita Corp Pumping well structure
JPH093877A (en) * 1995-06-26 1997-01-07 Hazama Gumi Ltd Continuous underground wall
JP2002121743A (en) * 2000-10-12 2002-04-26 Nisshin Kenko Kk Ground water lowering method and ground water lowering device used for the method
JP2002227229A (en) * 2001-01-31 2002-08-14 Shimizu Corp Well for passing water through cut-off wall and underground water treatment mechanism
JP2002250028A (en) * 2001-02-26 2002-09-06 Shimizu Corp Horizontal drain method
JP2006138139A (en) * 2004-11-12 2006-06-01 Tokyu Construction Co Ltd Earth retaining wall having built-in water passing cylinder consisting of plurality of water passages and its construction method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935558U (en) * 1972-06-26 1974-03-29
US4260334A (en) * 1976-02-11 1981-04-07 Kelley Contract Dewatering Company Ground dewatering system
US4639168A (en) * 1982-05-24 1987-01-27 Bernhard Wietek Hollow foundation body and method of making a foundation
JPS611715A (en) * 1984-06-13 1986-01-07 Takenaka Komuten Co Ltd Reflux well work
JPS63293224A (en) * 1987-05-23 1988-11-30 Shimizu Constr Co Ltd Groundwater draining work
JPH06101236A (en) * 1992-09-21 1994-04-12 Fujita Corp Pumping well structure
JPH093877A (en) * 1995-06-26 1997-01-07 Hazama Gumi Ltd Continuous underground wall
JP2002121743A (en) * 2000-10-12 2002-04-26 Nisshin Kenko Kk Ground water lowering method and ground water lowering device used for the method
JP2002227229A (en) * 2001-01-31 2002-08-14 Shimizu Corp Well for passing water through cut-off wall and underground water treatment mechanism
JP2002250028A (en) * 2001-02-26 2002-09-06 Shimizu Corp Horizontal drain method
JP2006138139A (en) * 2004-11-12 2006-06-01 Tokyu Construction Co Ltd Earth retaining wall having built-in water passing cylinder consisting of plurality of water passages and its construction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812147A (en) * 2017-01-25 2017-06-09 济南轨道交通集团有限公司 A kind of sand-pebble layer protects spring inverted well construction method
CN106638642A (en) * 2017-02-21 2017-05-10 潍坊市宏源防水材料有限公司 Underground building pit body waterproof construction precipitation treating method
CN106894431A (en) * 2017-02-21 2017-06-27 潍坊市宏源防水材料有限公司 Hypogee hole body waterproof construction precipitation processing method under a kind of water resource enriched environment
CN106894431B (en) * 2017-02-21 2019-08-27 宏源防水科技集团有限公司 Hypogee pit body waterproof construction precipitation processing method under a kind of water resource enriched environment
CN106638642B (en) * 2017-02-21 2019-08-27 宏源防水科技集团有限公司 A kind of hypogee pit body waterproof construction precipitation processing method
CN109440795A (en) * 2018-11-26 2019-03-08 上海建工七建集团有限公司 A kind of pressure-bearing precipitation pipe well and its application method
CN109440795B (en) * 2018-11-26 2024-04-02 上海建工七建集团有限公司 Pressure-bearing water-reducing pipe well and use method thereof
CN109812223A (en) * 2019-03-25 2019-05-28 五冶集团上海有限公司 It is a kind of suitable for silt, the hole punched device of flour sand soil property and application method
CN113882410A (en) * 2021-09-01 2022-01-04 武汉市政工程设计研究院有限责任公司 Deep foundation pit underground water treatment structure and method

Also Published As

Publication number Publication date
JP6315700B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6315700B2 (en) Groundwater control method and system
JP2006226061A (en) Underground drainage construction method
JP4074313B2 (en) Structure of steel sheet pile for water flow and water retaining wall, and its construction method.
CN109853604A (en) A kind of static pressure waterpower suction open caisson construction method
JP2009068213A (en) Construction method for underground structure using caisson, and caisson with cut-off device
JP6149401B2 (en) Expansion well and construction method of expansion well
JPH1113039A (en) Water storage device for river
JP2015168981A (en) Water intake device
JP3008322B2 (en) Well stratified pumping and injection system
KR20170080051A (en) Supporting system for tide generator
KR101802597B1 (en) Open type ground heat exchanger having adapting chamber for ground water supply
JP2005090015A (en) Ground excavating method
JP6480745B2 (en) How to install water injection wells
JP6125701B1 (en) Non-uniform settlement prevention structure
CN218439314U (en) Prospecting hole plugging device
KR102551818B1 (en) Spiral Bolt For Ground Reinforcement
JP6313533B2 (en) Buried tank and its construction method
JP4589084B2 (en) A retaining wall with a built-in water pipe composed of a plurality of water passages, and a method for ensuring the flow of groundwater using the retaining wall
JP5670595B2 (en) Vertical shaft construction method
JP7238649B2 (en) Groundwater pumping device and groundwater pumping method
JP2008089094A (en) Conduit liquefaction measure structure
JP6273645B2 (en) Ground liquefaction prevention structure
JP5277925B2 (en) Method for preventing fluidization inhibition of groundwater and structure for preventing inhibition of flow of mountain retaining wall constructed by the method
JP3819902B2 (en) How to reach the shield machine
JP2007162265A (en) Tunnel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180323

R150 Certificate of patent or registration of utility model

Ref document number: 6315700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250