JP2015163027A - 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム - Google Patents

電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム Download PDF

Info

Publication number
JP2015163027A
JP2015163027A JP2014038748A JP2014038748A JP2015163027A JP 2015163027 A JP2015163027 A JP 2015163027A JP 2014038748 A JP2014038748 A JP 2014038748A JP 2014038748 A JP2014038748 A JP 2014038748A JP 2015163027 A JP2015163027 A JP 2015163027A
Authority
JP
Japan
Prior art keywords
vehicle
area
prediction
power demand
feature value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014038748A
Other languages
English (en)
Other versions
JP6081941B2 (ja
Inventor
勇輔 山科
Yusuke Yamashina
勇輔 山科
容子 小▲柳▼
Yoko Koyanagi
容子 小▲柳▼
斎藤 真由美
Mayumi Saito
真由美 斎藤
杉本 喜一
Kiichi Sugimoto
喜一 杉本
矢野 真也
Shinya Yano
真也 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014038748A priority Critical patent/JP6081941B2/ja
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to PCT/JP2015/054780 priority patent/WO2015129575A1/ja
Priority to EP15754499.0A priority patent/EP3076512B1/en
Priority to CN201580003428.4A priority patent/CN105849998B/zh
Priority to SG11201605579WA priority patent/SG11201605579WA/en
Priority to US15/110,867 priority patent/US20160335377A1/en
Priority to TW104106296A priority patent/TWI638328B/zh
Publication of JP2015163027A publication Critical patent/JP2015163027A/ja
Priority to JP2017007833A priority patent/JP6414760B2/ja
Application granted granted Critical
Publication of JP6081941B2 publication Critical patent/JP6081941B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/045Explanation of inference; Explainable artificial intelligence [XAI]; Interpretable artificial intelligence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Transportation (AREA)
  • Marketing (AREA)
  • Mechanical Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Primary Health Care (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)

Abstract

【課題】限られた実績データに基づいて、より精度の高い電力の需要予測が可能な電力需要予測装置を提供する。【解決手段】電力需要予測装置100は、車両に関する実測データを入力し、複数に区画された各区画エリアの、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するエリア特徴値予測部114と、エリア特徴値を入力とし、特定の車両の、特定の充電設備における電力需要を出力とする、当該特定の車両各々の個別モデルを取得する個別モデル取得部112と、予測されたエリア特徴値を個別モデルに入力し、当該個別モデルに対応する特定の車両の、特定の充電設備における電力需要の予測値を算出する需要予測演算部113と、を備える。【選択図】図2

Description

本発明は、充電設備における電力需要量を予測する電力需要予測装置、電力供給システム、電力需要予測方法及びプログラムに関する。
近年、バッテリーを搭載した電気自動車やハイブリッドカーの普及が進み、充電設備における電力需要が増している。これに伴い、電力需要の予測結果に合わせて生成すべき総電力量、及び、地域ごと、時間帯ごとに供給すべき配電量を制御する配電計画技術が用いられている。
電力需要を予測するためには、一般に、過去の電力需要実績及び時刻情報、曜日、休日等を示すカレンダー情報等に基づいて、統計的手法を用いて予測モデルを構築することで予測する手法等が用いられている(例えば、特許文献1参照)。
また、ある地域における電力需要を予測する場合、当該地域の集団の行動傾向を統計的に分析し、これをモデル化する手法が用いられている。
特開2012−113546号公報
しかしながら、例えば、地域の集団の行動傾向を統計的に分析する場合、当該地域の集団の行動傾向全体の特性を精度よく再現するモデルを構築するためには、膨大な量の実績データ(教師データ)を必要とする。これに対し、プローブカー(詳細な走行データを取得する機能を備えた車両)の台数は限られているため、相当の実績データを取得することができない。そのため、地域の集団の行動傾向を0精度よく再現することが困難であった。
本発明は、上記課題に鑑みてなされたものであって、限られた実績データに基づいて、より精度の高い電力の需要予測が可能な電力需要予測装置、電力供給システム、電力需要予測方法及びプログラムを提供することを目的とする。
本発明の一態様は、車両に関する実測データ(D1)を入力し、複数に区画された区画エリア(A1、A2・・・)別に、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するエリア特徴値予測部(114)と、前記エリア特徴値を入力とし、特定の車両(201、202・・・)の、特定の充電設備(301、302・・・)における電力需要を出力とする、当該特定の車両各々の個別モデル(M1、M2・・・)を取得する個別モデル取得部(112)と、前記予測されたエリア特徴値を前記個別モデルに入力し、当該個別モデルに対応する特定の車両の、前記特定の充電設備における電力需要の予測値を算出する需要予測演算部(113)と、を備える電力需要予測装置(1)である。
このような電力需要予測装置によれば、周期的な規則性が高い集団行動の傾向から導かれるエリア特徴値の予測値を、個人行動の傾向を表した個別モデルの因子として用いているので、比較的遠い将来まで高い精度で予測することが可能となる。
また、本発明の一態様は、上述の電力需要予測装置において、前記エリア特徴値予測部が、前記エリア特徴値として、前記区画エリア内における車両密度、当該区画エリア内における車両全体の平均速度、及び、当該区画エリア内に属する車両全体のバッテリーの平均充電率のうちの少なくとも一つを含むことを特徴とする。
このような電力需要予測装置によれば、集団行動の傾向として周期的な規則性が高い車両密度、車両平均速度、または、平均充電率を予測値として用いることで、精度の高い予測値に基づいて電力需要を予測することができる。
また、本発明の一態様は、上述の電力需要予測装置において、前記個別モデル取得部が、前記車両に関する実測データに基づいて、特定の車両が特定の充電設備において充電を行う意思決定の要因となる因子情報の実績値と、当該特定の車両の、前記特定の充電設備における電力需要を示す実績値と、の相関関係を示す個別モデルを、前記特定の車両別に生成することを特徴とする。
このような電力需要予測装置によれば、電気自動車の各利用者の充電の意思決定の要因となる因子情報の実績値に基づいて、個別モデルを生成する。したがって、利用者の意思を正確に反映した個別モデルを用いることができる。
また、本発明の一態様は、上述の電力需要予測装置において、前記個別モデル取得部が、前記特定の車両の現在位置と前記特定の充電設備との間の距離と、当該特定の充電設備における電力需要と、の相関関係を示す個別モデルを取得することを特徴とする。
このような電力需要予測装置によれば、車両と充電設備間の距離と、当該充電設備における電力需要と、の相関関係を、個人行動の傾向を反映した個別モデルとすることで、個別モデルを生成する労力を削減することができる。
また、本発明の一態様は、上述の電力需要予測装置と、前記電力需要予測装置の予測結果に応じて、前記充電設備各々の供給電力を調整する供給電力管理装置と、を備える電力供給システムである。
このような電力供給システムによれば、供給電力管理装置が電力需要予測装置による精度の高い予測結果に応じて充電設備別に供給電力を調整するので、電力供給サービスの提供を一層効率化することができる。
また、本発明の一態様は、車両に関する実測データを入力し、複数に区画された区画エリア別に、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するステップと、前記エリア特徴値を入力とし、特定の車両の、特定の充電設備における電力需要を出力とする、当該特定の車両各々の個別モデルを取得するステップと、前記予測されたエリア特徴値を前記個別モデルに入力し、当該個別モデルに対応する特定の車両の、前記特定の充電設備における電力需要の予測値を算出するステップと、を有する電力需要予測方法である。
このような電力需要予測方法によれば、周期的な規則性が高い集団行動の傾向から導かれるエリア特徴値の予測値を、個人行動の傾向を表した個別モデルの因子として用いているので、比較的遠い将来まで高い精度で予測することが可能となる。
また、本発明の一態様は、電力需要予測装置のコンピュータを、車両に関する実測データを入力し、複数に区画された区画エリア別に、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するエリア特徴値予測手段、前記エリア特徴値を入力とし、特定の車両の、特定の充電設備における電力需要を出力とする、当該特定の車両各々の個別モデルを取得する個別モデル取得手段、前記予測されたエリア特徴値を前記個別モデルに入力し、当該個別モデルに対応する特定の車両の、前記特定の充電設備における電力需要の予測値を算出する需要予測演算手段、として機能させるプログラムである。
このようなプログラムによれば、周期的な規則性が高い集団行動の傾向から導かれるエリア特徴値の予測値を、個人行動の傾向を表した個別モデルの因子として用いているので、比較的遠い将来まで高い精度で予測することが可能となる。
上述の電力需要予測装置、電力供給システム、電力需要予測方法及びプログラムによれば、限られた実績データに基づいて、より精度の高い電力の需要予測が可能となる。
第1の実施形態に係る電力供給システムの概要を示す図である。 第1の実施形態に係る電力需要予測装置の機能構成を示す図である。 第1の実施形態に係るデータ蓄積処理部が記憶する車両プローブデータの詳細を示す図である。 第1の実施形態に係る個別モデル取得部の機能を説明する第1の図である。 第1の実施形態に係る個別モデル取得部の機能を説明する第2の図である。 第1の実施形態に係る個別モデル取得部の機能を説明する第3の図である。 第1の実施形態に係る個別モデル取得部の機能を説明する第4の図である。 第1の実施形態に係る個別モデルの例を説明する図である。 第1の実施形態に係るエリア特徴値予測部の機能を説明する第1の図である。 第1の実施形態に係るエリア特徴値予測部の機能を説明する第2の図である。 第1の実施形態に係るエリア特徴値予測部の機能を説明する第3の図である。 第1の実施形態に係る需要予測演算部の処理フローを説明するフローチャート図である。 第1の実施形態に係る需要予測演算部の処理を説明する第1の図である。 第1の実施形態に係る需要予測演算部の処理を説明する第2の図である。 第1の実施形態に係る需要予測演算部の機能を説明する第3の図である。 第1の実施形態の変形例に係るエリア特徴値予測部の機能を説明する図である。 第1の実施形態の変形例に係る個別モデル取得部の機能を説明する図である。 第2の実施形態に係る需要予測演算部の機能を説明する図である。
<第1の実施形態>
以下、第1の実施形態に係る電力供給システムについて説明する。
第1の実施形態に係る電力供給システムは、特定の地域(例えば、一都市)における所定の区画エリア別に特徴値を予測するステップと、当該予測された特徴値を、各個人の意思決定の特徴を反映した個別モデルに入力するステップと、の2段階に分けて各充電設備の電力需要(本実施形態では、各充電設備の「利用率」)を予測する。
(全体構成)
図1は、第1の実施形態に係る電力供給システムの概要を示す図である。
第1の実施形態に係る電力供給システム1は、電力需要予測装置100と、複数のプローブカー201、202・・・と、複数の充電設備301、302・・・と、供給電力管理装置400と、を備えている。
電力供給システム1は、特定の地域(例として、都市T1)において電気自動車用の電力供給サービスを提供する。具体的には、電力供給システム1は、都市T1の各箇所に設置された充電設備301、302・・・を介して、都市T1を走行する電気自動車にバッテリー充電用の電力を供給する。
電力需要予測装置100は、プローブカー201、202・・・の各々から複数の車両プローブデータD1(後述)を入力し、当該車両プローブデータD1に基づいて、充電設備301、302・・・の各々における電力需要(時間帯別の利用率)の予測を行う。
プローブカー201、202・・・は、都市T1に属する住民のうち特定の利用者が利用する電気自動車である。プローブカー201、202・・・は、専用の車載器(図示せず)を搭載し、当該車載器により、自車両の走行状態を一定時間ごとに記録可能となっている。例えば、プローブカー201、202・・・は、自車両の走行状態として、自車両が運転中か否かを示す運転状態情報、自車両の位置を特定する車両位置情報(例えばGPS(Global Positioning System)による緯度・経度情報)、搭載するバッテリーの充電率[%](残容量)を示すSOC(State Of Charge)情報を一定時間ごと(例えば、一時間ごと)に記録可能とする。
なお、プローブカー201、202・・・が取得可能な走行状態の内容は上記に限定されず、他にも、走行距離や、搭載する速度・加速度センサを介して取得される速度・加速度情報等、さらに、プローブカー201、202・・・の停止中、充電中における各種情報が記録されてもよい。また、プローブカー201、202・・・は、自車両の走行状態を「一定時間ごと」に取得する態様に限定されず、その他、任意に定められる特定の事象が発生する度に記録する態様であってもよい。具体的には、例えば、プローブカー201、202・・・は、一定走行距離ごと、一定の車両状態の変化(走行状態から停車状態への移行時、主電源のオンオフ、ヘッドライトのオンオフ)ごとに、その時点における自車両の走行状態を記録するものとしてもよい。
充電設備301、302・・・は、都市T1の各所に設置される。電気自動車の利用者は、各所に設置された充電設備301、302・・・に赴いて電気自動車の充電を行う。なお、本実施形態においては、図1に示すように、各充電設備301、302・・・は、都市T1に属する所定の区画エリアA1、A2、A3・・・の各々に設置される。
供給電力管理装置400は、電力需要予測装置100による電力需要(充電設備301、302・・・各々についての時間帯別の利用率)の予測結果に基づいて、充電のために必要な電力が各充電設備301、302・・・から供給可能となるように、配電計画に反映させる。
(電力需要予測装置の機能構成)
図2は、第1の実施形態に係る電力需要予測装置の機能構成を示す図である。
図2に示すように、本実施形態に係る電力需要予測装置100は、データ受付部101と、データ出力部102と、CPU(Central Processing Unit)110と、プローブデータ記憶部120と、個別モデル記憶部121と、地図・カレンダーデータ記憶部123と、を備えている。
データ受付部101は、プローブカー201、202・・・の各々から車両プローブデータD1の入力を受け付ける通信モジュールである。ここで、プローブカー201、202・・・の各車載器は、取得した車両プローブデータD1を、所定の通信手段を介して自動的にデータ受付部101に出力する。なお、各車載器が自動的に車両プローブデータD1をデータ受付部101に送信する態様の他、電力供給システム1の利用者(管理者)が、手動により、各車載器からデータ受付部101に送信する処理を行ってもよい。
データ出力部102は、後述するCPU110の算出処理により得られた利用率予測データD20Fを、供給電力管理装置400に出力する通信モジュールである。
CPU110は、電力需要予測装置100の処理全体を司る汎用のCPUである。CPU110は、記憶領域に読み込まれた専用のプログラムに従って動作することで、データ蓄積処理部111、個別モデル取得部112、需要予測演算部113、エリア特徴値予測部114としての機能を実現する。各機能の詳細については後述する。
プローブデータ記憶部120は、CPU110(後述するデータ蓄積処理部111)の処理により、取得された車両プローブデータD1が格納される記憶領域である。
個別モデル記憶部121は、CPU110(後述する個別モデル取得部112)が生成した、各プローブカー201、202・・・の個別モデルが記憶される記憶領域である。
また、地図・カレンダーデータ記憶部123は、都市T1の道路網、区画(区画エリアA1、A2・・・の範囲)、充電設備301、302・・・の位置等が記載された地図データD4と、平日・休日(祝日)等の暦を示すカレンダーデータD5が記憶される。
なお、上述のプローブデータ記憶部120、個別モデル記憶部121及び地図・カレンダーデータ記憶部123は、単一の記憶装置に記憶される態様であってもよい。
上述したように、本実施形態に係るCPU110は、データ蓄積処理部111、個別モデル取得部112、需要予測演算部113及びエリア特徴値予測部114としての機能を有する。
データ蓄積処理部111は、データ受付部101を介して入力された車両プローブデータD1を逐次プローブデータ記憶部120に記憶する。データ蓄積処理部111が蓄積する車両プローブデータD1の内容については後述する。
個別モデル取得部112は、プローブデータ記憶部120に蓄積された過去の車両プローブデータD1に基づいて、プローブカー201、202・・・(利用者P1、P2・・・)の各々に対応する個別モデルM1、M2・・・を生成する処理を行う。ここで、「個別モデル」とは、各利用者のプローブカー201、202・・・の利用上の特徴(特に、充電の意思決定の特徴)を反映したシミュレーションモデルである。個別モデル取得部112は、生成した個別モデルM1、M2・・・を個別モデル記憶部121に記憶する。
なお、個別モデル取得部112は、図2に示すように、内部に備える因子情報抽出部112aと、電力需要情報抽出部112bと、モデル構築処理部112cと、の処理に基づいて個別モデルを生成する。因子情報抽出部112a、電力需要情報抽出部112b及びモデル構築処理部112cの具体的な処理内容については後述する。
エリア特徴値予測部114は、プローブデータ記憶部120に蓄積された過去の車両プローブデータD1と、地図・カレンダーデータ記憶部123に記憶された地図データD4及びカレンダーデータD5に基づいて、各区画エリアA1、A2・・・のエリア特徴値(後述)の予測値であるエリア特徴値予測データD3Fを取得する。
需要予測演算部113は、個別モデル記憶部121に記憶された個別モデルM1、M2・・・と、エリア特徴値予測部114により取得されたエリア特徴値予測データD3Fと、に基づいて、充電設備301、302・・・の各々における時間帯別の利用率の予測値(利用率予測データD20F)を算出する。
(データ蓄積処理部の機能)
図3は、第1の実施形態に係るデータ蓄積処理部が記憶する車両プローブデータの詳細を示す図である。
上述したように、データ蓄積処理部111は、各プローブカー201、202・・・に取得された車両プローブデータD1を、プローブデータ記憶部120に逐次記憶、蓄積していく。例として、データ蓄積処理部111は、図3に示すような態様で車両プローブデータD1を記憶する。具体的には、図3に示すように、プローブデータ記憶部120には、プローブカー201、202・・・の各々を識別する車両IDと、日付及び時間帯と、車両が運転中か否か(稼働中か否か)を示す運転状態情報と、車両位置を特定する緯度・経度情報と、搭載するバッテリーの充電量(残容量)を示すSOC情報と、が記録される。データ蓄積処理部111は、例えば、30分おきに記録される運転状態情報、緯度・経度情報、SOC情報を抽出してプローブデータ記憶部120に記憶する。
なお、プローブデータ記憶部120には、例えば、各プローブカー201、202・・・の過去に取得された一つ以上の車両プローブデータD1が記憶されている。なお、車両プローブデータD1としては、例えば、過去数か月〜数年分の各種情報が複数記憶、蓄積されているのが望ましい。 また、プローブデータ記憶部120に記憶される車両プローブデータD1の態様は、図3に示すものに限定されず、プローブカー201、202・・・の走行に関する他の項目(例えば、走行距離、速度・加速度情報等)が記録されるものであってもよい。また、充電時に取得される充電設備IDを記録して、いずれの充電設備301、302・・・を利用して充電を行っていたかを把握可能としてもよい。
(個別モデル取得部の機能)
個別モデル取得部112の因子情報抽出部112aは、プローブデータ記憶部120に記憶された車両プローブデータD1(図3)を参照して、因子情報の実績値である因子実績データD10を抽出する。ここで、「因子情報」とは、各プローブカー201、202・・・の利用者P1、P2・・・が、各充電設備301、302・・・において充電を行う意思決定の要因となり得る種々の情報である。具体的には、因子情報抽出部112aは、車両プローブデータD1から、因子情報の実績値(因子実績データD10)として、以下に説明する時間帯別活動エリアデータD12や時間帯別SOCデータD13等を抽出する。
(時間帯別活動エリアデータ)
図4は、第1の実施形態に係る個別モデル取得部の機能を説明する第1の図である。
因子情報抽出部112aは、プローブデータ記憶部120に記憶された車両プローブデータD1から、因子実績データD10の一つである時間帯別活動エリアデータD12を抽出する。ここで、時間帯別活動エリアデータD12は、図4に示すように、利用者(プローブカー201、202・・・)が属しているエリア(区画エリアA1、A2・・・)を一週間の時間帯別に区分して示した情報である。具体的には、因子情報抽出部112aは、プローブデータ記憶部120に蓄積された過去の車両プローブデータD1から、曜日、時間帯別の緯度・経度情報(図3)を参照することで、各曜日、時間帯において利用者P1、P2・・・(プローブカー201、202・・・)の、各区画エリアA1、A2の各々における存在率が特定された時間帯別活動エリアデータD12を得る(図4参照)。
(時間帯別SOCデータ)
図5は、第1の実施形態に係る個別モデル取得部の機能を説明する第2の図である。
因子情報抽出部112aは、さらに、プローブデータ記憶部120に記憶された車両プローブデータD1から、因子実績データD10の一つである時間帯別SOCデータD13等を抽出する。ここで、時間帯別SOCデータD13は、図5に示すように、利用者(プローブカー201、202・・・)の時間帯別のSOC[%]を所定のセンサを介して記録した情報である。これにより、個別モデル取得部112は、後述するように、SOCがどの程度まで減少した場合に充電を行うか、という各利用者の個人行動の傾向(充電の意思決定の特徴)を取得することができる。
なお、図5には図示していないが、因子情報抽出部112aは、さらに、車両プローブデータD1の時間帯別SOCを参照して、単位時間帯当たりのSOC上昇量から算出される充電速度情報D14等を抽出してもよい。これにより、利用者P1、P2・・・が充電設備301、302・・・のうち急速充電に対応している設備を好むか否か、等を把握することができる。
本実施形態に係る個別モデル取得部112は、以上のようにして、複数の因子情報(「車両位置」及び「SOC」)の過去の実績値である因子実績データD10(時間帯別活動エリアデータD12、時間帯別SOCデータD13)を抽出する。なお、因子情報抽出部112aは、上記以外にも、利用者P1、P2・・・の充電の意思決定と因果関係が認められる他の因子情報(例えば、使用する充電設備301、302・・・が急速充電に対応しているか否か、各充電設備301、302・・・において提供される付加サービスの種類等)の実績値を抽出してもよい。
(利用率実績データ)
図6は、第1の実施形態に係る個別モデル取得部の機能を説明する第3の図である。
次に、個別モデル取得部112は、プローブデータ記憶部120に記憶された過去の車両プローブデータD1(図3)を参照して、各充電設備301、302・・・の電力需要の実績値(電力需要実績データ)を抽出する。本実施形態においては、具体的には、個別モデル取得部112の電力需要情報抽出部112bが、充電設備301、302・・・各々における電力需要の実績値として、時間帯別の利用率の実績値を示す利用率実績データD20を抽出する。
利用率実績データD20は、具体的には、各利用者P1、P2・・・の、曜日・時間帯別の充電設備301、302・・・の利用頻度(利用率)を示した統計データである(図6参照)。電力需要情報抽出部112bは、過去の車両プローブデータD1に記録された車両位置情報や時間帯別SOC情報(図3)に基づいて、利用者P1、P2・・・が各曜日・時間帯別に充電設備301、302・・・の各々を利用中であるか否かを抽出し、その時間帯別の利用頻度を利用率として算出する。このようにして、電力需要情報抽出部112bは、予測の対象とする情報(すなわち、充電設備301、302・・・の時間帯別の利用率)の過去の実績値である利用率実績データD20を得ることができる。
例えば、利用者P1についての充電設備301の利用率実績データD20(図6)によれば、利用者P1は、平日全体に渡って18時前後に充電設備301を利用している頻度(率)が高いことを読み取ることができる。
(個別モデルの構築)
図7は、第1の実施形態に係る個別モデル取得部の機能を説明する第4の図である。
次に、図7を参照しながら、上述の因子実績データD10と、利用率実績データD20と、に基づいて各利用者P1、P2・・・の個別モデルを生成するモデル構築処理部112cの機能について説明する。
モデル構築処理部112cは、プローブデータ記憶部120に蓄積されたプローブカー201、202・・・の車両プローブデータD1の各々から抽出された因子実績データD10と、利用率実績データD20と、を入力して、これらの相関関係を示す個別モデルM1、M2・・・を、利用者P1、P2・・・別(すなわち、プローブカー201、202・・・別)に生成する。
具体的には、モデル構築処理部112cは、利用者P1(プローブカー201)に係る時間帯別活動エリアデータD12(図4)、並びに、時間帯別SOCデータD13(図5)の各々の変数である「車両位置」、「SOC」を、個別モデルM1の因子x、xとして選択する。なお、モデル構築処理部112cは、利用者P1、P2・・・の充電の意思決定の要因となる他の因子情報(例えば、充電設備301、302・・・が急速充電に対応しているか否か、付加サービスの種類等)をさらに因子x、x・・・としてもよい。
一方、モデル構築処理部112cは、プローブカー201に係る利用率実績データD20(図6)として抽出された各充電設備301、302・・・の利用率の実績値を応答y、y・・・とする。応答y、y・・・は、個別モデルM1における因子x、x・・・の入力に対する応答である。
モデル構築処理部112cは、因子x、x・・・に対する応答y、y・・・の相関関係を示す個別モデルM1を生成する。生成された個別モデルM1は、利用者P1(プローブカー201)に対応する。図7に示すように、例えば、利用者P1が充電設備301を利用する率(利用率)yと、因子x、x・・・との相関関係は、式(1)のように表される。
Figure 2015163027
ここで、式(1)の各因子x、x・・・に係る係数a11、b11・・・は、因子x、x・・・の因子負荷量である。すなわち、この因子負荷量が大きい因子ほど応答yとの相関関係が強く、小さい因子ほど応答yとの相関関係が弱いことを示す。
例えば、モデル構築処理部112cは、時間帯別活動エリアデータD12と、利用率実績データD20と、に基づいて、車両位置(因子x)と、充電設備301の利用率(応答y)との相関関係の強さを表す因子負荷量a11を算出することができる。
ここで、因子負荷量a11の値が大きい場合、利用者P1の充電設備301における利用率(応答y)は、時間帯別の利用者P1(プローブカー201)の車両位置(因子x)と強い因果関係を有していることを表している。すなわち、これは、「利用者P1は、充電設備が現在位置から近いか否かを重視して、充電設備を選択している」という利用者P1自身の特徴を説明している。
同様に、モデル構築処理部112cは、時間帯別SOCデータD13と、利用率実績データD20と、に基づいて、SOC(因子x)と、充電設備301の利用率(応答y)との相関関係の強さを表す因子負荷量b11を算出することができる。
ここで、例えば、因子負荷量b11の値が小さい場合、利用者P1の充電設備301における利用率(応答y)は、時間帯別の利用者P1(プローブカー201)のSOCとの相関関係が弱いことを表している。すなわち、これは、「利用者P1は、現時点のバッテリー残量に関わらず、充電設備301で充電を行う」という利用者P1自身の特徴を説明している。
このように、本実施形態に係る個別モデル取得部112は、過去に取得された既知の因子x、x・・・(因子実績データD10)と、既知の応答y、y・・・(利用率実績データD20)との相関関係を表す式の束を導出して、利用者P1に係る充電の意思決定の特徴を反映した個別モデルM1を生成する。
なお、既知の因子x、x・・・と、既知の応答y、y・・・と、から各々の相関関係を表す式(例えば、上述の式(1))を導出する手法としては、例えば、既知のモデル構築手法であるSVM(Support vector machine)やNN(Neural network)等に基づくシミュレーションモデル構築手法を用いてもよいし、よりシンプルには、一般的な最小二乗法を用いてもよい。また、相関関係を表す式(1)は一例であって、他に、より複雑な相関関係を表す式(二次関数、指数・対数関数など)で表現される場合があってもよい。
図7に示すように、モデル構築処理部112cは、利用者P2、P3・・・(プローブカー202、203・・・)についても同様の処理を行い、各々の特徴が反映された個別モデルM2、M3・・・を生成する。そして、生成した各個別モデルM1、M2・・・を、個別モデル記憶部121に記憶する。
なお、以下の説明では、区画エリアA1に設置された充電設備301に関する応答yと、利用者P1(プローブカー201)に関する因子x、x・・・と、の相関関係を示す関数として、式(2)のように記載する(図7参照)。
Figure 2015163027
図8は、第1の実施形態に係る個別モデルの例を説明する図である。
上述の各処理を経て、個別モデル取得部112によって生成された個別モデルM1は、利用者P1についての、充電の意思決定の特徴を反映している。すなわち、個別モデルM1は、現時点において、利用者P1(プローブカー201)の車両位置が“x”であって、なおかつSOCが“x”であった場合に、当該利用者P1が、充電設備301、302・・・を利用する率(利用率)y、y・・・を与えることができる。
同様に、個別モデルM2、M3・・・は、利用者P2、P3・・・の充電の意思決定の特徴を反映する。
(エリア特徴値予測部の機能)
図9は、第1の実施形態に係るエリア特徴値予測部の機能を説明する第1の図である。
本実施形態に係るエリア特徴値予測部114は、車両に関する実測データとしてプローブデータ記憶部120に蓄積された車両プローブデータD1を入力し、複数に区画された各区画エリアA1、A2・・・のエリア特徴値を予測する。ここで、「エリア特徴値」とは、区画エリアA1、A2・・・内に属する車両に関する特徴を示す。なお、本実施形態において、「エリア特徴値」とは、具体的には「エリア別車両密度」及び「エリア別平均SOC」(エリア別平均充電率)であるものとして説明するが、他の値(例えば、「エリア別平均車両速度」、「エリア別平均電費」(対象エリアを走行するのに必要な電力消費量の平均)等)が含まれていてもよい。
図9に示すように、まず、エリア特徴値予測部114は、地図・カレンダーデータ記憶部123に予め記憶される地図データD4、カレンダーデータD5と、プローブデータ記憶部120に記憶、蓄積された各プローブカー201、202・・・の車両プローブデータD1と、を入力する。そして、エリア特徴値予測部114は、これらの各種データに基づいて、各区画エリアA1、A2・・・の「エリア別車両密度」の将来の予測を示す「車両密度分布予測データD30F」、並びに、「エリア別平均SOC」の将来の予測を示す「平均SOC分布予測データD31F」を算出する。なお、車両密度分布予測データD30F及び平均SOC分布予測データD31Fは、いずれも、各区画エリアA1、A2・・・のエリア特徴値の予測値を示す「エリア特徴値予測データD3F」に該当するものである。
地図データD4には、都市T1の道路網、区画(区画エリアA1、A2・・・の範囲)、及び充電設備301、302の位置等が記録される。一方、カレンダーデータD5には、過去から未来にかけての平日・休日(祝日)等の暦が記憶される。
図10、図11は、第1の実施形態に係るエリア特徴値予測部の機能を説明する第2、第3の図である。
エリア特徴値予測部114は、具体的には、複数のプローブカー201、202・・・の車両プローブデータD1(図3)の日付・時刻情報及び車両位置情報等を参照して、プローブカー201、202・・・の各々が、区画エリアA1、A2・・・の何れに属していたか、を時間帯別に特定する。次に、エリア特徴値予測部114は、時間帯別、区画エリアA1、A2・・・別に各プローブカー201、202・・・が存在する車両台数を算出する。エリア特徴値予測部114は、プローブカー201、202・・・の車両台数を区画エリアA1、A2・・・各々の区画面積で除算し、これを、各区画エリアA1、A2・・・の各々に存在する車両全体の車両密度(エリア別車両密度)を示すものと近似して、車両密度分布実績データD30を求める。
なお、図10においては、エリア特徴値予測部114が算出した各区画エリアA1、A2・・・の車両密度の大小関係を、当該各区画エリアA1、A2・・・の色の濃さで表現している(図10左側参照)。
さらに、エリア特徴値予測部114は、車両プローブデータD1(図3)のSOC情報を参照して、各時間帯及び各区画エリアA1、A2・・・に属する各プローブカー201、202・・・のSOCを抽出する。そして、エリア特徴値予測部114は、上記と同様の手法により、時間帯、区画エリアA1、A2・・・別に存在する電気自動車の平均SOC(エリア別平均SOC)を示すSOC分布実績データD31を求める(図10左側参照)。
エリア特徴値予測部114は、各区画エリアA1、A2・・・のエリア別車両密度またはエリア別平均SOCの時間推移の実績値(図10左側)に対し、カレンダー情報D5の暦(平日か、休日・祝日か)を当てはめて、その周期的な規則性を抽出する処理を行う(図10右側参照)。例えば、エリア特徴値予測部114は、「平日」におけるエリア別車両密度(エリア別平均SOC)の時間推移、及び、「休日・祝日」におけるエリア別車両密度(エリア別平均SOC)の時間推移の実績値を日別に抽出し、「平日」、「休日・祝日」別の平均的な時間推移を算出する。これにより、エリア特徴値予測部114は、得られたエリア別車両密度(エリア別平均SOC)の「平日」、「休日・祝日」別の平均時間推移を得る。
なお、本実施形態において、エリア特徴値予測部114は、このようにして求めた車両密度の「平日」、「休日・祝日」別の、過去における平均時間推移を、各区画エリアA1、A2・・・の車両密度の将来における予測値(車両密度分布予測データD30F)として用いる(図11参照)。具体的には、エリア特徴値予測部114は、将来における日付が「平日」、「休日・祝日」の何れに該当するかをカレンダーデータD5に基づいて特定するとともに、「平日」、「休日・祝日」の各々に対応する平均時間推移(図11左側、右側)を参照し、これを将来における各区画エリアA1、A2・・・のエリア別車両密度の予測値とする。
エリア特徴値予測部114は、同様にして、エリア別平均SOCの「平日」、「休日・祝日」別の、過去における平均時間推移を、各区画エリアA1、A2・・・の平均SOCの予測値(平均SOC分布予測データD31F)として用いる。
なお、上述の例では、エリア特徴値予測部114は、エリア特徴値(エリア別車両密度、エリア別平均SOC)の平均時間推移を「平日」または「休日・祝日」の何れかに分類するとともに、将来の日付がその何れ(平日、休日・祝日)に該当するかに基づいてエリア特徴値を予測するものとしている。しかし、他の実施形態においてはこの態様に限定されず、さらに分類項目を増やしてもよい。例えば、エリア特徴値予測部114は、外部から受信可能な天気予報情報を取得し、将来において予測される天気が「晴れ」か「雨」かに基づいてエリア特徴値を予測してもよい。
この場合、エリア特徴値予測部114は、時間帯別の実際の天気を示す天気実績情報、及び、将来の天気の予測を示す天気予報情報を取得可能な天気情報取得部を有している。そして、エリア特徴値予測部114は、エリア別車両密度またはエリア別平均SOCの時間推移の実績値(図10左側)に対し、当該天気情報取得部によって取得された天気実績情報(その時間帯において「晴れ」か、「雨」か)を当てはめて、エリア別車両密度またはエリア別平均SOCの時間推移と、天気との規則性を抽出する処理を行う。
このようにすることで、エリア特徴値予測部114は、暦が「平日」か「休日・祝日」か、に加え、別途取得する天気予報情報(「晴れ」か「雨」かの将来の予測)に基づいて、エリア別車両密度及びエリア別平均SOCを予測することができる。
図12は、第1の実施形態に係る需要予測演算部の処理フローを説明するフローチャート図である。
次に、第1の実施形態に係る需要予測演算部113の処理フローを、図12等を参照しながら順を追って説明する。
図12に示すように、需要予測演算部113は、エリア特徴値予測部114が算出したエリア別特徴値予測データD3を取得するステップ(ステップS01)と、当該エリア別特徴値予測データD3を、個別モデル取得部112が生成した個別モデルM1、M2・・・の各々に入力するステップ(ステップS02)と、の二段階の処理を行う。
ステップS01では、まず、エリア特徴値予測部114が図9〜図11を用いて説明した処理を実行して、エリア別特徴値予測データD3(車両密度分布予測データD30F、平均SOC分布予測データD31F)を算出する。需要予測演算部113は、エリア特徴値予測部114から、算出されたエリア別特徴値予測データD3の入力を受け付ける。
ここで、以下に説明するように、エリア特徴値予測部114が取得した車両密度分布予測データD30F、平均SOC分布予測データD31Fは、個別モデルM1、M2・・・の因子x(車両位置)、因子x(SOC)の各々に対応する。すなわち、ステップS02において、需要予測演算部113は、取得した車両密度分布予測データD30F、平均SOC分布予測データD31Fのそれぞれが示す車両位置の予測値及びSOCの予測値を、個別モデルM1、M2・・・各々の因子x、xに入力する(図8参照)。
図13は、第1の実施形態に係る需要予測演算部の処理を説明する第1の図である。
以下、エリア特徴値予測部114のステップS02(図12)における具体的な処理を、図13を参照しながら説明する。
図13に示すように、需要予測演算部113は、個別モデルM1の車両位置(因子x1)をそれぞれの区画エリアA1、A2・・・の存在率に応じた重みづけをする。具体的には、車両密度分布予測データD30Fによって示された各区画エリアA1、A2・・・の車両密度を、利用者P1の存在率の予測とする。ここで、区画エリアA1、A2・・・の車両密度が高いほど、利用者P1が当該区画エリアA1、A2・・・に存在する率も比例して高くなる、と見なしている。
需要予測演算部113は、区画エリアA1、A2・・・のそれぞれを因子xに代入して得られた複数の応答yを、各々の区画エリアA1、A2・・・の存在率に応じた値で重みづけをして合算する。例えば、得られた車両密度分布予測データD30Fより、将来のある時点において利用者P1(プローブカー201)が区画エリアA1に存在する率の予測値が30%、区画エリアA2に存在する率の予測値が5%であったとする。この場合、需要予測演算部113は、因子xに“A1”を代入して得た応答(fA1P1(A1))と、因子xに“A2”を代入して得た応答(fA1P1(A2))と、の両方に対し、それぞれ、30%、5%に対応した重みづけをして合算することで、充電設備301の利用率の予測値yを算出する。具体的には、充電設備301の利用率の予測値yは、y=fA1P1(A1)×30%+fA1P1(A2)×5%+・・・と算出される。
同様に、需要予測演算部113は、平均SOC分布予測データD31Fにより、各区画エリアA1、A2・・・のそれぞれにおいて示されたSOCの予測値を因子xに代入して得られた複数の応答yを算出する。例えば、得られた平均SOC分布予測データD31Fより、区画エリアA1における平均SOCが80%、区画エリアA2における平均SOCが25%であったとする。この場合、需要予測演算部113は、因子xに“A1”を代入する場合、因子xにはSOC80%を代入し、fA1P1(A1、80%))を算出する。また、需要予測演算部113は、因子xに“A2”を代入する場合、因子xにはSOC25%を代入し、fA1P1(A2、25%)を算出する。このようにして、需要予測演算部113は、利用者P1についての各充電設備301、302・・・の利用率の予測結果を示す利用率予測データD20fを算出する。
このように、本実施形態に係る需要予測演算部113は、ステップS02(図11)において、利用者P1に対応する個別モデルM1の入力(因子情報)に、都市T1全体の集団行動の傾向を把握しやすいエリア特徴値(エリア別車両密度、エリア別平均SOC)の予測値を用いる。このようにすることで、需要予測演算部113は、比較的高精度で予測が可能な都市T1の集団行動の傾向を、個別モデルの因子の一部として採用することができるので、より遠い将来においても精度の高い予測結果を得ることができる。
図14は、第1の実施形態に係る需要予測演算部の処理を説明する第2の図である。
需要予測演算部113は、図14に示すように、他の利用者P2、P3・・・に対応する個別モデルM2、M3・・・に対しても、同様に、車両密度分布予測データD30F、平均SOC分布予測データD31Fを代入し、各利用者P2、P3・・・の利用率予測データD20fを算出する。
各利用者P1、P2・・・全てについての個別利用率予測データD20fを算出すると、需要予測演算部113は、全ての個別利用率予測データD20fを充電設備301、302・・・ごとに総計して、各充電設備301、302・・・の各時間帯における利用率の予測値を算出する。例えば、利用者P1、P2・・・の各々が、ある時間帯において充電設備301を利用する率が、y11、y21・・・であると予測された場合、充電設備301の当該時間帯における利用率の予測値Yは、Y=y11+y21+y31+・・・として算出することができる。需要予測演算部113は、同様にして、他の充電設備302、303・・・の同時間帯における利用率の予測値Y、Y・・・を算出する(図14参照)。
図15は、第1の実施形態に係る需要予測演算部の機能を説明する第3の図である。
需要予測演算部113は、上述の処理(図14参照)により、受電設備301、302・・・の各々についての将来(例えば、現時点から24時間以内)の利用率の予測値の推移が予測された利用率予測データD20Fを取得する(図15参照)。
需要予測演算部113は、以上のようにして取得された各充電設備301、302・・・の利用率予測データD20F(電力需要予測データ)を、データ出力部102を介して、供給電力管理装置400に出力する。供給電力管理装置400は、各充電設備301、302・・・の電力需要の予測結果(利用率予測データD20F)に基づいて、各充電設備301、302・・・に対する電力の配電計画に反映させる。例えば、充電設備301の利用率が高くなると予測される時間帯においては、供給電力管理装置400は、当該時間帯において、その需要に対応可能な電力供給が成されるように配電計画を生成する。これにより、電力供給システム1は、予め予測された各充電設備301、302・・・の電力需要に応じた必要分の電力を適切に生成・供給することができるので、電力供給サービス運用の効率化を図ることができる。
(効果)
上述の第1の実施形態に係る電力供給システム1によれば、電力需要予測装置100は、まず、特定の地域(都市T1)における集団行動の傾向を反映する、区画エリア別の特徴値(エリア特徴値)を予測するステップ(ステップS01(図12))を実行する。また、電力需要予測装置100は、当該予測されたエリア特徴値を、各個人の充電の意思決定の特徴を反映した個別モデルに入力するステップ(ステップS02(図12))を実行する。本実施形態に係る電力需要予測装置100は、このように、「集団行動の傾向に基づく予測」と「個人行動の傾向に基づく予測」の2段階の処理に分けて各充電設備の利用率を予測する。
充電の時期や充電場所は、個々の走行状況と運転者の嗜好によって異なるため、電力需要を精度よく予測することが困難であった。しかし、本実施形態に係る電力供給システム1によれば、個人行動の傾向に基づく予測(ステップS02)に示す処理により、電力供給システム1は、各個人の生活スタイルや価値観などがシミュレーション解析に反映され、利用者の意思に基づいた精度の高い電力需要予測を行うことができる。また、電力需要予測装置100は、各利用者の意思決定を反映した複数の個別モデルの集まりを都市全体の集団の意思決定と近似して電力需要を予測するものとしている。したがって、集団全体の行動傾向を直接モデル化するのに必要な実績データのデータ量よりも少ないデータ量で精度の高いシミュレーションモデルを構築することができる。
また、需要予測演算部113は、集団行動の傾向に基づく予測(ステップS01)において、上記個別モデルに入力する因子の少なくとも一部に、集団行動の傾向として精度よく予測可能なエリア特徴値を採用している。例えば、本実施形態においては、「エリア特徴値」として、エリア別車両密度及びエリア別平均SOCを予測の対象としている。このエリア別車両密度、エリア別平均SOC等は、いずれも都市全体の集団行動の傾向として、一定時間ごと(例えば一日ごと、一週間ごと)の周期的な規則性が高い特徴を有している。つまり、エリア別車両密度等は、過去に取得された実績値を、将来における各時間帯においても精度よく再現し得る。したがって、規則性の高い集団行動の傾向から導かれる予測値を、個別モデルの因子として入力することで、比較的遠い将来(例えば、一週間後)まで高い精度で予測することが可能となる。
また、従来の電力需要の予測においては、需要との因果関係がある情報を用いないと適切に予測できない可能性あり、因果関係の強い因子を見つけるのが困難であった。しかし、本実施形態のように、充電行動に至る要因を「集団行動の傾向に基づく予測」と「個人行動の傾向に基づく予測」とに細分化することで、予測する要因と、計測できるデータの因果関係を容易に把握できる。これにより、デマンド・レスポンスなどを用いた需要のマネジメントがしやすくなる。
以上、第1の実施形態に係る電力供給システム1によれば、限られた実績データに基づいて、より精度の高い電力の需要予測が可能となる。
(第1の実施形態の変形例)
なお、上述の実施形態において、エリア特徴値予測部114は、過去に蓄積された車両プローブデータD1に基づいて、各区画エリアA1、A2・・・のエリア特徴値の予測値であるエリア特徴値予測データD3Fを取得するものとして説明した。しかし、他の実施形態に係るエリア特徴値予測部114は、過去の車両プローブデータD1ではなく、都市T1全体の行動傾向を把握するために観測される情報に基づいてエリア特徴値予測データD3Fを取得してもよい。具体的には、他の実施形態に係るエリア特徴値予測部114は、区画エリアA1、A2・・・内の道路網において、トラフィックカウンタ等を用いて観測された断面交通量実績データを取得する断面交通量情報取得部を備え、取得した断面交通量実績データから導出されるエリア別車両密度の推移の規則性を抽出することでエリア別車両密度の予測を行う。
ここで、第1の実施形態において、プローブカー201、202・・・の台数が限られている場合、車両プローブデータD1の全データ量が少ないために集団行動の傾向を精度よく再現できていない場合がある。しかし、上記変形例の場合、集団行動の傾向を把握するために取得された実測データ(断面交通量等)に基づいてエリア別特徴値の予測を行うため、その予測の精度を一層高めることができる。
図16は、第1の実施形態の変形例に係るエリア特徴値予測部の機能を説明する図である。
本変形例においては、ステップS01(図12)における「集団行動の傾向に基づく予測」を更に、ガソリン車も含む全車両の状況に依存する「交通状況の予測」と、電気自動車の状況に依存する「SOC分布の予測」に分割して予測を行う。
具体的には、まず、上述の断面交通量情報取得部が、トラフィックカウンタ等を介して得られる断面交通量の実績データ(交通量実績データD6)を取得する。そして、エリア特徴値予測部114は、地図・カレンダーデータ記憶部123に記憶される地図データD4、カレンダーデータD5とともに交通量実績データD6を入力し(ステップS010)、車両密度分布予測データD30Fを取得する(ステップS011)。なお、この処理は、図9〜図11を用いて説明した処理内容と同等の処理によって成される。しかし、ここで取得される車両密度分布予測データD30Fは、電気自動車のみならずガソリン車等が含まれた車両全体の行動傾向に基づいた予測データであるため、第1の実施形態の場合よりも予測の精度が高い。
一方、エリア特徴値予測部114は、プローブカー201、202・・・において取得された各車両プローブデータD1から抽出可能な時間帯別SOCデータD13(図5)を取得する(ステップS012)。この時間帯別SOCデータD13は、プローブカー201、202・・・の現時点におけるSOCの実績値を示している。
エリア特徴値予測部114は、ステップS011で取得された車両密度分布予測データD30Fと、プローブカー201、202・・・の現時点におけるSOCの実績値を示す時間帯別SOCデータD13と、を入力して平均SOC分布予測データD31Fを取得する。具体的には、エリア特徴値予測部114は、車両密度分布予測データD30Fにより予測される車両全体の交通流と、各電気自動車の現時点におけるSOCと、に基づいて、当該予測される交通流に沿って走行する電気自動車の残容量(SOC)を算出する。これにより、エリア特徴値予測部114は、平均SOC分布予測データD31Fを取得する。このようにして取得された平均SOC分布予測データD31Fは、車両密度分布予測データD30Fと同様に、電気自動車以外の車両全体の行動傾向に基づいた予測データとなるため、予測精度が高いものとなる。
エリア特徴値予測部114は、図16において各々求めたエリア特徴値の予測値(車両密度分布予測データD30F、平均SOC予測データD31F)を、事前に生成した各個別モデルM1、M2・・・に入力し、各充電設備301、302・・・の利用率の予測値を算出する(図13〜図15参照)。
以上、上記変形例に係る電力需要予測装置100によれば、都市T1全体における集団行動の傾向を、当該都市T1に属する車両全体についての統計データ(断面交通量等)に基づいて予測することで、予測の精度を一層高めることができる。
なお、上述の例において、エリア特徴値予測部114は、トラフィックカウンタを介して取得される断面交通量の実測値の他、パーソントリップデータ、土地利用データやアンケートなどの交通需要データを用いてもよい。また、これらの各種データを基に、所定の交通流シミュレータを用いて種々のエリア特徴値を予測してもよい。
また、計測された交通量等の情報を交通流シミュレータに適用し、都市T1全体の時間帯別の交通流を再現することで、より詳細なエリア特徴値(例えば、当該区画エリア内における車両全体の平均速度や平均加速度を示すエリア別平均速度・加速度等)の予測値を取得してもよい。さらにこの場合、エリア特徴値予測部114は、予測された交通流のみならず、速度、加速度などの車両走行情報を加味して平均SOC分布予測データD31Fを予測してもよい。このようにすることで、予測に用いる情報量が増えるので、集団行動の傾向に基づく予測の精度をさらに高めることができる。
(個別モデルの変形例)
また、個別モデルM1、M2・・・の態様は上述の態様(図8、図14)に限定されず、例えば以下のように変更可能である。
図17は、第1の実施形態の変形例に係る個別モデル取得部の機能を説明する図である。
第1の実施形態に係る個別モデル取得部112は、過去に蓄積された車両プローブデータD1に基づいて因子実績データD10(因子x、x・・・)と、利用率実績データD20(応答y、y・・・)との相関関係を、式(1)、(2)等の関数の束を導出することによって個別モデルを構築する。
この変形例として、例えば、個別モデル取得部112は、決定木学習に基づく各利用者P1、P2・・・の個別モデルM1’、M2’・・・を生成してもよい。例えば、図17に示すように、モデル構築処理部112cは、因子実績データD10及び利用率実績データD20に基づいて、利用者P1の充電設備301に対する時間帯別の利用率の予測値を導出する個別モデルM1’(決定木モデル)を構築する。
例えば、図17に例示する決定木モデルでは、利用者P1は、「充電設備301を利用するか否か?」という問いに対し、現時点において「運転中か否か?」、「距離が○○km以内か否か?」、「SOCが△△%未満か否か?」・・・という条件を満たすか否か、の経路をたどり、「充電設備301を利用する」にたどり着くか、「充電設備301を利用しない」にたどり着くか、の割合を算出することで、利用率の予測値を導出する。また、他にも、「急速充電に対応しているか否か」、「付加サービスが利用可能か否か」、等の条件が反映されていてもよい。
このように、意思決定の要因となる複数の条件(因子x、x・・・に相当)を満たしているか否か、によって導かれる意思決定の結果(応答y、y・・・に相当)をモデル化する。
このようにすることで、利用者P1、P2・・・各々の充電の意思決定をよりわかりやすく記述することができ、利用者P1、P2・・・各々が、何に基づいて充電を行うという意思に至ったか、をより明確化できる。そうすることで、例えば、新たな充電設備の設置やサービスの提供等により、充電設備301、302・・・各々の電力需要の調整を容易化させることができる。
なお、上述の電力供給システム1では、各充電設備301、302・・・の電力需要として、時間帯別の利用率を予測するものとして説明したが、他の実施形態においてはこの態様に限定されない。例えば、他の実施形態に係る電力供給システムは、予測の対象とする情報として、充電設備301、302・・・における時間帯別の供給電力量[kW]を予測の対象にしてもよい。具体的には、個別モデル取得部112の電力需要情報抽出部112bが、予測の対象とする応答y、y・・・に対し、各充電設備301、302・・・の「供給電力量」の実績データ(供給電力実績データ)を選択することで、当該供給電力量の予測結果である供給電力予測データを取得可能となる。
<第2の実施形態>
第1の実施形態に係る需要予測演算部113が行う「個人の行動傾向に基づく予測」(図12、ステップS02)は、事前に取得された実績データである車両プローブデータD1に基づいて生成された、各個人の充電の意思決定の特徴を反映した個別モデルM1、M2・・・を用いて行うものとして説明した。
これに対し、第2の実施形態においては、個人が立ち寄る充電設備301、302・・・までの距離を用いて需要を分配する方法により「個人の行動傾向に基づく予測」を行う。
(需要予測演算部の機能)
図18は、第2の実施形態に係る需要予測演算部の機能を説明する図である。
本実施形態に係る需要予測演算部113は、第1の実施形態(またはその変形例)と同様の方法で「集団行動の傾向に基づく予測」を行う。具体的には、需要予測演算部113は、エリア特徴値予測部114が算出した車両密度分布予測データD30Fを取得する(図12、ステップS01)。需要予測演算部113は、ステップS01において取得した車両密度分布予測データD30Fにより、利用者P1の区画エリアA1、A2・・・別の存在率を把握できる。
需要予測演算部113は、この車両密度分布予測データD30Fを入力として「個人行動に基づく予測」を行う。
図18を参照しながら、例として、利用者P1(プローブカー201)が都市T1内のある区画エリアA1に存在している場合を説明する。需要予測演算部113は、個別モデル取得部112が取得する個別モデルに基づいて、区画エリアA1における利用者P1個人の行動傾向を予測する。
ここで、本実施形態に係る個別モデル取得部112は、全ての利用者(個人)に当てはまる意思決定の特徴のみを反映した個別モデルを有している。具体的には、例えば、個別モデル取得部112は、現在位置からの距離(後述する「一般化距離」)が近いほど、その充電設備301、302・・・に立ち寄る率が高くなる、という個人の意思決定の特徴を反映した個別モデルを有している。
まず、需要予測演算部113は、地図データD4等を用いて利用者P1の現在位置から各充電設備301、302・・・までの距離を算出する。ここで、需要予測演算部113が算出する各充電設備301、302・・・までの距離とは、その行程に存在する渋滞や混雑度などを加味した「一般化距離」である。具体的には、需要予測演算部113は、現在位置(区画エリアA1)から、ある充電設備302が存在する区画エリアA2までの一般化距離L2、他の充電設備303が存在する区画エリアA3までの一般化距離L3等を算出する。
例えば、図18に示すように、区画エリアA1から区画エリアA3までの行程の途中に渋滞Qが発生しているため、車両密度が低い区画エリアA5と、車両密度が高い区画エリアA6が存在している。この場合、需要予測演算部113は、車両密度が所定の閾値を上回る区画エリア(区画エリアA6)を特定するとともに、当該区画エリアA6を通過する行程長に所定の渋滞係数J(J>1)を乗算した上で一般化距離L3を算出する。
一方、区画エリアA1から区画エリアA2までの行程の途中(区画エリアA4等)には渋滞が発生していない。したがって、需要予測演算部113は、区画エリアA1から区画エリアA2までの実際の距離を一般化距離L2とする。
これにより、需要予測演算部113は、行程の一部に渋滞がある場合には、実際の距離よりも長くなる一般化距離を算出する。需要予測演算部113は、渋滞の有無が加味された一般化距離L1、L2・・・を充電設備301、302・・・別に算出する。
本実施形態に係る需要予測演算部113は、算出された一般化距離L1、L2・・・を上述した個別モデルMに入力して、利用者P1が各充電設備301、302・・・に立ち寄る率(利用率)の予測値を算出する。例えば、この個別モデルMは、具体的には、一般化距離L1、L2・・・と、各充電設備301、302・・・に立ち寄る率と、を負の相関関係を有する所定の関数で関連付けたモデルである。これにより、需要予測演算部113は、一般化距離L1、L2・・・が小さい充電設備301、302・・・ほど、当該充電施設301、302・・・に立ち寄りやすい、という利用者P1の個人行動の傾向を反映させながら、各充電設備301、302・・・の利用率の予測値を求めることができる。
なお、上述のようにして求められた各充電設備301、302・・・の利用率の予測値は、利用者P1がエリアA1に属していると仮定した場合における利用率の予測値である。需要予測演算部113は、利用者P1が他の区画エリアA1、A2・・・に存在する場合も同様の処理を行う。需要予測演算部113は、車両密度分布予測データD30Fを入力とし、上記の処理で算出された複数の利用率の予測値を、利用者P1の区画エリアA1、A2・・・における存在率で重みづけして合算する。
(効果)
以上のように、本実施形態に係る需要予測演算部113は、「個人行動の傾向に基づく予測」を、各充電設備301、302・・・の「一般化距離」に応じた利用者の利用率の予測値を算出することで行う。このようにすることで、「個人行動の傾向に基づく予測」の処理を簡素化し、車両プローブデータD1を取得して個別モデルM1、M2・・・を生成する労力を削減することができる。
なお、本実施形態においては、車両密度分布予測データD30F以外に、例えば、交通流シミュレータ(第1の実施形態の変形例を参照)を用いて算出された交通流の予測(交通流予測データ)を用いてもよい。ここで、交通流予測データとは、都市T1の各道路網における交通流(走行方向)の分布を示す情報である。この場合、需要予測演算部113は、車両の走行方向に応じた重みづけをしながら各充電設備301、302・・・についての一般化距離を算出する。具体的には、例えば、利用者P1(プローブカー201)は、区画エリアA1から区画エリアA3に向かう車両であったとする。この場合、充電設備303は、その進行方向に存在するため、走行方向に応じた重みづけを行うことなく一般化距離L3を算出する。一方、区画エリアA1から区画エリアA3に向かう利用者P1にとっては、区画エリアA7に存在する充電設備307は、反対方向に位置する。したがって、需要予測演算部113は、区画エリアA7までの実際の距離に方向係数H(H>1)を乗算することで一般化距離L7を算出する。
このようにすることで、個人行動の傾向に車両の走行方向を反映させることができるので、より精度の高い電力需要予測を行うことができる。
また、エリア特徴値予測部114は、さらに、各充電設備301、302・・・における混雑度の観測結果(実績値)に基づいて、混雑度(待ち時間)の予測値を取得可能としてもよい。この場合、需要予測演算部113は、上記「渋滞の有無」のみならず、各充電設備301、302・・・における「混雑度」の予測値を加味して一般化距離L1、L2・・・を算出してもよい。このようにすることで、各充電設備301、302・・・の混雑状況を反映した個人行動の傾向を予測することができる。
また、需要予測演算部113は、車両の現在位置と充電設備301、302・・・との間の「距離」として、上述のような「一般化距離」ではなく、実際の距離(実空間上における距離)のみに基づいて各充電設備301、302・・・の利用率の予測値を算出するものであってもよい。このようにすることで、需要予測演算部113の予測処理を簡素化することができる。
なお、上述の各実施形態に係る電力供給システムは、いずれも、電力需要予測装置100の予測結果に基づいて供給電力管理装置400が、予測結果に合わせた必要最小限の電力供給となるように配電計画に反映させることで、運用の効率化を図るものとして説明した。しかし、他の実施形態に係る電力供給システムは、受け付けた予測結果に応じて、都市T1に属する電気自動車の利用者に向けて、ある時間帯において所定の充電設備の利用を控えることを要求し、また、必要に応じて、別の時間帯において所定の充電設備の利用を促す内容のメールを通知する要求通知装置を有する態様であってもよい。例えば、この要求通知装置は、ある日の午後6時の時間帯において充電設備301の電力需要が著しく増加するという予測を受け付けた場合に、当該充電設備301の利用率が高い利用者に対して、その時間帯の利用を控え、電力需要が低いと予測された他の時間帯の利用を要求する旨のメールを送信する。これにより、各利用者がその要求に従うことで、電力需要のピークカット(ピークシフト)を簡便に行うことができる。
また、この場合、上述のような利用差し控え通知メールを受信の有無が、利用者P1、P2・・・各々の充電の意思決定の要因としてどの程度影響されるかを考慮した個別モデルを構築してもよい。これにより、上記利用差し控え通知メールの配信先の選定を効果的に実施することができる。
なお、上述の各実施形態における電力需要予測装置100の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより工程を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
1 電力供給システム
100 電力需要予測装置
101 データ受付部
102 データ出力部
110 CPU
111 データ蓄積処理部
112 個別モデル取得部
112a 因子情報抽出部
112b 電力需要情報抽出部
112c モデル構築処理部
113 需要予測演算部
114 エリア特徴値予測部
120 プローブデータ記憶部
121 個別モデル記憶部
123 地図・カレンダーデータ記憶部
201、202・・・ プローブカー
301、302・・・ 充電設備
400 供給電力管理装置

Claims (7)

  1. 車両に関する実測データを入力し、複数に区画された区画エリア別に、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するエリア特徴値予測部と、
    前記エリア特徴値を入力とし、特定の車両の、特定の充電設備における電力需要を出力とする、当該特定の車両各々の個別モデルを取得する個別モデル取得部と、
    前記予測されたエリア特徴値を前記個別モデルに入力し、当該個別モデルに対応する特定の車両の、前記特定の充電設備における電力需要の予測値を算出する需要予測演算部と、
    を備える電力需要予測装置。
  2. 前記エリア特徴値予測部は、
    前記エリア特徴値として、前記区画エリア内における車両密度、当該区画エリア内における車両全体の平均速度、及び、当該区画エリア内に属する車両全体のバッテリーの平均充電率のうちの少なくとも一つを含む
    ことを特徴とする請求項1に記載の電力需要予測装置。
  3. 前記個別モデル取得部は、
    前記車両に関する実測データに基づいて、特定の車両が特定の充電設備において充電を行う意思決定の要因となる因子情報の実績値と、当該特定の車両の、前記特定の充電設備における電力需要を示す実績値と、の相関関係を示す個別モデルを、前記特定の車両別に生成する
    ことを特徴とする請求項1または請求項2に記載の電力需要予測装置。
  4. 前記個別モデル取得部は、
    前記特定の車両の現在位置と前記特定の充電設備との間の距離と、当該特定の充電設備における電力需要と、の相関関係を示す個別モデルを取得する
    ことを特徴とする請求項1または請求項2に記載の電力需要予測装置。
  5. 請求項1から請求項4の何れか一項に記載の電力需要予測装置と、
    前記電力需要予測装置の予測結果に応じて、前記充電設備各々の供給電力を調整する供給電力管理装置と、
    を備える電力供給システム。
  6. 車両に関する実測データを入力し、複数に区画された区画エリア別に、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するステップと、
    前記エリア特徴値を入力とし、特定の車両の、特定の充電設備における電力需要を出力とする、当該特定の車両各々の個別モデルを取得するステップと、
    前記予測されたエリア特徴値を前記個別モデルに入力し、当該個別モデルに対応する特定の車両の、前記特定の充電設備における電力需要の予測値を算出するステップと、
    を有する電力需要予測方法。
  7. 電力需要予測装置のコンピュータを、
    車両に関する実測データを入力し、複数に区画された区画エリア別に、当該区画エリア内に属する車両に関する特徴を示すエリア特徴値を予測するエリア特徴値予測手段、
    前記エリア特徴値を入力とし、特定の車両の、特定の充電設備における電力需要を出力とする、当該特定の車両各々の個別モデルを取得する個別モデル取得手段、
    前記予測されたエリア特徴値を前記個別モデルに入力し、当該個別モデルに対応する特定の車両の、前記特定の充電設備における電力需要の予測値を算出する需要予測演算手段、
    として機能させるプログラム。
JP2014038748A 2014-02-28 2014-02-28 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム Active JP6081941B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014038748A JP6081941B2 (ja) 2014-02-28 2014-02-28 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
EP15754499.0A EP3076512B1 (en) 2014-02-28 2015-02-20 Electricity-demand prediction device, electricity supply system, electricity-demand prediction method, and program
CN201580003428.4A CN105849998B (zh) 2014-02-28 2015-02-20 电力需求预测装置及预测方法、供电系统及记录介质
SG11201605579WA SG11201605579WA (en) 2014-02-28 2015-02-20 Electricity-demand prediction device, electricity supply system, electricity-demand prediction method, and program
PCT/JP2015/054780 WO2015129575A1 (ja) 2014-02-28 2015-02-20 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
US15/110,867 US20160335377A1 (en) 2014-02-28 2015-02-20 Electricity-demand prediction device, electricity supply system, electricity-demand prediction method, and program
TW104106296A TWI638328B (zh) 2014-02-28 2015-02-26 電力需求預測裝置、電力供給系統、電力需求預測方法、程式、供給電力管理裝置
JP2017007833A JP6414760B2 (ja) 2014-02-28 2017-01-19 電力需要予測装置、電力供給システム、及び電力需要予測方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014038748A JP6081941B2 (ja) 2014-02-28 2014-02-28 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
JP2017007833A JP6414760B2 (ja) 2014-02-28 2017-01-19 電力需要予測装置、電力供給システム、及び電力需要予測方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017007833A Division JP6414760B2 (ja) 2014-02-28 2017-01-19 電力需要予測装置、電力供給システム、及び電力需要予測方法

Publications (2)

Publication Number Publication Date
JP2015163027A true JP2015163027A (ja) 2015-09-07
JP6081941B2 JP6081941B2 (ja) 2017-02-15

Family

ID=60201699

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014038748A Active JP6081941B2 (ja) 2014-02-28 2014-02-28 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
JP2017007833A Active JP6414760B2 (ja) 2014-02-28 2017-01-19 電力需要予測装置、電力供給システム、及び電力需要予測方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017007833A Active JP6414760B2 (ja) 2014-02-28 2017-01-19 電力需要予測装置、電力供給システム、及び電力需要予測方法

Country Status (7)

Country Link
US (1) US20160335377A1 (ja)
EP (1) EP3076512B1 (ja)
JP (2) JP6081941B2 (ja)
CN (1) CN105849998B (ja)
SG (1) SG11201605579WA (ja)
TW (1) TWI638328B (ja)
WO (1) WO2015129575A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022010A1 (ja) * 2015-07-31 2017-02-09 日産自動車株式会社 電動車両の充電支援方法及び充電支援装置
TWI614967B (zh) * 2016-08-16 2018-02-11 飛宏科技股份有限公司 雙槍充電系統之智慧型能量分配方法
JP2020018159A (ja) * 2018-05-15 2020-01-30 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited 負荷需要の時間的−空間的予測を提供する方法及びシステム
JP2020119080A (ja) * 2019-01-21 2020-08-06 本田技研工業株式会社 管理装置、管理方法、及びプログラム
JP2020140328A (ja) * 2019-02-27 2020-09-03 株式会社東芝 イベント発生確率分析装置およびイベント発生確率分析方法
JP2020142693A (ja) * 2019-03-07 2020-09-10 本田技研工業株式会社 車両制御装置、車両制御システム、車両制御方法、およびプログラム
JP2020154586A (ja) * 2019-03-19 2020-09-24 本田技研工業株式会社 決定装置、決定方法およびプログラム
JP2020159749A (ja) * 2019-03-25 2020-10-01 株式会社日立製作所 情報管理システム、情報管理方法、および情報管理装置
CN112124135A (zh) * 2020-08-19 2020-12-25 国电南瑞科技股份有限公司 一种电动汽车共享充电需求分析方法及装置
WO2023218860A1 (ja) * 2022-05-13 2023-11-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法、情報処理装置及び情報処理プログラム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586076B2 (ja) * 2013-03-15 2019-10-02 フルークコーポレイションFluke Corporation 分離した無線モバイル装置を用いて赤外線画像に可視的な視聴覚の注釈付け
JP6081941B2 (ja) * 2014-02-28 2017-02-15 三菱重工業株式会社 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
JP6279624B2 (ja) * 2016-01-12 2018-02-14 本田技研工業株式会社 交通渋滞予測装置及び交通渋滞予測方法
EP3382843A1 (en) * 2017-03-29 2018-10-03 Siemens Aktiengesellschaft Charging control system
FR3073652A1 (fr) * 2017-11-13 2019-05-17 Suez Groupe Dispositif et procede de traitement de donnees heterogenes pour determiner des affluences spatio-temporelles
TWI818892B (zh) 2017-12-27 2023-10-11 日商F S R股份有限公司 二次電池管理裝置及用於二次電池管理之程式製品
TWI751396B (zh) * 2017-12-29 2022-01-01 英屬開曼群島商睿能創意公司 管理複數個裝置交換站的方法及伺服器系統
US10882411B2 (en) * 2018-01-18 2021-01-05 Ford Global Technologies, Llc Smart charging schedules for battery systems and associated methods for electrified vehicles
DE102018204500A1 (de) * 2018-03-23 2019-09-26 Continental Automotive Gmbh System zur Erzeugung von Konfidenzwerten im Backend
DE102018219388A1 (de) 2018-11-14 2020-05-14 Robert Bosch Gmbh Betriebsassistenzverfahren und Betriebssystem für ein elektrisch betreibbares Fahrzeug
US10716089B1 (en) * 2019-06-03 2020-07-14 Mapsted Corp. Deployment of trained neural network based RSS fingerprint dataset
US12117498B2 (en) * 2019-08-14 2024-10-15 Honda Motor Co., Ltd. System and method for presenting electric vehicle charging options based on a predicted charging speed
US12018955B2 (en) 2019-08-14 2024-06-25 Honda Motor Co., Ltd. System and method for presenting electric vehicle charging options
JP7404917B2 (ja) * 2020-02-14 2023-12-26 トヨタ自動車株式会社 電力管理システム、電力管理方法および電力管理装置
CN113344297B (zh) * 2021-06-30 2022-10-21 广东电网有限责任公司 一种泥石流灾害的预测方法、系统、终端和存储介质
US20230342874A1 (en) * 2022-04-25 2023-10-26 Toyota Motor North America, Inc. Prioritizing access to shared vehicles based on need
US20230369857A1 (en) * 2022-05-12 2023-11-16 Chengdu Qinchuan Iot Technology Co., Ltd. Methods and systems for power-supply management in smart urban based on internet of things
CN116359656B (zh) * 2023-05-30 2023-08-08 常州海乐瑞尔科技有限公司 一种基于人工智能的充电车道设备测试管理系统及方法
CN117261662B (zh) * 2023-09-22 2024-09-24 浙江大学海南研究院 一种电动汽车充电站内负荷预测与技术指标计算方法及系统
CN117436220B (zh) * 2023-12-20 2024-04-12 深圳永泰数能科技有限公司 一种基于物理模型结构的充换电柜布局方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132583A1 (ja) * 2010-04-19 2011-10-27 日産自動車株式会社 情報提供装置および情報提供方法
WO2013024484A1 (en) * 2011-08-16 2013-02-21 Better Place GmbH Estimation and management of loads in electric vehicle networks

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012008A2 (en) * 2010-07-23 2012-01-26 Electric Transportation Engineering Corp. System for advertising and communicating at a vehicle charging station and method of using the same
JP5615090B2 (ja) * 2010-08-20 2014-10-29 三菱重工業株式会社 管理装置、管理方法、コンピュータプログラム、車載器及び通信方法
US8639409B2 (en) * 2010-09-30 2014-01-28 Hitachi, Ltd System for managing electrical power distribution between infrastructure and electric vehicles
JP5327207B2 (ja) * 2010-11-25 2013-10-30 株式会社デンソー 充電システム
EP2465721A1 (en) * 2010-12-16 2012-06-20 Alcatel Lucent System and methods for predicting energy requirements of a plurality of electric energy vehicles
US9718371B2 (en) * 2011-06-30 2017-08-01 International Business Machines Corporation Recharging of battery electric vehicles on a smart electrical grid system
TWI489401B (zh) * 2012-03-02 2015-06-21 Ind Tech Res Inst 具加電規劃功能之電動車輛派遣方法及其系統
JP6081941B2 (ja) * 2014-02-28 2017-02-15 三菱重工業株式会社 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132583A1 (ja) * 2010-04-19 2011-10-27 日産自動車株式会社 情報提供装置および情報提供方法
WO2013024484A1 (en) * 2011-08-16 2013-02-21 Better Place GmbH Estimation and management of loads in electric vehicle networks

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022010A1 (ja) * 2015-07-31 2017-02-09 日産自動車株式会社 電動車両の充電支援方法及び充電支援装置
TWI614967B (zh) * 2016-08-16 2018-02-11 飛宏科技股份有限公司 雙槍充電系統之智慧型能量分配方法
JP2020018159A (ja) * 2018-05-15 2020-01-30 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited 負荷需要の時間的−空間的予測を提供する方法及びシステム
JP2020119080A (ja) * 2019-01-21 2020-08-06 本田技研工業株式会社 管理装置、管理方法、及びプログラム
JP7204527B2 (ja) 2019-02-27 2023-01-16 株式会社東芝 事故確率分析装置および事故確率分析方法
JP2020140328A (ja) * 2019-02-27 2020-09-03 株式会社東芝 イベント発生確率分析装置およびイベント発生確率分析方法
JP2020142693A (ja) * 2019-03-07 2020-09-10 本田技研工業株式会社 車両制御装置、車両制御システム、車両制御方法、およびプログラム
JP7210334B2 (ja) 2019-03-07 2023-01-23 本田技研工業株式会社 車両制御装置、車両制御システム、車両制御方法、およびプログラム
JP2020154586A (ja) * 2019-03-19 2020-09-24 本田技研工業株式会社 決定装置、決定方法およびプログラム
JP7273570B2 (ja) 2019-03-19 2023-05-15 本田技研工業株式会社 決定装置、決定方法およびプログラム
JP7057311B2 (ja) 2019-03-25 2022-04-19 株式会社日立製作所 情報管理システム、情報管理方法、および情報管理装置
US11333524B2 (en) 2019-03-25 2022-05-17 Hitachi, Ltd. Information management system, information management method, and information management device
JP2020159749A (ja) * 2019-03-25 2020-10-01 株式会社日立製作所 情報管理システム、情報管理方法、および情報管理装置
CN112124135A (zh) * 2020-08-19 2020-12-25 国电南瑞科技股份有限公司 一种电动汽车共享充电需求分析方法及装置
WO2023218860A1 (ja) * 2022-05-13 2023-11-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法、情報処理装置及び情報処理プログラム

Also Published As

Publication number Publication date
CN105849998A (zh) 2016-08-10
EP3076512B1 (en) 2018-04-11
TW201606687A (zh) 2016-02-16
US20160335377A1 (en) 2016-11-17
CN105849998B (zh) 2019-04-12
JP2017112830A (ja) 2017-06-22
JP6414760B2 (ja) 2018-10-31
EP3076512A1 (en) 2016-10-05
JP6081941B2 (ja) 2017-02-15
TWI638328B (zh) 2018-10-11
EP3076512A4 (en) 2016-11-30
WO2015129575A1 (ja) 2015-09-03
SG11201605579WA (en) 2016-10-28

Similar Documents

Publication Publication Date Title
JP6414760B2 (ja) 電力需要予測装置、電力供給システム、及び電力需要予測方法
JP6081940B2 (ja) 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
US9132742B2 (en) Electric vehicle (EV) charging infrastructure with charging stations optimumally sited
EP4121329A1 (en) Systems and methods for managing velocity profiles
Li et al. Trajectory-driven planning of electric taxi charging stations based on cumulative prospect theory
MacDonald et al. Modelling electric vehicle charging network capacity and performance during short-notice evacuations
Qin et al. A reliable energy consumption path finding algorithm for electric vehicles considering the correlated link travel speeds and waiting times at signalized intersections
Hüttel et al. Mind the gap: Modelling difference between censored and uncensored electric vehicle charging demand
JP2017077177A (ja) 供給電力管理装置、車載器、及び電気自動車
Kumar et al. Chaotic Harris Hawks Optimization Algorithm for Electric Vehicles Charge Scheduling
Elhattab et al. Leveraging real-world data sets for qoe enhancement in public electric vehicles charging networks
Helmus et al. A validated agent-based model for stress testing charging infrastructure utilization
CN111833595B (zh) 共享汽车辅助车辆配置方法、电子设备及存储介质
CN113268709A (zh) 基于智能体仿真的城市电动汽车充电需求预测方法及系统
US12031833B2 (en) Devices for range estimation in battery powered vehicles
Cerotti et al. Analysis of an electric vehicle charging system along a highway
Han et al. Optimal Electrical Vehicle Charging Planning and Routing Using Real-Time Trained Energy Prediction With Physics-Based Powertrain Model
Shemyakin et al. The architecture of a mesoscopic model of the real-time transport corridor in projects of intelligent transport system
Freymann et al. Simulation-based Flexibility Calculation of Electric Vehicle Fleets for Offering Vehicle-to-Grid Services based on Statistical Distributions
Bruin Scheduling Electric Buses with Stochastic Driving Times
CN116911473A (zh) 基于自适应训练的充电路线规划方法、装置、设备及介质
CN116989817A (zh) 基于数据分析的能源设备安全检测数据传输系统及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6081941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150