JP2015162349A - Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY - Google Patents

Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY Download PDF

Info

Publication number
JP2015162349A
JP2015162349A JP2014036726A JP2014036726A JP2015162349A JP 2015162349 A JP2015162349 A JP 2015162349A JP 2014036726 A JP2014036726 A JP 2014036726A JP 2014036726 A JP2014036726 A JP 2014036726A JP 2015162349 A JP2015162349 A JP 2015162349A
Authority
JP
Japan
Prior art keywords
discharge
positive electrode
secondary battery
air secondary
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014036726A
Other languages
Japanese (ja)
Inventor
真行 近藤
Masayuki Kondo
真行 近藤
岡本 光
Hikari Okamoto
光 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMURA ZAIRYO KAIHATSU KENKYUSHO KK
IMRA Material R&D Co Ltd
Original Assignee
IMURA ZAIRYO KAIHATSU KENKYUSHO KK
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMURA ZAIRYO KAIHATSU KENKYUSHO KK, IMRA Material R&D Co Ltd filed Critical IMURA ZAIRYO KAIHATSU KENKYUSHO KK
Priority to JP2014036726A priority Critical patent/JP2015162349A/en
Publication of JP2015162349A publication Critical patent/JP2015162349A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Li-air secondary battery capable of restoring deterioration in discharge performance due to deposition of LiOH HO and LiCOwithout additionally using a member, such as an anion-exchange membrane, inhibiting a battery reaction, and a method for restoring discharge performance.SOLUTION: A Li-air secondary battery includes oxygen supply restricting means 2 for restricting the supply of oxygen to a positive electrode and/or discharge current increasing means 2A for increasing a discharge current.

Description

本発明は、Li−空気二次電池とその放電性能を回復させる方法に関する。   The present invention relates to a Li-air secondary battery and a method for recovering its discharge performance.

金属−空気電池の内、負極に金属リチウムを用いるLi−空気二次電池は、非常に高い理論エネルギー密度を有するため、近年非常に注目されている。Li−空気二次電池の中の水系Li-空気二次電池の場合、負極として用いられるLi金属は、水系の電解液と接すると反応する問題があるが、図1に示すように水不透過性のリチウムイオン導電性ガラスセラミック(以下、LATPと省略)を保護層として用いることで、水系の電解液を用いることが可能になってきている(特許文献1参照。)。   Among metal-air batteries, a Li-air secondary battery using metallic lithium as a negative electrode has a very high theoretical energy density, and has attracted much attention in recent years. In the case of the water-based Li-air secondary battery in the Li-air secondary battery, the Li metal used as the negative electrode has a problem of reacting when it comes into contact with the aqueous electrolyte, but as shown in FIG. By using a conductive lithium ion conductive glass ceramic (hereinafter abbreviated as LATP) as a protective layer, an aqueous electrolyte can be used (see Patent Document 1).

一方、LiOHより電離溶解し易いLiClを電解液中に共存させる事で、放電生成物であるLiOHの電離を防止し、LATPの腐食を防止する技術が開発されている(非特許文献1参照。)。   On the other hand, a technology has been developed in which LiCl, which is more easily ionized and dissolved than LiOH, is allowed to coexist in the electrolyte solution, thereby preventing ionization of LiOH as a discharge product and corrosion of LATP (see Non-Patent Document 1). ).

また、水酸化カルシウムにアルカリ金属水酸化物を付着させた多孔性の炭酸ガス除去剤を空気極へ連なる空気吸入路中に設けた空気極を有する電池が公開されている(特許文献2参照。)。   In addition, a battery having an air electrode in which a porous carbon dioxide gas removing agent in which an alkali metal hydroxide is adhered to calcium hydroxide is provided in an air suction path connected to the air electrode is disclosed (see Patent Document 2). ).

また、亜鉛負極と、金属酸化物、黒鉛、活性炭、フッ素系結着剤を主成分とする正極材料を金属メッシュに充填した空気極とを備える空気亜鉛電池において、該空気極に二酸化炭素吸収剤を添加する技術が開示されている(特許文献3参照。)。   Moreover, in an air zinc battery comprising a zinc negative electrode and an air electrode filled with a metal mesh with a positive electrode material mainly composed of metal oxide, graphite, activated carbon and a fluorine-based binder, a carbon dioxide absorbent is provided in the air electrode. Has been disclosed (see Patent Document 3).

また、図2に示すように、空気極(正極)とアルカリ性の電解液の間に陰イオン交換膜を配置し、大気中からのCO2の侵入や放電生成物であるLiOH・H2Oが空気極表面で析出する事を防止する技術が知られている(特許文献4参照。)。 In addition, as shown in Fig. 2, an anion exchange membrane is placed between the air electrode (positive electrode) and the alkaline electrolyte, so that the intrusion of CO 2 from the atmosphere and the discharge product LiOH · H 2 O A technique for preventing precipitation on the air electrode surface is known (see Patent Document 4).

特表2007−513464号公報JP-T-2007-513464 特開昭49−49128号公報JP 49-49128 A 特許第4277327号明細書Japanese Patent No. 4277327 再公表WO2009/104570Republished WO2009 / 104570

石原達己編、「金属・空気2次電池の開発と最新技術」、技術教育出版社、2011年4月、p.91−104Edited by Tatsumi Ishihara, “Development and Latest Technologies of Metal / Air Secondary Batteries”, Technology Education Publishers, April 2011, p.91-104

上記従来の水系Li−空気二次電池の場合、負極反応で生成するLi+の移動速度が、正極反応で生成するOH-イオンの移動速度と比較して高いので、Li+イオンがセル内で正極の方向へ移動し、正極表面で放電生成物であるLiOH・H2Oを生成する。その為、生成したLiOH・H2Oによる空気極触媒表面の被覆やガス拡散層の細孔封鎖が発生し、放電時間の増加に伴い、放電性能の低下を引き起こす問題がある。 For the conventional aqueous Li- air secondary battery, the moving speed of the Li + generated in the anode reaction, OH generated in the positive electrode reaction - is higher as compared to the ion movement speed, Li + ions in the cell It moves in the direction of the positive electrode and generates LiOH.H 2 O as a discharge product on the surface of the positive electrode. Therefore, there is a problem that the generated LiOH · H 2 O covers the surface of the air electrode catalyst and the pores of the gas diffusion layer are blocked, resulting in a decrease in discharge performance as the discharge time increases.

また、水系Li−空気二次電池の電解液として、酸性、中性、アルカリ性の様々な電解液を採用する事が可能であるが、いずれの電解液を用いた場合でも、放電反応の進行と共に、LiOH・H2Oが生成し、電解液は、強アルカリ性へ変化していく。その為、他の空気電池と同様に電解液と大気中のCO2が反応し、水に難溶性で、且つ、電気化学的に不活性な炭酸塩が空気極近傍で生成し、空気極表面を被覆してしまうことも技術課題となっている。 In addition, it is possible to use various acidic, neutral, and alkaline electrolytes as the electrolyte of the water-based Li-air secondary battery, but with any electrolyte, the discharge reaction proceeds. LiOH · H 2 O is generated, and the electrolyte changes to strong alkalinity. Therefore, like other air batteries, the electrolytic solution reacts with CO 2 in the atmosphere, and a carbonate that is poorly soluble in water and electrochemically inert is generated in the vicinity of the air electrode. It is also a technical problem to coat the film.

一方、リチウム金属負極の保護層としてLATPを用いる水系Li−空気二次電池の場合、LATPが強アルカリ性で腐食すると言う問題があるため(Satoshi Hasegawa et al., "Study on lithium/air secondary batteries Stability of NASICON-type lithium ion conducting glass ceramics with water", Journal of Power Sources, vol. 189(1), p371-377(2009)参照。)、LiOHより電離溶解し易いLiClを電解液中に共存させ、放電生成物であるLiOH・H2Oの電離を防止し、電解液が強アルカリ性になるのを防止する技術(非特許文献1参照)が有効である。しかし、この場合、放電反応により正極表面で析出したLiOH・H2Oは、電解液中へ再溶解する事が出来ず、上記のLiOH・H2Oによる空気極触媒表面の被覆やガス拡散層の細孔封鎖が発生し易い状況にある。 On the other hand, in the case of an aqueous Li-air secondary battery using LATP as a protective layer for a lithium metal negative electrode, there is a problem that LATP is strongly alkaline and corrodes (Satoshi Hasegawa et al., “Study on lithium / air secondary batteries Stability of NASICON-type lithium ion conducting glass ceramics with water ", Journal of Power Sources, vol. 189 (1), p371-377 (2009)), LiCl, which is more easily ionized and dissolved than LiOH, coexists in the electrolyte. A technique for preventing ionization of LiOH.H 2 O as a discharge product and preventing the electrolyte from becoming strongly alkaline (see Non-Patent Document 1) is effective. However, in this case, LiOH · H 2 O deposited on the positive electrode surface by the discharge reaction cannot be re-dissolved in the electrolyte solution, and the coating of the air electrode catalyst surface with the above LiOH · H 2 O or gas diffusion layer It is in a situation where the pore blockage is likely to occur.

電気化学的に不活性な炭酸塩の生成の問題を解決する方法としては、電池の外部や電池の正極内部に水酸化カルシウム等のCO2と反応する材料(CO2吸収材料)を別途配置し、電解液にCO2が混入する事を防止する技術(特許文献2、3参照)があるが、これらの場合、CO2吸収材料が反応して消費されるので、定期的な交換や再生が必要であると言う問題がある。 To solve the problem of electrochemically inactive carbonate formation, a material that reacts with CO 2 such as calcium hydroxide (CO 2 absorbing material) is placed outside the battery or inside the positive electrode of the battery. There is a technology that prevents CO 2 from being mixed into the electrolyte (see Patent Documents 2 and 3), but in these cases, the CO 2 absorbing material reacts and is consumed, so periodic replacement and regeneration are possible. There is a problem that it is necessary.

また、特許文献4の技術の場合、放電時に空気極表面で生成するOH-イオンは、陰イオン交換膜を通過し、陰イオン交換膜と電解液界面でLiOH・H2Oが生成される。陰イオン交換膜中のOH-イオンの導電率は、液体の電解液と比べて小さく、電池性能の低下を引き起こす問題がある。更に、陰イオン交換膜は、大気中のCO2を吸収し、反応する事で、益々、OH-イオンの導電率を低下させてしまう問題を有している。 In the case of the technique of Patent Document 4, OH ions generated on the air electrode surface during discharge pass through the anion exchange membrane, and LiOH · H 2 O is generated at the anion exchange membrane and the electrolyte solution interface. The conductivity of OH - ions in the anion exchange membrane is smaller than that of the liquid electrolyte, and there is a problem that the battery performance is lowered. Furthermore, the anion exchange membrane has a problem that the electrical conductivity of OH 2 ions is increasingly lowered by absorbing and reacting with CO 2 in the atmosphere.

本発明は、上記の問題に鑑みてなされたもので、陰イオン交換膜の様な電池反応を阻害する部材を別途使用する事無く、LiOH・H2OやLi2CO3の堆積による放電性能の低下を回復することができるLi−空気二次電池及び放電性能を回復させる方法を提供することを課題とする。 The present invention was made in view of the above problems, and without using a member that hinders the battery reaction, such as an anion exchange membrane, discharge performance by deposition of LiOH.H 2 O or Li 2 CO 3 It is an object of the present invention to provide a Li-air secondary battery capable of recovering the deterioration of the battery and a method of recovering the discharge performance.

本発明は、Li−空気二次電池の放電反応を以下のように詳細に検討することで創出されたものである。   The present invention has been created by examining the discharge reaction of a Li-air secondary battery in detail as follows.

水系Li−空気二次電池の場合、放電時に
空気極では、 Li++ 1/2 O2 + 3/2 H2O + e- ⇒ LiOH・H2O (E0=0.401V vs. SHE)
・・・(1)
負極では、 Li ⇒ Li+ + e- (E0=-3.040V vs. SHE) ・・・(2)
電池全体では、Li + 1/2 O2 + 3/2 H2O ⇒ LiOH・H2O(起電力:3.405V )・・・(3)
に従い、放電反応が起こり、空気極表面で、放電生成物であるLiOH・H2Oが生成する。ここで、E0は電位、SHEは水素標準電位である。
In the case of water-based Li-air secondary batteries, Li + + 1/2 O 2 + 3/2 H 2 O + e- ⇒ LiOH • H 2 O (E 0 = 0.401V vs. SHE)
... (1)
In the negative electrode, Li ⇒ Li + + e- (E 0 = -3.040V vs. SHE) (2)
For the whole battery, Li + 1/2 O 2 + 3/2 H 2 O => LiOH · H 2 O (electromotive force: 3.405V) (3)
Accordingly, a discharge reaction occurs, and LiOH.H 2 O as a discharge product is generated on the surface of the air electrode. Here, E 0 is a potential, and SHE is a hydrogen standard potential.

一方、空気極の酸素供給が放電電流に対して十分で無い場合、
空気極では、 Li++ H2O + e- ⇒ LiOH・H2O + H2↑ (E0=-0.828V vs. SHE)
・・・(4)
電池全体では、Li + 1/2 O2 + 3/2 H2O ⇒ LiOH・H2O(起電力:2.212V) ・・・(5)
の反応が起こる。
On the other hand, if the oxygen supply of the air electrode is not sufficient for the discharge current,
At the air electrode, Li + + H 2 O + e- ⇒ LiOH ・ H 2 O + H 2 ↑ (E 0 = -0.828V vs. SHE)
···(Four)
In the whole battery, Li + 1/2 O 2 + 3/2 H 2 O ⇒ LiOH · H 2 O (electromotive force: 2.212V) (5)
Reaction occurs.

空気極の酸素供給が放電電流に対して十分で無い場合、空気極面では、LiOH・H2Oの生成の他にも、放電生成物として、ガス状のH2の発生を伴う。このH2により、空気極表面の堆積物を物理的に除去する事が可能であると考えられる。すなわち、長時間の放電動作中に堆積したLiOH・H2OやLi2CO3により性能低下した空気極を、外部操作により短時間(4)式の反応を起こす事で、堆積したLiOH・H2OやLi2CO3を除去し、放電性能を回復する事が出来ると考えられる。なお、(4)式の反応が起こるための条件(空気極の酸素供給が放電電流に対して十分で無い場合)は、空気極への酸素供給を抑制することでも、空気極への酸素の供給を抑制しないで放電電流を上昇させることでも満たされる。 When the supply of oxygen at the air electrode is not sufficient for the discharge current, gaseous H 2 is generated on the air electrode surface as a discharge product in addition to the generation of LiOH · H 2 O. It is considered that deposits on the air electrode surface can be physically removed by this H 2 . In other words, the LiOH · H 2 O and Li 2 CO 3 deposited during a long discharge operation cause a reaction of the formula (4) for a short time by external operation to cause the deposited LiOH · H 2 It is considered that the discharge performance can be recovered by removing 2 O and Li 2 CO 3 . The condition for the reaction of the formula (4) (when the oxygen supply to the air electrode is not sufficient for the discharge current) is to suppress the oxygen supply to the air electrode or to reduce the oxygen supply to the air electrode. It is also satisfied by increasing the discharge current without suppressing the supply.

課題を解決するためになされた本発明のLi−空気二次電池は、負極活物質としてLiを用いる負極と、正極活物質として酸素を用いる正極と、前記負極及び前記正極の間に介在する電解液と、を有するLi−空気二次電池であって、前記正極への酸素の供給を抑制する酸素供給抑制手段及び/或いは放電電流を上昇させる放電電流上昇手段を備えることを特徴とする。   The Li-air secondary battery of the present invention made to solve the problem includes a negative electrode using Li as a negative electrode active material, a positive electrode using oxygen as a positive electrode active material, and an electrolysis interposed between the negative electrode and the positive electrode. A lithium-air secondary battery comprising: a liquid; and an oxygen supply suppressing means for suppressing supply of oxygen to the positive electrode and / or a discharge current increasing means for increasing a discharge current.

酸素供給抑制手段で正極への酸素の供給を減らすこと及び/或いは放電電流上昇手段で放電電流を上昇させることで、(4)式の反応を起こして正極にガス状のH2を発生させることができる。その結果、放電動作中に堆積したLiOH・H2OやLi2CO3が除去され、放電性能が回復される。 By reducing the supply of oxygen to the positive electrode with the oxygen supply suppressing means and / or increasing the discharge current with the discharge current increasing means, the reaction of the formula (4) is caused to generate gaseous H 2 at the positive electrode. Can do. As a result, LiOH.H 2 O and Li 2 CO 3 deposited during the discharge operation are removed, and the discharge performance is recovered.

上記のLi−空気二次電池において、前記放電電流上昇手段は、正極電位を水素発生電位以下まで低下させる電流まで上昇させるものとするとよい。これにより、水素を多く発生させることができ、放電動作中に堆積したLiOH・H2OやLi2CO3が確実に除去され、放電性能が回復される。 In the above Li-air secondary battery, the discharge current increasing means may increase the positive electrode potential to a current that reduces the potential to a hydrogen generation potential or lower. As a result, a large amount of hydrogen can be generated, LiOH.H 2 O and Li 2 CO 3 deposited during the discharge operation are surely removed, and the discharge performance is restored.

また、前記放電電流上昇手段は、正極電位を水素発生電位以下まで低下させる電流まで上昇させその後放電電流を零にするものとするとよい。これにより、発生した水素を空気で除去することができ、発生水素との混成電位となることを回避できる。   Further, the discharge current raising means may be configured to raise the positive electrode potential to a current that lowers the hydrogen generation potential or less and then make the discharge current zero. As a result, the generated hydrogen can be removed with air, and a mixed potential with the generated hydrogen can be avoided.

課題を解決するためになされた本発明のLi−空気二次電池の放電性能を回復させる方法は、負極活物質としてLiを用いる負極と、正極活物質として酸素を用いる正極と、前記負極及び前記正極の間に介在する電解液と、を有するLi−空気二次電池の放電性能を回復させる方法であって、正極への酸素の供給を抑制する酸素供給抑制工程及び/或いは放電電流を上昇させる放電電流上昇工程を備えることを特徴とする。   The method of recovering the discharge performance of the Li-air secondary battery of the present invention made to solve the problems includes a negative electrode using Li as a negative electrode active material, a positive electrode using oxygen as a positive electrode active material, the negative electrode and the negative electrode A method for recovering the discharge performance of a Li-air secondary battery having an electrolyte solution interposed between positive electrodes, the oxygen supply suppressing step for suppressing supply of oxygen to the positive electrode and / or increasing the discharge current A discharge current increasing step is provided.

上記のLi−空気二次電池の放電性能を回復させる方法において、前記放電電流上昇工程は、正極電位を水素発生電位以下まで低下させる電流まで上昇させるとよい。   In the above-described method for recovering the discharge performance of the Li-air secondary battery, the discharge current increasing step may be performed by increasing the positive electrode potential to a current that decreases the hydrogen generation potential or less.

また、前記放電電流上昇工程は、正極電位を水素発生電位以下まで低下させる電流まで上昇させその後放電電流を零にするとよい。   In the discharge current increasing step, the positive electrode potential may be increased to a current that reduces the potential to a hydrogen generation potential or less, and then the discharge current may be made zero.

酸素供給制御手段で正極への酸素の供給を減らすこと及び/或いは放電電流上昇手段で放電電流を上昇させることで、(4)式の反応を起こして正極にガス状のH2を発生させることができる。その結果、放電動作中に堆積したLiOH・H2OやLi2CO3が除去され、放電性能が回復される。 By reducing the supply of oxygen to the positive electrode with the oxygen supply control means and / or increasing the discharge current with the discharge current raising means, the reaction of the formula (4) is caused to generate gaseous H 2 at the positive electrode. Can do. As a result, LiOH.H 2 O and Li 2 CO 3 deposited during the discharge operation are removed, and the discharge performance is recovered.

従来技術に係り、水系Li−空気二次電池の概念を模式的に示す断面図である。It is sectional drawing which concerns on a prior art and shows the concept of a water-system Li-air secondary battery typically. 従来技術に係り、陰イオン交換膜を用いた空気二次電池の概念を模式的に示す断面図である。It is sectional drawing which concerns on a prior art, and shows the concept of the air secondary battery using an anion exchange membrane typically. 本発明の実施形態1に係るLi−空気二次電池の概略構成図である。It is a schematic block diagram of the Li-air secondary battery which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るLi−空気二次電池の概略構成図である。It is a schematic block diagram of the Li-air secondary battery which concerns on Embodiment 2 of this invention. 電池反応測定用セルの概略図である。It is the schematic of the cell for battery reaction measurement. 本発明に係るLi−空気二次電池の放電性能を評価する放電電流の時間変化を示すグラフである。It is a graph which shows the time change of the discharge current which evaluates the discharge performance of the Li-air secondary battery which concerns on this invention. 放電時の電極電位の継時変化を示すグラフである。It is a graph which shows the change over time of the electrode potential at the time of discharge. 放電性能評価後の空気極の外観写真である。It is an external appearance photograph of the air electrode after discharge performance evaluation.

(実施形態1)
本実施形態のLi−空気二次電池は、図3に示すように、Li−空気二次電池本体1と、Li−空気二次電池本体1の正極への酸素の供給を抑制する酸素供給抑制手段2とを備えている。3は電池負荷、4は電池負荷3をLi−空気二次電池本体1に接続するスイッチである。
(Embodiment 1)
As shown in FIG. 3, the Li-air secondary battery of the present embodiment has an oxygen supply suppression that suppresses the supply of oxygen to the Li-air secondary battery main body 1 and the positive electrode of the Li-air secondary battery main body 1. Means 2 are provided. 3 is a battery load, and 4 is a switch for connecting the battery load 3 to the Li-air secondary battery body 1.

酸素供給抑制手段2は、空気ボンベ21と不活性ガスボンベ22を備えている。21aは空気制御バルブ、22aは不活性ガス制御バルブである。   The oxygen supply suppressing means 2 includes an air cylinder 21 and an inert gas cylinder 22. 21a is an air control valve and 22a is an inert gas control valve.

次に本実施形態のLi−空気二次電池の放電性能をバルブ21a、22aを閉じた状態から回復させる動作を説明する。   Next, the operation | movement which recovers the discharge performance of the Li-air secondary battery of this embodiment from the state which closed valve | bulb 21a, 22a is demonstrated.

まず、バルブ21aを開けて十分な空気をLi−空気二次電池本体1の正極へ供給する。次に、スイッチ4をオンして電池負荷3に電流を供給してLi−空気二次電池本体1を放電させ(1)式の反応を起こさせる。次に、放電して正極電位が所定の値に低下したら、バルブ21aを絞って、空気の供給量を減らすことで、(4)式の反応を起こさせ正極にガス状のH2を発生させて放電性能を回復させる。 First, the valve 21a is opened to supply sufficient air to the positive electrode of the Li-air secondary battery body 1. Next, the switch 4 is turned on to supply current to the battery load 3 to discharge the Li-air secondary battery main body 1 to cause the reaction of the formula (1). Next, when the positive electrode potential drops to a predetermined value due to discharge, the valve 21a is throttled to reduce the supply amount of air, thereby causing the reaction of the formula (4) to generate gaseous H 2 at the positive electrode. To restore the discharge performance.

上記の動作では、バルブ21aを絞って放電性能を回復させたが、バルブ21aは開いたままで、不活性ガス制御バルブ22aを開いてもよい。   In the above operation, the discharge performance is recovered by narrowing the bulb 21a. However, the inert gas control bulb 22a may be opened while the bulb 21a remains open.

(実施形態2)
本実施形態のLi−空気二次電池は、図4に示すように、実施形態1の酸素供給抑制手段2の代わりに放電電流上昇手段2Aを備えている点が大きく異なる。実施形態1と同一の構成要素には同一の符号を付し説明を省略する。
(Embodiment 2)
As shown in FIG. 4, the Li-air secondary battery of the present embodiment is greatly different in that it includes a discharge current increasing means 2 </ b> A instead of the oxygen supply suppressing means 2 of the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

放電電流上昇手段2Aは、放電時の放電電流を上昇させるための低インピーダンスの制御用負荷2Aと放電時に制御用負荷2AをLi−空気二次電池本体1に接続するスイッチ2Aを備えている。 Discharge current rise means 2A includes a switch 2A 2 for connecting the control load 2A 1 to Li- air secondary cell body 1 and the control load 2A 1 low impedance for increasing the discharge current during discharge at discharge ing.

制御用負荷2Aは、正極電位を水素発生電位(E0=-0.828V vs. SHE)以下まで低下させる電流まで上昇させるインピーダンスを有している。 Control load 2A 1 has an impedance that increases until the current that reduces the potential of the positive electrode to below the hydrogen evolution potential (E 0 = -0.828V vs. SHE) .

次に本実施形態のLi−空気二次電池の放電性能をスイッチ4がオフの状態から回復させる動作を説明する。   Next, an operation for recovering the discharge performance of the Li-air secondary battery of this embodiment from the state in which the switch 4 is off will be described.

まず、空気をLi−空気二次電池本体1の正極へ供給している状態で、スイッチ4をオンして電池負荷3に電流を供給してLi−空気二次電池本体1を放電させ(1)式の反応を起こさせる。次に、放電して正極電位が所定の値に低下したら、スイッチ2Aをオンして制御用負荷2Aにも電流を供給することで放電電流を上昇させて(4)式の反応を起こさせ正極にガス状のH2を発生させて放電性能を回復させる。次に、スイッチ4をオフにするとよい。正極付近のH2を空気で除去することができる。 First, in a state where air is supplied to the positive electrode of the Li-air secondary battery body 1, the switch 4 is turned on to supply current to the battery load 3 to discharge the Li-air secondary battery body 1 (1 ) The reaction of the formula is caused. Next, when the positive electrode potential decreases to a predetermined value due to discharge, the switch 2A 2 is turned on to supply current to the control load 2A 1 to raise the discharge current and cause the reaction of the formula (4). The discharge performance is recovered by generating gaseous H 2 at the positive electrode. Next, the switch 4 may be turned off. H 2 near the positive electrode can be removed with air.

<本発明のLi−空気二次電池の放電性能を回復させる方法を適用する実施例と適用しない比較例における放電性能の継時変化>
次に、本発明のLi−空気二次電池の放電性能を回復させる方法を適用する実施例と、適用しない比較例の放電性能の継時変化を比較評価した結果を説明する。
<Change in discharge performance over time in an example in which the method for recovering the discharge performance of the Li-air secondary battery of the present invention is applied and in a comparative example in which the method is not applied>
Next, the results of comparative evaluation of changes over time in the discharge performance of the example in which the method for recovering the discharge performance of the Li-air secondary battery of the present invention and the comparative example in which the method is not applied will be described.

1)空気極の作成
空気極触媒として用いて白金担持カーボンPtC(田中貴金属社製)と、バインダー樹脂としてフッ素樹脂PTFE(ダイキン工業社製)を用いて、触媒ペーストを調製し(PtC : PTFE=1.0 : 1.0wt%)、カーボンペーパー(東レ社製 TGP-120)を触媒層保持体として、適量塗布し、室温で一昼夜乾燥し、空気極触媒層を作成した。作成した触媒層を、撥水処理を行ったカーボンペーパー(ガス拡散層)に加熱プレスすることによって接合し、空気極とした。
1) Preparation of air electrode A catalyst paste is prepared using platinum-supported carbon PtC (Tanaka Kikinzoku) as the air electrode catalyst and fluororesin PTFE (Daikin Kogyo) as the binder resin (PtC: PTFE = 1.0: 1.0 wt%) and carbon paper (TGP-120 manufactured by Toray Industries, Inc.) were applied as a catalyst layer holder, and an appropriate amount was applied and dried overnight at room temperature to prepare an air electrode catalyst layer. The prepared catalyst layer was bonded to a carbon paper (gas diffusion layer) subjected to water repellent treatment by heating and pressing to form an air electrode.

2)空気極の評価
図5に示すような電池反応測定用セルにポテンショ・ガルバノスタットを接続して比較評価した。
2) Evaluation of the air electrode A potentio galvanostat was connected to a battery reaction measurement cell as shown in FIG.

電池反応測定用セルは、円筒状のアクリル容器の両端をPTFEシートと空気極で塞いで、中に電解液を入れたもので、空気極のガス拡散層側から加湿した空気を供給するようになっている。電解液として、5.3mol/L-LiOH + 10mol/L-LiClを用いた。対極としてPtメッシュを、参照極としてHg/HgO電極を用いた。供給ガスとして、200cc/min.の大気中の空気を1mol/L-LiOH中を通過させ、脱CO2した空気を、正極背面にフローさせながら評価を行なった。電池反応測定用セルを28℃に保持した恒温槽に入れ、ポテンショ・ガルバノスタットを用いて放電評価を行った。 The battery reaction measurement cell is a cylindrical acrylic container with both ends sealed with a PTFE sheet and an air electrode, and an electrolyte is placed inside. The humidified air is supplied from the gas diffusion layer side of the air electrode. It has become. As the electrolytic solution, 5.3 mol / L-LiOH + 10 mol / L-LiCl was used. A Pt mesh was used as the counter electrode, and an Hg / HgO electrode was used as the reference electrode. Evaluation was performed while air in the atmosphere of 200 cc / min. Was passed through 1 mol / L-LiOH as the supply gas, and de-CO 2 air was allowed to flow to the back of the positive electrode. The battery reaction measurement cell was placed in a thermostatic chamber maintained at 28 ° C., and discharge evaluation was performed using a potentio galvanostat.

(実施例)
図6の下段に示すように、-1 mA/cm2の定電流条件での放電反応を開始後、80min経過時に、放電で電流を-10mA/cm2まで上昇させる事で正極電位を水素発生電位(-0.921 V vs Hg/HgO)以下まで低下させ、30sec間保持し、空気極表面に堆積した生成物(LiOH・H2O)の除去を行った。その処理の際に発生した水素ガスが電極近傍に残留していると、水素ガスの還元と空気中の酸素の還元が同時に起こり、混成の電極電位を示し、空気極の回復程度が評価し難いので、30秒間一旦、開回路電圧で放置し、十分に、空気で発生水素ガスを除去した後、再度、-1mA/cm2で、70min放電反応を継続した。
(Example)
As shown in the lower part of FIG. 6, after the start of the discharge reaction of a constant current condition of -1 mA / cm 2, at the time of 80min course, discharged at a current of -10 mA / cm 2 positive electrode potential of hydrogen generation by raising up The potential (-0.921 V vs. Hg / HgO) was lowered to below and held for 30 seconds, and the product (LiOH.H 2 O) deposited on the air electrode surface was removed. If the hydrogen gas generated during the treatment remains in the vicinity of the electrode, the reduction of the hydrogen gas and the reduction of oxygen in the air occur simultaneously, indicating a hybrid electrode potential and the degree of recovery of the air electrode is difficult to evaluate. Therefore, after leaving for 30 seconds at an open circuit voltage, the generated hydrogen gas was sufficiently removed with air, and then the discharge reaction was continued again at -1 mA / cm 2 for 70 minutes.

(比較例)
図6の上段に示すように、-1mA/cm2の定電流条件での放電反応を150min連続して継続した。
(Comparative example)
As shown in the upper part of FIG. 6, the discharge reaction under a constant current condition of -1 mA / cm 2 was continued for 150 minutes.

3)評価結果
放電性能の経時変化を図7に、放電を80min継続した後の空気極の外観を図8に示す。図7から見て判る様に、定電流条件での放電反応開始後、放電電位は、放電時間の経過と共に低下し、比較例の場合、放電開始後、80minを超えても、放電電位が低下している。これは、(1)式に従い、空気極表面にLiOH・H2Oが堆積し、空気極の実効表面積が低下した事によると考えられる。 それに対して、実施例の場合、放電開始後、80min時に、低下した放電電位は、再度上昇し、電極性能が回復した事が判る。
3) Evaluation results FIG. 7 shows the change over time in the discharge performance, and FIG. 8 shows the appearance of the air electrode after the discharge is continued for 80 minutes. As can be seen from FIG. 7, the discharge potential decreases with the lapse of the discharge time after the start of the discharge reaction under the constant current condition, and in the case of the comparative example, the discharge potential decreases even after exceeding 80 minutes after the start of the discharge. doing. This is considered to be because LiOH.H 2 O was deposited on the air electrode surface according to the formula (1), and the effective surface area of the air electrode was reduced. On the other hand, in the case of the example, it can be seen that at 80 min after the start of discharge, the lowered discharge potential rises again and the electrode performance is recovered.

図8から比較例の空気極では、電極表面への白色のLiOH・H2Oの堆積物が確認できるのに対して、実施例の空気極においては、堆積物は殆ど確認できず、実施例では空気極表面で発生した水素ガスにより、LiOH・H2Oの堆積物が剥離、除去されている事がわかる。 From FIG. 8, in the air electrode of the comparative example, white LiOH.H 2 O deposits can be confirmed on the electrode surface, whereas in the air electrode of the example, almost no deposits can be confirmed. Then, it can be seen that the deposits of LiOH and H 2 O are peeled off and removed by the hydrogen gas generated on the air electrode surface.

1・・・・・・Li−空気二次電池本体
2・・・・・・酸素供給抑制手段
2A・・・・・放電電流上昇手段
1 .... Li-air secondary battery body 2 .... Oxygen supply suppression means 2A ... Discharge current increasing means

Claims (6)

負極活物質としてLiを用いる負極と、正極活物質として酸素を用いる正極と、前記負極及び前記正極の間に介在する電解液と、を有するLi−空気二次電池であって、
前記正極への酸素の供給を抑制する酸素供給抑制手段及び/或いは放電電流を上昇させる放電電流上昇手段を備えることを特徴とするLi−空気二次電池。
A Li-air secondary battery having a negative electrode using Li as a negative electrode active material, a positive electrode using oxygen as a positive electrode active material, and an electrolyte solution interposed between the negative electrode and the positive electrode,
An Li-air secondary battery comprising oxygen supply suppression means for suppressing supply of oxygen to the positive electrode and / or discharge current increase means for increasing discharge current.
前記放電電流上昇手段は、正極電位を水素発生電位以下まで低下させる電流まで上昇させる請求項1に記載のLi−空気二次電池。   The Li-air secondary battery according to claim 1, wherein the discharge current increasing means increases the positive electrode potential to a current that decreases the potential to a hydrogen generation potential or less. 前記放電電流上昇手段は、正極電位を水素発生電位以下まで低下させる電流まで上昇させその後放電電流を零にする請求項2に記載のLi−空気二次電池。   3. The Li-air secondary battery according to claim 2, wherein the discharge current raising means raises the positive electrode potential to a current that lowers the hydrogen generation potential to be equal to or lower than a hydrogen generation potential, and then sets the discharge current to zero. 負極活物質としてLiを用いる負極と、正極活物質として酸素を用いる正極と、前記負極及び前記正極の間に介在する電解液と、を有するLi−空気二次電池の放電性能を回復させる方法であって、
正極への酸素の供給を抑制する酸素供給抑制工程及び/或いは放電電流を上昇させる放電電流上昇工程を備えることを特徴とするLi−空気二次電池の放電性能を回復させる方法。
A method for recovering the discharge performance of a Li-air secondary battery comprising: a negative electrode using Li as a negative electrode active material; a positive electrode using oxygen as a positive electrode active material; and an electrolyte solution interposed between the negative electrode and the positive electrode. There,
A method for recovering the discharge performance of a Li-air secondary battery, comprising an oxygen supply suppression step for suppressing supply of oxygen to the positive electrode and / or a discharge current increase step for increasing the discharge current.
前記放電電流上昇工程は、正極電位を水素発生電位以下まで低下させる電流まで上昇させる請求項4に記載のLi−空気二次電池の放電性能を回復させる方法。   5. The method for recovering the discharge performance of the Li-air secondary battery according to claim 4, wherein in the discharge current increasing step, the positive electrode potential is increased to a current that decreases the hydrogen generation potential or less. 前記放電電流上昇工程は、正極電位を水素発生電位以下まで低下させる電流まで上昇させその後放電電流を零にする請求項5に記載のLi−空気二次電池の放電性能を回復させる方法。   The method for recovering the discharge performance of the Li-air secondary battery according to claim 5, wherein in the discharge current increasing step, the positive electrode potential is increased to a current that decreases to a hydrogen generation potential or less and then the discharge current is made zero.
JP2014036726A 2014-02-27 2014-02-27 Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY Pending JP2015162349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036726A JP2015162349A (en) 2014-02-27 2014-02-27 Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036726A JP2015162349A (en) 2014-02-27 2014-02-27 Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY

Publications (1)

Publication Number Publication Date
JP2015162349A true JP2015162349A (en) 2015-09-07

Family

ID=54185327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036726A Pending JP2015162349A (en) 2014-02-27 2014-02-27 Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY

Country Status (1)

Country Link
JP (1) JP2015162349A (en)

Similar Documents

Publication Publication Date Title
US10619253B2 (en) Method for electrolyzing alkaline water
RU2236067C2 (en) Catalytic air cathode for air-metal battery
ES2733323T3 (en) Solid electrolyte compound alkaline ion conductor
JP4280346B2 (en) Catalyst for gas diffusion electrode
CN107210452B (en) Electrode and electrochemical device and method for manufacturing the same
JP5751589B2 (en) An open-type lithium-air battery using a metal mesh, a metal film, or a sintered body of a metal powder and a solid electrolyte as an air electrode
KR20150018527A (en) System comprising accumulators and air-aluminium batteries
US10096873B2 (en) Protected anode structure suitable for use in metal/air batteries
US8148020B2 (en) Molybdenum/air battery and cell design
JP6836603B2 (en) Metal-air battery
JP2014183021A (en) Metal-air battery
JP2010146851A (en) Air battery
JP2014165056A (en) Positive electrode for metal air secondary battery
JP6259300B2 (en) Metal air battery
JP6074394B2 (en) Aqueous lithium-positive electrode for air secondary battery
JP2015162349A (en) Li-AIR SECONDARY BATTERY AND METHOD FOR RESTORING DISCHARGE PERFORMANCE OF THE BATTERY
JP2011243324A (en) Lithium-air cell utilizing corrosion of metal
JP5749614B2 (en) Metal-air battery
JP6474725B2 (en) Metal electrode cartridge and metal air battery
US20160126575A1 (en) Electrochemical cell
JP2011249098A (en) Hybrid power supply system and hybrid power supply operation method
KR102246849B1 (en) Separator having selective moving function of ion and secondary battery including the same
WO2022203011A1 (en) Electrochemical cell
JP4485891B2 (en) Air secondary battery
JP2013001980A (en) Solid polymer electrolyte membrane-catalyst metal composite electrode and method for manufacturing the same