JP2011243324A - Lithium-air cell utilizing corrosion of metal - Google Patents

Lithium-air cell utilizing corrosion of metal Download PDF

Info

Publication number
JP2011243324A
JP2011243324A JP2010112277A JP2010112277A JP2011243324A JP 2011243324 A JP2011243324 A JP 2011243324A JP 2010112277 A JP2010112277 A JP 2010112277A JP 2010112277 A JP2010112277 A JP 2010112277A JP 2011243324 A JP2011243324 A JP 2011243324A
Authority
JP
Japan
Prior art keywords
lithium
air
electrode
metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010112277A
Other languages
Japanese (ja)
Inventor
hao shen Zhou
豪慎 周
yong gang Wang
永剛 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010112277A priority Critical patent/JP2011243324A/en
Publication of JP2011243324A publication Critical patent/JP2011243324A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To solve the problem that an air electrode used for a conventional lithium-air electrode is high in cost since expensive metal oxide of nano-size is synthesized and used as a catalyst.SOLUTION: The lithium-air cell is easily made to operate without using a catalyst for an air electrode by making good use of simple corrosion action of metal such as copper. When a foil of copper is used as a positive electrode, the copper is oxidized with oxygen dissolved in a water-soluble electrolyte on the positive electrode side (reaction (1)), and oxide of the copper which is produced as a result is supplied with electrons via a conductive wire from a negative electrode to react with water in the water-soluble electrolyte to be reduced into copper, and hydroxide ions are generated (reaction (2)), wherein 2Cu+1/2 O≥CuO (1), and CuO+HO+2e≥2Cu+2OH(2). Through (1) and (2), Reaction (3) is considered to occur to the positive electrode, wherein 1/2O+HO+2e≥2OH(3).

Description

本発明は銅などの金属の腐食を利用したリチウム−空気電池に関する。 The present invention relates to a lithium-air battery utilizing corrosion of a metal such as copper.

最近数多くのリチウム−空気電池(或いはリチウム−酸素電池)の提案が報告されている。それらは、リチウム金属からなる負極/有機電解液/固体電解質/水溶性電解液/触媒を担持した多孔質カーボンからなる空気極を組み合わせたリチウム−空気電池に関するものである(図1参照)。   Recently, many proposals for lithium-air batteries (or lithium-oxygen batteries) have been reported. They relate to a lithium-air battery in which an anode made of lithium metal / organic electrolyte / solid electrolyte / water-soluble electrolyte / air electrode made of porous carbon carrying a catalyst is combined (see FIG. 1).

これらのリチウム−空気電池では、高温で焼結したナノサイズの金属酸化物などを触媒として、導電助剤などと混合して、空気極として使用している(非特許文献1)。   In these lithium-air batteries, a nano-sized metal oxide sintered at a high temperature is used as a catalyst and mixed with a conductive additive or the like and used as an air electrode (Non-patent Document 1).

Journal of Power Sources 195 (2010)358-361Journal of Power Sources 195 (2010) 358-361

上述の従来のリチウム−空気電池に用いられる空気極は、ナノサイズの金属酸化物を合成し、触媒として使用するため、コストが高い。   The air electrode used in the above-described conventional lithium-air battery is expensive because it synthesizes a nano-sized metal oxide and uses it as a catalyst.

本発明は、銅などの金属の簡単な腐食作用を利用することにより、空気極に触媒を用いることなく、簡単に、リチウム−空気電池を作動させることを可能とするものである。   The present invention makes it possible to easily operate a lithium-air battery without using a catalyst for an air electrode by utilizing a simple corrosive action of a metal such as copper.

本発明者等は、新規な反応システムを利用したリチウム−空気電池について、長年鋭意検討した結果、正極として、銅のフォイルを使用すると、金属銅の腐食原理に従い、正極側の水溶性電解液に溶け込んだ酸素により銅が酸化され(以下の(1)の反応)、これにより生じた銅の酸化物が負極から導電線を介して電子の供給を受けて水溶性電解液中の水と反応し、銅に還元されるとともに水酸イオンが生じる(以下の(2)の反応)ことを見出した。:
2Cu +1/2O2 =>Cu2O (1)
Cu2O +H2O +2e-1 =>2Cu +2OH-1 (2)
上記(1)と(2)を合わせて、正極には、以下に示す(3)の反応が生じたことになる。
1/2O2 +H2O +2e-1 => 2OH-1 (3)
このように、正極の銅は、金属銅の腐食原理により、正極側の水溶性電解液に溶け込む酸素を還元する空気極として作用している。
As a result of intensive studies on lithium-air batteries using a novel reaction system for many years, the present inventors have used a copper foil as the positive electrode. Copper is oxidized by the dissolved oxygen (reaction (1) below), and the resulting copper oxide reacts with water in the water-soluble electrolyte by receiving electrons from the negative electrode via the conductive wire. It was found that hydroxide ions were generated while being reduced to copper (reaction (2) below). :
2Cu + 1 / 2O 2 => Cu 2 O (1)
Cu 2 O + H 2 O + 2e -1 => 2Cu + 2OH -1 (2)
By combining the above (1) and (2), the following reaction (3) has occurred in the positive electrode.
1 / 2O 2 + H 2 O + 2e -1 => 2OH -1 (3)
Thus, the positive electrode copper acts as an air electrode that reduces oxygen dissolved in the water-soluble electrolyte on the positive electrode side due to the corrosion principle of metallic copper.

上記構成のリチウム−空気電池においては、放電時に、負極から放出されるリチウムイオンは、固体電解質を通過し、空気極側に到着する。一方で、空気極では、上記(1)と(2)の銅の腐食反応が行われ、OH-が生成する。空気極側に到着したリチウムイオンは、空気極に生成するOH-と合わせて、LiOHになる。 In the lithium-air battery having the above configuration, during discharge, lithium ions released from the negative electrode pass through the solid electrolyte and arrive at the air electrode side. On the other hand, at the air electrode, the copper corrosion reactions (1) and (2) above occur, and OH - is generated. Lithium ions arriving at the air electrode side, OH to produce the air electrode - in conjunction with, be LiOH.

本発明のリチウム−空気電池の正極として用いられる金属は、水溶性電解液に溶け込んだ酸素により腐食する金属であればよく、銅に限られない。このような金属としては、例えば、銀、錫、鉄があげられる。
上記金属を、薄膜状で、または金属粉末、または金属とその金属の酸化物の粉末の混合物を、バインダーを用いて成型する等して、正極として用いることができる。
The metal used as the positive electrode of the lithium-air battery of the present invention is not limited to copper as long as it corrodes with oxygen dissolved in the water-soluble electrolyte. Examples of such a metal include silver, tin, and iron.
The metal can be used as a positive electrode by forming a thin film or a metal powder or a mixture of a metal and an oxide of the metal with a binder.

本発明のリチウム−空気電池においては、正極を空気極として機能させるために、正極側の水溶性電解液に酸素を溶存させる(図2および図6参照)。
あるいは、本発明のリチウム−空気電池においては、正極側に水溶性電解液室を設けることなく、正極として金属粉末を成型した多孔性電極を用い、これを固体電解質膜に密着させ、固体電解質と反対の側を直接空気に曝し、空気極とするとともに、当該多孔性の正極に水溶性電解液を外部から循環供給することにより、電池を構成することもできる(図3参照)。
In the lithium-air battery of the present invention, oxygen is dissolved in the water-soluble electrolyte solution on the positive electrode side in order to make the positive electrode function as an air electrode (see FIGS. 2 and 6).
Alternatively, in the lithium-air battery of the present invention, without providing a water-soluble electrolyte chamber on the positive electrode side, a porous electrode obtained by molding metal powder as the positive electrode is used, which is adhered to the solid electrolyte membrane, and the solid electrolyte and A battery can also be configured by exposing the opposite side directly to air to form an air electrode and circulatingly supplying a water-soluble electrolyte to the porous positive electrode from the outside (see FIG. 3).

本発明のリチウム−空気電池において、負極側のリチウムを、放電による負極の消耗にあわせて順次外部から供給すれば、充電せず、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)を構成することができる。
負極側のリチウムは、例えばリチウムリボンなどの形態として、順次外部から供給することができる。
また、電池の放電により正極区域に生成したLiOHを、外部循環システムにより正極側電解液から分離・回収し、これからリチウム金属を精製して、燃料として負極側のリチウム金属に加えることもできる。
In the lithium-air battery of the present invention, if lithium on the negative electrode side is sequentially supplied from the outside in accordance with the consumption of the negative electrode due to discharge, a lithium-air battery (or a fuel cell) capable of continuous discharge without being charged (or A lithium fuel cell).
The lithium on the negative electrode side can be sequentially supplied from the outside, for example, in the form of a lithium ribbon or the like.
In addition, LiOH generated in the positive electrode region by the discharge of the battery can be separated and recovered from the positive electrode side electrolyte solution by an external circulation system, and the lithium metal can be purified therefrom and added to the negative electrode side lithium metal as a fuel.

すなわち、この出願は、具体的には、以下の発明を提供するものである。
〈1〉正極(空気極)として金属の薄膜または金属の粉末または金属とその金属の酸化物の粉末の混合物からなる電極を使用し、酸素によるその金属の腐食原理を利用することを特徴とする、金属(負極)−空気電池。
〈2〉正極(空気極)として銅の薄膜または銅の粉末または銅と酸化銅の粉末の混合物からなる電極を使用することを特徴とする、〈1〉に記載の金属(負極)−空気電池。
〈3〉リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極、負極用の電解液、固体電解質、空気極用の電解液および腐食性金属の正極(空気極)がその順に設けられることを特徴とする、リチウム−空気電池。
〈4〉リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極、負極用の電解液、固体電解質、腐食性金属の正極(空気極)がその順に設けられ、空気極用の電解液が外部循環系を介して空気極に循環供給されることを特徴とする、リチウム−空気電池。
〈5〉負極として、リチウム金属、リチウムカーボン、リチウムシリコン、リチウムアルミニウム、リチウムインジウム、リチウム錫、窒化リチウムの中から選ばれた負極材料を用い、負極用電解液が有機電解液であることを特徴とする、〈3〉または〈4〉に記載のリチウム−空気電池。
〈6〉空気極用電解液が水溶性電解液であり、当該水溶性電解液はアルカリ性(弱アルカリ性又は強アルカリ性)であることを特徴とする、〈3〉〜〈5〉に記載のリチウム−空気電池。
〈7〉正極(空気極)として銅の薄膜または銅の粉末または銅と酸化銅の粉末の混合物からなる電極を使用することを特徴とする、〈3〉〜〈6〉に記載のリチウム−空気電池。
〈8〉負極側に〈3〉または〈5〉に記載の負極材料を燃料として適時に添加し、充電せず、連続放電可能であることを特徴とする、〈3〉〜〈7〉のいずれかに記載のリチウム−空気燃料電池。
〈9〉金属の薄膜または金属の粉末または金属とその金属の酸化物の粉末の混合物からなり、酸素によるその金属の腐食原理を利用して酸素を還元する、電池用空気極。
〈10〉金属が銅、銀、錫、または鉄であることを特徴とする、〈9〉に記載の空気極。
That is, this application specifically provides the following inventions.
<1> A metal thin film or an electrode made of a metal powder or a mixture of a metal and an oxide powder of the metal is used as a positive electrode (air electrode), and the principle of corrosion of the metal by oxygen is used. , Metal (negative electrode) -air battery.
<2> The metal (negative electrode) -air battery according to <1>, wherein an electrode made of a copper thin film, copper powder, or a mixture of copper and copper oxide powder is used as the positive electrode (air electrode). .
<3> A negative electrode using a negative electrode material of a lithium ion battery or a lithium secondary battery, an electrolytic solution for a negative electrode, a solid electrolyte, an electrolytic solution for an air electrode, and a corrosive metal positive electrode (air electrode) are provided in that order. A lithium-air battery characterized by the above.
<4> A negative electrode using a negative electrode material of a lithium ion battery or a lithium secondary battery, an electrolytic solution for the negative electrode, a solid electrolyte, and a positive electrode (air electrode) of a corrosive metal are provided in that order, and an electrolytic solution for the air electrode Is circulated and supplied to the air electrode through an external circulation system.
<5> A negative electrode material selected from lithium metal, lithium carbon, lithium silicon, lithium aluminum, lithium indium, lithium tin, and lithium nitride is used as the negative electrode, and the negative electrode electrolyte is an organic electrolyte. The lithium-air battery according to <3> or <4>.
<6> The electrolyte for a cathode is a water-soluble electrolyte, and the water-soluble electrolyte is alkaline (weakly alkaline or strongly alkaline). The lithium according to <3> to <5> Air battery.
<7> The lithium-air according to <3> to <6>, wherein an electrode made of a copper thin film, copper powder, or a mixture of copper and copper oxide powder is used as the positive electrode (air electrode). battery.
<8> Any one of <3> to <7>, wherein the negative electrode material according to <3> or <5> is added as fuel to the negative electrode in a timely manner, and continuous discharge is possible without charging. A lithium-air fuel cell according to claim 1.
<9> A battery air electrode comprising a metal thin film, a metal powder, or a mixture of a metal and an oxide of the metal, and reducing oxygen using the principle of corrosion of the metal by oxygen.
<10> The air electrode according to <9>, wherein the metal is copper, silver, tin, or iron.

金属の腐食原理を利用し、金属を空気極として用いることにより、触媒と導電助剤、バインダーとから構成される空気極を使用する必要がなく、簡単にリチウム−空気電池、ないしリチウム−空気燃料電池を作成することができる。
By using the metal corrosion principle and using metal as an air electrode, it is not necessary to use an air electrode composed of a catalyst, a conductive additive, and a binder, and it is easy to use a lithium-air battery or a lithium-air fuel. A battery can be created.

従来の負極/有機電解液/固体電解質/水溶性電解液/空気極という構造を有するリチウム−空気電池の説明図Explanatory drawing of a lithium-air battery having a structure of a conventional negative electrode / organic electrolyte / solid electrolyte / water-soluble electrolyte / air electrode 本発明の実施例の、空気極に銅のフォイルを使用したリチウム−空気電池の構造図FIG. 1 is a structural diagram of a lithium-air battery using a copper foil as an air electrode according to an embodiment of the present invention. 本発明による、空気極に銅粉末成型体を用い、外部循環系により水溶性電解液を供給する、リチウム−空気電池の構造図Structural diagram of a lithium-air battery using a copper powder molded body for an air electrode and supplying a water-soluble electrolyte solution by an external circulation system according to the present invention 本発明の実施例のリチウム−空気電池の放電プロファイルDischarge profile of lithium-air battery of an embodiment of the present invention 本発明の実施例のリチウム−空気電池において空気極として用いた銅のフォイルの、放電する前後のX線回折像と走査電子顕微鏡写真X-ray diffraction images and scanning electron micrographs of a copper foil used as an air electrode in a lithium-air battery of an embodiment of the present invention before and after discharging. 本発明の実施例のリチウム−空気電池において、正極側水溶性電解液に空気を供給したときと空気を供給しないときの放電プロファイルIn the lithium-air battery of the embodiment of the present invention, the discharge profile when air is supplied to the positive electrode side water-soluble electrolyte and when air is not supplied 酸素による銅の腐食のイメージImage of copper corrosion by oxygen

本発明を以下の実施例により更に詳細に説明する。   The invention is illustrated in more detail by the following examples.

実施例
図2に示される装置において、1の負極として金属リチウムリボンを、2の負極用有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)を、3の固体電解質として、LISICON膜を、4の空気極用の電解液として、1.0MのLiNO3水溶液を、5の空気極として銅のフォイルを、それぞれ用いて、リチウム−空気電池を作製し、充放電試験を行った。
放電時には、負極において、以下の電極反応が、
Li =>Li+ + e-
また、空気極においては、:
2Cu +1/2O2 =>Cu2O (1)
Cu2O +H2O +2e-1 =>2Cu +2OH-1 (2)
以上の二つの反応を合わせて、
1/2O2 +H2O +2e-1 => 2OH-1 (3)
の電極反応が起こり、負極区域の有機電解液中のLi+は、固体電解質を通過して、空気極側へ移動し、一方で空気極で生成したOH-とともに、LiOHになる。
実施例のリチウム−空気電池の放電のプロファイルを図4に示す。図4に示すように、OCV(=開路電圧)は3.1V(vs Li/Li+)である。
Example In the apparatus shown in FIG. 2, a metal lithium ribbon as 1 negative electrode, an organic electrolyte solution for 2 negative electrodes, an organic electrolyte solution (EC / DEC) in which 1M LiClO 4 is dissolved as 3 solid electrolytes A lithium-air battery was prepared using a LISICON membrane as the electrolyte for the 4 air electrodes, a 1.0M LiNO 3 aqueous solution and a copper foil as the 5 air electrodes, and a charge / discharge test was performed. It was.
At the time of discharge, the following electrode reaction occurs in the negative electrode:
Li => Li + + e -
And at the air electrode:
2Cu + 1 / 2O 2 => Cu 2 O (1)
Cu 2 O + H 2 O + 2e -1 => 2Cu + 2OH -1 (2)
Combining these two reactions,
1 / 2O 2 + H 2 O + 2e -1 => 2OH -1 (3)
Thus, Li + in the organic electrolyte in the negative electrode region passes through the solid electrolyte and moves to the air electrode side, and becomes LiOH together with OH generated at the air electrode.
The discharge profile of the lithium-air battery of the example is shown in FIG. As shown in FIG. 4, OCV (= open circuit voltage) is 3.1 V (vs Li / Li + ).

図5は、実施例のリチウム−空気電池に使用した銅フォイルの使用前後の状態を示す、X線回折像と走査電子顕微鏡写真である。使用後の銅フォイルのX線評価では、強いCu2Oのピークが確認される。このことは、本発明の電池において、放電時に銅電極の酸化が生じることを示している。 FIG. 5 is an X-ray diffraction image and a scanning electron micrograph showing states of the copper foil used in the lithium-air battery of the example before and after use. In the X-ray evaluation of the copper foil after use, a strong Cu 2 O peak is confirmed. This indicates that the copper electrode is oxidized during discharge in the battery of the present invention.

図6に、実施例のリチウム−空気電池において、正極側水溶性電解液に空気を供給したときと空気を供給しないときの放電プロファイルを示す。
これによると、正極側水溶性電解液に空気を供給しないと、放電後、急速に電池電圧が減少するのに対し、正極側水溶性電解液に空気を供給することにより、電池電圧が安定に保たれており、このことは、本発明の電池において、銅電極が空気極として機能していることを示している。
FIG. 6 shows a discharge profile when air is supplied to the positive electrode side water-soluble electrolyte and when air is not supplied in the lithium-air battery of the example.
According to this, the battery voltage decreases rapidly after discharge if air is not supplied to the positive electrode side water-soluble electrolyte, whereas the battery voltage is stabilized by supplying air to the positive electrode side water-soluble electrolyte. This indicates that the copper electrode functions as an air electrode in the battery of the present invention.

図7は、以上の観察から、本発明の電池において正極に生じる電極反応について考察された、金属の腐食のイメージを示す図である。   FIG. 7 is a diagram showing an image of metal corrosion, in which the electrode reaction occurring at the positive electrode in the battery of the present invention is considered from the above observation.

〈本発明のリチウム−空気電池のリチウム燃料電池としての使用形態〉
負極側のリチウム金属を燃料として随時添加するとともに、外部循環システムにより、正極区域に生成したLiOHの沈殿を回収することにより、充電せず、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)を構成することができる。
すなわち、外部循環システムにおいて、正極側電解液から分離したLiOHからリチウム金属を精製して、燃料として負極側のリチウム金属に加えれば、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)を構成することができる。
<Usage of the lithium-air battery of the present invention as a lithium fuel cell>
Lithium-air battery that can be continuously discharged like a fuel cell without being charged by adding lithium metal on the negative electrode as fuel at any time and collecting LiOH precipitate generated in the positive electrode area by an external circulation system (Or a lithium fuel cell) can be configured.
That is, in an external circulation system, if lithium metal is purified from LiOH separated from the positive electrode side electrolyte and added to the lithium metal on the negative electrode side as fuel, a lithium-air battery (or fuel cell) capable of continuous discharge (or A lithium fuel cell).

Claims (10)

正極(空気極)として金属の薄膜または金属の粉末または金属とその金属の酸化物の粉末の混合物からなる電極を使用し、酸素によるその金属の腐食原理を利用することを特徴とする、金属(負極)−空気電池。   A metal (characterized by using an electrode made of a metal thin film or a metal powder or a mixture of a metal and an oxide powder of the metal as a positive electrode (air electrode) and utilizing the principle of corrosion of the metal by oxygen Negative electrode) -air battery. 正極(空気極)として銅の薄膜または銅の粉末または銅と酸化銅の粉末の混合物からなる電極を使用することを特徴とする、請求項1に記載の金属(負極)−空気電池。   The metal (negative electrode) -air battery according to claim 1, wherein an electrode made of a copper thin film, copper powder, or a mixture of copper and copper oxide powder is used as the positive electrode (air electrode). リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極、負極用の電解液、固体電解質、空気極用の電解液および腐食性金属の正極(空気極)がその順に設けられることを特徴とする、リチウム−空気電池。   A negative electrode using a negative electrode material of a lithium ion battery or a lithium secondary battery, an electrolytic solution for a negative electrode, a solid electrolyte, an electrolytic solution for an air electrode, and a positive electrode (air electrode) of a corrosive metal are provided in that order. A lithium-air battery. リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極、負極用の電解液、固体電解質、腐食性金属の正極(空気極)がその順に設けられ、空気極用の電解液が外部循環系を介して空気極に循環供給されることを特徴とする、リチウム−空気電池。   Negative electrode using negative electrode material of lithium ion battery or lithium secondary battery, electrolyte solution for negative electrode, solid electrolyte, positive electrode (air electrode) of corrosive metal are provided in that order, and electrolyte solution for air electrode is externally circulated A lithium-air battery characterized by being circulated and supplied to an air electrode through a system. 負極として、リチウム金属、リチウムカーボン、リチウムシリコン、リチウムアルミニウム、リチウムインジウム、リチウム錫、窒化リチウムの中から選ばれた負極材料を用い、負極用電解液が有機電解液であることを特徴とする、請求項3または4に記載のリチウム−空気電池。   As the negative electrode, a negative electrode material selected from lithium metal, lithium carbon, lithium silicon, lithium aluminum, lithium indium, lithium tin, and lithium nitride is used, and the negative electrode electrolyte is an organic electrolyte, The lithium-air battery according to claim 3 or 4. 空気極用電解液が水溶性電解液であり、当該水溶性電解液はアルカリ性(弱アルカリ性又は強アルカリ性)であることを特徴とする、請求項3〜5のいずれかに記載のリチウム−空気電池。   The lithium-air battery according to any one of claims 3 to 5, wherein the air electrode electrolyte is a water-soluble electrolyte, and the water-soluble electrolyte is alkaline (weakly alkaline or strongly alkaline). . 正極(空気極)として銅の薄膜または銅の粉末または銅と酸化銅の粉末の混合物からなる電極を使用することを特徴とする、請求項3〜請求項6のいずれかに記載のリチウム−空気電池。   The lithium-air according to any one of claims 3 to 6, wherein an electrode made of a copper thin film or copper powder or a mixture of copper and copper oxide powder is used as a positive electrode (air electrode). battery. 負極側に請求項3または5に記載の負極材料を燃料として適時に添加し、充電せず、連続放電可能であることを特徴とする、請求項3〜7のいずれかに記載のリチウム−空気燃料電池。   The lithium-air according to any one of claims 3 to 7, wherein the negative electrode material according to claim 3 or 5 is added to the negative electrode side as a fuel in a timely manner, and continuous discharge is possible without charging. Fuel cell. 金属の薄膜または金属の粉末または金属とその金属の酸化物の粉末の混合物からなり、酸素によるその金属の腐食原理を利用して酸素を還元する、電池用空気極。   An air electrode for a battery comprising a thin metal film or a metal powder or a mixture of a metal and an oxide powder of the metal, which reduces oxygen using the principle of corrosion of the metal by oxygen. 金属が銅、銀、錫、または鉄であることを特徴とする、請求項9に記載の空気極。   The air electrode according to claim 9, wherein the metal is copper, silver, tin, or iron.
JP2010112277A 2010-05-14 2010-05-14 Lithium-air cell utilizing corrosion of metal Pending JP2011243324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112277A JP2011243324A (en) 2010-05-14 2010-05-14 Lithium-air cell utilizing corrosion of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112277A JP2011243324A (en) 2010-05-14 2010-05-14 Lithium-air cell utilizing corrosion of metal

Publications (1)

Publication Number Publication Date
JP2011243324A true JP2011243324A (en) 2011-12-01

Family

ID=45409822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112277A Pending JP2011243324A (en) 2010-05-14 2010-05-14 Lithium-air cell utilizing corrosion of metal

Country Status (1)

Country Link
JP (1) JP2011243324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058405A (en) * 2011-09-08 2013-03-28 Honda Motor Co Ltd Lithium ion oxygen cell
JP2018022608A (en) * 2016-08-03 2018-02-08 イビデン株式会社 Electrode for power storage device, power storage device, air battery, and all-solid-state battery
CN113097606A (en) * 2021-03-23 2021-07-09 深圳大学 Liquid flow metal-air battery system
US11677112B2 (en) 2019-11-29 2023-06-13 Samsung Electronics Co., Ltd. Metal-air battery and method of manufacturing the metal-air battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058405A (en) * 2011-09-08 2013-03-28 Honda Motor Co Ltd Lithium ion oxygen cell
JP2018022608A (en) * 2016-08-03 2018-02-08 イビデン株式会社 Electrode for power storage device, power storage device, air battery, and all-solid-state battery
US11677112B2 (en) 2019-11-29 2023-06-13 Samsung Electronics Co., Ltd. Metal-air battery and method of manufacturing the metal-air battery
CN113097606A (en) * 2021-03-23 2021-07-09 深圳大学 Liquid flow metal-air battery system
CN113097606B (en) * 2021-03-23 2023-02-03 深圳大学 Liquid flow metal-air battery system

Similar Documents

Publication Publication Date Title
Kwabi et al. Materials challenges in rechargeable lithium-air batteries
JP5354580B2 (en) Lithium-air battery
Senthilkumar et al. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications
Jo et al. The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air batteries
WO2013073292A1 (en) Zinc-air secondary battery
US20160028133A1 (en) Lithium-air battery for electric vehicles and other applications using molten nitrate electrolytes
JP5172138B2 (en) Alkaline storage battery
Sunahiro et al. Rechargeable aqueous lithium–air batteries with an auxiliary electrode for the oxygen evolution
JP5580931B2 (en) Cathode catalyst for metal-air secondary battery and metal-air secondary battery
JP2011134628A (en) Lithium-air battery
JP2011081971A (en) Nickel-lithium secondary battery
JP2016122650A (en) All-solid metal-metal battery
JP2013025873A (en) Open-type lithium-air battery using, as air electrode, metal mesh, metal film, or sintered compact of powdered metal and solid electrolyte
JP2012182050A (en) Lithium-air cell using graphene free from metal in air electrode
US20170288287A1 (en) Rechargeable aluminum-air electrochemical cell
US10320033B2 (en) Alkali metal ion battery using alkali metal conductive ceramic separator
JP2011243324A (en) Lithium-air cell utilizing corrosion of metal
JP2010140821A (en) Air battery
JP2015076379A (en) Metal air secondary battery
CN106104860B (en) Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004095243A (en) Lithium secondary battery using sulfur as positive electrode active material
CN103931049B (en) aqueous electrolyte for lithium-air battery
EP2707924B1 (en) Alkali metal ion battery using alkali metal conductive ceramic separator
JP2009064584A (en) Nonaqueous electrolyte battery
US7875386B2 (en) Energy converter cell for the direct conversion of radiation and/or thermal energy into electrical energy