JP2014165056A - Positive electrode for metal air secondary battery - Google Patents

Positive electrode for metal air secondary battery Download PDF

Info

Publication number
JP2014165056A
JP2014165056A JP2013035798A JP2013035798A JP2014165056A JP 2014165056 A JP2014165056 A JP 2014165056A JP 2013035798 A JP2013035798 A JP 2013035798A JP 2013035798 A JP2013035798 A JP 2013035798A JP 2014165056 A JP2014165056 A JP 2014165056A
Authority
JP
Japan
Prior art keywords
positive electrode
reaction
oxygen
layer
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013035798A
Other languages
Japanese (ja)
Other versions
JP5974320B2 (en
Inventor
Hikari Okamoto
光 岡本
Masayuki Kondo
真行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMURA ZAIRYO KAIHATSU KENKYUSHO KK
IMRA Material R&D Co Ltd
Original Assignee
IMURA ZAIRYO KAIHATSU KENKYUSHO KK
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMURA ZAIRYO KAIHATSU KENKYUSHO KK, IMRA Material R&D Co Ltd filed Critical IMURA ZAIRYO KAIHATSU KENKYUSHO KK
Priority to JP2013035798A priority Critical patent/JP5974320B2/en
Publication of JP2014165056A publication Critical patent/JP2014165056A/en
Application granted granted Critical
Publication of JP5974320B2 publication Critical patent/JP5974320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an air electrode (positive electrode) for a safe battery pack whose charging voltage is stable even during charging and that has no electrolyte leakage and such.SOLUTION: The positive electrode for a metal air secondary battery includes: a gas diffusion layer 1; an oxygen generation catalyst layer 2 laminated on the gas diffusion layer 1; and a hydrophilic porous layer 3 laminated on the oxygen generation catalyst layer 2, wherein the hydrophilic porous layer 3 is disposed in a state where the hydrophilic porous layer 3 is in contact with an alkaline electrolyte.

Description

本発明は、リチウム―空気電池、亜鉛―空気電池、アルミニウム―空気電池等の金属―空気二次電池用正極に関する。   The present invention relates to a positive electrode for a metal-air secondary battery such as a lithium-air battery, a zinc-air battery, and an aluminum-air battery.

電池の正極活物質として空気中の酸素を利用する空気電池は、電池の高エネルギー密度化に有利である。その空気電池の種類として負極活物質に亜鉛やアルミニウムやリチウム等を用いる金属―空気電池(一次電池及び二次電池)や燃料電池が知られており、一部実用化されている。これらの空気電池の基本構造は図1に示すように正極側が大気中へ開放された構造をしている。これらの空気電池の放電時には、正極では酸素の還元反応が起こる。この場合、酸素の還元反応は、水系の電解液中で、さらには、アルカリ性の溶液中で速く起こることが知られており、アルカリ性水溶液が電池の電解液として通常用いられる。   An air battery that uses oxygen in the air as the positive electrode active material of the battery is advantageous for increasing the energy density of the battery. As the types of air batteries, metal-air batteries (primary batteries and secondary batteries) and fuel cells using zinc, aluminum, lithium or the like as a negative electrode active material are known and some of them are put into practical use. The basic structure of these air batteries is such that the positive electrode side is open to the atmosphere as shown in FIG. When these air batteries are discharged, an oxygen reduction reaction occurs at the positive electrode. In this case, it is known that the oxygen reduction reaction occurs rapidly in an aqueous electrolyte, and further in an alkaline solution, and an alkaline aqueous solution is usually used as the battery electrolyte.

アルカリ性の電解液中での正極の放電反応は、下記の反応式(1)に基づき、負極での放電反応は、下記の反応式(2)に基づく。   The discharge reaction of the positive electrode in the alkaline electrolyte is based on the following reaction formula (1), and the discharge reaction at the negative electrode is based on the following reaction formula (2).

正極反応: 1/4 O2 + 1/2 H2O + e- → OH- 反応式(1)
負極反応: M → Mn+ + ne- 反応式(2)
ここで、MがLiの場合n=1、Znの場合n=2、Alの場合n=3、Hの場合n=1である。
Positive electrode reaction: 1/4 O 2 + 1/2 H 2 O + e- → OH - Reaction formula (1)
Negative electrode reaction: M → M n + + ne- Reaction formula (2)
Here, when M is Li, n = 1, when Zn is n = 2, when Al is n = 3, and when H is n = 1.

図1の正極反応層12は、例えばカーボンブラックにPtを担持した酸素還元触媒層であり、反応式(1)の反応を促進する機能を有する。また、図1のガス拡散層11は、例えば、カーボンファイバー製シートである。   The positive electrode reaction layer 12 in FIG. 1 is an oxygen reduction catalyst layer in which Pt is supported on carbon black, for example, and has a function of promoting the reaction of the reaction formula (1). Moreover, the gas diffusion layer 11 of FIG. 1 is a carbon fiber sheet, for example.

空気電池を充電可能な二次電池として用いる場合、充電時における正極及び負極の電極反応は、以下のようになる。   When the air battery is used as a rechargeable secondary battery, the electrode reaction between the positive electrode and the negative electrode during charging is as follows.

正極反応: OH- →1/4 O2 + 1/2 H2O + e- 反応式(3)
負極反応: Mn++ n e- →M 反応式(4)
一般的に、放電反応による放電生成物(通常、M(OH)nの形で生成)は、非常に安定であり、反応式(4)で示されたように、負極金属イオンを元の金属に電気化学的に戻すことが非常に難しい。 そのため、これまでは、金属‐空気電池を電気化学的に再生(充電)可能な二次電池として用いることが容易でなかった。
Positive reaction: OH - → 1/4 O 2 + 1/2 H 2 O + e- reaction formula (3)
Negative electrode reaction: M n + + n e- → M Reaction formula (4)
In general, the discharge product (usually generated in the form of M (OH) n) due to the discharge reaction is very stable, and as shown in the reaction formula (4), the negative electrode metal ion is converted into the original metal. It is very difficult to return to electrochemical. Therefore, until now, it has not been easy to use a metal-air battery as a secondary battery that can be electrochemically regenerated (charged).

しかしながら、負極に金属Liを用いたLi‐空気電池では、放電生成物の電気化学的な還元が比較的容易であり、最近、実際に繰り返しの放電/充電操作が可能なことが示され、Li‐空気二次電池の研究開発が活発化している。 Li‐空気電池二次電池は、図1に示したような、有機系電解液やイオン液体を電解液の溶媒として用いる非水系Li‐空気二次電池と、図2に示したような水を電解液の溶媒として用いる水系Li‐空気二次電池の2種類に分類できる。 水系Li‐空気二次電池は、リチウム金属負極20に、Li1+ x(M, Al, Ga)x(Ge1 - yTiy )2 -x (PO4)3(ここで、X≦0.8と0≦Y≦1.0とを満たし、MがNd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群から選択される元素)および/あるいはLi1+x+y QxTi2 - x Siy P3 - y O12(ここで0 < X≦ 0.4 と0 < Y≦ 0.6とを満たし、QがAlあるいはGaである)で表わされる水不透過性のリチウムイオン導電性ガラスセラミック(以下、LATPとして省略)50を積層し、保護することで、水系の電解液30を用いることが可能になってきている(例えば、特許文献1参照。)。 However, in Li-air batteries using metallic Li as the negative electrode, the electrochemical reduction of discharge products is relatively easy, and recently it has been shown that repeated discharge / charge operations can actually be performed. -Research and development of air secondary batteries is active. The Li-air battery secondary battery is composed of a non-aqueous Li-air secondary battery using an organic electrolyte or ionic liquid as a solvent for the electrolyte as shown in FIG. 1, and water as shown in FIG. It can be classified into two types: water-based Li-air secondary batteries used as a solvent for the electrolyte. The water-based Li-air secondary battery includes a lithium metal negative electrode 20 and Li 1 + x (M, Al, Ga) x (Ge 1 -yTiy ) 2 -x (PO 4 ) 3 (where X ≦ 0.8 and 0 ≦ Y ≦ 1.0 and M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) and / or Li 1 + x + y QxTi 2 − Water-impermeable lithium ion conductive glass ceramic (hereinafter referred to as x Siy P 3 -y O 12 (where 0 <X ≤ 0.4 and 0 <Y ≤ 0.6, and Q is Al or Ga)) , Omitted as LATP), and by stacking and protecting 50, it has become possible to use an aqueous electrolyte solution 30 (see, for example, Patent Document 1).

水系Li‐空気二次電池の放電時の正極反応は、反応式(1)で示され、従来の水系の電解液溶媒として用いるZn‐空気一次電池、Al‐空気一次電池及びアルカリ型燃料電池等と同じである。 それらの一次電池及び燃料電池の正極に必要な機能として、電極活物質である酸素と水の高い供給性(拡散性)、高いOH-イオンと電子の導電性及び高い酸素還元能力(高い触媒能)が必要であり、さらに液体電解液の安定した保持能力が必要である。 The positive electrode reaction during discharge of the water-based Li-air secondary battery is shown by the reaction formula (1), and the conventional Zn-air primary battery, Al-air primary battery, alkaline fuel cell, etc. used as an aqueous electrolyte solvent Is the same. The functions necessary for the positive electrode of these primary batteries and fuel cells include high supply ability (diffusibility) of oxygen and water as electrode active materials, high conductivity of OH - ions and electrons, and high oxygen reduction ability (high catalytic ability) ) And a stable holding ability of the liquid electrolyte.

それらを実現する方法として、非常に多くの技術(非特許文献1参照。)が知られている。従来の一般的な放電正極の作製方法は以下のようである。 親水性であるカーボンブラック(CB)と撥水性であるポリテトラフルオロエチレン(PTFE)を用い、正極内に親水性の孔と撥水性の孔を形成する。それにより、親水性の孔中には電解液を染み込ませてOHイオン導電性のパスを形成しつつ、撥水性の孔中に電解液が進入することを防止し、酸素の供給パスを同時に確保するものである。 また、放電反応時の酸素還元をスムーズに行うために、白金、銀、金属酸化物、環状金属錯体等の酸素還元触媒が正極反応層として、正極内部や表面に添加、付与され用いられる。 As a method for realizing them, a great number of techniques (see Non-Patent Document 1) are known. A conventional method for producing a general discharge positive electrode is as follows. Using hydrophilic carbon black (CB) and water-repellent polytetrafluoroethylene (PTFE), hydrophilic holes and water-repellent holes are formed in the positive electrode. As a result, the electrolyte solution is infiltrated into the hydrophilic hole to form an OH - ion conductive path, while preventing the electrolyte solution from entering the water-repellent hole, and simultaneously supplying the oxygen supply path. It is to secure. In order to smoothly perform oxygen reduction during the discharge reaction, an oxygen reduction catalyst such as platinum, silver, a metal oxide, or a cyclic metal complex is added and applied to the inside or surface of the positive electrode as a positive electrode reaction layer.

一方、空気電池を二次電池として用いる場合、充電反応(酸素発生反応)は、放電反応(酸素還元反応)とは異なるため、一次電池用の正極(放電用)を用いて、充電反応(酸素発生反応)を行っても、十分には機能しないという問題点がある。   On the other hand, when an air battery is used as a secondary battery, the charge reaction (oxygen generation reaction) is different from the discharge reaction (oxygen reduction reaction). There is a problem that even if the generation reaction is performed, it does not function sufficiently.

充電反応(酸素発生反応)の場合、反応には、反応式(3)に従い、OH-イオンが必要であり、これは電解液から供給されるため、正極構造として電解液が染み込み易い構造(親水性)が有利である。 しかしながら、反応により、酸素ガスが生成されるので、それを電池の外側に排出する機能が必要である。 また、反応層として用いる触媒は、酸素発生触媒が必要になる。 従来技術として、非特許文献2に示されるように、電解液側に設置する充電仕様の親水性の正極と大気側に設置する放電仕様の撥水性の正極を別々に作製し、厚さ方向に積層し、接合した2機能性(Bi-functional)の正極構造が知られている。 しかしながら、この場合、充電反応時に発生する酸素は、放電仕様の正極を通過して、大気中に排出される必要が生じ、放電反応時に生成するOHイオンは、充電仕様の正極を通じて、電解液中へ排出される必要がある。 そのため、効率的な充放電が出来ない恐れがある。 また、触媒として、酸素還元/酸素発生の両方に対して触媒能を有するイリジウムを含むパイロクロア型酸化物(特許文献2参照)や多核金属錯体(特許文献3参照)を両機能性の触媒を反応層に用いる例が示されている。 しかしながら、酸素還元/酸素発生の両方に対して触媒作用を示す材料は知られているものの、一般的に酸素還元の触媒能と酸素発生の触媒能は、背反する関係があり、両機能性の触媒を用いる事が放電時及び充電時の性能向上に繋がらないと言う問題点がある。 更に、特許文献4及び特許文献5では、電池内に放電用電極の他に充電用の電極(補助電極や第3電極と呼ばれる)を別途設置し、充電時に電池外部に設置された電気回路を放電用電極から充電用電極に切り替えて使用する技術が知られている。 この場合、外部に放電/充電電極の切り替えの為の電気回路を必要とする問題がある。 また、電池内に補助電極を設置する場所の工夫や補助電極から発生する酸素を排出する工夫をする必要があり、更に補助電極を設置する事で電池内でショートが起こり易いと言う指摘もある。 In the case of a charging reaction (oxygen generation reaction), the reaction requires OH 2 ions according to the reaction formula (3), and this is supplied from the electrolytic solution. Is advantageous. However, since oxygen gas is generated by the reaction, a function of discharging it to the outside of the battery is necessary. The catalyst used as the reaction layer requires an oxygen generation catalyst. As shown in Non-Patent Document 2, as a conventional technology, a hydrophilic positive electrode for charging specifications installed on the electrolyte side and a water-repellent positive electrode for discharge specifications installed on the atmosphere side are separately manufactured, and in the thickness direction Bi-functional positive electrode structures are known that are stacked and bonded. However, in this case, oxygen generated during the charging reaction needs to pass through the positive electrode of the discharge specification and be discharged into the atmosphere, and OH ions generated during the discharge reaction pass through the positive electrode of the charging specification through the electrolyte solution. It needs to be discharged inside. Therefore, there is a possibility that efficient charge / discharge cannot be performed. Further, as a catalyst, a pyrochlore oxide containing iridium having catalytic ability for both oxygen reduction / oxygen generation (see Patent Document 2) and a polynuclear metal complex (see Patent Document 3) are reacted with a bifunctional catalyst. An example for use with layers is shown. However, although materials that catalyze both oxygen reduction / oxygen generation are known, in general, the catalytic ability for oxygen reduction and the catalytic ability for oxygen generation are contradictory, and both functionalities are There is a problem that the use of a catalyst does not lead to an improvement in performance during discharging and charging. Furthermore, in Patent Document 4 and Patent Document 5, a charging electrode (referred to as an auxiliary electrode or a third electrode) is separately installed in the battery in addition to the discharging electrode, and an electric circuit installed outside the battery at the time of charging is installed. A technique for switching from a discharging electrode to a charging electrode is known. In this case, there is a problem that an external electric circuit for switching between the discharge / charge electrodes is required. In addition, it is necessary to devise a place where the auxiliary electrode is installed in the battery or to evacuate oxygen generated from the auxiliary electrode, and there are also indications that a short circuit easily occurs in the battery by installing the auxiliary electrode. .

特表2007−7513464号Special table 2007-7513464 特許第4568124号Japanese Patent No. 4568124 特開2012−238591号公報JP 2012-238591 A 特許第2655810号Japanese Patent No. 2655810 特許第3523506号Japanese Patent No. 3523506

Kim Kinoshita,”Electrochemical Oxygen Technology”, JOHN WILEY & SONS, INC. (1992)Kim Kinoshita, “Electrochemical Oxygen Technology”, JOHN WILEY & SONS, INC. (1992) M. Klein and S. Viswanathan, "Zinc/Air Battery R&D, Research and Development of BifunctionalOxygen Electrode, Tasks I & II Final Report, Lawrence Berkeley National Laboratory, Berkeley, CA(Dec, 1986)M. Klein and S. Viswanathan, "Zinc / Air Battery R & D, Research and Development of BifunctionalOxygen Electrode, Tasks I & II Final Report, Lawrence Berkeley National Laboratory, Berkeley, CA (Dec, 1986)

放電時正極反応は、反応式(1)に従い、酸素と水の供給と生成したOH-イオンを電解液方向へ排出するためのパスを正極反応層内に構成する必要がある。 それを実現する方策として、カーボンブラック(CB)等の親水性材料とPTFE等の撥水性材料を混合し、親水性孔と撥水性孔を正極反応層内に形成する技術が通常用いられる。 この場合、図3に示すように、電解液30Aが親水性孔を通じて正極反応層12内に含浸され、水の供給とOH-イオンが移動するための電解液のパスを形成する。 一方、大気中の酸素は、ガス拡散層11を通過し、正極反応層12内の撥水孔を通じて、正極反応層12内に進入し、電解液と出会う場所(反応領域R、通常、三相界面と呼ばれる。)で放電反応が起こる。 この反応をより多く起こし、より多くの酸素還元電流を発生させるために、正極反応層12はある程度の厚み(通常、300〜1,000μm程度)を有しており、厚さ方向でも放電反応を起こすことができるように設計されている。 そのため、図3に示したような正極構造では、放電反応の反応領域は、厚さ方向に広がっている。 In the positive electrode reaction at the time of discharge, according to the reaction formula (1), it is necessary to form a path in the positive electrode reaction layer for supplying oxygen and water and discharging generated OH ions in the direction of the electrolyte. As a measure for realizing this, a technique in which a hydrophilic material such as carbon black (CB) and a water repellent material such as PTFE are mixed to form a hydrophilic hole and a water repellent hole in the positive electrode reaction layer is usually used. In this case, as shown in FIG. 3, the electrolyte solution 30A is impregnated into the positive electrode reaction layer 12 through the hydrophilic holes, thereby forming a path for the electrolyte solution for water supply and movement of OH ions. On the other hand, oxygen in the atmosphere passes through the gas diffusion layer 11, enters the positive electrode reaction layer 12 through the water repellent holes in the positive electrode reaction layer 12, and meets the electrolyte (reaction region R, usually three-phase). The discharge reaction occurs at the interface). In order to cause this reaction more and generate more oxygen reduction current, the positive electrode reaction layer 12 has a certain thickness (usually about 300 to 1,000 μm) and causes a discharge reaction also in the thickness direction. Designed to be able to. Therefore, in the positive electrode structure as shown in FIG. 3, the reaction region of the discharge reaction extends in the thickness direction.

一方、図3に示した正極構造を用いて充電反応を行った場合、正極反応は、反応式(3)に従い、OH-イオンの供給を必要とする。水系空気電池の電解液として、通常、強アルカリ電解液が用いられるため、OH-イオンは、電解液から大量に、且つ、安定的に供給される。 そのため、放電時の反応は、図4に示すように、正極反応層12と電解液30Aとの界面の比較的狭い領域Rで起こる。充電反応により反応領域Rで発生した酸素は、本来、ガス拡散層11を通過し、大気中へ放出されるべきであるが、電解液30Aの近傍で発生した酸素は、酸素の拡散距離Lが大のため、ガス拡散層11側へ抜け難く、正極反応層12内に含浸された電解液を移動、排斥しOH-イオンの導電パスを切断し充電電圧が上昇したりする可能性がある。 さらに、ガス拡散層11とは反対側の電解液30A方向へ抜ける可能性があり、電解液30A中へ移動した酸素は、正極反応層12と電解液30Aの接触面積を低下させたり、電池パックの膨れや電解液漏れの問題を発生させる可能性がある。 On the other hand, when the charge reaction is performed using the positive electrode structure shown in FIG. 3, the positive electrode reaction requires the supply of OH - ions according to the reaction formula (3). Since a strong alkaline electrolyte is usually used as the electrolyte of the water-based air battery, OH - ions are supplied in a large amount and stably from the electrolyte. Therefore, the reaction at the time of discharge occurs in a relatively narrow region R at the interface between the positive electrode reaction layer 12 and the electrolytic solution 30A as shown in FIG. Oxygen generated in the reaction region R due to the charging reaction should pass through the gas diffusion layer 11 and be released into the atmosphere. However, oxygen generated in the vicinity of the electrolyte 30A has an oxygen diffusion distance L. For this reason, it is difficult to escape to the gas diffusion layer 11 side, and the electrolyte impregnated in the positive electrode reaction layer 12 may be moved and discarded to cut the OH - ion conductive path and increase the charging voltage. Further, there is a possibility that the oxygen diffuses into the electrolyte solution 30A on the side opposite to the gas diffusion layer 11, and the oxygen that has moved into the electrolyte solution 30A reduces the contact area between the positive electrode reaction layer 12 and the electrolyte solution 30A, or the battery pack. May cause problems such as swelling and electrolyte leakage.

本発明は、上記の問題に鑑みてなされたものであり、充電時でも充電電圧が安定で電解液漏れ等のない安全な電池パックのための空気極(正極)を提供することを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an air electrode (positive electrode) for a safe battery pack that has a stable charging voltage even during charging and does not leak electrolyte. .

課題を解決するためになされた本発明の金属―空気二次電池用正極は、ガス拡散層と、前記ガス拡散層に積層された酸素発生触媒層と、前記酸素発生触媒層に積層された親水性多孔質層と、を有し、前記親水性多孔質層がアルカリ電解液に曝される状態にしたことを特徴とする。   The positive electrode for a metal-air secondary battery of the present invention made to solve the problem includes a gas diffusion layer, an oxygen generation catalyst layer stacked on the gas diffusion layer, and a hydrophilic layer stacked on the oxygen generation catalyst layer. A porous porous layer, wherein the hydrophilic porous layer is exposed to an alkaline electrolyte.

酸素発生触媒層をガス拡散層に配置したので、充電反応時の酸素の発生がガス拡散層近傍で起こり、発生した酸素がガス拡散層を抜けて大気に放出される。さらに、酸素が発生する反応領域と電解液の間に親水性多孔質層があるので、電解液の含浸性が高められ、イオンの移動度が高められる。また、電解液側への発生酸素の移動が抑制される。その結果、充電電圧の上昇が抑制され、電解液の漏れ等が抑制される。   Since the oxygen generation catalyst layer is disposed in the gas diffusion layer, oxygen is generated during the charging reaction in the vicinity of the gas diffusion layer, and the generated oxygen passes through the gas diffusion layer and is released to the atmosphere. Furthermore, since there is a hydrophilic porous layer between the reaction region where oxygen is generated and the electrolytic solution, the impregnation property of the electrolytic solution is enhanced and the mobility of ions is enhanced. Moreover, the movement of the generated oxygen to the electrolyte side is suppressed. As a result, an increase in charging voltage is suppressed, and electrolyte leakage and the like are suppressed.

上記の金属―空気二次電池用正極において、前記酸素発生触媒層は、多孔質であるとよい。これにより、発生した酸素の排出が一層よくなる
さらに、前記ガス拡散層に積層された親水性/撥水性酸素還元触媒層を有し、前記親水性/撥水性酸素還元触媒層も前記アルカリ電解液に曝され状態にしたものとするとよい。
In the metal-air secondary battery positive electrode, the oxygen generation catalyst layer may be porous. As a result, the generated oxygen can be more efficiently discharged. Further, it has a hydrophilic / water-repellent oxygen reduction catalyst layer laminated on the gas diffusion layer, and the hydrophilic / water-repellent oxygen reduction catalyst layer is also added to the alkaline electrolyte. It should be exposed.

ガス拡散層の上に積層された親水性/撥水性酸素還元触媒層を有するので、放電反応時、電解液が親水性孔を通じて親水性/撥水性酸素還元触媒層内に含浸され、水の供給とOH-イオンが移動するための電解液のパスが形成される。 一方、大気中の酸素は、ガス拡散層を通過し、親水性/撥水性酸素還元触媒層内の撥水孔を通じて、親水性/撥水性酸素還元触媒層内に進入し、電解液と出会う場所で放電反応が起こる。その結果、放電反応が効率よく起こる。 Since it has a hydrophilic / water-repellent oxygen reduction catalyst layer laminated on the gas diffusion layer, the electrolyte solution is impregnated in the hydrophilic / water-repellent oxygen reduction catalyst layer through the hydrophilic pores during the discharge reaction, and water is supplied. and OH - ions path of the electrolyte to move is formed. On the other hand, oxygen in the atmosphere passes through the gas diffusion layer, enters the hydrophilic / water-repellent oxygen reduction catalyst layer through the water-repellent holes in the hydrophilic / water-repellent oxygen reduction catalyst layer, and meets the electrolyte. A discharge reaction occurs. As a result, the discharge reaction occurs efficiently.

また、前記酸素発生触媒層の厚さは、10〜500μmの範囲であるとよい。酸素発生触媒層の厚さが大であると、充電反応が起こりやすくなる反面、酸素が排出され難くなる。厚さが10〜500μmの範囲であると、酸素の排出が容易で、充電反応も有効に起こる。   Moreover, the thickness of the oxygen generating catalyst layer is preferably in the range of 10 to 500 μm. If the thickness of the oxygen generating catalyst layer is large, a charging reaction is likely to occur, but oxygen is hardly discharged. When the thickness is in the range of 10 to 500 μm, oxygen can be easily discharged and the charging reaction can be effectively performed.

酸素発生触媒層をガス拡散層の上に配置したので、充電反応時の酸素の発生がガス拡散層近傍で起こり、発生した酸素がガス拡散層を抜けて大気に放出される。さらに、酸素が発生する反応領域と電解液の間に親水性多孔質層があるので、電解液の含浸性が高められ、イオンの移動度が高められる。また、電解液側への発生酸素の移動が抑制される。その結果、充電電圧の上昇が抑制され、電解液の漏れ等が抑制される。   Since the oxygen generation catalyst layer is disposed on the gas diffusion layer, oxygen is generated during the charging reaction in the vicinity of the gas diffusion layer, and the generated oxygen passes through the gas diffusion layer and is released to the atmosphere. Furthermore, since there is a hydrophilic porous layer between the reaction region where oxygen is generated and the electrolytic solution, the impregnation property of the electrolytic solution is enhanced and the mobility of ions is enhanced. Moreover, the movement of the generated oxygen to the electrolyte side is suppressed. As a result, an increase in charging voltage is suppressed, and electrolyte leakage and the like are suppressed.

従来技術に係り、金属―空気電池の概念を模式的に示す断面図である。It is sectional drawing which shows a concept of a metal-air battery concerning a prior art typically. 従来技術に係り、水系リチウム―空気電池の概念を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a concept of a water-based lithium-air battery according to a conventional technique. 従来の金属―空気電池の放電時における正極反応の模式図である。It is a schematic diagram of the positive electrode reaction at the time of discharge of the conventional metal-air battery. 従来の金属―空気電池の充電時における正極反応の模式図である。It is a schematic diagram of the positive electrode reaction at the time of charge of the conventional metal-air battery. 本発明の実施形態1に係る金属―空気二次電池用正極の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the positive electrode for metal-air secondary batteries which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る金属―空気二次電池用正極を持つ水系Li−空気電池の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the water-system Li-air battery with the positive electrode for metal-air secondary batteries which concerns on Embodiment 2 of this invention. 実施形態2(図6)の正極の正面視図(a)とA−A線断面図(b)である。It is the front view (a) and AA sectional view (b) of the positive electrode of Embodiment 2 (FIG. 6). 実施形態2(図6、7)の正極の作製工程図である。It is a manufacturing process figure of the positive electrode of Embodiment 2 (FIG. 6, 7). 変形態様の正極の正面視図(a)とB−B線断面図(b)である。It is the front view (a) and BB sectional view (b) of the positive electrode of a deformation | transformation aspect. 別の変形態様の正極の正面視図(a)とC−C線断面図(b)である。It is the front view (a) and CC sectional view (b) of the positive electrode of another deformation | transformation aspect. 電池反応測定用セルの概略図である。It is the schematic of the cell for battery reaction measurement. 過電圧と電流密度の関係を示すグラフである。It is a graph which shows the relationship between an overvoltage and a current density. 放電時の電圧の継時変化を示すグラフである。It is a graph which shows the change over time of the voltage at the time of discharge.

以下、発明を実施する形態を図面に基づき詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the invention will be described in detail with reference to the drawings.

(実施形態1)
本実施形態の正極は、図5に示すように、ガス拡散層1の近傍に酸素発生の触媒能を有する酸素発生触媒層2を配置し、酸素発生触媒層2に親水性多孔質層3を配置した構造をしている。
(Embodiment 1)
In the positive electrode of the present embodiment, as shown in FIG. 5, an oxygen generating catalyst layer 2 having oxygen generation catalytic ability is disposed in the vicinity of the gas diffusion layer 1, and a hydrophilic porous layer 3 is provided on the oxygen generating catalyst layer 2. It has an arranged structure.

ガス拡散層1としては、例えば、フッ素樹脂(PTFE,FEP, PVF等)フィルター 、炭化水素樹脂(PE、PP等)フィルター、等を用いることができる。また、金属メッシュや金属発泡体、カーボンファイバーフィルターをフッ素樹脂により撥水処理したものを用いることができる。   As the gas diffusion layer 1, for example, a fluorine resin (PTFE, FEP, PVF, etc.) filter, a hydrocarbon resin (PE, PP, etc.) filter, or the like can be used. Further, a metal mesh, a metal foam, or a carbon fiber filter that has been subjected to a water repellent treatment with a fluororesin can be used.

酸素発生触媒層2の材料として、イリジウムやルテニウム及びそれらの酸化物、La1-xStxMO3(M=Co, Fe, Mn等)等を例示することができ、それを単独又は、カーボンブラック(CB)やゼオライト等の担体上に担持して用いてもよい。また、充電時に反応領域Rで発生した酸素を排出し易くするため、PTFE等の粉末を混合することが好ましい。 Examples of the material for the oxygen generating catalyst layer 2 include iridium, ruthenium and oxides thereof, La 1-x St x MO 3 (M = Co, Fe, Mn, etc.), etc. You may carry | support and use on support | carriers, such as black (CB) and a zeolite. Further, in order to facilitate the discharge of oxygen generated in the reaction region R during charging, it is preferable to mix powder such as PTFE.

酸素発生触媒層2の厚さは、充電電流の大きさと発生酸素の拡散距離を考慮して決められる。酸素発生触媒層2が厚い場合、充電反応が起こりやすくなるが、反面、酸素が排出され難くなる。酸素発生触媒層2の厚さは、10〜500μmが好ましく、20 〜 100μmがより好ましい。   The thickness of the oxygen generation catalyst layer 2 is determined in consideration of the magnitude of the charging current and the diffusion distance of the generated oxygen. When the oxygen generating catalyst layer 2 is thick, a charging reaction is likely to occur, but on the other hand, oxygen is hardly discharged. The thickness of the oxygen generating catalyst layer 2 is preferably 10 to 500 μm, and more preferably 20 to 100 μm.

親水性多孔質層3の材料として、カーボンファイバーペーパ(CP)、チタン等の金属メッシュ、金属発泡体、ナイロン等の不織布を例示することができる。 親水性多孔質層3の材料として、CPや金属メッシュを選択した場合、電子伝導性も有しているので、集電体としても利用することができる。 親水性多孔質層3の厚さは、20〜2,000 μmが好ましく、50〜1,000μmがより好ましい。   Examples of the material of the hydrophilic porous layer 3 include carbon fiber paper (CP), a metal mesh such as titanium, a metal foam, and a nonwoven fabric such as nylon. When CP or a metal mesh is selected as the material of the hydrophilic porous layer 3, it has electronic conductivity and can be used as a current collector. The thickness of the hydrophilic porous layer 3 is preferably 20 to 2,000 μm, and more preferably 50 to 1,000 μm.

本実施形態の正極では、ガス拡散層1の近傍に酸素発生触媒層2を配置したので、充電時の酸素発生がガス拡散層1の近傍の反応領域Rで起こる。したがって、発生した酸素はガス拡散層1を通して大気に放出される。すなわち、酸素の拡散距離Lはガス拡散層1の厚さに略等しく、発生した酸素は素早く大気に放出される。   In the positive electrode of the present embodiment, since the oxygen generation catalyst layer 2 is disposed in the vicinity of the gas diffusion layer 1, oxygen generation during charging occurs in the reaction region R in the vicinity of the gas diffusion layer 1. Accordingly, the generated oxygen is released to the atmosphere through the gas diffusion layer 1. That is, the oxygen diffusion distance L is substantially equal to the thickness of the gas diffusion layer 1, and the generated oxygen is quickly released into the atmosphere.

また、酸素発生触媒層2と電解液30Aの間に親水性多孔質層3が配置されているので、電解液30Aの含浸性が高く、充電時OH-イオンの移動が容易になる。さらに、反応領域Rで発生したH2OとO2のうち、H2Oは電解液30A側へ容易に移動するが、O2は移動が抑制される。 Further, since the hydrophilic porous layer 3 is disposed between the oxygen generating catalyst layer 2 and the electrolytic solution 30A, the impregnating property of the electrolytic solution 30A is high, and the movement of OH ions during charging is facilitated. Furthermore, among H 2 O and O 2 generated in the reaction region R, H 2 O easily moves to the electrolyte solution 30A side, but O 2 is suppressed from moving.

(実施形態2)
実施形態1の正極は、充電反応が良好に行われるように設計されたものである。そこで、本実施形態の正極は、正極の一部を実施形態1の正極にし、残部を放電反応が良好に行われる正極にしたものである。
(Embodiment 2)
The positive electrode of Embodiment 1 is designed so that the charging reaction is satisfactorily performed. Therefore, the positive electrode of the present embodiment is a positive electrode in which a part of the positive electrode is the positive electrode of the first embodiment and the remaining part is excellent in the discharge reaction.

すなわち、本実施形態の正極は、面積の半分を実施形態1の正極にし、残りの半分のガス拡散層に親水性/撥水性酸素還元触媒層4を配置したものである。   That is, the positive electrode of the present embodiment has a half of the area as the positive electrode of the first embodiment, and the hydrophilic / water-repellent oxygen reduction catalyst layer 4 is disposed in the remaining half of the gas diffusion layer.

図6は、本実施形態の正極を備えた水系Li−空気二次電池の構造を模式的に示している。   FIG. 6 schematically shows the structure of an aqueous Li-air secondary battery equipped with the positive electrode of the present embodiment.

水系Li-空気二次電池では、負極に使用する金属リチウム20が水と反応するため、負極反応が非水雰囲気下で起こる必要がある。 非水雰囲気下での負極の電池反応は、水雰囲気下で起こる正極の電池反応と比較して、非常に遅いと言う特徴がある。 そのため、単位面積当りの負極から取り出せる電流(負極電流密度)は、正極電流密度と比較して1桁以上小さく、負極面積の大きさで、水系Li-空気二次電池から取り出せる電流値が規制される状況にある。 そのため、負極の面積に対して、正極面積を小さくしても電池の性能はあまり低下しないと言う特徴を有している。   In the water-based Li-air secondary battery, since the metal lithium 20 used for the negative electrode reacts with water, the negative electrode reaction needs to occur in a non-aqueous atmosphere. The battery reaction of the negative electrode in a non-aqueous atmosphere is characterized by being very slow compared to the battery reaction of the positive electrode that occurs in a water atmosphere. Therefore, the current that can be extracted from the negative electrode per unit area (negative electrode current density) is one digit or more smaller than the positive electrode current density, and the current value that can be extracted from the water-based Li-air secondary battery is regulated by the size of the negative electrode area. Is in a situation. Therefore, even if the area of the positive electrode is reduced with respect to the area of the negative electrode, the battery performance does not deteriorate so much.

この水系Li-空気二次電池の特徴を利用し、正極の面内で充電反応部分と放電反応部分に機能分離し、酸素還元/酸素発生の2つの機能を同時に有する2機能性の正極とすることができる。   Utilizing the characteristics of this water-based Li-air secondary battery, the function is separated into the charge reaction part and the discharge reaction part within the surface of the positive electrode, and a bifunctional positive electrode having two functions of oxygen reduction / oxygen generation at the same time. be able to.

本実施形態の正極は、図6、7に示すように、ガス拡散層1の面積の半分に酸素発生触媒層2と親水性多孔質層3とが順次積層された領域A1と、ガス拡散層1の面積の半分に親水性/撥水性酸素還元層4が積層された領域A2とからなる。   As shown in FIGS. 6 and 7, the positive electrode of the present embodiment includes a region A1 in which an oxygen generation catalyst layer 2 and a hydrophilic porous layer 3 are sequentially laminated on a half of the area of the gas diffusion layer 1, and a gas diffusion layer. And a region A2 in which a hydrophilic / water-repellent oxygen reducing layer 4 is laminated on half of the area of 1.

領域A1は実施形態1と同じであるので、酸素発生機能を有し充電反応が良好に行われる充電領域である。一方、領域A2は、従来の正極と同じ構造であるので、酸素還元機能を有し放電反応が良好に行われる放電領域である。したがって、本実施形態の正極は二つの機能をもつ所謂バイファンクショナルな正極である。   Since area | region A1 is the same as Embodiment 1, it is a charge area | region which has an oxygen generation function and a charge reaction is performed favorably. On the other hand, since the region A2 has the same structure as that of the conventional positive electrode, the region A2 is a discharge region having an oxygen reduction function and in which a discharge reaction is favorably performed. Therefore, the positive electrode of the present embodiment is a so-called bifunctional positive electrode having two functions.

領域A2の構造や作製方法は、従来の空気一次電池の技術に準じて作製すればよい。親水性/撥水性酸素還元触媒層4の触媒材料としては、白金、ルテニウム、イリジウム、パラジウム、銀等の貴金属及びそれらの合金、金属酸化物、環状金属錯体等の酸素還元触媒を例示することができ、それらを単独又は、CBやゼオライト等の担体上に担持して用いてもよい。親水性/撥水性酸素還元触媒層4には親水性孔と撥水性孔とが3次元的に分布している。   What is necessary is just to produce the structure and production method of area | region A2 according to the technique of the conventional air primary battery. Examples of the catalyst material for the hydrophilic / water-repellent oxygen reduction catalyst layer 4 include oxygen reduction catalysts such as noble metals such as platinum, ruthenium, iridium, palladium, silver, alloys thereof, metal oxides, and cyclic metal complexes. They may be used alone or supported on a carrier such as CB or zeolite. The hydrophilic / water-repellent oxygen reduction catalyst layer 4 has three-dimensional distribution of hydrophilic holes and water-repellent holes.

領域A1の構造の材料と作製方法は、実施形態1の空気極の材料と作成方法と同じである。   The material and manufacturing method of the structure of the region A1 are the same as the material and manufacturing method of the air electrode of the first embodiment.

領域A1の酸素発生触媒層2(充電時の反応層)は、充電させやすい構造を、領域A2の親水性/撥水性酸素還元触媒層4(放電時の反応層)は、放電させやすい構造を有しているが、それらに用いられる触媒仕様として、領域A2の触媒の酸素還元触媒能 >領域A1の触媒の酸素還元触媒能、領域A1の触媒の酸素発生触媒能 >領域A2の触媒の酸素発生触媒能、を有する触媒の組み合わせを用いることが好ましい。そのような組み合わせとして、領域A2の親水性/撥水性酸素還元触媒層4の酸素還元用触媒として、白金(Pt)を、領域A1の酸素発生触媒層2の酸素発生用触媒として酸化イリジウム(IrO)を例示することができる。 The oxygen generation catalyst layer 2 (reaction layer during charging) in the region A1 has a structure that is easy to charge, and the hydrophilic / water-repellent oxygen reduction catalyst layer 4 (reaction layer during discharge) in the region A2 has a structure that is easy to discharge. However, the catalyst specifications used for them are as follows: the oxygen reduction catalytic ability of the catalyst in the region A2> the oxygen reducing catalytic ability of the catalyst in the region A1, the oxygen generating catalytic ability of the catalyst in the region A1> the oxygen of the catalyst in the region A2 It is preferable to use a combination of catalysts having generation catalytic ability. As such a combination, platinum (Pt) is used as the oxygen reduction catalyst of the hydrophilic / water-repellent oxygen reduction catalyst layer 4 in the region A2, and iridium oxide (IrO) is used as the oxygen generation catalyst of the oxygen generation catalyst layer 2 in the region A1. 2 ) can be exemplified.

このような触媒の組み合わせを用いることで、放電時/充電時の反応領域を、放電電極部/充電電極部に、より明確に規制することが可能になり、放電時/充電時に電池の系外に設置された電気回路で切り替えを行う必要が無くなる。 また、充電電極(領域A1)と放電電極(領域A2)が一体化されており、放電時の空気の供給口と充電時の酸素の排出口を一元化することが可能である。 正極面内に形成した、領域A1(充電反応部分)及び領域A2(放電反応部分)の電極面積は、負極面積よりも小さくなるが、水系Li-空気二次電池の場合、性能には殆ど影響を及ぼさない。   By using such a combination of catalysts, it becomes possible to more clearly regulate the reaction area at the time of discharge / charge to the discharge electrode / charge electrode part, and the battery outside the system at the time of discharge / charge There is no need to switch the electrical circuit installed in Further, the charging electrode (region A1) and the discharging electrode (region A2) are integrated, and it is possible to unify the air supply port during discharge and the oxygen discharge port during charging. The electrode area of the region A1 (charge reaction portion) and the region A2 (discharge reaction portion) formed in the positive electrode surface is smaller than the negative electrode area, but in the case of a water-based Li-air secondary battery, the performance is hardly affected. Does not affect.

次に、本実施形態の正極の製造方法の一例を説明する。図8は、図6と7に示す正極の一作製工程図である。   Next, an example of the manufacturing method of the positive electrode of this embodiment is demonstrated. FIG. 8 is a manufacturing process diagram of the positive electrode shown in FIGS.

まず、領域A2の親水性/撥水性酸素還元触媒層4の親水性/撥水性多孔質構造及び領域A1の酸素発生触媒層2と電解液の間に設置する親水性多孔質層3を形成するために、親水性のカーボンファイバーペーパ(CP)の下側半分をPTFEディスパージョン溶液に浸漬し、乾燥・焼成する。すると、下側半分が撥水化されたCPが得られる。   First, the hydrophilic / water-repellent oxygen reduction catalyst layer 4 in the region A2 and the hydrophilic / water-repellent porous structure 3 and the hydrophilic porous layer 3 installed between the oxygen-generating catalyst layer 2 in the region A1 and the electrolyte are formed. For this purpose, the lower half of the hydrophilic carbon fiber paper (CP) is immersed in a PTFE dispersion solution, dried and fired. Then, CP with the lower half water-repellent is obtained.

次に、酸素発生触媒であるIrO粉末と造孔材としてのPTFE粉末とカーボンブラック等の導電補助材とポリフッ化ビニリデン等の樹脂バインダーを適当な溶媒に溶解、分散させ、ペースト状化した溶液を、親水性の上側CPの片面にアプリケータ等で塗工、乾燥させ酸素発生触媒層(充電反応層)2を形成する。この場合、酸素発生触媒層(充電反応層)2が親水性の上側CPの内部(親水性の多孔質層)に進入しないように、溶媒の種類やペーストの粘度を調整することが好ましい。 Next, IrO 2 powder as an oxygen generation catalyst, PTFE powder as a pore-forming material, a conductive auxiliary material such as carbon black, and a resin binder such as polyvinylidene fluoride are dissolved and dispersed in a suitable solvent, and a paste-like solution is obtained. Is coated with an applicator or the like on one surface of the hydrophilic upper CP and dried to form an oxygen generation catalyst layer (charging reaction layer) 2. In this case, it is preferable to adjust the type of solvent and the viscosity of the paste so that the oxygen generating catalyst layer (charging reaction layer) 2 does not enter the inside of the hydrophilic upper CP (hydrophilic porous layer).

次に親水性/撥水性酸素還元触媒層(放電反応層)4として、酸素還元触媒である白金微粉末がCB上に担持された触媒(PtC触媒)とのバインダーとしてPTFEデイスパージョン溶液と撥水性CPへとの濡れ性を向上させるためにエタノール等の溶媒が溶解、分散され、ペースト化した溶液を準備し、そのペースト内に下側半分が撥水化されたCP部分をデッピングし、乾燥させることで、放電/充電の2機能性を有する反応層を形成することができる。   Next, a hydrophilic / water-repellent oxygen reduction catalyst layer (discharge reaction layer) 4 is combined with a PTFE dispersion solution as a binder with a catalyst (PtC catalyst) in which platinum fine powder as an oxygen reduction catalyst is supported on CB. In order to improve the wettability with aqueous CP, prepare a solution in which a solvent such as ethanol is dissolved and dispersed, and paste it, and then dip the CP part in which the lower half is water-repellent and dry Thus, a reaction layer having two functions of discharge / charge can be formed.

最後に、酸素発生触媒層2側にPTFEフィルター等のガス拡散層1を熱プレスにより接合することにより、放電/充電の2機能性を有する正極とすることができる。   Finally, a gas diffusion layer 1 such as a PTFE filter is joined to the oxygen generation catalyst layer 2 side by hot pressing, whereby a positive electrode having two functions of discharge / charge can be obtained.

本実施形態の正極は、図6、7に示すように、負極20に対向する領域を上下に2等分して上側を領域A1、下側を領域A2としたが、これに限定されるものではない。例えば、図9に示すように、負極20に対向する領域を8等分して、領域A1と領域A2を交互に配置してもよい。   In the positive electrode of this embodiment, as shown in FIGS. 6 and 7, the region facing the negative electrode 20 is divided into two equal parts, and the upper side is the region A1 and the lower side is the region A2. is not. For example, as shown in FIG. 9, the region facing the negative electrode 20 may be divided into eight equal parts, and the regions A1 and A2 may be alternately arranged.

また、図10に示すように、田の字状に4分割して領域A1と領域A2を千鳥模様に配置してもよい。   Moreover, as shown in FIG. 10, you may divide | segment into 4 in the shape of a rice field and arrange | position the area | region A1 and area | region A2 in a staggered pattern.

図9、10の場合、スクリーン印刷等により、酸素発生触媒層用ペーストと酸素還元触媒層用ペーストを塗り分けることで容易に作製することができる。 また、領域A2(放電反応領域)と領域A1(充電領域)の面積は、必ずしも等しい必要は無い。 面積の割合がより大きいいと、より大きい充電/放電電流が得られるが、電池に対する要求により、放電領域と充電領域の割合を調整しても良い。   In the case of FIGS. 9 and 10, the oxygen generation catalyst layer paste and the oxygen reduction catalyst layer paste can be easily prepared by screen printing or the like. Moreover, the area of area | region A2 (discharge reaction area | region) and area | region A1 (charge area | region) does not necessarily need to be equal. If the area ratio is larger, a larger charge / discharge current can be obtained. However, the ratio between the discharge area and the charge area may be adjusted according to the demand for the battery.

次に、本発明の正極(実施例1、2)と従来の正極(比較例)の充放電特性の比較評価試験について説明する。   Next, a comparative evaluation test of charge / discharge characteristics of the positive electrode of the present invention (Examples 1 and 2) and a conventional positive electrode (Comparative Example) will be described.

(比較例)
比較例の正極として、従来の電極を以下のように作製した。 親水性のCP(TGP H120;東レ製, 350μm)に、PTFEデイスパージョン(D-210C;ダイキン製, 60質量%)を純水で3倍に希釈した溶液でデップコートし、乾燥後、大気中350℃で1時間焼成し、撥水化CPを作製した。 放電反応用の反応層を形成するために、白金担持カーボン(TEC10EA50E田中貴金属製)と純水とエタノールとPTFEデイスパージョン(D-210C;ダイキン製, 60質量%)を質量比で1:7:20:1の割合に混合し、超音波ホモジナイザーで均一に分散、ペースト化した溶液(以下、「放電反応層用ペースト」と略記する)を作製した。 この放電反応層用ペーストで先に作製した撥水化CPをデップコートし、室温で一昼夜自然乾燥させて放電用反応層とした。 この場合、放電反応時の酸素還元反応は、触媒である白金担持カーボンを含浸保持した反応層全体で起こる。 作製した放電用反応層を縦横40mmの矩形サイズに切り抜き、PTFEフィルター(PF060; アドバンテック製, φ70mm)をガス拡散層として用い、反応層との間に集電体としてチタン製のエキスパンドメタルを挟み込み、ホットプレス(150℃,10MPa,1min.)により一体化し、比較例の正極とした。
(Comparative example)
As a positive electrode of a comparative example, a conventional electrode was produced as follows. A hydrophilic CP (TGP H120; manufactured by Toray, 350 μm) is dip-coated with a solution obtained by diluting PTFE dispersion (D-210C; manufactured by Daikin, 60% by mass) three times with pure water. Baking was performed at 350 ° C. for 1 hour to prepare a water-repellent CP. To form a reaction layer for the discharge reaction, platinum-supported carbon (TEC10EA50E made by Tanaka Kikinzoku), pure water, ethanol, and PTFE dispersion (D-210C; made by Daikin, 60% by mass) in a mass ratio of 1: 7 The solution was mixed at a ratio of 20: 1 and uniformly dispersed and pasted with an ultrasonic homogenizer (hereinafter abbreviated as “discharge paste for paste”). The water-repellent CP prepared earlier was dip-coated with this discharge reaction layer paste, and was naturally dried at room temperature all day and night to form a discharge reaction layer. In this case, the oxygen reduction reaction during the discharge reaction occurs in the entire reaction layer impregnated and held with platinum-supporting carbon as a catalyst. Cut out the produced reaction layer for discharge into a rectangular size of 40mm in length and width, PTFE filter (PF060; manufactured by Advantech, φ70mm) is used as a gas diffusion layer, and an expanded metal made of titanium is sandwiched between the reaction layer, They were integrated by hot pressing (150 ° C., 10 MPa, 1 min.) To obtain a positive electrode for a comparative example.

(実施例1)
充電反応用の反応層を形成するために、酸化イリジウム粉末(IrOx・(H2O)y(SA=50m2/g); 田中貴金属製)と純水とエタノールとPTFEデイスパージョン(D-210C;ダイキン製, 60質量%)を質量比で1:7:20:1の割合に混合し、超音波ホモジナイザーで均一に分散、ペースト化した溶液(以下、「充電反応層用ペースト」と略記する)を作製した。 この充電反応用ペーストをアプリケーター(ギャップ 300μm)を用い、未処理の親水性CPの片面に塗工し、室温で一昼夜自然乾燥させて酸素発生触媒層とした。 この場合、充電反応時の酸素発生反応は、触媒である酸化イリジウムを塗工保持した面側で起こる。 作製した酸素発生触媒(放電用反応)層を縦横40mmの矩形サイズに切り抜き、PTFEフィルターをガス拡散層として用い、反応層面がガス拡散層側になるように設置し、間に集電体としてチタン製のエキスパンドメタルを挟み込み、ホットプレス(150℃,10MPa,1min.)により一体化し、実施例1の正極とした。
Example 1
In order to form a reaction layer for charging reaction, iridium oxide powder (IrOx · (H 2 O) y (SA = 50m 2 / g); made by Tanaka Kikinzoku), pure water, ethanol, PTFE dispersion (D- 210C (made by Daikin, 60% by mass) mixed in a mass ratio of 1: 7: 20: 1, uniformly dispersed and pasted with an ultrasonic homogenizer (hereinafter abbreviated as “charge reaction layer paste”) ) Was produced. This charging reaction paste was applied to one side of an untreated hydrophilic CP using an applicator (gap 300 μm), and then naturally dried at room temperature all day and night to form an oxygen-generating catalyst layer. In this case, the oxygen generation reaction during the charging reaction occurs on the side of the surface on which iridium oxide as a catalyst is coated and held. Cut the produced oxygen generation catalyst (discharge reaction) layer into a rectangular size of 40 mm in length and width, use a PTFE filter as the gas diffusion layer, and install it so that the reaction layer surface is on the gas diffusion layer side, with titanium as the current collector The expanded metal made by sandwiching the two was integrated and integrated by hot pressing (150 ° C., 10 MPa, 1 min.) To obtain a positive electrode of Example 1.

(実施例2)
親水性のCPを、PTFEデイスパージョンを純水で3倍に希釈した溶液に面積の半分を浸漬し、PTFE溶液をデップコートし、乾燥後、大気中350℃で1時間焼成し、下側が半分撥水化されたCPを作製した。 撥水化されていない上側半分のCPの領域に上記充電反応層用ペーストをアプリケーター(ギャップ 300μm)で塗工し、一昼夜、自然乾燥させた。撥水化された下側半分のCPの領域を上記、放電反応層用ペーストに浸漬し、デップコートし、一昼夜、自然乾燥させた。 作製した2機能性の反応層を放電反応層の面積と充電反応層の面積が上下に等しくなるように縦横40mmの矩形サイズに切り抜き、PTFEフィルターをガス拡散層として用い、充電反応層面がガス拡散層側なるように設置し、間に集電体としてチタン製のエキスパンドメタルを挟み込み、ホットプレス(150℃,10MPa,1min.)により一体化し、実施例2の正極とした。
(Example 2)
Half of the area is dipped in a solution of hydrophilic CP, diluted PTFE dispersion 3 times with pure water, dip-coated with PTFE solution, dried, and then baked at 350 ° C in the atmosphere for 1 hour. A half water-repellent CP was produced. The charging reaction layer paste was applied with an applicator (gap: 300 μm) to the upper half CP area which was not water-repellent and allowed to dry naturally all day and night. The water-repellent lower half CP region was dipped in the above-mentioned discharge reaction layer paste, dip-coated, and air-dried all day and night. The fabricated bifunctional reaction layer is cut into a rectangular size of 40 mm in length and width so that the area of the discharge reaction layer is equal to the area of the charge reaction layer, and a PTFE filter is used as the gas diffusion layer. It was installed so as to be on the layer side, and an expanded metal made of titanium was sandwiched as a current collector between them and integrated by hot pressing (150 ° C., 10 MPa, 1 min.) To obtain a positive electrode of Example 2.

<評価試験>
図11に示すような電池反応評価装置に比較例と実施例1、2の正極を設置し、電気化学的な性能を調べた。
<Evaluation test>
The positive electrode of the comparative example and Examples 1 and 2 was installed in a battery reaction evaluation apparatus as shown in FIG. 11, and the electrochemical performance was examined.

電池反応評価装置は、円筒状のアクリル容器の両端をPTFEシートとPTFE濾紙で塞いで、中に電解液を入れたもので、PTFE濾紙側から加湿した空気を供給するようになっている。   In the battery reaction evaluation apparatus, both ends of a cylindrical acrylic container are closed with a PTFE sheet and PTFE filter paper, and an electrolytic solution is placed therein, and humidified air is supplied from the PTFE filter paper side.

電解液として、10mol/L LiCl + 4.3mol/L LiOHを用い、供給ガスとして、200cc/min.の大気中の空気を1M LiOH中を通過させ、脱CO2した空気を、正極背面にフローさせながら評価を行なった。 10mol / L LiCl + 4.3mol / L LiOH is used as the electrolyte, 200cc / min. Of atmospheric air is passed through 1M LiOH as the supply gas, and de-CO 2 air is allowed to flow to the back of the positive electrode. Evaluation was performed.

まず、電気化学的な特性として、充/放電時の過電圧を評価した。 その方法として、開回路状態から、設定した一定の電流密度の電流を流し、15分後の参照電極(RE)に対する正極(WE)の充放電電圧(E)を記録する。 その後、開回路状態に戻し、10分後の参照電極(RE)に対する正極(WE)の開回路電圧(E0)を記録する。 充放電電圧(E)と開回路電圧(E0)の差を過電圧として定義した。   First, as an electrochemical characteristic, the overvoltage during charging / discharging was evaluated. As the method, from the open circuit state, a current having a set constant current density is passed, and the charge / discharge voltage (E) of the positive electrode (WE) with respect to the reference electrode (RE) after 15 minutes is recorded. Thereafter, the circuit is returned to the open circuit state, and the open circuit voltage (E0) of the positive electrode (WE) with respect to the reference electrode (RE) after 10 minutes is recorded. The overvoltage was defined as the difference between the charge / discharge voltage (E) and the open circuit voltage (E0).

次に、実施例1の正極の充電時の電圧の安定性を評価するために、2mA/cm2の一定の放電電流密度を保持し、参照電極(RE)に対する正極(WE)の充電電圧の時間変化を記録した。 Next, in order to evaluate the voltage stability during charging of the positive electrode of Example 1, a constant discharge current density of 2 mA / cm 2 is maintained, and the charging voltage of the positive electrode (WE) with respect to the reference electrode (RE) Time changes were recorded.

<評価試験結果>
上記手順に従い測定した各種仕様の正極の充/放電時の過電圧を電流密度の対数に対してプロットしたものを図12に示した。
<Evaluation test results>
FIG. 12 shows a plot of the overvoltage during charging / discharging of the positive electrode of various specifications measured according to the above procedure against the logarithm of the current density.

また、実施例1の正極と比較例の正極の充電電圧の時間変化を図13に示した。   Moreover, the time change of the charging voltage of the positive electrode of Example 1 and the positive electrode of a comparative example was shown in FIG.

図12において、曲線Acは比較例の正極の充電時の過電圧特性であり、曲線Bcは実施例1の正極の充電時の過電圧特性、曲線Ccは実施例2の充電時の過電圧特性である。また、曲線Adは比較例の正極の放電時の過電圧特性であり、曲線Bdは実施例1の正極の放電時の過電圧特性、曲線Ccは実施例2の放電時の過電圧特性である。   In FIG. 12, a curve Ac is an overvoltage characteristic during charging of the positive electrode of the comparative example, a curve Bc is an overvoltage characteristic during charging of the positive electrode of Example 1, and a curve Cc is an overvoltage characteristic during charging of Example 2. Further, the curve Ad is the overvoltage characteristic during discharge of the positive electrode of the comparative example, the curve Bd is the overvoltage characteristic during discharge of the positive electrode of Example 1, and the curve Cc is the overvoltage characteristic during discharge of Example 2.

充/放電時の過電圧は、小さい程、電池正極の特性として好ましいが、図12から、放電過電圧は、比較正極 < 実施例2の正極 <実施例1の正極であり、充電過電圧は、実施例1の正極 < 実施例2の正極 < 比較正極である。   The smaller the overvoltage during charging / discharging, the more preferable as the characteristics of the battery positive electrode. From FIG. 12, the discharge overvoltage is the comparative positive electrode <the positive electrode in Example 2 <the positive electrode in Example 1; 1 positive electrode <positive electrode of Example 2 <comparative positive electrode.

したがって、比較例の正極は、放電時の過電圧が低い代わりに、充電時の過電圧が高い問題がある。また、実施例1の正極は、充電時の過電圧が低い代わりに、放電時の過電圧が高い問題がある。一方、実施例2の正極は、充/放電時の過電圧が程々に低くいことがわかる。   Therefore, the positive electrode of the comparative example has a problem that the overvoltage at the time of charging is high instead of the low overvoltage at the time of discharging. Moreover, the positive electrode of Example 1 has the problem that the overvoltage at the time of discharge is high instead of the low overvoltage at the time of charge. On the other hand, the positive electrode of Example 2 shows that the overvoltage at the time of charging / discharging is moderately low.

図13において、曲線イが比較例の正極であり、曲線ロが実施例1の正極である。比較例の正極の場合、比較的短時間で充電電圧が上昇する現象が見られる。 これは、充電反応により生成した酸素ガスが比較例の正極の表面や内部で発生し、正極表面や内部に存在する電解液を排斥することで、OH-イオン導電性のパスが切断されることにより、発生したと考えられる。 一方、実施例1の正極の場合は、比較例の正極と比べて、充電電圧が低く、長時間充電電圧が安定しており、安定して充電反応が進行していることがわかる。 In FIG. 13, curve A is the positive electrode of the comparative example, and curve B is the positive electrode of Example 1. In the case of the positive electrode of the comparative example, a phenomenon in which the charging voltage increases in a relatively short time is observed. This is because the oxygen gas generated by the charging reaction is generated on the surface and inside of the positive electrode of the comparative example, and the electrolyte solution existing on the surface and inside of the positive electrode is removed, so that the OH - ion conductive path is cut. It is thought that this occurred. On the other hand, in the case of the positive electrode of Example 1, it can be seen that the charging voltage is low, the charging voltage is stable for a long time compared to the positive electrode of the comparative example, and the charging reaction proceeds stably.

1・・・・・・ガス拡散層
2・・・・・・酸素発生触媒層
3・・・・・・親水性多孔質層
4・・・・・・親水性/撥水性酸素還元触媒層
DESCRIPTION OF SYMBOLS 1 ... Gas diffusion layer 2 ... Oxygen generation catalyst layer 3 ... Hydrophilic porous layer 4 ... Hydrophilic / water-repellent oxygen reduction catalyst layer

Claims (4)

ガス拡散層と、
前記ガス拡散層に積層された酸素発生触媒層と、
前記酸素発生触媒層に積層された親水性多孔質層と、
を有し、前記親水性多孔質層がアルカリ電解液に曝される状態にしたことを特徴とする金属―空気二次電池用正極。
A gas diffusion layer;
An oxygen generation catalyst layer laminated on the gas diffusion layer;
A hydrophilic porous layer laminated on the oxygen generating catalyst layer;
A positive electrode for a metal-air secondary battery, characterized in that the hydrophilic porous layer is exposed to an alkaline electrolyte.
前記酸素発生触媒層は、多孔質である請求項1に記載の金属―空気二次電池用正極。   The positive electrode for a metal-air secondary battery according to claim 1, wherein the oxygen generation catalyst layer is porous. さらに、前記ガス拡散層に積層された親水性/撥水性酸素還元触媒層を有し、前記親水性/撥水性酸素還元触媒層も前記アルカリ電解液に曝される状態で配置される請求項1又は2に記載の金属―空気二次電池用正極。   Furthermore, it has a hydrophilic / water-repellent oxygen reduction catalyst layer laminated | stacked on the said gas diffusion layer, The said hydrophilic / water-repellent oxygen reduction catalyst layer is arrange | positioned in the state exposed to the said alkaline electrolyte. Or the positive electrode for metal-air secondary batteries of 2. 前記酸素発生触媒層の厚さは、10〜500μmの範囲である請求項1〜3のいずれか1項に記載の金属―空気二次電池用正極。   4. The positive electrode for a metal-air secondary battery according to claim 1, wherein the thickness of the oxygen generation catalyst layer is in a range of 10 to 500 μm.
JP2013035798A 2013-02-26 2013-02-26 Positive electrode for metal-air secondary battery Expired - Fee Related JP5974320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035798A JP5974320B2 (en) 2013-02-26 2013-02-26 Positive electrode for metal-air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035798A JP5974320B2 (en) 2013-02-26 2013-02-26 Positive electrode for metal-air secondary battery

Publications (2)

Publication Number Publication Date
JP2014165056A true JP2014165056A (en) 2014-09-08
JP5974320B2 JP5974320B2 (en) 2016-08-23

Family

ID=51615485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035798A Expired - Fee Related JP5974320B2 (en) 2013-02-26 2013-02-26 Positive electrode for metal-air secondary battery

Country Status (1)

Country Link
JP (1) JP5974320B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051705A (en) * 2014-08-29 2016-04-11 本田技研工業株式会社 Air secondary battery
JP2016058211A (en) * 2014-09-09 2016-04-21 株式会社イムラ材料開発研究所 Positive electrode for aqueous lithium-air secondary battery
JP2016081572A (en) * 2014-10-09 2016-05-16 トヨタ自動車株式会社 Air battery
JP2017168312A (en) * 2016-03-16 2017-09-21 株式会社日本触媒 Metal air battery
KR101955693B1 (en) * 2018-02-08 2019-03-07 울산과학기술원 Aqueous secondary battery using carbon dioxide and complex battery system having the same
WO2019156415A1 (en) * 2018-02-08 2019-08-15 울산과학기술원 Aqueous secondary battery using carbon dioxide and complex system having same
WO2020026623A1 (en) * 2018-07-31 2020-02-06 シャープ株式会社 Electrode, metal air cell, and method for manufacturing metal air cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165335A (en) * 1974-10-23 1976-06-05 Westinghouse Electric Corp Kukidenkyoku oyobi soreoshosurukinzoku * kukidenchi mataha chikudenchi
JP2001266961A (en) * 2000-03-24 2001-09-28 Sekisui Chem Co Ltd Air battery
JP2005509244A (en) * 2001-04-24 2005-04-07 レベオ, インコーポレイティッド Hybrid electrochemical cell system
JP2010287414A (en) * 2009-06-11 2010-12-24 Toyota Motor Corp Metal secondary battery
JP2011103203A (en) * 2009-11-10 2011-05-26 Ohara Inc Lithium air battery
JP2012099266A (en) * 2010-10-29 2012-05-24 Kyoto Univ Air electrode for metal-air battery, membrane-air electrode assembly for metal-air battery including air electrode, and metal-air battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165335A (en) * 1974-10-23 1976-06-05 Westinghouse Electric Corp Kukidenkyoku oyobi soreoshosurukinzoku * kukidenchi mataha chikudenchi
JP2001266961A (en) * 2000-03-24 2001-09-28 Sekisui Chem Co Ltd Air battery
JP2005509244A (en) * 2001-04-24 2005-04-07 レベオ, インコーポレイティッド Hybrid electrochemical cell system
JP2010287414A (en) * 2009-06-11 2010-12-24 Toyota Motor Corp Metal secondary battery
JP2011103203A (en) * 2009-11-10 2011-05-26 Ohara Inc Lithium air battery
JP2012099266A (en) * 2010-10-29 2012-05-24 Kyoto Univ Air electrode for metal-air battery, membrane-air electrode assembly for metal-air battery including air electrode, and metal-air battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051705A (en) * 2014-08-29 2016-04-11 本田技研工業株式会社 Air secondary battery
JP2016058211A (en) * 2014-09-09 2016-04-21 株式会社イムラ材料開発研究所 Positive electrode for aqueous lithium-air secondary battery
JP2016081572A (en) * 2014-10-09 2016-05-16 トヨタ自動車株式会社 Air battery
JP2017168312A (en) * 2016-03-16 2017-09-21 株式会社日本触媒 Metal air battery
KR101955693B1 (en) * 2018-02-08 2019-03-07 울산과학기술원 Aqueous secondary battery using carbon dioxide and complex battery system having the same
WO2019156415A1 (en) * 2018-02-08 2019-08-15 울산과학기술원 Aqueous secondary battery using carbon dioxide and complex system having same
WO2020026623A1 (en) * 2018-07-31 2020-02-06 シャープ株式会社 Electrode, metal air cell, and method for manufacturing metal air cell
JPWO2020026623A1 (en) * 2018-07-31 2021-08-02 シャープ株式会社 How to manufacture electrodes, metal-air batteries and metal-air batteries
JP7106645B2 (en) 2018-07-31 2022-07-26 シャープ株式会社 ELECTRODE, METAL-AIR BATTERY AND METHOD FOR MANUFACTURING METAL-AIR BATTERY

Also Published As

Publication number Publication date
JP5974320B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5974320B2 (en) Positive electrode for metal-air secondary battery
Yang et al. Perovskite Sr 0.95 Ce 0.05 CoO 3− δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries
US9225018B2 (en) Air cathode for air batteries and air battery
JP5207407B2 (en) Air electrode
JP5644873B2 (en) Air secondary battery
US20130295472A1 (en) Metal-air battery
US20130108947A1 (en) Porous current collector, method of producing the same and fuel cell including porous current collector
JP5465240B2 (en) Sol-gel derived high performance catalytic thin films for sensors, oxygen separators, and solid oxide fuel cells
KR102221363B1 (en) Air electrodes including perovskites
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
JP2009518795A (en) Bifunctional air electrode
JP5782170B2 (en) Air electrode for air battery and air battery
JP2016081572A (en) Air battery
KR20130005732A (en) Li-air hybrid battery and method for manufacturing the same
JP2015525457A (en) Metal-air battery and gas impermeable anode conductive matrix
US20150140455A1 (en) Iron-air assembled cell and method for using the same
US11283084B2 (en) Fabrication processes for solid state electrochemical devices
Gaurava et al. Development of a direct alcohol alkaline fuel cell stack
KR101219022B1 (en) Zinc air having layered anode and the manufacturing method of the same
KR101222514B1 (en) Zinc air using Ni foam and the manufacturing method of the same
Slavova et al. Zeolite based carbon-free gas diffusion electrodes for secondary metal-air batteries
JP6241946B2 (en) Manufacturing method of air electrode for lithium air battery
JP6074394B2 (en) Aqueous lithium-positive electrode for air secondary battery
JP7287347B2 (en) Laminates for fuel cells
Tamm et al. Investigation of microstructure of Sr-doped lanthanum vanadium oxide anode based on SDC electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5974320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees