JP2015160786A - Method for manufacturing oxide single crystal - Google Patents

Method for manufacturing oxide single crystal Download PDF

Info

Publication number
JP2015160786A
JP2015160786A JP2014038115A JP2014038115A JP2015160786A JP 2015160786 A JP2015160786 A JP 2015160786A JP 2014038115 A JP2014038115 A JP 2014038115A JP 2014038115 A JP2014038115 A JP 2014038115A JP 2015160786 A JP2015160786 A JP 2015160786A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
oxide single
pulling
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014038115A
Other languages
Japanese (ja)
Inventor
史明 石田
Fumiaki Ishida
史明 石田
辰宮 一樹
Kazuki Tatsumiya
一樹 辰宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014038115A priority Critical patent/JP2015160786A/en
Publication of JP2015160786A publication Critical patent/JP2015160786A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an oxide single crystal, capable of preventing a grown single crystal from dropping when the single crystal is separated from a raw material melt.SOLUTION: The method for manufacturing an oxide single crystal grown by a crystal pulling method of contacting a seed crystal attached at the tip of a pulling shaft with a raw material melt in a crucible to be pulled while rotating the pulling shaft comprises the steps of: growing a straight body part 6b; growing a tail part 6c having a crystal diameter gradually reduced; and separating the grown oxide single crystal from the raw material melt. When a crystal diameter D2 at the tip of the tail part is φ10-20 mm, and a distance L from the end of the straight body part to the tip of the tail part is 0.2- 0.5 times (L/D1=0.2-0.5) to the crystal diameter D1 of the straight body part, the rotation and pulling operation of the pulling shaft are stopped, and the grown oxide single crystal is separated from the raw material melt by descending the crucible.

Description

本発明は、結晶引上げ法により硬脆性を示すTSAG(Tb3Sc2Al312)等の酸化物単結晶を育成する方法に係り、特に、小寸法の種結晶から効率よく酸化物単結晶を製造できる酸化物単結晶の製造方法に関するものである。 The present invention relates to a method for growing an oxide single crystal such as TSAG (Tb 3 Sc 2 Al 3 O 12 ) exhibiting hard and brittleness by a crystal pulling method, and in particular, an oxide single crystal efficiently from a small-sized seed crystal. The present invention relates to a method for producing an oxide single crystal capable of producing

単結晶の製造方法としては、チョクラルスキー法と呼ばれる結晶引上げ法が広く知られている。この方法は、図2に示すように、原料が投入された坩堝1をコイル10等の加熱手段で加熱して原料を融解させると共に、引上げ軸3の先端にピン4で固定した種結晶5を上記原料融液2の表面に接触させ、かつ、種結晶5を回転させながら徐々に引き上げることにより単結晶6を育成するものである。この方法による単結晶の育成は、通常、種付け(種結晶を原料融液表面に接触させる)工程、肩部形成(結晶径を徐々に大きくした肩部を形成する)工程、直胴部形成(結晶径を一定にした直胴部を形成する)工程、および、引き離し(育成した単結晶を原料融液から引き離す)工程を有している。   As a method for producing a single crystal, a crystal pulling method called the Czochralski method is widely known. In this method, as shown in FIG. 2, the crucible 1 charged with the raw material is heated by a heating means such as a coil 10 to melt the raw material, and the seed crystal 5 fixed to the tip of the pulling shaft 3 with a pin 4 is provided. The single crystal 6 is grown by bringing it into contact with the surface of the raw material melt 2 and gradually pulling up the seed crystal 5 while rotating it. Single crystal growth by this method is usually performed by a seeding (contacting the seed crystal with the surface of the raw material melt), a shoulder forming (forming a shoulder having a gradually increased crystal diameter), a straight body forming ( A step of forming a straight body portion with a constant crystal diameter) and a step of separating (the grown single crystal is separated from the raw material melt).

そして、図3は、育成した単結晶6を原料融液2から引き離した後の状態を示す説明図であるが、直胴部6bの形成が終了した後に、直胴部6bの直径と同程度の径にて原料融液2から単結晶6を引き離す場合、種結晶5を高速で引き上げることにより引き離し工程を完了させている。   3 is an explanatory view showing a state after the grown single crystal 6 is separated from the raw material melt 2. After the formation of the straight body portion 6b is completed, the diameter is approximately the same as the diameter of the straight body portion 6b. When the single crystal 6 is pulled away from the raw material melt 2 with a diameter of 5 mm, the pulling process is completed by pulling up the seed crystal 5 at a high speed.

しかし、上記引上げ軸3を操作して種結晶5を高速で引き上げた場合、種結晶5を固定しているピン4の付近、あるいは、種結晶5の下端部付近や結晶の肩部6aにクラックが生じたり、育成された単結晶6が原料融液2の中に落下してしまうことがあり、小寸法の種結晶を用いた場合に顕著であった。種結晶5を高速で引き上げた場合、育成された単結晶6が原料融液2から離れる際の表面張力、引上げ軸3の引き上げ動作停止による衝撃等が原因となって種結晶5や結晶の肩部6aにクラックを発生させていると考えられる。   However, when the seed crystal 5 is pulled up at a high speed by operating the pulling shaft 3, cracks occur in the vicinity of the pin 4 that fixes the seed crystal 5, in the vicinity of the lower end of the seed crystal 5, or in the shoulder 6 a of the crystal. May occur or the grown single crystal 6 may fall into the raw material melt 2, which is remarkable when a small-sized seed crystal is used. When the seed crystal 5 is pulled up at a high speed, the seed crystal 5 or the shoulder of the crystal is caused by the surface tension when the grown single crystal 6 leaves the raw material melt 2, the impact caused by the lifting operation of the pulling shaft 3 being stopped, or the like. It is considered that a crack is generated in the portion 6a.

この問題を回避するため、特許文献1では、結晶径を一定にした直胴部を育成し、更に直胴部よりも結晶径を徐々に小さくしたテール部を育成した後、育成された単結晶を原料融液から引き離す方法を提案している。しかし、特許文献1で提案された方法では、テール部の存在により単結晶が原料融液から離れる際の上記表面張力を低減させることはできるが、引上げ軸の引き上げ動作停止による衝撃を無くすことはできない。このため、依然として単結晶の落下を防止することができず歩留まりの低下を招いていた。また、テール部は非製品化部であり、その形状によっては大きく収率を低下させてしまう場合がある。   In order to avoid this problem, in Patent Document 1, a straight body portion having a constant crystal diameter is grown, and a tail portion having a crystal diameter gradually smaller than that of the straight body portion is further grown. Has been proposed to separate the material from the raw material melt. However, in the method proposed in Patent Document 1, the surface tension when the single crystal is separated from the raw material melt can be reduced due to the presence of the tail portion, but the impact caused by stopping the pulling operation of the pulling shaft is eliminated. Can not. For this reason, the fall of the single crystal still cannot be prevented, resulting in a decrease in yield. Further, the tail part is a non-product part, and the yield may be greatly reduced depending on its shape.

また、特許文献2では、直胴部の育成が終了し、原料融液から単結晶を切り離す際、種結晶の回転速度を0〜8rpmにし、単結晶の引き上げ速度を50mm/min以上、250mm/min以下にして、単結晶の切り離しを行う方法を提案し、かつ、単結晶の引き上げ操作に加えて、坩堝を降下させる方法も提案している。しかし、特許文献2で提案された方法でも、引上げ軸の引き上げ動作停止による衝撃を無くすことはできないため、特許文献1で提案された方法と同様、歩留まりの低下を招いていた。   Further, in Patent Document 2, when the growth of the straight body portion is completed and the single crystal is separated from the raw material melt, the rotation speed of the seed crystal is 0 to 8 rpm, and the pulling speed of the single crystal is 50 mm / min or more and 250 mm / min. In addition to the single crystal pulling operation, a method for separating the single crystal at a minimum value of less than min is proposed, and a method for lowering the crucible is also proposed. However, even with the method proposed in Patent Document 2, it is impossible to eliminate the impact caused by stopping the pulling-up operation of the pulling shaft, so that the yield is reduced as in the method proposed in Patent Document 1.

そして、これ等の問題は、TSAG(Tb3Sc2Al312)等の硬脆性を示す酸化物単結晶を育成する場合に顕著であった。 These problems are significant when growing an oxide single crystal exhibiting hard and brittleness such as TSAG (Tb 3 Sc 2 Al 3 O 12 ).

特開2008−169095号公報(特許請求の範囲の請求項1を参照)Japanese Patent Laying-Open No. 2008-169095 (refer to claim 1 of claims) 特開2002−020197号公報(特許請求の範囲の請求項1、5、6、11を参照)JP 2002-0201097 A (refer to claims 1, 5, 6, and 11 of claims)

本発明はこのような問題点に着目してなされたもので、その課題とするところは、育成した単結晶を原料融液から引き離す際に単結晶の落下をほぼ完全に防止できると共に、テール部の形成による収率低下が少ない酸化物単結晶の製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the single crystal can be almost completely prevented from falling when the grown single crystal is separated from the raw material melt, and the tail portion is An object of the present invention is to provide a method for producing an oxide single crystal with a small yield reduction due to the formation of.

そこで、上記課題を解決するため、本発明者は、直胴部とテール部を育成した後、引き上げ軸の回転並びに引き上げ操作を完全に停止し、このタイミングに合わせて坩堝を降下させる特異な方法を創案しこの方法を検討したところ、原料融液から単結晶が離れる際の表面張力を低減できることに加えて引き上げ動作停止による衝撃も解消されることが確認され、更に、テール部先端の結晶径D2がφ10mm〜φ20mm、直胴部末端からテール部先端までの距離Lが上記直胴部の結晶径D1に対し0.2倍〜0.5倍(L/D1=0.2〜0.5)となったときに引き上げ軸の回転並びに引き上げ操作を停止すると、表面張力が著しく低減されてTSAG(Tb3Sc2Al312)等の硬脆性を示す酸化物単結晶を育成する場合に有効であることが確認された。本発明は、このような技術的発見により完成されたものである。 Therefore, in order to solve the above-mentioned problems, the present inventor has developed a unique method in which after the straight body portion and the tail portion are grown, the rotation of the pulling shaft and the pulling operation are completely stopped, and the crucible is lowered at this timing. In addition to being able to reduce the surface tension when the single crystal leaves the raw material melt, it was confirmed that the impact of stopping the lifting operation was also eliminated, and the crystal diameter at the tip of the tail part was further confirmed. D2 is φ10 mm to φ20 mm, and the distance L from the straight barrel end to the tail tip is 0.2 to 0.5 times the crystal diameter D1 of the straight barrel (L / D1 = 0.2 to 0.5) When the rotation of the pulling shaft and the pulling operation are stopped, the surface tension is remarkably reduced and an oxide single crystal exhibiting hard brittleness such as TSAG (Tb 3 Sc 2 Al 3 O 12 ) is grown. Valid Rukoto has been confirmed. The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
引き上げ軸の先端に取り付けられた種結晶を坩堝内の原料融液に接触させ、引き上げ軸を回転させながら引上げる結晶引き上げ法により酸化物単結晶を育成する方法であって、結晶径を一定にした直胴部を育成する工程と、直胴部よりも結晶径を徐々に小さくしたテール部を育成する工程と、育成した酸化物単結晶を原料融液から引き離す工程を具備する酸化物単結晶の製造方法において、
上記テール部先端の結晶径D2がφ10mm〜φ20mm、直胴部末端からテール部先端までの距離Lが上記直胴部の結晶径D1に対し0.2倍〜0.5倍(L/D1=0.2〜0.5)となったときに、上記引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝を降下させて育成した酸化物単結晶を原料融液から引き離すことを特徴とする(但し、上記種結晶の外径がφ5mm〜φ7mm、酸化物単結晶の結晶径D1がφ40mm〜φ50mm、育成される酸化物単結晶の重量が1200g以下であることを条件とする)。
That is, the invention according to claim 1
A method of growing an oxide single crystal by a crystal pulling method in which a seed crystal attached to the tip of a pulling shaft is brought into contact with a raw material melt in a crucible and the pulling shaft is rotated, and the crystal diameter is kept constant. An oxide single crystal comprising a step of growing the straight body portion, a step of growing a tail portion having a crystal diameter gradually smaller than the straight body portion, and a step of separating the grown oxide single crystal from the raw material melt In the manufacturing method of
The crystal diameter D2 at the tip of the tail part is φ10 mm to φ20 mm, and the distance L from the end of the straight body part to the tip of the tail part is 0.2 to 0.5 times the crystal diameter D1 of the straight body part (L / D1 = 0.2 to 0.5), the rotation of the pulling shaft and the pulling operation are stopped, and the oxide single crystal grown by lowering the crucible is separated from the raw material melt. (However, the condition is that the outer diameter of the seed crystal is φ5 mm to φ7 mm, the crystal diameter D1 of the oxide single crystal is φ40 mm to φ50 mm, and the weight of the grown oxide single crystal is 1200 g or less).

また、請求項2に係る発明は、
請求項1に記載の酸化物単結晶の製造方法において、
上記坩堝の降下速度が5mm〜10mm/秒に設定されていることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の酸化物単結晶の製造方法において、
上記引き上げ軸の回転並びに引き上げ操作を停止した後、30秒以内に坩堝を降下させることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の酸化物単結晶の製造方法において、
上記酸化物単結晶がTSAG(Tb3Sc2Al312)であることを特徴とする。
The invention according to claim 2
In the manufacturing method of the oxide single crystal of Claim 1,
The crucible lowering speed is set to 5 mm to 10 mm / second,
The invention according to claim 3
In the manufacturing method of the oxide single crystal of Claim 1 or 2,
After stopping the rotation of the lifting shaft and the lifting operation, the crucible is lowered within 30 seconds,
The invention according to claim 4
In the manufacturing method of the oxide single crystal in any one of Claims 1-3,
The oxide single crystal is TSAG (Tb 3 Sc 2 Al 3 O 12 ).

結晶引き上げ法による本発明に係る酸化物単結晶の製造方法によれば、
テール部先端の結晶径D2がφ10mm〜φ20mm、直胴部末端からテール部先端までの距離Lが直胴部の結晶径D1に対し0.2倍〜0.5倍(すなわちL/D1=0.2〜0.5)となったときに、引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝を降下させて育成した酸化物単結晶を原料融液から引き離しているため、原料融液から単結晶が離れる際の表面張力を低減できると共に、引上げ軸の引き上げ動作停止による衝撃も解消することが可能となり、かつ、テール部形成による収率低下が少なくてすむ。
According to the method for producing an oxide single crystal according to the present invention by a crystal pulling method,
The crystal diameter D2 at the tip of the tail part is φ10 mm to φ20 mm, and the distance L from the end of the straight body part to the tip of the tail part is 0.2 to 0.5 times the crystal diameter D1 of the straight body part (that is, L / D1 = 0) 2 to 0.5), the rotation of the pulling shaft and the pulling operation are stopped, and the oxide single crystal grown by lowering the crucible is separated from the raw material melt. As a result, the surface tension when the single crystal is separated from the surface can be reduced, the impact caused by stopping the pulling operation of the pulling shaft can be eliminated, and the yield reduction due to the formation of the tail portion can be reduced.

従って、原料融液から育成された酸化物単結晶を引き離す際、種結晶の下端部付近や単結晶の肩部にクラックが発生したり、単結晶が坩堝内に落下する等の現象を回避できるため、小寸法の種結晶を用いてTSAG(Tb3Sc2Al312)等の硬脆性を示す酸化物単結晶を効率よく製造できる効果を有している。 Therefore, when the oxide single crystal grown from the raw material melt is pulled away, it is possible to avoid a phenomenon such as a crack occurring near the lower end of the seed crystal or the shoulder of the single crystal, or a single crystal falling into the crucible. Therefore, it has an effect that an oxide single crystal exhibiting hard brittleness such as TSAG (Tb 3 Sc 2 Al 3 O 12 ) can be efficiently produced using a small-sized seed crystal.

本発明に係る酸化物単結晶の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the oxide single crystal which concerns on this invention. チョクラルスキー法による単結晶の育成方法を示す概略斜視図。The schematic perspective view which shows the growth method of the single crystal by the Czochralski method. 育成した単結晶を原料融液から引き離した後の状態を示す説明図。Explanatory drawing which shows the state after isolate | separating the grown single crystal from the raw material melt. 本発明に係る酸化物単結晶の製造方法を実施する際に用いられ単結晶引上げ装置の一例を示す概略構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic structure explanatory drawing which shows an example of the single crystal pulling apparatus used when implementing the manufacturing method of the oxide single crystal which concerns on this invention.

以下、本発明の実施の形態について具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

(1)単結晶引上げ装置
図4は、本発明に係る酸化物単結晶の製造方法を実施する際に用いられ単結晶引上げ装置の一例を示す概略構成説明図である。
(1) Single Crystal Pulling Device FIG. 4 is a schematic configuration explanatory diagram showing an example of a single crystal pulling device used when carrying out the method for producing an oxide single crystal according to the present invention.

この単結晶引上げ装置は、装置各部の動作を制御するコンピュータ12と、育成された単結晶6の重量を検知して上記コンピュータ12に検知信号を出力する重量センサ(ロードセル)11と、コンピュータ12から出力される制御信号を受けてその信号に基づき結晶引上げ軸の上昇・下降および回転を行う引上げ軸駆動装置13と、コンピュータ12から出力される制御信号を受けてその信号に基づき坩堝18の上昇・下降を行う坩堝駆動装置14と、坩堝18を加熱するコイル16と、坩堝18底の温度を検知してコンピュータ2に検知信号を出力するモニター用熱電対17と、モニター用熱電対17の指示温度が設定温度と等しくなるようにコンピュータ12から出力される制御信号を受けてその信号に基づき上記コイル16に電力を供給する高周波発振装置15を備えた構成となっている。   This single crystal pulling apparatus includes a computer 12 that controls the operation of each part of the apparatus, a weight sensor (load cell) 11 that detects the weight of the grown single crystal 6 and outputs a detection signal to the computer 12, and a computer 12. In response to the output control signal, the pulling shaft drive device 13 moves up and down and rotates the crystal pulling shaft based on the signal, and the control signal output from the computer 12 lifts the crucible 18 based on the signal. A crucible driving device 14 that lowers, a coil 16 that heats the crucible 18, a monitor thermocouple 17 that detects the temperature of the bottom of the crucible 18 and outputs a detection signal to the computer 2, and an indication temperature of the monitor thermocouple 17 Receives a control signal output from the computer 12 so that becomes equal to the set temperature, and supplies power to the coil 16 based on the signal. It has a configuration including a frequency oscillator 15 for feeding.

(2)酸化物単結晶の製造方法
上記単結晶引上げ装置を用いて硬脆性を示すTSAG(Tb3Sc2Al312)等の酸化物単結晶を育成する実施の形態について説明する。
(2) Manufacturing Method of Oxide Single Crystal An embodiment in which an oxide single crystal such as TSAG (Tb 3 Sc 2 Al 3 O 12 ) exhibiting hard brittleness is grown using the single crystal pulling apparatus will be described.

まず、イリジウム坩堝18内に、組成比(Tb3Sc2Al312)に秤量されたTSAG原料粉末を充填し、かつ、高周波発振装置15から電力が供給されたコイル16によりイリジウム坩堝18を加熱して原料融液とし、所定温度まで加熱する。 First, the iridium crucible 18 is filled with the TSAG raw material powder weighed in the composition ratio (Tb 3 Sc 2 Al 3 O 12 ) and supplied with power from the high-frequency oscillator 15. Heat to a raw material melt and heat to a predetermined temperature.

次に、結晶引上げ軸先端に固定された種結晶を上記引上げ軸駆動装置13により下降させて原料融液に接触させ、所定回転数で結晶引上げ軸を回転させながら所定引上げ速度で結晶引上げ軸を引き上げることでTSAG単結晶を育成する。   Next, the seed crystal fixed at the tip of the crystal pulling shaft is lowered by the pulling shaft driving device 13 and brought into contact with the raw material melt, and the crystal pulling shaft is rotated at a predetermined pulling speed while rotating the crystal pulling shaft at a predetermined rotation speed. The TSAG single crystal is grown by pulling up.

但し、本発明においては、上記種結晶の外径がφ5mm〜φ7mm(5mm角〜7mm角)、育成される酸化物単結晶の結晶径D1(直胴部)がφ40mm〜φ50mm、育成される酸化物単結晶の重量が1200g以下であることを条件とする。   However, in the present invention, the outer diameter of the seed crystal is φ5 mm to φ7 mm (5 mm square to 7 mm square), and the crystal diameter D1 (straight barrel portion) of the grown oxide single crystal is φ40 mm to φ50 mm. The condition is that the weight of the material single crystal is 1200 g or less.

TSAG単結晶を育成する際、まず、円錐状の肩部を形成し、かつ、所定外径にまで育成したところで、定外径(結晶径)のまま引上げ育成することにより直胴部を形成する。このとき、上記肩部外周面の形成角度を20度から50度の範囲内に設定している。肩部外周面の形成角度が50度を超えると肩部の形成終了部分でクラックが発生し易くなり、また、上記形成角度が20度未満であると単結晶引上げ装置の自動直径制御による出力調整が追従し難くなり、原料融液から溶け切れてしまい易い。   When growing a TSAG single crystal, first, a conical shoulder portion is formed, and when the TSAG single crystal is grown to a predetermined outer diameter, a straight body portion is formed by pulling and growing with a constant outer diameter (crystal diameter). . At this time, the formation angle of the shoulder outer peripheral surface is set in the range of 20 degrees to 50 degrees. If the formation angle of the shoulder outer peripheral surface exceeds 50 degrees, cracks are likely to occur at the end of the shoulder formation, and if the formation angle is less than 20 degrees, output adjustment is performed by automatic diameter control of the single crystal pulling apparatus. Becomes difficult to follow and is easily melted out from the raw material melt.

また、上記結晶引上げ軸の引上げ速度を0.1〜3mm/h(時間)の範囲内に設定し、かつ、回転速度を1〜50rpmの範囲内に設定している。   Further, the pulling speed of the crystal pulling shaft is set within a range of 0.1 to 3 mm / h (hour), and the rotation speed is set within a range of 1 to 50 rpm.

この実施の形態では、図1に示すように、上記直胴部6bを育成するときの引上げ速度を1.0mm/h以下、回転速度を10rpm以下にそれぞれ設定し、直胴部6bの結晶径D1がφ40mm〜φ50mmで、かつ、育成される単結晶の重量が1200g以下の条件を満たすTSAG単結晶を製造している。   In this embodiment, as shown in FIG. 1, the pulling speed when growing the straight body portion 6b is set to 1.0 mm / h or less and the rotation speed is set to 10 rpm or less, respectively, and the crystal diameter of the straight body portion 6b is set. A TSAG single crystal satisfying the condition that D1 is φ40 mm to φ50 mm and the weight of the grown single crystal is 1200 g or less is manufactured.

そして、上記直胴部6bを育成した後、直胴部6bよりも結晶径を徐々に小さくしてテール部6cを育成し、テール部6c先端の結晶径D2がφ10mm〜φ20mm、直胴部6b末端からテール部6c先端までの距離Lが上記直胴部6bの結晶径D1に対し0.2倍〜0.5倍(L/D1=0.2〜0.5)となったときに、上記結晶引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝18を10〜30mm降下させて育成した酸化物単結晶(TSAG)を原料融液から引き離す。この引き離し工程は、結晶引き上げ軸の回転並びに引き上げ操作を停止した後、30秒以内に坩堝18を降下させて行うことが好ましく、坩堝18の降下速度は5〜10mm/秒が好ましい。   Then, after growing the straight body portion 6b, the crystal diameter is gradually made smaller than that of the straight body portion 6b to grow the tail portion 6c. The crystal diameter D2 at the tip of the tail portion 6c is φ10 mm to φ20 mm, and the straight body portion 6b. When the distance L from the end to the tip of the tail portion 6c is 0.2 to 0.5 times the crystal diameter D1 of the straight body portion 6b (L / D1 = 0.2 to 0.5), The rotation of the crystal pulling shaft and the pulling operation are stopped, and the oxide single crystal (TSAG) grown by lowering the crucible 18 by 10 to 30 mm is separated from the raw material melt. This separation step is preferably performed by lowering the crucible 18 within 30 seconds after stopping the rotation of the crystal pulling shaft and the pulling operation, and the lowering speed of the crucible 18 is preferably 5 to 10 mm / second.

このように、実施の形態に係る酸化物単結晶の製造方法によれば、テール部6c先端の結晶径D2がφ10mm〜φ20mm、直胴部6b末端からテール部6c先端までの距離Lが直胴部6bの結晶径D1に対し0.2倍〜0.5倍(すなわちL/D1=0.2〜0.5)となったときに、結晶引き上げ軸の回転並びに引き上げ操作を停止し、かつ坩堝18を降下させて育成した酸化物単結晶(TSAG)を原料融液から引き離しているため、原料融液から単結晶が離れる際の表面張力を低減できると共に、結晶引上げ軸の引き上げ動作(操作)停止による衝撃も解消できる顕著な効果を有している。   Thus, according to the oxide single crystal manufacturing method according to the embodiment, the crystal diameter D2 at the tip of the tail portion 6c is φ10 mm to φ20 mm, and the distance L from the end of the straight barrel portion 6b to the tip of the tail portion 6c is the straight barrel. When the crystal diameter D1 of the portion 6b is 0.2 to 0.5 times (that is, L / D1 = 0.2 to 0.5), the rotation of the crystal pulling shaft and the pulling operation are stopped, and Since the oxide single crystal (TSAG) grown by lowering the crucible 18 is separated from the raw material melt, the surface tension when the single crystal is separated from the raw material melt can be reduced, and the pulling operation of the crystal pulling shaft (operation) ) It has a remarkable effect that can eliminate the impact caused by stopping.

尚、この酸化物単結晶の製造方法において、単結晶引上げ装置における育成炉内は窒素雰囲気としている。   In this oxide single crystal manufacturing method, the inside of the growth furnace in the single crystal pulling apparatus has a nitrogen atmosphere.

以下、本発明の実施例について比較例を挙げて具体的に説明する。   Examples of the present invention will be specifically described below with reference to comparative examples.

[実施例1]
上記単結晶引上げ装置を用いてTSAG(Tb3Sc2Al312)単結晶を育成した。
[Example 1]
A TSAG (Tb 3 Sc 2 Al 3 O 12 ) single crystal was grown using the single crystal pulling apparatus.

まず、イリジウム坩堝18内に、組成比(Tb3Sc2Al312)に秤量されたTSAG原料粉末を充填し、かつ、高周波発振装置15から電力が供給されたコイル16によりイリジウム坩堝18を加熱して原料融液とし、所定温度まで加熱した。 First, the iridium crucible 18 is filled with the TSAG raw material powder weighed in the composition ratio (Tb 3 Sc 2 Al 3 O 12 ) and supplied with power from the high-frequency oscillator 15. The mixture was heated to obtain a raw material melt and heated to a predetermined temperature.

次に、結晶引上げ軸先端にピンにより固定された外径φ5mmの種結晶を引上げ軸駆動装置13により10rpmで回転させながら下降させて原料融液に接触させ、引上げ速度1mm/hで44mm引上げながら結晶径φ40mmまで肩部を形成させた。   Next, a seed crystal having an outer diameter of 5 mm fixed by a pin at the tip of the crystal pulling shaft is lowered while rotating at 10 rpm by the pulling shaft driving device 13 to be brought into contact with the raw material melt, while being pulled 44 mm at a pulling rate of 1 mm / h. The shoulder was formed to a crystal diameter of φ40 mm.

次に、図1に示す結晶径D1がφ40mmである条件を維持させながら、結晶引上げ軸の引上げ速度を0.5mm/hに設定し、長さ40mmの直胴部6bを形成させた。   Next, while maintaining the condition that the crystal diameter D1 shown in FIG. 1 is φ40 mm, the pulling speed of the crystal pulling shaft was set to 0.5 mm / h, and the straight body portion 6b having a length of 40 mm was formed.

更に、育成される結晶径がφ40mmから徐々に小さくしてφ20mmとなるまで、引上げ速度1mm/hの条件で結晶引上げ軸を15mm引上げて図1に示すテール部6cを形成し、かつ、テール部6c先端の結晶径D2がφ20mmとなったとき[すなわちL/D1=15/40]、結晶引き上げ軸の回転並びに引き上げ操作を停止し、かつ、停止してから30秒以内に坩堝18を5mm/secの速度で降下させ、育成した酸化物単結晶(TSAG)を原料融液から引き離した。   Further, the crystal pulling shaft is pulled up by 15 mm under the condition of a pulling speed of 1 mm / h until the crystal diameter to be grown is gradually reduced from φ40 mm to φ20 mm, thereby forming the tail portion 6c shown in FIG. When the crystal diameter D2 at the tip of 6c becomes φ20 mm [that is, L / D1 = 15/40], the rotation of the crystal pulling shaft and the pulling operation are stopped, and the crucible 18 is moved to 5 mm / mm within 30 seconds after the stop. The oxide single crystal (TSAG) grown at a rate of sec was pulled away from the raw material melt.

そして、上記結晶引上げ軸の先端に固定された種結晶と酸化物単結晶(TSAG)を目視によりチェックしたところ種結晶付近に若干のクラックは確認されたが、得られた酸化物単結晶(重量1000g)が坩堝18内に落下することはなかった。   When the seed crystal and oxide single crystal (TSAG) fixed to the tip of the crystal pulling shaft were visually checked, some cracks were found near the seed crystal, but the obtained oxide single crystal (weight) 1000 g) did not fall into the crucible 18.

この結果から確認できるように、種結晶付近に多少クラックが発生した場合でも、テール部先端の結晶径D2をφ20mm以下とし、直胴部末端からテール部先端までの距離Lが上記直胴部の結晶径D1に対し0.2倍〜0.5倍(L/D1=0.2〜0.5)となったときに結晶引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝を降下させて育成した単結晶を原料融液から引き離すことにより、坩堝内への単結晶の落下を未然に防止できることが分かる。   As can be confirmed from this result, even when some cracks are generated near the seed crystal, the crystal diameter D2 at the tip of the tail portion is set to 20 mm or less, and the distance L from the end of the straight body portion to the tip of the tail portion is When the crystal diameter D1 is 0.2 to 0.5 times (L / D1 = 0.2 to 0.5), the rotation of the crystal pulling shaft and the pulling operation are stopped, and the crucible is lowered. It can be seen that the single crystal grown in this manner can be prevented from falling into the crucible by separating it from the raw material melt.

[実施例2]
外径φ7mmの種結晶を適用し、直胴部6bの結晶径D1がφ50mm、テール部6c先端の結晶径D2がφ10mm、および、直胴部6b末端からテール部6c先端までの距離Lと直胴部の結晶径D1の関係が(L/D1=25mm/50mm)となったときに結晶引き上げ軸の回転並びに引き上げ操作を停止した点を除き実施例1と同様に行ってTSAG単結晶(重量1200g)を育成した。
[Example 2]
A seed crystal having an outer diameter of φ7 mm is applied, the crystal diameter D1 of the straight barrel portion 6b is φ50mm, the crystal diameter D2 of the tip of the tail portion 6c is φ10mm, and the distance L from the end of the straight barrel portion 6b to the tip of the tail portion 6c The TSAG single crystal (weight) was carried out in the same manner as in Example 1 except that the rotation of the crystal pulling shaft and the pulling operation were stopped when the relationship of the crystal diameter D1 of the body portion became (L / D1 = 25 mm / 50 mm). 1200 g).

そして、結晶引上げ軸の先端に固定された種結晶と酸化物単結晶(TSAG)を目視によりチェックしたところ種結晶付近に若干のクラックは確認されたが、得られた酸化物単結晶(重量1200g)が坩堝18内に落下することはなかった。   When the seed crystal fixed to the tip of the crystal pulling shaft and the oxide single crystal (TSAG) were visually checked, some cracks were found near the seed crystal, but the obtained oxide single crystal (weight: 1200 g) ) Did not fall into the crucible 18.

[実施例3]
外径φ6mmの種結晶を適用し、直胴部6bの結晶径D1がφ45mm、テール部6c先端の結晶径D2がφ15mm、および、直胴部6b末端からテール部6c先端までの距離Lと直胴部の結晶径D1の関係が(L/D1=22mm/45mm)となったときに結晶引き上げ軸の回転並びに引き上げ操作を停止した点を除き実施例1と同様に行ってTSAG単結晶(重量1100g)を育成した。
[Example 3]
A seed crystal having an outer diameter of φ6 mm is applied, the crystal diameter D1 of the straight barrel portion 6b is φ45mm, the crystal diameter D2 of the tip of the tail portion 6c is φ15mm, and the distance L from the end of the straight barrel portion 6b to the tip of the tail portion 6c The TSAG single crystal (weight) was carried out in the same manner as in Example 1 except that the rotation of the crystal pulling shaft and the pulling operation were stopped when the relationship of the crystal diameter D1 of the body portion became (L / D1 = 22 mm / 45 mm). 1100 g).

そして、結晶引上げ軸の先端に固定された種結晶と酸化物単結晶(TSAG)を目視によりチェックしたところ種結晶付近に若干のクラックは確認されたが、得られた酸化物単結晶(重量1100g)が坩堝18内に落下することはなかった。   When the seed crystal fixed to the tip of the crystal pulling shaft and the oxide single crystal (TSAG) were visually checked, some cracks were found near the seed crystal, but the obtained oxide single crystal (weight: 1100 g) ) Did not fall into the crucible 18.

[比較例1]
テール部6c先端の結晶径D2がφ20mmとなったとき[すなわちL/D1=15/40]に結晶引き上げ軸を引き上げ、坩堝を降下させることなく育成した酸化物単結晶(TSAG)を原料融液から引き離した点を除き実施例1と同様に行ってTSAG単結晶(重量1000g)を育成した。
[Comparative Example 1]
When the crystal diameter D2 at the tip of the tail portion 6c becomes φ20 mm [ie, L / D1 = 15/40], the crystal pulling shaft is pulled up, and an oxide single crystal (TSAG) grown without lowering the crucible is used as a raw material melt. A TSAG single crystal (weight: 1000 g) was grown in the same manner as in Example 1 except for the point separated from the sample.

しかし、坩堝を降下させることなく結晶引き上げ軸を引き上げて酸化物単結晶(TSAG)を原料融液から引き離したため、結晶引上げ軸の引き上げ動作停止による衝撃により得られた酸化物単結晶(重量1000g)が坩堝18内に落下してしまった。   However, since the oxide single crystal (TSAG) was pulled away from the raw material melt by pulling up the crystal pulling shaft without lowering the crucible, the oxide single crystal (weight: 1000 g) obtained by impact by stopping the pulling operation of the crystal pulling shaft Has fallen into the crucible 18.

[比較例2]
直胴部6b末端からテール部6c先端までの距離Lが直胴部の結晶径D1に対し0.2倍未満(L/D1=4mm/40mm)となったときに結晶引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝を降下させて育成した単結晶を原料融液から引き離した点を除き実施例1と同様に行ってTSAG単結晶(重量1000g)を育成した。
[Comparative Example 2]
When the distance L from the end of the straight body portion 6b to the tip of the tail portion 6c is less than 0.2 times the crystal diameter D1 of the straight body portion (L / D1 = 4 mm / 40 mm), the crystal pulling shaft is rotated and pulled. A TSAG single crystal (weight: 1000 g) was grown in the same manner as in Example 1 except that the operation was stopped and the single crystal grown by lowering the crucible was separated from the raw material melt.

しかし、L/D1が0.2を下回る値の範囲で急激に結晶径を変化させようとしたため、結晶径の制御が不安定になり、テール部が目標の結晶径にならなかった。このため、テール部の作り直しをしたのでテール部が大きくなり、原料を余分に消費した分、収率が低下した。また、テール部を作り直したため、余計に工数がかかってしまった。   However, since it was attempted to change the crystal diameter abruptly in a range where L / D1 was less than 0.2, the control of the crystal diameter became unstable, and the tail portion did not reach the target crystal diameter. For this reason, since the tail part was reworked, the tail part became larger, and the yield was reduced by the extra consumption of raw materials. Also, since the tail part was reworked, it took extra man-hours.

[比較例3]
直胴部6b末端からテール部6c先端までの距離Lが直胴部の結晶径D1に対し0.5倍を超える(L/D1=32mm/40mm)となったときに結晶引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝を降下させて育成した単結晶を原料融液から引き離した点を除き実施例1と同様に行ってTSAG単結晶(重量1000g)を育成した。
[Comparative Example 3]
When the distance L from the end of the straight body portion 6b to the tip of the tail portion 6c exceeds 0.5 times the crystal diameter D1 of the straight body portion (L / D1 = 32 mm / 40 mm), A TSAG single crystal (weight: 1000 g) was grown in the same manner as in Example 1 except that the pulling operation was stopped and the single crystal grown by lowering the crucible was separated from the raw material melt.

そして、直胴部6b末端からテール部6c先端までの距離Lが32mmになるまでテール部6cを育成したことからテール部6c先端の結晶径D2が小さくなったため、坩堝を降下させて単結晶を原料融液から引き離す際の表面張力が低減し、得られた酸化物単結晶が坩堝18内に落下することはなかった。   Since the tail part 6c was grown until the distance L from the end of the straight body part 6b to the tip of the tail part 6c was 32 mm, the crystal diameter D2 at the tip of the tail part 6c was reduced. The surface tension during separation from the raw material melt was reduced, and the obtained oxide single crystal did not fall into the crucible 18.

但し、直胴部6b末端からテール部6c先端までの距離Lが32mmになるまでテール部6cを育成したため、直胴部6bとして利用されない原料を余分に消費した分、収率が低下した。   However, since the tail portion 6c was grown until the distance L from the end of the straight body portion 6b to the tip of the tail portion 6c was 32 mm, the yield was reduced by the extra consumption of raw materials that were not used as the straight body portion 6b.

[比較例4]
直胴部6b末端からテール部6c先端までの距離Lと直胴部の結晶径D1との関係は実施例1と同一[すなわちL/D1=15/40]としたが、上記テール部6c先端の結晶径D2がφ22mmの時点(表面張力を十分に低減できない時点)で結晶引き上げ軸の回転並びに引き上げ操作を停止した点を除き実施例1と同様に行ってTSAG単結晶(重量1000g)を育成した。
[Comparative Example 4]
The relationship between the distance L from the end of the straight body portion 6b to the tip of the tail portion 6c and the crystal diameter D1 of the straight body portion is the same as that of the first embodiment [that is, L / D1 = 15/40]. A TSAG single crystal (weight: 1000 g) was grown in the same manner as in Example 1 except that the rotation of the crystal pulling shaft and the pulling operation were stopped when the crystal diameter D2 was φ22 mm (when the surface tension could not be sufficiently reduced). did.

しかし、上記テール部6c先端の結晶径D2がφ20mmを超えている時点(表面張力を十分に低減できない時点)で結晶引き上げ軸の回転並びに引き上げ操作を停止したため、得られた酸化物単結晶は坩堝18内に落下してしまった。   However, since the rotation of the crystal pulling shaft and the pulling operation were stopped when the crystal diameter D2 at the tip of the tail portion 6c exceeded φ20 mm (when the surface tension could not be sufficiently reduced), the obtained oxide single crystal was crucible. It has fallen into 18

本発明に係る酸化物単結晶の製造方法によれば、育成した酸化物単結晶を原料融液から引き離す際、融液の表面張力、引上げ軸の引き上げ動作停止による衝撃等を原因とする酸化物単結晶の落下現象が回避されるため、硬脆性を示すTSAG(Tb3Sc2Al312)等の酸化物単結晶の育成に適用される産業上の利用可能性を有している。 According to the method for producing an oxide single crystal according to the present invention, when the grown oxide single crystal is separated from the raw material melt, the oxide is caused by the surface tension of the melt, the impact caused by stopping the pulling operation of the pulling shaft, etc. Since the falling phenomenon of the single crystal is avoided, it has industrial applicability applied to the growth of oxide single crystals such as TSAG (Tb 3 Sc 2 Al 3 O 12 ) exhibiting hard brittleness.

D1 直胴部の結晶径
D2 テール部先端の結晶径
L 直胴部末端からテール部先端までの距離
α 引き上げ方向
1 坩堝
2 原料融液
3 引上げ軸
4 ピン
5 種結晶
6 単結晶
6a 肩部
6b 直胴部
6c テール部
11 重量センサ(ロードセル)
12 コンピュータ
13 引上げ軸駆動装置
14 坩堝駆動装置
15 高周波発振装置
16 コイル
17 モニター用熱電対
18 坩堝
D1 Crystal diameter of the straight body part D2 Crystal diameter of the tail part tip L Distance from the end of the straight body part to the tail part tip α Pulling direction 1 Crucible 2 Raw material melt 3 Pulling shaft 4 Pin 5 Seed crystal 6 Single crystal 6a Shoulder part 6b Straight body part 6c Tail part 11 Weight sensor (load cell)
12 Computer 13 Pull-up shaft drive device 14 Crucible drive device 15 High-frequency oscillation device 16 Coil 17 Thermocouple for monitoring

Claims (4)

引き上げ軸の先端に取り付けられた種結晶を坩堝内の原料融液に接触させ、引き上げ軸を回転させながら引上げる結晶引き上げ法により酸化物単結晶を育成する方法であって、結晶径を一定にした直胴部を育成する工程と、直胴部よりも結晶径を徐々に小さくしたテール部を育成する工程と、育成した酸化物単結晶を原料融液から引き離す工程を具備する酸化物単結晶の製造方法において、
上記テール部先端の結晶径D2がφ10mm〜φ20mm、直胴部末端からテール部先端までの距離Lが上記直胴部の結晶径D1に対し0.2倍〜0.5倍(L/D1=0.2〜0.5)となったときに、上記引き上げ軸の回転並びに引き上げ操作を停止し、かつ、坩堝を降下させて育成した酸化物単結晶を原料融液から引き離すことを特徴とする酸化物単結晶の製造方法(但し、上記種結晶の外径がφ5mm〜φ7mm、酸化物単結晶の結晶径D1がφ40mm〜φ50mm、育成される酸化物単結晶の重量が1200g以下であることを条件とする)。
A method of growing an oxide single crystal by a crystal pulling method in which a seed crystal attached to the tip of a pulling shaft is brought into contact with a raw material melt in a crucible and the pulling shaft is rotated, and the crystal diameter is kept constant. An oxide single crystal comprising a step of growing the straight body portion, a step of growing a tail portion having a crystal diameter gradually smaller than the straight body portion, and a step of separating the grown oxide single crystal from the raw material melt In the manufacturing method of
The crystal diameter D2 at the tip of the tail part is φ10 mm to φ20 mm, and the distance L from the end of the straight body part to the tip of the tail part is 0.2 to 0.5 times the crystal diameter D1 of the straight body part (L / D1 = 0.2 to 0.5), the rotation of the pulling shaft and the pulling operation are stopped, and the oxide single crystal grown by lowering the crucible is separated from the raw material melt. Manufacturing method of oxide single crystal (however, the outer diameter of the seed crystal is φ5 mm to φ7 mm, the crystal diameter D1 of the oxide single crystal is φ40 mm to φ50 mm, and the weight of the grown oxide single crystal is 1200 g or less. Condition).
上記坩堝の降下速度が5mm〜10mm/秒に設定されていることを特徴とする請求項1に記載の酸化物単結晶の製造方法。   The method for producing an oxide single crystal according to claim 1, wherein a descending speed of the crucible is set to 5 mm to 10 mm / sec. 上記引き上げ軸の回転並びに引き上げ操作を停止した後、30秒以内に坩堝を降下させることを特徴とする請求項1または2に記載の酸化物単結晶の製造方法。   3. The method for producing an oxide single crystal according to claim 1, wherein the crucible is lowered within 30 seconds after the rotation of the pulling shaft and the pulling operation are stopped. 上記酸化物単結晶がTSAG(Tb3Sc2Al312)であることを特徴とする請求項1〜3のいずれかに記載の酸化物単結晶の製造方法。 Method of manufacturing an oxide single crystal according to claim 1, wherein said oxide single crystal is a TSAG (Tb 3 Sc 2 Al 3 O 12).
JP2014038115A 2014-02-28 2014-02-28 Method for manufacturing oxide single crystal Pending JP2015160786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038115A JP2015160786A (en) 2014-02-28 2014-02-28 Method for manufacturing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038115A JP2015160786A (en) 2014-02-28 2014-02-28 Method for manufacturing oxide single crystal

Publications (1)

Publication Number Publication Date
JP2015160786A true JP2015160786A (en) 2015-09-07

Family

ID=54184134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038115A Pending JP2015160786A (en) 2014-02-28 2014-02-28 Method for manufacturing oxide single crystal

Country Status (1)

Country Link
JP (1) JP2015160786A (en)

Similar Documents

Publication Publication Date Title
WO2014091671A1 (en) Method for producing monocrystalline silicon
JP2007223830A (en) Method of growing oxide single crystal
JP6367467B2 (en) Silicon single crystal growth apparatus and silicon single crystal growth method using the same
JP4785765B2 (en) Single crystal pulling method
JP2015205793A (en) Method for drawing up single crystal
JP5176915B2 (en) Method for growing silicon single crystal
JP2008162809A (en) Single crystal pulling apparatus and method for manufacturing single crystal
JP2009057270A (en) Method of raising silicon single crystal
US20120279438A1 (en) Methods for producing single crystal silicon ingots with reduced incidence of dislocations
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP2007191353A (en) Radiation shield and single crystal pulling apparatus equipped with the same
JP6413903B2 (en) Single crystal manufacturing method
SG185993A1 (en) Method for pulling a silicon single crystal
JP2009292663A (en) Method for growing silicon single crystal
JP2015160786A (en) Method for manufacturing oxide single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP2007204312A (en) Method for manufacturing silicon single crystal
JP6702249B2 (en) Oxide single crystal manufacturing method and oxide single crystal pulling apparatus
JP2008189523A (en) Method for manufacturing single crystal
JP2006327874A (en) Method for production of silicon single crystal
WO2018030042A1 (en) Method and device for producing single crystal
JP4702266B2 (en) Single crystal pulling method
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
TW202409363A (en) Axial positioning of magnetic poles while producing a silicon ingot