TW202409363A - Axial positioning of magnetic poles while producing a silicon ingot - Google Patents

Axial positioning of magnetic poles while producing a silicon ingot Download PDF

Info

Publication number
TW202409363A
TW202409363A TW112132639A TW112132639A TW202409363A TW 202409363 A TW202409363 A TW 202409363A TW 112132639 A TW112132639 A TW 112132639A TW 112132639 A TW112132639 A TW 112132639A TW 202409363 A TW202409363 A TW 202409363A
Authority
TW
Taiwan
Prior art keywords
stage
ingot
gaussian plane
maximum gaussian
melt
Prior art date
Application number
TW112132639A
Other languages
Chinese (zh)
Inventor
傑伍 萊歐
卡瑞喜瑪 瑪莉 哈德森
池浚煥
尹佑鎭
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Publication of TW202409363A publication Critical patent/TW202409363A/en

Links

Abstract

Method for producing a silicon ingot in which a horizontal magnetic field is generated are disclosed. The magnet position is controlled in at least two stages of ingot growth. The magnetic poles may be at a first position during a first stage of ingot growth and lowered to a second position in a second stage of ingot growth. By controlling the magnet position, the crystal-melt interface shape may be relatively more consistent.

Description

生產矽錠時之磁極之軸向定位Axial positioning of magnetic poles during silicon ingot production

本發明之領域係關於用於在一水平磁場丘克拉斯基(Czochralski)程序中生產單晶矽錠之方法及用於生產單晶矽錠之相關拉錠器設備。The field of the invention relates to methods for producing single crystal silicon ingots in a horizontal magnetic field Czochralski process and related ingot puller equipment for producing single crystal silicon ingots.

單晶矽係用於製造半導體電子組件及太陽能材料之諸多程序中之起始材料。例如,自矽錠生產之半導體晶圓通常用於生產其上印刷電路系統之積體電路晶片。在太陽能產業中,單晶矽可歸因於無晶界及位錯而代替多晶矽使用。Monocrystalline silicon is a starting material used in many processes for manufacturing semiconductor electronic components and solar materials. For example, semiconductor wafers produced from silicon ingots are often used to produce integrated circuit chips with printed circuit systems on them. In the solar industry, monocrystalline silicon can be used instead of polycrystalline silicon due to the absence of grain boundaries and dislocations.

為生產半導體或太陽能晶圓,可在一丘克拉斯基程序中藉由將一晶種浸漬至保持於一坩堝內之熔融矽中來生產一單晶矽錠。晶種依足以達成錠所需直徑之一方式抽出。在錠形成之後,將矽錠加工成半導體或太陽能晶圓可自其生產之一所需形狀。To produce semiconductor or solar wafers, a single crystal silicon ingot can be produced by dipping a seed crystal into molten silicon held in a crucible in a Czochralski process. The seed crystal is extracted in a manner sufficient to achieve the desired diameter of the ingot. After the ingot is formed, the silicon ingot is processed into the desired shape from which semiconductor or solar wafers can be produced.

滿足缺少凝聚點缺陷(例如晶體源生微坑(COP))之製造商要求之經拋光矽晶圓可指稱「中性矽」或「完美矽」。作為代替(例如)磊晶沈積晶圓之一較低成本經拋光晶圓,完美矽晶圓較佳地用於諸多半導體應用。在一水平磁場丘克拉斯基程序中完美矽錠之生長期間,晶體-熔體界面形狀通常呈凹形。為生產完美矽,錠或晶體-熔體界面形狀之熱狀況受控制,同時調節提拉速度。提拉速度及熱狀況(諸如藉由調整熔體表面與反射器之間的間隙及控制底部加熱器)可經連續調整以控制晶體-熔體界面之形狀。熱狀況在錠之生長期間改變以使晶體-熔體界面之控制變複雜,使得完美矽僅在錠生長之一軸向窗口中生產。Polished silicon wafers that meet manufacturer requirements that lack condensed point defects, such as crystal-origin pits (COP), may be referred to as "neutral silicon" or "perfect silicon." Perfect silicon wafers are preferred for many semiconductor applications as a lower cost polished wafer in place of, for example, epitaxially deposited wafers. During the growth of perfect silicon ingots in the Chuklaski process with a horizontal magnetic field, the shape of the crystal-melt interface is usually concave. To produce perfect silicon, the thermal conditions of the ingot or crystal-melt interface shape are controlled, while the pulling speed is adjusted. Pull speed and thermal conditions (such as by adjusting the gap between the melt surface and the reflector and controlling the bottom heater) can be continuously adjusted to control the shape of the crystal-melt interface. Thermal conditions change during ingot growth to complicate control of the crystal-melt interface, allowing perfect silicon to be produced only in one axial window of ingot growth.

需要用於控制水平磁場以維持一相對較恆定晶體-熔體界面之方法及其中可實施此等方法以生產單晶矽錠(例如完美矽)之拉錠器設備。What is needed are methods for controlling a horizontal magnetic field to maintain a relatively constant crystal-melt interface and puller apparatus in which such methods can be implemented to produce single crystal silicon ingots (e.g., perfect silicon).

本章節意欲向讀者介紹可與下文將描述及/或主張之本發明之各種態樣相關之技術之各種態樣。吾人認為此討論有助於向讀者提供背景資訊以促進較佳理解本發明之各種態樣。因此,應理解,此等敘述應鑑於此來解讀,而不應被解讀為對先前技術之認可。This section is intended to introduce the reader to various aspects of technology that may be related to various aspects of the invention that are described and/or claimed below. We believe that this discussion is helpful in providing the reader with background information to facilitate a better understanding of various aspects of the invention. Therefore, it should be understood that these statements should be read in this light and should not be read as an endorsement of prior art.

本發明之一個態樣係針對一種用於生產一矽錠之方法。使多晶矽在圍封於一生長室中之一坩堝中熔融以形成一熔體。該熔體具有一熔體自由表面。在該生長室內產生一水平磁場。使一晶種與該熔體接觸。將該晶種自該熔體抽出以形成該矽錠。在錠生長之至少兩個階段中調整該矽錠之一恆定直徑部分形成期間之一最大高斯(gauss)平面之一位置。該至少兩個階段包含一第一階段及一第二階段。該第一階段對應於自該矽錠之該恆定直徑部分之一形成開始直至一中間錠長度之該矽錠之形成。該第二階段對應於自至少該中間錠長度至該恆定直徑部分之一總長度之該矽錠之形成。調節該最大高斯平面之該位置包含使該第二階段中該最大高斯平面之該位置維持處於低於該第一階段期間該最大高斯平面之該位置之一位置。One aspect of the invention is directed to a method for producing a silicon ingot. Polycrystalline silicon is melted in a crucible enclosed in a growth chamber to form a melt. The melt has a melt free surface. A horizontal magnetic field is generated in the growth chamber. A seed crystal is brought into contact with the melt. The seed crystal is extracted from the melt to form the silicon ingot. The position of a maximum gauss plane during the formation of a constant diameter portion of the silicon ingot is adjusted during at least two stages of ingot growth. The at least two stages include a first stage and a second stage. The first stage corresponds to the formation of the silicon ingot starting from the formation of the constant diameter portion of the silicon ingot up to an intermediate ingot length. The second stage corresponds to the formation of the silicon ingot from at least the intermediate ingot length to a total length of the constant diameter portion. Adjusting the position of the maximum Gaussian plane includes maintaining the position of the maximum Gaussian plane in the second phase at a position lower than the position of the maximum Gaussian plane during the first phase.

本發明之另一態樣係針對一種用於製造一單晶矽錠之拉錠器設備。該拉錠器設備包含用於保持一矽熔體之一坩堝。一拉錠器外殼界定用於自該矽熔體提拉一矽錠之一生長室。該坩堝經安置於該生長室內。一對磁極自該坩堝徑向向外安置。該設備包含使該等磁極相對於該坩堝軸向移動之一平移裝置。Another aspect of the invention is directed to an ingot puller apparatus for manufacturing a single crystal silicon ingot. The ingot puller apparatus contains a crucible for holding a silicon melt. An ingot puller housing defines a growth chamber for pulling a silicon ingot from the silicon melt. The crucible is placed in the growth chamber. A pair of magnetic poles are disposed radially outward from the crucible. The apparatus includes translation means for axially moving the magnetic poles relative to the crucible.

存在相對於本發明之上述態樣所提及之特徵之各種改進。進一步特徵亦可併入於本發明之上述態樣中。此等改進及額外特徵可獨立或依任何組合存在。例如,下文將相對於本發明之任何繪示實施例來討論之各種特徵可單獨或依任何組合併入至本發明之任何上述態樣中。There are various improvements to the features mentioned above with respect to the above aspects of the invention. Further features may also be incorporated into the above aspects of the invention. Such improvements and additional features may exist independently or in any combination. For example, various features discussed below with respect to any illustrated embodiment of the invention may be incorporated into any of the above aspects of the invention alone or in any combination.

本申請案主張2022年8月29日申請之美國非臨時專利申請案第17/897,682號及2022年8月29申請之美國非臨時專利申請案第17/897,685號之優先權。兩個申請案之全文以引用的方式併入本文中。This application claims priority to U.S. Nonprovisional Patent Application No. 17/897,682 filed on August 29, 2022 and U.S. Nonprovisional Patent Application No. 17/897,685 filed on August 29, 2022. The entire text of both applications is incorporated herein by reference.

本發明之提供係關於用於在錠生長期間操縱錠-熔體界面形狀(即,改變凝固前沿之形狀)之方法。本發明之方法及設備可涉及在錠生長期間改變最大高斯平面之位置以隨著錠生長而改變錠-熔體界面之形狀。The present invention is directed to methods for manipulating the shape of the ingot-melt interface during ingot growth (ie, changing the shape of the solidification front). The methods and apparatus of the present invention may involve changing the position of the maximum Gaussian plane during ingot growth to change the shape of the ingot-melt interface as the ingot grows.

本發明之方法一般可在經組態以提拉一單晶矽錠且其中對熔體施加一水平磁場之任何拉錠器設備中實施。一實例性拉錠器設備(或更簡言之,「拉錠器」)在圖1中大體上以「100」指示。拉錠器設備100包含用於保持半導體或太陽能級材料(諸如矽)之一熔體104之一坩堝102,其由一承座106支撐。拉錠器設備100包含一晶體提拉器外殼109,其界定用於沿一提拉軸線A自熔體104提拉一矽錠113 (圖2)之一生長室152。The methods of the present invention may generally be implemented in any puller apparatus configured to pull a single crystal silicon ingot and in which a horizontal magnetic field is applied to the melt. An exemplary puller apparatus (or more simply, "puller") is generally indicated by "100" in FIG. 1. The puller apparatus 100 includes a crucible 102 for holding a melt 104 of a semiconductor or solar grade material (such as silicon), which is supported by a susceptor 106. The puller apparatus 100 includes a crystal puller housing 109 that defines a growth chamber 152 for pulling a silicon ingot 113 (FIG. 2) from the melt 104 along a pulling axis A.

坩堝102包含一底面128及自底面128向上延伸之一側壁131。側壁131大體上垂直。底面128包含延伸於側壁131下方之坩堝102之彎曲部分。具有一熔體表面111之一矽熔體104在坩堝102內。The crucible 102 includes a bottom surface 128 and a side wall 131 extending upward from the bottom surface 128 . The side walls 131 are generally vertical. Bottom 128 includes a curved portion of crucible 102 that extends below side wall 131 . A silicon melt 104 having a melt surface 111 is in the crucible 102 .

在一些實施例中,坩堝102分層。例如,坩堝102可由一石英基層及經安置於石英基層上之一合成石英內襯製成。In some embodiments, crucible 102 is layered. For example, crucible 102 may be made from a quartz base layer and a synthetic quartz lining disposed on the quartz base layer.

承座106由一軸件105支撐。承座106、坩堝102、軸件105及錠113 (圖2)具有一共同縱向軸線A或「提拉軸線」A。The bearing 106 is supported by a shaft 105 . The holder 106, the crucible 102, the shaft 105 and the spindle 113 (Fig. 2) have a common longitudinal axis A or "pull axis" A.

一提拉機構114經提供於拉錠器設備100內用於自熔體104生長及提拉一錠113。提拉機構114包含一提拉纜線118、經耦合至提拉纜線118之一端之一晶種保持器或卡盤120及經耦合至晶種保持器或卡盤120用於引發晶體生長之一矽晶種122。提拉纜線118之一端經連接至一滑輪(未展示)或一滾筒(未展示)或任何其他適合類型之提升機構(例如一軸件)且另一端經連接至保持晶種122之卡盤120。在操作中,將晶種122降低至接觸熔體104。操作提拉機構114以引起晶種122上升。此引起自熔體104抽出一單晶錠113 (圖2)。A lifting mechanism 114 is provided in the ingot pulling device 100 for growing the self-melting body 104 and pulling an ingot 113 . The pull mechanism 114 includes a pull cable 118, a seed holder or chuck 120 coupled to one end of the pull cable 118, and a device coupled to the seed holder or chuck 120 for initiating crystal growth. A silicon seed crystal 122. One end of the lifting cable 118 is connected to a pulley (not shown) or a roller (not shown) or any other suitable type of lifting mechanism (such as a shaft) and the other end is connected to the chuck 120 holding the seed crystal 122 . In operation, seed 122 is lowered into contact with melt 104 . The lifting mechanism 114 is operated to cause the seed crystal 122 to rise. This causes a single crystal ingot 113 to be extracted from the melt 104 (Fig. 2).

在加熱及晶體提拉期間,一坩堝驅動單元107 (例如一馬達)使坩堝102及承座106旋轉。一提升機構112在生長程序期間沿提拉軸線A升高及降低坩堝102。例如,坩堝102可處於一最低位置(接近底部加熱器126),其中先前添加至坩堝102之固態多晶矽之一初始進料經熔融。藉由使熔體104與晶種122接觸且由提拉機構114提升晶種122來開始晶體生長。隨著錠生長,矽熔體104消耗且坩堝102中熔體之高度減小。可升高坩堝102及承座106以使熔體表面111維持處於或接近相對於拉錠器設備100之相同位置(圖2)。During heating and crystal pulling, a crucible drive unit 107 (eg, a motor) rotates the crucible 102 and holder 106. A lifting mechanism 112 raises and lowers the crucible 102 along the lifting axis A during the growth process. For example, crucible 102 may be in a lowest position (near bottom heater 126) where an initial charge of solid polycrystalline silicon previously added to crucible 102 is melted. Crystal growth is initiated by bringing the melt 104 into contact with the seed crystal 122 and lifting the seed crystal 122 by the pulling mechanism 114 . As the ingot grows, the silicon melt 104 is consumed and the height of the melt in the crucible 102 decreases. The crucible 102 and holder 106 can be raised so that the melt surface 111 is maintained at or near the same position relative to the spindle puller apparatus 100 (Fig. 2).

一晶體驅動單元(未展示)亦可沿與坩堝驅動單元107使坩堝102旋轉之方向相反之一方向使提拉纜線118及錠113 (圖2)旋轉(例如反向旋轉)。在使用共轉之實施例中,晶體驅動單元可沿坩堝驅動單元107使坩堝102旋轉之相同方向使提拉纜線118旋轉。另外,晶體驅動單元在生長程序期間視需要相對於熔體表面111升高及降低錠113。A crystal drive unit (not shown) can also rotate the pull cable 118 and ingot 113 ( FIG. 2 ) in a direction opposite to the direction in which the crucible drive unit 107 rotates the crucible 102 (e.g., counter-rotate). In embodiments using co-rotation, the crystal drive unit can rotate the pull cable 118 in the same direction in which the crucible drive unit 107 rotates the crucible 102. Additionally, the crystal drive unit raises and lowers the ingot 113 relative to the melt surface 111 as needed during the growth process.

拉錠器設備100可包含一惰性氣體系統以自生長室152引入及抽除一惰性氣體,諸如氬氣。拉錠器設備100亦可包含用於將摻雜劑引入至熔體104中之一摻雜劑饋送系統(未展示)。The puller apparatus 100 may include an inert gas system for introducing and extracting an inert gas, such as argon, from the growth chamber 152. The puller apparatus 100 may also include a dopant feed system (not shown) for introducing dopant into the melt 104.

根據丘克拉斯基單晶生長程序,將一數量之多晶矽(polycrystalline silicon)或多晶矽(polysilicon)進料至坩堝102中。引入至坩堝中之初始半導體或太陽能級材料藉由自一或多個加熱元件提供之熱來熔融以使一矽熔體形成於坩堝中。拉錠器設備100包含底部隔熱110及側隔熱124以使熱保持於提拉器設備中。在所繪示實施例中,拉錠器設備100包含經安置於坩堝底面128下方之一底部加熱器126。可使坩堝102移動至相對較緊密接近底部加熱器126以熔融進料至坩堝102之多晶矽。According to the Chuklaski single crystal growth procedure, a quantity of polycrystalline silicon or polysilicon is fed into the crucible 102 . The initial semiconductor or solar grade material introduced into the crucible is melted by heat provided from one or more heating elements to form a silicon melt in the crucible. The spindle puller apparatus 100 includes bottom insulation 110 and side insulation 124 to retain heat within the puller apparatus. In the illustrated embodiment, the spindle puller apparatus 100 includes a bottom heater 126 disposed below the crucible floor 128 . The crucible 102 can be moved relatively close to the bottom heater 126 to melt the polycrystalline silicon fed into the crucible 102 .

為形成錠,使晶種122與熔體104之表面111接觸。操作提拉機構114以自熔體104提拉晶種122。現參考圖2,錠113包含一冠部分142,其中錠自晶種122向外過渡及漸縮以達到一目標直徑。錠113包含晶體之一恆定直徑部分145或圓柱形「主體」,其藉由增大提拉速率來生長。錠113之主體145具有一相對較恆定直徑。錠113包含一尾部或端錐(未展示),其中錠之直徑在主體145之後漸縮。當直徑變得足夠小時,接著使錠113與熔體104分離。To form an ingot, a seed crystal 122 is brought into contact with a surface 111 of the melt 104. A pulling mechanism 114 is operated to pull the seed crystal 122 from the melt 104. Referring now to FIG. 2 , ingot 113 includes a crown portion 142 wherein the ingot transitions outwardly from the seed crystal 122 and tapers to achieve a target diameter. Ingot 113 includes a constant diameter portion 145 or cylindrical “body” of the crystal that grows by increasing the pull rate. The body 145 of ingot 113 has a relatively constant diameter. Ingot 113 includes a tail or taper (not shown) wherein the diameter of the ingot tapers after the body 145. When the diameter becomes small enough, the ingot 113 is then separated from the melt 104.

拉錠器設備100經組態以生產一圓柱形半導體錠,其具有150 mm、大於150 mm、更具體言之在自約150 mm至約450 mm之一範圍內之一錠直徑,且更具體言之,約300 mm之一直徑。在其他實施例中,拉錠器設備100經組態以生產具有一200 mm錠直徑或一450 mm錠直徑之一半導體錠。另外,在一個實施例中,設備100經組態以生產具有至少900 mm之一總錠長度之一半導體錠。在一些實施例中,系統經組態以生產具有1950 mm、2250 mm、2350 mm或長於2350 mm之一長度之一半導體錠。在其他實施例中,拉錠器設備100經組態以生產具有在約900 mm至1200 mm之範圍內、約900 mm至約2000 mm之間或約900 mm至約2500 mm之間之一總錠長度之一半導體錠。在一些實施例中,系統經組態以生產具有大於2000 mm之一總錠長度之一半導體錠。The ingot puller apparatus 100 is configured to produce a cylindrical semiconductor ingot having an ingot diameter of 150 mm, greater than 150 mm, and more specifically in a range from about 150 mm to about 450 mm, and more specifically In other words, about 300 mm in diameter. In other embodiments, the ingot puller apparatus 100 is configured to produce a semiconductor ingot having a 200 mm ingot diameter or a 450 mm ingot diameter. Additionally, in one embodiment, the apparatus 100 is configured to produce a semiconductor ingot having an overall ingot length of at least 900 mm. In some embodiments, the system is configured to produce a semiconductor ingot having a length of 1950 mm, 2250 mm, 2350 mm, or longer than 2350 mm. In other embodiments, the spindle puller apparatus 100 is configured to produce a product having an overall diameter in the range of about 900 mm to about 1200 mm, between about 900 mm to about 2000 mm, or between about 900 mm to about 2500 mm. One of the ingot lengths is a semiconductor ingot. In some embodiments, the system is configured to produce a semiconductor ingot having an overall ingot length greater than 2000 mm.

拉錠器設備100包含一側加熱器135及環繞坩堝102之一承座106以在晶體生長期間維持熔體104之溫度。側加熱器135隨著坩堝102沿提拉軸線A向上及向下行進而徑向向外安置至坩堝側壁131。側加熱器135及底部加熱器126可為允許側加熱器135及底部加熱器126如本文中所描述操作之任何類型之加熱器。在一些實施例中,加熱器135、126係電阻加熱器。側加熱器135及底部加熱器126可由一控制系統(未展示)控制,使得在整個提拉程序期間控制熔體104之溫度。The puller apparatus 100 includes a side heater 135 and a susceptor 106 surrounding the crucible 102 to maintain the temperature of the melt 104 during crystal growth. The side heater 135 is radially disposed outwardly to the crucible side wall 131 as the crucible 102 moves upward and downward along the pulling axis A. The side heater 135 and the bottom heater 126 can be any type of heater that allows the side heater 135 and the bottom heater 126 to operate as described herein. In some embodiments, the heaters 135, 126 are resistive heaters. The side heater 135 and the bottom heater 126 can be controlled by a control system (not shown) so that the temperature of the melt 104 is controlled during the entire pulling process.

拉錠器設備100可包含一熱屏蔽151。熱屏蔽151可覆罩錠113且可在晶體生長期間安置於坩堝102內(圖2)。可(諸如)藉由使冷卻流體循環通過設備之一外室來冷卻拉錠器設備100。一冷卻套154經安置於生長室152內用於冷卻錠113。The spindle puller device 100 may include a heat shield 151 . Thermal shield 151 may cover ingot 113 and may be positioned within crucible 102 during crystal growth (Fig. 2). The spindle puller apparatus 100 may be cooled, such as by circulating cooling fluid through an outer chamber of the apparatus. A cooling jacket 154 is placed within the growth chamber 152 for cooling the ingot 113 .

本發明之晶體生長程序可為分批程序,其中最初將固體矽添加至坩堝102以在晶體生長期間無額外固體矽添加至坩堝102之情況下形成一矽熔體。The crystal growth process of the present invention may be a batch process in which solid silicon is initially added to the crucible 102 to form a silicon melt without additional solid silicon being added to the crucible 102 during crystal growth.

本發明之拉錠器設備100包含在錠生長期間產生一水平磁場之一對磁極129、130 (圖1)。磁極129、130自坩堝102徑向向外安置。The ingot puller apparatus 100 of the present invention includes a pair of magnetic poles 129, 130 (Fig. 1) that generates a horizontal magnetic field during ingot growth. Magnetic poles 129, 130 are disposed radially outward from the crucible 102.

圖3係繪示施加至含有一錠113自其生長之一熔體104之一坩堝102之一水平磁場的一圖式。熔體與錠之間的過渡大體上指稱晶體-熔體界面125 (替代地,「錠-熔體」或「固體-熔體」界面)且通常呈非線性,例如,相對於熔體表面111呈凹形、凸形或海鷗翼。兩個磁極129、130對置放置以產生大體上垂直於錠生長方向且大體上平行於熔體表面111之一磁場。磁極129、130可為一習知電磁體、一超導體電磁體或用於產生所需強度之一水平磁場之任何其他適合磁體。施加一水平磁場導致沿軸向方向、沿與流體運動相反之一方向、與驅動熔體對流之力相反之洛倫茲(Lorentz)力。因此抑制熔體中之對流且接近界面之錠中之軸向溫度梯度增大。熔體-錠界面接著向上移動至錠側以適應接近界面之錠中之增大軸向溫度梯度且來自坩堝中熔體對流之貢獻減小。水平組態具有減弱熔體表面111處之一對流流動之效率優點。FIG. 3 is a diagram showing a horizontal magnetic field applied to a crucible 102 containing a melt 104 from which an ingot 113 is grown. The transition between the melt and the ingot is generally referred to as the crystal-melt interface 125 (alternatively, the "ingot-melt" or "solid-melt" interface) and is typically nonlinear, e.g., concave, convex, or seagull-wing relative to the melt surface 111. Two magnetic poles 129, 130 are opposedly positioned to produce a magnetic field generally perpendicular to the ingot growth direction and generally parallel to the melt surface 111. The magnetic poles 129, 130 may be a conventional electromagnetic magnet, a superconducting electromagnetic magnet, or any other suitable magnet for producing a horizontal magnetic field of the desired strength. Applying a horizontal magnetic field results in a Lorentz force in the axial direction, in a direction opposite to the fluid motion, opposing the force driving the melt convection. Convection in the melt is thus suppressed and the axial temperature gradient in the ingot near the interface increases. The melt-ingot interface then moves upward to the side of the ingot to accommodate the increased axial temperature gradient in the ingot near the interface and the contribution from the melt convection in the crucible decreases. The horizontal configuration has the efficiency advantage of weakening a convective flow at the melt surface 111.

可藉由使冷卻流體循環通過磁極129、130來冷卻磁極129、130。一鐵屏蔽155 (圖1)可包圍磁極129、130以減少雜散磁場且增強所產生磁場之強度。Magnetic poles 129, 130 may be cooled by circulating cooling fluid through them. An iron shield 155 (Fig. 1) may surround the magnetic poles 129, 130 to reduce stray magnetic fields and enhance the strength of the generated magnetic field.

根據本發明之實施例,在錠生長之至少兩個階段中調節矽錠之一恆定直徑部分之形成期間之最大高斯平面(「MGP」)之一位置。MGP之特徵在於磁場之水平分量之最大量值及沿MGP之一零垂直分量。在錠生長期間藉由移動磁極129、130來改變磁極129、130相對於熔體自由表面111 (或更簡言之「熔體表面」)之位置。According to an embodiment of the present invention, a position of a Maximum Gaussian Plane ("MGP") during the formation of a constant diameter portion of a silicon ingot is adjusted during at least two stages of ingot growth. The MGP is characterized by a maximum magnitude of the horizontal component of the magnetic field and a zero vertical component along the MGP. The position of the magnetic poles 129, 130 relative to the melt free surface 111 (or more simply, the "melt surface") is changed during ingot growth by moving the magnetic poles 129, 130.

現參考圖4,其中展示錠生長期間MGP之位置之一實例性分佈,MGP之位置在一第一階段S 1及一第二階段S 2中調節,該第一階段S 1對應於自矽錠之恆定直徑部分形成開始直至一中間錠長度之矽錠形成,該第二階段S 2對應於自至少中間錠長度至恆定直徑部分之總長度之矽錠形成。如圖4中所展示,調節最大高斯平面之位置包含使第二階段S 2中最大高斯平面之位置維持處於低於第一階段S 1期間最大高斯平面之位置之一位置。例如,使第一階段S 1期間最大高斯平面之位置維持高於熔體自由表面。使第二階段S 2期間最大高斯平面之位置維持低於熔體自由表面。 Referring now to Figure 4, there is shown an example distribution of MGP positions during ingot growth. The position of MGP is adjusted in a first stage S1 and a second stage S2 . The first stage S1 corresponds to the growth of the silicon ingot. The formation of the constant diameter portion begins until an intermediate ingot length is formed, and the second stage S2 corresponds to the formation of the ingot from at least the intermediate ingot length to the total length of the constant diameter portion. As shown in Figure 4, adjusting the position of the maximum Gaussian plane includes maintaining the position of the maximum Gaussian plane in the second stage S2 at a position lower than the position of the maximum Gaussian plane during the first stage S1 . For example, the position of the maximum Gaussian plane during the first stage S 1 is maintained higher than the free surface of the melt. The position of the maximum Gaussian plane during the second stage S2 is maintained lower than the free surface of the melt.

在圖4之實施例中,MGP分佈包含一中間階段S 3,其對應於第一階段S 1與第二階段S 2之間矽錠形成。調節最大高斯平面之位置可包含在中間階段S 3期間使最大高斯平面之位置自第一階段S 1中之位置降低至第二階段S 2中之位置。 In the embodiment of FIG. 4 , the MGP distribution includes an intermediate stage S 3 , which corresponds to the silicon ingot formation between the first stage S 1 and the second stage S 2 . Adjusting the position of the maximum Gaussian plane may include lowering the position of the maximum Gaussian plane from the position in the first stage S 1 to the position in the second stage S 2 during the intermediate stage S 3 .

在一些實施例中,在第一階段期間使最大高斯平面之位置(對應於圖4中之歸一化位置「1」)維持處於高於熔體自由表面至少20 mm之一位置,或如在其他實施例中,在第一階段期間高於熔體自由表面至少40 mm、高於熔體自由表面至少60 mm、自熔體自由表面至高於熔體自由表面150 mm、自高於熔體自由表面20 mm至高於熔體自由表面150 mm或自高於熔體自由表面40 mm至高於熔體自由表面150 mm。In some embodiments, the position of the maximum Gaussian plane (corresponding to the normalized position "1" in Figure 4) is maintained during the first stage at a position at least 20 mm above the free surface of the melt, or as in In other embodiments, during the first stage at least 40 mm above the free surface of the melt, at least 60 mm above the free surface of the melt, from the free surface of the melt to 150 mm above the free surface of the melt, from 20 mm above the surface to 150 mm above the free surface of the melt or from 40 mm above the free surface of the melt to 150 mm above the free surface of the melt.

替代地或另外,最大高斯平面之位置可在第二階段期間維持低於熔體自由表面或在第二階段期間處於低於熔體自由表面至少20 mm之一位置。在一些實施例中,在第二階段期間使最大高斯平面之位置維持處於低於熔體自由表面至少40 mm之一位置、低於熔體自由表面至少60 mm、低於熔體自由表面至少80 mm、低於熔體自由表面至少100 mm、自熔體自由表面至低於熔體自由表面200 mm、自低於熔體自由表面20 mm至低於熔體自由表面200 mm或自低於熔體自由表面20 mm至低於熔體自由表面150 mm。Alternatively or additionally, the position of the maximum Gaussian plane may be maintained below the melt free surface during the second phase or at a position at least 20 mm below the melt free surface during the second phase. In some embodiments, the position of the maximum Gaussian plane is maintained at a position at least 40 mm below the melt free surface, at least 60 mm below the melt free surface, at least 80 mm below the melt free surface, at least 100 mm below the melt free surface, from the melt free surface to 200 mm below the melt free surface, from 20 mm below the melt free surface to 200 mm below the melt free surface, or from 20 mm below the melt free surface to 150 mm below the melt free surface during the second phase.

在一些實施例中及如圖4中所展示,MGP可在第二階段S 2中比在第一階段S 1中距熔體自由表面更遠(即,在第二階段中絕對距離更大)。(1)第二階段S 2中自MGP至熔體自由表面之距離與(2)第一階段S 1中自MGP至熔體自由表面之距離之比可為至少1.0、至少1.25、至少1.4或至少1.5。 In some embodiments and as shown in Figure 4, the MGP may be further from the melt free surface in the second stage S2 than in the first stage S1 (i.e., the absolute distance is greater in the second stage) . The ratio of (1) the distance from MGP to the free surface of the melt in the second stage S 2 to (2) the distance from the MGP to the free surface of the melt in the first stage S 1 may be at least 1.0, at least 1.25, at least 1.4, or At least 1.5.

在圖4之實施例中,在中間階段S 3期間使最大高斯平面之位置降低至低於熔體自由表面。在恆定直徑部分之不超過60%或如在其他實施例中不超過恆定直徑部分之50%或不超過40%上,可在中間階段S 3中(即,在S 1結束與S 2開始之間)使最大高斯平面之位置降低至少40 mm (或降低至少75 mm、至少100 mm或至少150 mm)。 In the embodiment of Figure 4, the position of the maximum Gaussian plane is lowered below the free surface of the melt during the intermediate stage S3 . The position of the maximum Gaussian plane can be lowered by at least 40 mm (or at least 75 mm, at least 100 mm, or at least 150 mm) in the intermediate stage S3 (i.e., between the end of S1 and the beginning of S2 ) over no more than 60% of the constant diameter portion or no more than 50% or no more than 40% of the constant diameter portion in other embodiments.

坩堝102可隨著熔體104消耗而移動以維持熔體界面之一相對較恆定位置。在一些實施例中,可藉由移動磁極129、130及熔體自由表面111之位置兩者來調整磁極129、130相對於熔體自由表面111之位置(諸如允許熔體消耗或藉由移動坩堝102)。在其他實施例中,僅藉由移動磁極129、130來調整磁極129、130相對於熔體自由表面111之位置(即,藉由隨著熔體104消耗而移動坩堝102來使熔體自由表面111維持處於一相對較恆定位置)。The crucible 102 may be moved as the melt 104 is consumed to maintain a relatively constant position of the melt interface. In some embodiments, the position of the poles 129, 130 relative to the melt free surface 111 may be adjusted by moving both the poles 129, 130 and the position of the melt free surface 111 (e.g., allowing the melt to be consumed or by moving the crucible 102). In other embodiments, the position of the poles 129, 130 relative to the melt free surface 111 is adjusted only by moving the poles 129, 130 (i.e., the melt free surface 111 is maintained in a relatively constant position by moving the crucible 102 as the melt 104 is consumed).

第一階段S 1之長度可為恆定直徑部分之至少10%,或如在其他實施例中,恆定直徑部分之至少20%、恆定直徑部分之至少10%且小於50%或恆定直徑部分之至少10%且小於40%。第一階段S 1可開始於錠之恆定直徑部分之開始。最大高斯平面之位置可在第一階段S 1期間維持恆定或可在第一階段期間變動。 The length of the first stage S 1 may be at least 10% of the constant diameter portion, or as in other embodiments, at least 20% of the constant diameter portion, at least 10% and less than 50% of the constant diameter portion, or at least 20% of the constant diameter portion. 10% and less than 40%. The first stage S1 may start at the beginning of the constant diameter portion of the ingot. The position of the maximum Gaussian plane may remain constant during the first phase S 1 or may vary during the first phase.

第二階段S 2之長度可為恆定直徑部分之長度之至少10%,或如在其他實施例中,恆定直徑部分之至少20%、恆定直徑部分之至少30%、恆定直徑部分之至少10%且小於50%或恆定直徑部分之至少20%且小於50%。第二階段S 2可自第一階段S 1結束(或在具有一中間階段之實施例中,中間階段S 3結束)延伸至錠之恆定直徑部分結束。最大高斯平面之位置可在第二階段S 2期間維持恆定或可在第二階段期間變動。 The length of the second stage S2 may be at least 10% of the length of the constant diameter portion, or as in other embodiments, at least 20% of the constant diameter portion, at least 30% of the constant diameter portion, at least 10% and less than 50% of the constant diameter portion, or at least 20% and less than 50% of the constant diameter portion. The second stage S2 may extend from the end of the first stage S1 (or in an embodiment with an intermediate stage, the end of the intermediate stage S3 ) to the end of the constant diameter portion of the tablet. The position of the maximum Gaussian plane may remain constant during the second stage S2 or may vary during the second stage.

可依能夠如本文中所描述使錠生長一致進行之(若干)任何功率操作磁極129、130。例如,在錠生長之第一、第二及中間階段期間,水平磁場可依小於0.4特斯拉(Tesla)或如在其他實施例中小於0.35特斯拉、小於0.3特斯拉、小於0.25特斯拉或自約0.2特斯拉至約0.4特斯拉之一磁通強度產生。一般而言,磁場之強度係其在最大高斯平面52之中心處之量值。The poles 129, 130 may be operated at any power(s) that enables consistent ingot growth as described herein. For example, during the first, second and intermediate stages of ingot growth, the horizontal magnetic field may be less than 0.4 Tesla or, in other embodiments, less than 0.35 Tesla, less than 0.3 Tesla, less than 0.25 Tesla. Tesla may be produced from a magnetic flux intensity of about 0.2 Tesla to about 0.4 Tesla. Generally speaking, the strength of a magnetic field is its magnitude at the center of the maximum Gaussian plane 52.

坩堝102可沿與錠113旋轉之方向相反之一方向旋轉,其中坩堝102依自0.1 RPM至5.0 RPM (即,-0.1 RPM至-5.0 RPM)或甚至自0.1 RPM至1.6 RPM (即,-0.1 RPM至-1.6 RPM)或自0.1 RPM至1.2 RPM (即,-0.1 RPM至-1.2 RPM)之一範圍內之一速率旋轉。在其他實施例中,坩堝102沿錠113旋轉之相同方向旋轉,其中坩堝102依0.1 RPM至5.0 RPM、自0.7 RPM至5 RPM或自1.2 RPM至5.0 RPM之一範圍內之一速率旋轉。The crucible 102 may rotate in a direction opposite to the direction in which the ingot 113 rotates, wherein the crucible 102 rotates at a rate in a range from 0.1 RPM to 5.0 RPM (i.e., -0.1 RPM to -5.0 RPM), or even from 0.1 RPM to 1.6 RPM (i.e., -0.1 RPM to -1.6 RPM), or from 0.1 RPM to 1.2 RPM (i.e., -0.1 RPM to -1.2 RPM). In other embodiments, the crucible 102 rotates in the same direction in which the ingot 113 rotates, wherein the crucible 102 rotates at a rate in a range from 0.1 RPM to 5.0 RPM, from 0.7 RPM to 5 RPM, or from 1.2 RPM to 5.0 RPM.

拉錠器設備100包含使磁極129、130相對於坩堝102及熔體自由表面111軸向移動之一平移裝置160 (圖1)。可使用允許拉錠器設備100如本文中所描述操作之用於移動磁極129、130之任何平移裝置160。例如,平移裝置160可包含一導件163及使各磁極129、130相對於導件163移動之一安裝座170。導件163可包含一或多個軌條,其中安裝座170將各磁極129、130連接至一或多個軌條。拉錠器設備100包含使磁極129、130相對於導件163移動之一致動器175。例如,致動器175可為一氣動或液壓缸、一齒條與小齒輪、一滑輪或具有一滾珠螺桿之一齒輪系。一馬達178可對致動器175提供動力。馬達178可由一控制器108控制。替代地,平移裝置160可包含調節磁極129、130之移動之其他設備或裝置。The spindle puller apparatus 100 includes a translation device 160 for axial movement of the magnetic poles 129, 130 relative to the crucible 102 and the melt free surface 111 (Fig. 1). Any translation device 160 for moving the magnetic poles 129, 130 that allows the spindle puller device 100 to operate as described herein may be used. For example, the translation device 160 may include a guide 163 and a mounting base 170 that moves each magnetic pole 129 , 130 relative to the guide 163 . The guide 163 may include one or more rails, with the mounting 170 connecting each pole 129, 130 to the one or more rails. The spindle puller device 100 includes an actuator 175 that moves the magnetic poles 129 , 130 relative to the guide 163 . For example, actuator 175 may be a pneumatic or hydraulic cylinder, a rack and pinion, a pulley, or a gear train with a ball screw. A motor 178 can power actuator 175 . Motor 178 may be controlled by a controller 108 . Alternatively, the translation device 160 may include other devices or devices that regulate the movement of the poles 129, 130.

圖5係一實例性運算裝置200之一方塊圖,運算裝置200可用作調節磁極129、130之位置之控制器108或包含為控制器108之部分。運算裝置200包含一處理器201、一記憶體202、一媒體輸出組件204、一輸入裝置206及一通信介面208。其他實施例包含不同組件、額外組件及/或不包含圖5中所展示之所有組件。5 is a block diagram of an exemplary computing device 200 that may be used as or included as part of the controller 108 for adjusting the position of the magnetic poles 129, 130. The computing device 200 includes a processor 201, a memory 202, a media output component 204, an input device 206, and a communication interface 208. Other embodiments include different components, additional components, and/or do not include all of the components shown in FIG. 5 .

處理器201經組態以執行指令。在一些實施例中,可執行指令儲存於記憶體202中。處理器201可包含一或多個處理單元(例如呈一多核心組態)。如本文中所使用之術語「處理器」係指中央處理單元、微處理器、微控制器、精簡指令集電路(RISC)、專用積體電路(ASIC)、一可程式化邏輯電路(PLC)及能夠執行本文中所描述之功能之任何其他電路或處理器。以上僅為實例且因此絕不意欲限制術語「處理器」之界定及/或含義。Processor 201 is configured to execute instructions. In some embodiments, executable instructions are stored in memory 202 . Processor 201 may include one or more processing units (eg, in a multi-core configuration). As used herein, the term "processor" refers to a central processing unit, a microprocessor, a microcontroller, a reduced instruction set circuit (RISC), an application specific integrated circuit (ASIC), a programmable logic circuit (PLC) and any other circuit or processor capable of performing the functions described herein. The above are examples only and are therefore in no way intended to limit the definition and/or meaning of the term "processor".

記憶體202儲存非暫時性電腦可讀指令用於執行本文中所描述之技術。此等指令在由處理器201執行時引起處理器201執行本文中所描述之方法之至少一部分。即,儲存於記憶體202中之指令組態控制器108執行本文中所描述之方法。在一些實施例中,記憶體202儲存電腦可讀指令用於經由媒體輸出組件204向使用者提供一使用者介面且接收及處理來自輸入裝置206之輸入。記憶體202可包含(但不限於)隨機存取記憶體(RAM)(諸如動態RAM (DRAM)或靜態RAM (SRAM))、唯讀記憶體(ROM)、可擦除可程式化唯讀記憶體(EPROM)、電可擦除可程式化唯讀記憶體(EEPROM)及非揮發性RAM (NVRAM)。儘管繪示為與處理器201分離,但在一些實施例中,記憶體202與處理器201組合,諸如在一微控制器或微處理器中,但仍可分離提及。上述記憶體類型僅為實例且因此不限於如可用於儲存一電腦程式之記憶體類型。The memory 202 stores non-transitory computer-readable instructions for executing the techniques described herein. These instructions, when executed by the processor 201, cause the processor 201 to execute at least a portion of the methods described herein. That is, the instructions stored in the memory 202 configure the controller 108 to execute the methods described herein. In some embodiments, the memory 202 stores computer-readable instructions for providing a user interface to a user via the media output component 204 and receiving and processing input from the input device 206. Memory 202 may include, but is not limited to, random access memory (RAM) such as dynamic RAM (DRAM) or static RAM (SRAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and non-volatile RAM (NVRAM). Although shown as being separate from processor 201, in some embodiments, memory 202 is combined with processor 201, such as in a microcontroller or microprocessor, but may still be mentioned separately. The above memory types are examples only and are therefore not limited to the types of memory that can be used to store a computer program.

媒體輸出組件204經組態以向一使用者(例如系統之一操作者)呈現資訊。媒體輸出組件204係能夠向使用者傳達資訊之任何組件。在一些實施例中,媒體輸出組件204包含一輸出配接器,諸如一視訊配接器及/或一音訊配接器。輸出配接器經操作性連接至處理器201且可操作性連接至一輸出裝置,諸如一顯示裝置(例如一液晶顯示器(LCD)、發光二極體(LED)顯示器、有機發光二極體(OLED)顯示器、陰極射線管(CRT)、「電子油墨」顯示器、一或多個發光二極體(LED))或一音訊輸出裝置(例如一揚聲器或頭戴式耳機)。The media output component 204 is configured to present information to a user (e.g., an operator of the system). The media output component 204 is any component capable of conveying information to a user. In some embodiments, the media output component 204 includes an output adapter, such as a video adapter and/or an audio adapter. The output adapter is operatively connected to the processor 201 and operatively connected to an output device, such as a display device (e.g., a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, a cathode ray tube (CRT), an "electronic ink" display, one or more light emitting diodes (LEDs)) or an audio output device (e.g., a speaker or headphones).

運算裝置200包含或經連接至用於自使用者接收輸入之輸入裝置206。輸入裝置206係容許運算裝置200接收類比及/或數位命令、指令或來自使用者之其他輸入(包含視覺、聽覺、觸覺、按鈕按壓、觸控筆叩擊等等)之任何裝置。輸入裝置206可包含(例如)一可變電阻器、一輸入撥盤、一鍵盤/鍵板、一指向裝置、一滑鼠、一觸控筆、一觸敏面板(例如一觸控板或一觸控螢幕)、一迴轉儀、一加速度計、一位置偵測器、一音訊輸入裝置或其等之任何組合。一單一組件(諸如一觸控螢幕)可充當媒體輸出組件204之一輸出裝置及輸入裝置206兩者。The computing device 200 includes or is connected to an input device 206 for receiving input from a user. The input device 206 is any device that allows the computing device 200 to receive analog and/or digital commands, instructions, or other input from a user (including visual, auditory, tactile, button presses, stylus taps, etc.). The input device 206 may include, for example, a variable resistor, an input dial, a keyboard/keypad, a pointing device, a mouse, a stylus, a touch-sensitive panel (such as a touchpad or a touch screen), a gyro, an accelerometer, a position detector, an audio input device, or any combination thereof. A single component, such as a touch screen, can serve as both an output device and an input device 206 for the media output component 204 .

通信介面208使運算裝置200能夠與遠端裝置及系統(諸如馬達178或致動器175、遠端感測器、遠端資料庫、遠端運算裝置及其類似者)通信且可包含用於與一個以上遠端裝置或系統相互動之一個以上通信介面。通信介面可為容許運算裝置200直接或經由一網路與遠端裝置及系統通信之有線或無線通信介面。無線通信介面可包含一射頻(RF)收發器、一藍牙(Bluetooth)®配接器、一Wi-Fi收發器、一ZigBee®收發器、一近場通信(NFC)收發器、一紅外線(IR)收發器及/或用於無線通信之任何其他裝置及通信協定。(藍牙係華盛頓州柯克蘭(Kirkland)之藍牙特別興趣小組之一註冊商標;ZigBee係加州聖拉蒙(San Ramon)之ZigBee聯盟之一註冊商標)。有線通信介面可使用用於直接通信之任何適合有線通信協定,其包含(但不限於) USB、RS232、I2C、SPI、類比及專屬I/O協定。在一些實施例中,有線通信介面包含允許運算裝置200耦合至一網路(諸如網際網路、一區域網路(LAN)、一廣域網路(WAN)、一網狀網路及/或任何其他網路)以經由網路與遠端裝置及系統通信之一有線網路配接器。The communication interface 208 enables the computing device 200 to communicate with remote devices and systems (such as the motor 178 or the actuator 175, remote sensors, remote databases, remote computing devices, and the like) and may include one or more communication interfaces for interacting with one or more remote devices or systems. The communication interface may be a wired or wireless communication interface that allows the computing device 200 to communicate with remote devices and systems directly or via a network. The wireless communication interface may include a radio frequency (RF) transceiver, a Bluetooth® adapter, a Wi-Fi transceiver, a ZigBee® transceiver, a near field communication (NFC) transceiver, an infrared (IR) transceiver, and/or any other device and communication protocol for wireless communication. (Bluetooth is a registered trademark of the Bluetooth Special Interest Group of Kirkland, Washington; ZigBee is a registered trademark of the ZigBee Alliance of San Ramon, California). The wired communication interface may use any suitable wired communication protocol for direct communication, including but not limited to USB, RS232, I2C, SPI, analog, and proprietary I/O protocols. In some embodiments, the wired communication interface includes a wired network adapter that allows the computing device 200 to be coupled to a network (such as the Internet, a local area network (LAN), a wide area network (WAN), a mesh network, and/or any other network) to communicate with remote devices and systems via the network.

本文中所討論之電腦系統可包含額外、更少或替代功能,包含本文中別處所討論之功能。本文中所討論之電腦系統可包含儲存於非暫時性電腦可讀媒體上之電腦可執行指令或經由電腦可執行指令實施。The computer systems discussed herein may include additional, fewer, or alternative functionality, including functionality discussed elsewhere herein. The computer systems discussed herein may include or be implemented by computer-executable instructions stored on a non-transitory computer-readable medium.

非暫時性記憶體202儲存由處理器201執行以組態控制器108之指令。根據本發明之實施例,控制器108根據上文所描述之實施例經組態以引起平移裝置160在矽錠之一恆定直徑部分形成期間移動磁極對129、130以調節最大高斯平面之一位置。例如,可在錠生長之至少兩個階段中調節最大高斯平面之位置,其中第二階段中最大高斯平面之位置係低於第一階段期間最大高斯平面之位置之一位置。控制器108可經組態以在至少兩個階段(且亦包含選用中間階段)中使最大高斯平面之位置維持於上文所描述之實施例中之與熔體自由表面相距的距離。控制器108可經組態以維持最大高斯平面之位置,使得可達成上文所描述之第一及第二階段之各種長度及在中間階段中降低磁體之速率。Non-transitory memory 202 stores instructions executed by processor 201 to configure controller 108 . According to an embodiment of the present invention, the controller 108 is configured to cause the translation device 160 to move the pole pair 129, 130 to adjust the position of one of the maximum Gaussian planes during the formation of a constant diameter portion of the silicon ingot according to the embodiments described above. . For example, the position of the maximum Gaussian plane can be adjusted in at least two stages of ingot growth, wherein the position of the maximum Gaussian plane in the second stage is a position lower than the position of the maximum Gaussian plane during the first stage. The controller 108 may be configured to maintain the position of the maximum Gaussian plane at the distance from the melt free surface in the embodiments described above in at least two stages (and optionally an intermediate stage). The controller 108 can be configured to maintain the position of the maximum Gaussian plane such that various lengths of the first and second stages described above can be achieved and the velocity of the magnet reduced in intermediate stages.

控制器108可經觸發以在錠生長之各種階段中(例如,終止第一階段且移動至中間階段或終止中間階段且移動至第二階段)藉由熔體之重量、錠之長度或藉由一定時控制來改變磁極之位置。The controller 108 can be triggered to change the position of the magnetic poles during various stages of ingot growth (e.g., terminate the first stage and move to the intermediate stage or terminate the intermediate stage and move to the second stage) by the weight of the melt, the length of the ingot, or by timing control.

與用於生產單晶矽之習知方法及設備相比,本發明之實施例之方法及設備具有若干優點。可藉由在HMCZ錠生長期間移動磁極來使晶體-熔體界面之形狀維持相對較恆定。磁體位置可經控制以減小晶體-熔體界面高度,其減小完美矽生產期間v/G控制之軸向梯度之變動,藉此增大完美矽窗口。磁體位置可經控制以減少晶種端氧氣。可使晶體-熔體界面維持相對較恆定,不管熔體體積及坩堝之位置如何。在晶種端處使用較高MGP能夠歸因於較少氧氣併入至本體中而降低晶種端氧氣。在中間至晚期本體中斜降磁體位置在不影響O i之情況下推動晶體-熔體界面類似於晶體之晶種端部分。因此,臨界v/G在中間至晚期本體處增大且一較高提拉速率用於生產完美矽,其提高生產率。軸向v/G恆定或較少變動導致較少品質損耗且提高良率。增大晶體-熔體界面高度(即,更凹)導致增大提拉速度且提高生產率。晶種端處之氧氣控制導致晶種端處之靈活氧氣控制(由客戶選擇之較高O i(負MGP)或較低O i(正MGP))。 實例 Compared with conventional methods and equipment for producing single crystal silicon, the methods and equipment of embodiments of the present invention have several advantages. The shape of the crystal-melt interface can be maintained relatively constant by moving the magnetic poles during growth of the HMCZ ingot. The magnet position can be controlled to reduce the crystal-melt interface height, which reduces changes in the axial gradient of v/G control during perfect silicon production, thereby increasing the perfect silicon window. The magnet position can be controlled to reduce seed-side oxygen. The crystal-melt interface can be maintained relatively constant regardless of the melt volume and the position of the crucible. Using higher MGP at the seed end can reduce seed end oxygen due to less oxygen being incorporated into the bulk. The ramp-down magnet position in the intermediate to late bulk drives the crystal-melt interface similar to the seed end portion of the crystal without affecting O i . Therefore, the critical v/G increases at the intermediate to late bulk and a higher pull rate is used to produce perfect silicon, which increases productivity. Constant or less variation in axial v/G results in less quality loss and improved yield. Increasing the crystal-melt interface height (i.e., being more concave) results in increased pull speed and improved productivity. Oxygen control at the seed end results in flexible oxygen control at the seed end (higher O i (negative MGP) or lower O i (positive MGP) selected by the customer). Example

由以下實例進一步說明本發明之程序。此等實例不應被視為意在限制。 實例 1 MGP 位置對界面形狀及錠生長之效應 The procedure of the present invention is further illustrated by the following examples. These examples should not be considered limiting. Example 1 : Effect of MGP position on interface shape and ingot growth

如圖6中所展示,在短晶體生長長度之情況中(即,較大熔體體積),一正MGP對在熔體自由表面正下方之熔體流動具有更大效應,而在負MGP之情況中,對熔體流動之效應係朝向坩堝底部。此引起正MGP之流動速度相對較慢於負MGP之流動速度,其意謂熔體自由表面處之較高氧氣蒸發。因為磁場之強度在晶體-熔體界面處類似,所以晶體-熔體界面將類似。As shown in Figure 6, in the case of short crystal growth length (i.e., larger melt volume), a positive MGP has a greater effect on the melt flow just below the melt free surface, while in the case of a negative MGP, the effect on the melt flow is toward the bottom of the crucible. This causes the flow velocity of the positive MGP to be relatively slower than that of the negative MGP, which means higher oxygen evaporation at the melt free surface. Since the strength of the magnetic field is similar at the crystal-melt interface, the crystal-melt interface will be similar.

隨著增大晶體長度,熔體自由表面處之流動速度針對兩個MGP狀況類似,因此氧氣之溶解及蒸發類似。然而,晶體-熔體界面形狀可歸因於中心下方熔體中之不同磁場方向及線而不同。With increasing crystal length, the flow velocity at the free surface of the melt is similar for both MGP conditions, and thus the dissolution and evaporation of oxygen are similar. However, the shape of the crystal-melt interface is different due to the different magnetic field directions and lines in the melt below the center.

晶體-熔體界面之典型高度針對正MGP及負MGP兩者藉由熔體深度來變動,如圖7中所展示。在正MGP之情況中(即,最大高斯平面定位於熔體自由表面上方),將晶體-熔體界面推動至較大熔體深度處之生長晶體前部中且用於推動界面之力隨著熔體體積減小而逐漸減小。同時,負MGP維持用於推動晶體-熔體界面之一力,不管熔體體積如何,其實現一相對較恆定軸向晶體-熔體界面高度,不管熔體深度如何。The typical height of the crystal-melt interface varies with melt depth for both positive and negative MGPs, as shown in Figure 7. In the case of positive MGPs (i.e., the maximum Gaussian plane is located above the melt free surface), the crystal-melt interface is pushed into the growing crystal front at larger melt depths and the force used to push the interface gradually decreases as the melt volume decreases. Meanwhile, negative MGPs maintain a force used to push the crystal-melt interface regardless of melt volume, which achieves a relatively constant axial crystal-melt interface height regardless of melt depth.

圖8展示一垂直層板及所量測晶體-熔體界面之壽命等值線圖。在特定晶體位置處採用一短層板且給予一熱處理以劃定其凝固歷史之條紋。接著,產生來自壽命等值線繪圖之影像之x-y座標。藉由來自等值線圖之中心至邊緣之差來直接推斷界面之高度。Figure 8 shows a vertical slab and a lifetime contour plot of the measured crystal-melt interface. A short slab was taken at a specific crystal location and given a heat treatment to delineate the stripes of its solidification history. Next, the x-y coordinates of the image from the lifetime contour plot were generated. The height of the interface was directly inferred from the difference from the center to the edge of the contour plot.

在圖9中作圖依據MGP而變化之晶體-熔體界面之高度。如圖9中所展示,在負MGP之情況中,晶體-熔體界面之高度在晶種端及對置端兩者處類似,藉此固定用於軸向v/G完美矽控制之一個參數。The height of the crystal-melt interface as a function of MGP is plotted in Figure 9. As shown in Figure 9, in the case of negative MGP, the height of the crystal-melt interface is similar at both the seed end and the opposite end, thereby fixing one parameter for axial v/G perfect silicon control.

圖10展示不同MGP位置處之軸向氧氣分佈之一實例。正與負MGP之間的O i差歸因於熔體區域中之磁場而隨著熔體體積減小而逐漸減小。來自早期本體中正MGP之低O i由磁場接近熔體自由表面而引起,藉此增強蒸發。如圖10中所展示,增大自由熔體表面與坩堝之濕表面之間的面積比緩解MGP差之效應。 FIG10 shows an example of axial oxygen distribution at different MGP locations. The O i difference between positive and negative MGPs is due to the magnetic field in the melt region and gradually decreases as the melt volume decreases. The low O i of the positive MGP from the early body is caused by the magnetic field approaching the free surface of the melt, thereby enhancing evaporation. As shown in FIG10 , increasing the area ratio between the free melt surface and the wet surface of the crucible mitigates the effect of the MGP difference.

圖11係三個不同歸一化MGP值處之歸一化O i之一箱型圖。圖11展示藉由在熔體體積之三個不同狀況處降低磁體位置來增大O i。群組A包含來自凝固錠之小於9%之O i資料,群組B包含來自凝固錠之9%至22%之O i資料,且群組C包含來自凝固錠之22%至33.6%之O i資料。 Figure 11 is a box plot of normalized Oi at three different normalized MGP values. Figure 11 shows the increase of Oi by decreasing the magnet position at three different conditions of melt volume. Group A contains Oi data less than 9% from the solidified ingot, Group B contains Oi data from 9% to 22% from the solidified ingot, and Group C contains Oi data from 22% to 33.6% from the solidified ingot.

為達成一較低O i規格,可針對O i及界面高度兩者使用一較高磁體位置。然而,如上文所解釋,一較低磁體位置可用於較佳界面控制。如圖10中所展示,晚期本體生長中之O i對磁體位置不敏感。 To achieve a lower O i specification, a higher magnet position can be used for both O i and interface height. However, as explained above, a lower magnet position can be used for better interface control. As shown in Figure 10, O i in late bulk growth is insensitive to magnet position.

圖12展示降低磁體位置對缺陷分佈之效應。晶體缺陷自富空位完美矽(Pv)改變至位錯叢集(I缺陷)。另外,徑向缺陷圖案改變。晶體中心在正MGP處變成空位主導。藉由降低磁體位置,晶體中心處之主導點缺陷改變至填隙主導。此過渡由在晶體表面處之恆定溫度情況下界面改變所引起。晶體中心處之v/G增大且晶體邊緣使v/G維持相同於高MGP處,因此在不同MGP情況下依相同提拉速度狀況,晶體中心中之缺陷轉變至I缺陷。Figure 12 shows the effect of lowering the magnet position on defect distribution. Crystal defects change from vacancy-rich perfect silicon (Pv) to dislocation clusters (I defects). In addition, the radial defect pattern changes. The crystal center becomes vacancy dominated at the positive MGP. By lowering the magnet position, the dominant point defects at the crystal center change to interstitial dominated. This transition is caused by interface changes at a constant temperature at the crystal surface. The v/G at the crystal center increases and the crystal edge keeps the v/G the same as at the high MGP, so at the same pull rate under different MGP conditions, the defects in the crystal center are transformed to I defects.

如本文中所使用,術語「約」、「實質上」、「基本上」及「大致」在結合尺寸、濃度、溫度或其他物理或化學性質或特性之範圍使用時意謂涵蓋可存在於性質或特性範圍之上限及/或下限中之變動,包含(例如)由捨入、量測方法或其他統計變動導致之變動。As used herein, the terms "about," "substantially," "substantially," and "approximately" when used in conjunction with a range of size, concentration, temperature, or other physical or chemical property or characteristic, are meant to encompass variations that may exist in the upper and/or lower limits of the range of the property or characteristic, including variations resulting, for example, from rounding, measurement methods, or other statistical variations.

當引入本發明或(若干)其實施例之元件時,冠詞「一」及「該」意欲意謂存在元件之一或多者。術語「包括」、「包含」、「含有」及「具有」意欲為包含性的且意謂可存在除所列元件之外的額外元件。使用指示一特定定向之術語(例如,「頂部」、「底部」、「側」等等)係為了便於描述且無需所描述之項目之任何特定定向。When introducing elements of the present invention or (several) embodiments thereof, the articles "a," "an," and "the" are intended to mean that there is one or more of the elements. The terms "comprising," "including," "containing," and "having" are intended to be inclusive and mean that there may be additional elements other than the listed elements. The use of terms indicating a particular orientation (e.g., "top," "bottom," "side," etc.) is for convenience of description and does not require any particular orientation of the items being described.

如可在不背離本發明之範疇之情況下對上述建構及方法作出各種改變,以上描述中所含及(若干)附圖中所展示之所有事項意欲應被解譯為意在說明而非限制。As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matters contained in the above description and shown in the accompanying drawing(s) shall be interpreted as illustrative and not limiting. .

52:最大高斯平面 100:拉錠器設備 102:坩堝 104:熔體 105:軸件 106:承座 107:坩堝驅動單元 108:控制器 109:晶體提拉器外殼 110:底部隔熱 111:熔體表面 112:提升機構 113:矽錠 114:提拉機構 118:提拉纜線 120:晶種保持器/卡盤 122:矽晶種 124:側隔熱 125:晶體-熔體界面 126:底部加熱器 128:底面 129:磁極 130:磁極 131:側壁 135:側加熱器 142:冠部分 145:恆定直徑部分/主體 151:熱屏蔽 152:生長室 154:冷卻套 155:鐵屏蔽 160:平移裝置 163:導件 170:安裝座 175:致動器 178:馬達 200:運算裝置 201:處理器 202:記憶體 204:媒體輸出組件 206:輸入裝置 208:通信介面 A:提拉軸線/縱向軸線 52: Maximum Gaussian plane 100: Ingot puller equipment 102: Crucible 104: Melt 105: Shaft 106: Support 107: Crucible drive unit 108: Controller 109: Crystal puller housing 110: Bottom insulation 111: Melt surface 112: Lifting mechanism 113: Silicon ingot 114: Pulling mechanism 118: Pulling cable 120: Seed holder/chuck 122: Silicon seed 124: Side insulation 125: Crystal-melt interface 126: Bottom heater 128: Bottom surface 129: Magnetic pole 130: Magnetic pole 131: Side wall 135: Side heater 142: Crown section 145: Constant diameter section/main body 151: Heat shield 152: Growth chamber 154: Cooling jacket 155: Iron shield 160: Translation device 163: Guide 170: Mounting seat 175: Actuator 178: Motor 200: Computing device 201: Processor 202: Memory 204: Media output unit 206: Input device 208: Communication interface A: Lifting axis/longitudinal axis

圖1係矽錠生長之前的一HMCZ拉錠器設備之一截面;Figure 1 is a cross-section of a HMCZ ingot puller equipment before silicon ingot growth;

圖2係矽錠生長期間之圖1之HMCZ拉錠器設備之一截面;Figure 2 is a cross-section of the HMCZ ingot puller equipment in Figure 1 during the growth of silicon ingots;

圖3係繪示一晶體生長設備中施加至含有一熔體之一坩堝之一磁場的一示意圖;FIG3 is a schematic diagram showing a magnetic field applied to a crucible containing a melt in a crystal growth apparatus;

圖4係HMCZ錠生長期間之MGP位置分佈之一實施例;FIG4 is an example of the MGP position distribution during the growth of HMCZ tablets;

圖5係用於圖1中所展示之拉錠器設備中之一實例性控制器之一方塊圖;FIG. 5 is a block diagram of an exemplary controller for use in the puller apparatus shown in FIG. 1 ;

圖6係兩個不同晶體長度及磁體位置處之磁體及矽熔體之一示意圖;FIG6 is a schematic diagram of a magnet and a silicon melt at two different crystal lengths and magnet positions;

圖7係展示依據錠之百分比凝固而變化之歸一化界面高度的一曲線圖;Figure 7 is a graph showing normalized interface height as a function of percent solidification of the ingot;

圖8展示一垂直層板及所量測晶體-熔體界面之壽命等值線圖;FIG8 shows a vertical plate and a life contour plot of the measured crystal-melt interface;

圖9展示依據不同晶體位置處之MGP而變化之晶體-熔體界面之歸一化高度;Figure 9 shows the normalized height of the crystal-melt interface as a function of MGP at different crystal positions;

圖10展示具有兩個不同MGP位置之軸向O i分佈(歸一化O i=[O i/最低O i]); FIG. 10 shows the axial O i distribution with two different MGP positions (normalized O i = [O i / lowest O i ]);

圖11係三個不同歸一化MGP值處之歸一化O i之一箱型圖;及 Figure 11 is a box plot of normalized O i at three different normalized MGP values; and

圖12係三個不同磁體位置處之晶體缺陷圖案之一實例。FIG. 12 is an example of a crystal defect pattern at three different magnet positions.

在所有圖式中,對應元件符號指示對應部分。Corresponding element symbols indicate corresponding parts throughout the drawings.

100:拉錠器設備 100: Puller equipment

102:坩堝 102:Crucible

104:熔體 104:Melt

105:軸件 105: Shafts

106:承座 106: Seat

107:坩堝驅動單元 107: Crucible drive unit

108:控制器 108: Controller

109:晶體提拉器外殼 109: Crystal puller housing

110:底部隔熱 110: Bottom insulation

111:熔體表面 111: Melt surface

112:提升機構 112:Improvement mechanism

114:提拉機構 114: Lifting mechanism

118:提拉纜線 118: Pulling the cable

120:晶種保持器/卡盤 120: Seed holder/chuck

122:矽晶種 122:Silicon seed

124:側隔熱 124: Side insulation

126:底部加熱器 126: Bottom heater

128:底面 128: Bottom

129:磁極 129:Magnetic pole

130:磁極 130: Magnetic poles

131:側壁 131:Side wall

135:側加熱器 135: Side heater

151:熱屏蔽 151:Heat shielding

152:生長室 152: Growth Room

154:冷卻套 154: Cooling set

155:鐵屏蔽 155: Iron shield

160:平移裝置 160: Translation device

163:導件 163: Guide

170:安裝座 170:Mounting base

175:致動器 175:Actuator

178:馬達 178:Motor

A:提拉軸線/縱向軸線 A: Lifting axis/longitudinal axis

Claims (36)

一種用於生產一矽錠之方法,該方法包括: 使多晶矽在圍封於一生長室中之一坩堝中熔融以形成一熔體,該熔體具有一熔體自由表面; 在該生長室內產生一水平磁場; 使一晶種與該熔體接觸; 自該熔體抽出該晶種以形成該矽錠;及 在錠生長之至少兩個階段中調節該矽錠之一恆定直徑部分形成期間之一最大高斯平面之一位置,該至少兩個階段包括: 一第一階段,其對應於自該矽錠之該恆定直徑部分之一形成開始直至一中間錠長度之該矽錠之形成;及 一第二階段,其對應於自至少該中間錠長度至該恆定直徑部分之一總長度之該矽錠之形成;及 其中調節該最大高斯平面之該位置包括使該第二階段中該最大高斯平面之該位置維持處於低於該第一階段期間該最大高斯平面之該位置之一位置。 A method for producing a silicon ingot, the method comprising: melting polycrystalline silicon in a crucible enclosed in a growth chamber to form a melt having a melt free surface; generating a horizontal magnetic field in the growth chamber; bringing a seed crystal into contact with the melt; extracting the seed crystal from the melt to form the silicon ingot; and adjusting a position of a maximum Gaussian plane during formation of a constant diameter portion of the silicon ingot in at least two stages of ingot growth, the at least two stages comprising: a first stage corresponding to formation of the silicon ingot from formation of a constant diameter portion of the silicon ingot to an intermediate ingot length; and a second stage corresponding to the formation of the silicon ingot of a total length from at least the intermediate ingot length to the constant diameter portion; and wherein adjusting the position of the maximum Gaussian plane includes maintaining the position of the maximum Gaussian plane in the second stage at a position lower than the position of the maximum Gaussian plane during the first stage. 如請求項1之方法,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中調節該最大高斯平面之該位置包括在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置。The method of claim 1, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein adjusting the position of the maximum Gaussian plane includes in the intermediate stage The position of the maximum Gaussian plane is reduced from the position in the first phase to the position in the second phase during the phase. 如請求項1之方法,使該第一階段期間該最大高斯平面之該位置維持高於該熔體自由表面。As in the method of claim 1, the position of the maximum Gaussian plane is maintained above the free surface of the melt during the first stage. 如請求項3之方法,其中使該第二階段期間該最大高斯平面之該位置維持低於該熔體自由表面。A method as claimed in claim 3, wherein the position of the maximum Gaussian plane is maintained below the free surface of the melt during the second stage. 如請求項1之方法,其中在該第一階段期間使該最大高斯平面之該位置維持處於高於該熔體自由表面至少20 mm之一位置。The method of claim 1, wherein during the first stage the position of the maximum Gaussian plane is maintained at a position at least 20 mm above the free surface of the melt. 如請求項1之方法,其中在該第二階段期間使該最大高斯平面之該位置維持處於低於該熔體自由表面至少20 mm之一位置。The method of claim 1, wherein during the second stage the position of the maximum Gaussian plane is maintained at a position at least 20 mm below the free surface of the melt. 如請求項1之方法,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中調節該最大高斯平面之該位置包括在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,其中在該中間階段期間將該最大高斯平面之該位置降低至低於該熔體自由表面。The method of claim 1, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein adjusting the position of the maximum Gaussian plane includes in the intermediate stage The position of the maximum Gaussian plane is lowered from the position in the first stage to the position in the second stage during the phase, wherein the position of the maximum Gaussian plane is lowered below the melt during the intermediate phase. body free surface. 如請求項1之方法,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中調節該最大高斯平面之該位置包括在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,其中使該最大高斯平面之該位置在該恆定直徑部分之不超過50%上降低至少40 mm。The method of claim 1, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein adjusting the position of the maximum Gaussian plane includes in the intermediate stage reducing the position of the maximum Gaussian plane from the position in the first stage to the position in the second stage during the stage, wherein the position of the maximum Gaussian plane is at no more than 50% of the constant diameter portion Lower by at least 40 mm. 如請求項1之方法,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中調節該最大高斯平面之該位置包括在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,其中使該最大高斯平面之該位置在該恆定直徑部分之不超過50%上降低至少75 mm。A method as claimed in claim 1, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein adjusting the position of the maximum Gaussian plane includes lowering the position of the maximum Gaussian plane from the position in the first stage to the position in the second stage during the intermediate stage, wherein the position of the maximum Gaussian plane is lowered by at least 75 mm over no more than 50% of the constant diameter portion. 如請求項1之方法,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中調節該最大高斯平面之該位置包括在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,其中使該最大高斯平面之該位置在該恆定直徑部分之不超過50%上降低至少100 mm。A method as claimed in claim 1, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein adjusting the position of the maximum Gaussian plane includes lowering the position of the maximum Gaussian plane from the position in the first stage to the position in the second stage during the intermediate stage, wherein the position of the maximum Gaussian plane is lowered by at least 100 mm over no more than 50% of the constant diameter portion. 如請求項1之方法,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中調節該最大高斯平面之該位置包括在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,其中使該最大高斯平面之該位置在該恆定直徑部分之不超過50%上降低至少150 mm。The method of claim 1, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein adjusting the position of the maximum Gaussian plane includes in the intermediate stage reducing the position of the maximum Gaussian plane from the position in the first stage to the position in the second stage during the stage, wherein the position of the maximum Gaussian plane is at no more than 50% of the constant diameter portion Lower at least 150 mm. 如請求項1之方法,其中該第一階段之一長度係該恆定直徑部分之至少10%且小於40%。The method of claim 1, wherein a length of the first stage is at least 10% and less than 40% of the constant diameter portion. 如請求項12之方法,其中該第一階段開始於該錠之該恆定直徑部分之一開始。The method of claim 12, wherein the first stage begins at one of the constant diameter portions of the tablet. 如請求項1之方法,其中該第二階段之一長度係該恆定直徑部分之至少20%且小於50%。The method of claim 1, wherein a length of the second stage is at least 20% and less than 50% of the constant diameter portion. 如請求項14之方法,其中該第二階段延伸至該錠之該恆定直徑部分之一總長度。The method of claim 14, wherein the second stage extends to a total length of the constant diameter portion of the tablet. 如請求項1之方法,其中該最大高斯平面之該位置在該第一階段期間恆定。The method of claim 1, wherein the position of the maximum Gaussian plane is constant during the first phase. 如請求項1之方法,其中該最大高斯平面之該位置在該第一階段期間改變。The method of claim 1, wherein the position of the maximum Gaussian plane changes during the first phase. 如請求項1之方法,其中該最大高斯平面之該位置在該第二階段期間恆定。The method of claim 1, wherein the position of the maximum Gaussian plane is constant during the second phase. 如請求項1之方法,其中該最大高斯平面之該位置在該第二階段期間改變。A method as claimed in claim 1, wherein the position of the maximum Gaussian plane changes during the second phase. 一種用於製造一單晶矽錠之拉錠器設備,該拉錠器設備包括: 一坩堝,其用於保持一矽熔體; 一拉錠器外殼,其界定用於自該矽熔體提拉一矽錠之一生長室,該坩堝經安置於該生長室內; 一對磁極,其等自該坩堝徑向向外安置;及 一平移裝置,其使該等磁極相對於該坩堝軸向移動。 An ingot pulling device for manufacturing a single crystal silicon ingot. The ingot pulling device includes: a crucible for holding a silicon melt; an ingot puller housing defining a growth chamber for pulling a silicon ingot from the silicon melt, the crucible being disposed in the growth chamber; a pair of magnetic poles disposed radially outward from the crucible; and A translation device that moves the magnetic poles axially relative to the crucible. 如請求項20之拉錠器設備,其中該平移裝置包括: 一導件;及 一安裝座,其使各磁極相對於該導件移動。 A puller device as claimed in claim 20, wherein the translation device includes: a guide member; and a mounting seat that enables each magnetic pole to move relative to the guide member. 如請求項21之拉錠器設備,其中該導件包括一軌條且該安裝座將各磁極連接至該軌條。A puller apparatus as claimed in claim 21, wherein the guide member includes a rail and the mounting base connects each magnetic pole to the rail. 如請求項21之拉錠器設備,其包括使該等磁極相對於該導件移動之一致動器。The spindle pulling device of claim 21, which includes an actuator that moves the magnetic poles relative to the guide. 如請求項23之拉錠器設備,其中該致動器包括一氣動或液壓缸、一齒條與小齒輪、一滑輪或具有一滾珠螺桿之齒輪系。The spindle pulling device of claim 23, wherein the actuator includes a pneumatic or hydraulic cylinder, a rack and pinion, a pulley or a gear train with a ball screw. 如請求項23之拉錠器設備,其包括用於對該致動器提供動力之一馬達。A puller device as claimed in claim 23, which includes a motor for providing power to the actuator. 如請求項20之拉錠器設備,其包括包含一處理器及儲存指令之一非暫時性記憶體之一控制器,該等指令由該處理器執行以組態該控制器,該控制器經組態以在錠生長之至少兩個階段中該矽錠之一恆定直徑部分形成期間引起該平移裝置移動該磁極對以調節一最大高斯平面之一位置,該至少兩個階段包括: 一第一階段,其對應於自該矽錠之該恆定直徑部分之一形成開始直至一中間錠長度之該矽錠之形成;及 一第二階段,其對應於自至少該中間錠長度至一總錠長度之該矽錠之形成。 The spindle pulling device of claim 20, which includes a controller including a processor and non-transitory memory storing instructions, the instructions being executed by the processor to configure the controller, the controller Configured to cause the translation device to move the magnetic pole pair to adjust a position of a maximum Gaussian plane during formation of a constant diameter portion of the silicon ingot during at least two stages of ingot growth, the at least two stages including: a first stage corresponding to the formation of the silicon ingot starting from the formation of the constant diameter portion of the silicon ingot up to an intermediate ingot length; and A second stage corresponding to the formation of the silicon ingot from at least the intermediate ingot length to a total ingot length. 如請求項26之拉錠器設備,其中該控制器經組態以使該第二階段中該最大高斯平面之該位置維持處於低於該第一階段期間該最大高斯平面之該位置之一位置。The spindle puller device of claim 26, wherein the controller is configured to maintain the position of the maximum Gaussian plane in the second phase at a position lower than the position of the maximum Gaussian plane during the first phase. . 如請求項27之拉錠器設備,其中該控制器經組態以在該第一階段期間使該最大高斯平面之該位置維持高於一熔體自由表面至少20 mm。The puller apparatus of claim 27, wherein the controller is configured to maintain the position of the maximum Gaussian plane at least 20 mm above a melt free surface during the first stage. 如請求項27之拉錠器設備,其中該控制器經組態以在該第二階段期間使該最大高斯平面之該位置維持低於該熔體自由表面至少20 mm。The puller apparatus of claim 27, wherein the controller is configured to maintain the position of the maximum Gaussian plane at least 20 mm below the melt free surface during the second stage. 如請求項26之拉錠器設備,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中該控制器經組態以在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,且其中該控制器經組態以在該中間階段期間將該最大高斯平面降低至低於該熔體自由表面。The ingot puller apparatus of claim 26, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, and wherein the controller is configured to The position of the maximum Gaussian plane is reduced from the position in the first phase to the position in the second phase during an intermediate phase, and wherein the controller is configured to reduce the maximum Gaussian plane during the intermediate phase lowered below the free surface of the melt. 如請求項26之拉錠器設備,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中該控制器經組態以在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,且其中該控制器經組態以使該最大高斯平面在該恆定直徑部分之不超過60%上降低至少40 mm。A puller apparatus as claimed in claim 26, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, wherein the controller is configured to lower the position of the maximum Gaussian plane from the position in the first stage to the position in the second stage during the intermediate stage, and wherein the controller is configured to lower the maximum Gaussian plane by at least 40 mm over no more than 60% of the constant diameter portion. 如請求項26之拉錠器設備,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中該控制器經組態以在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,且其中該控制器經組態以使該最大高斯平面在該恆定直徑部分之不超過40%上降低至少75 mm。The ingot puller apparatus of claim 26, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, and wherein the controller is configured to lowering the position of the maximum Gaussian plane from the position in the first phase to the position in the second phase during an intermediate phase, and wherein the controller is configured such that the maximum Gaussian plane is in the constant diameter portion It should be lowered by at least 75 mm by no more than 40%. 如請求項26之拉錠器設備,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中該控制器經組態以在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,且其中該控制器經組態以使該最大高斯平面在該恆定直徑部分之不超過40%上降低至少100 mm。The ingot puller apparatus of claim 26, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, and wherein the controller is configured to lowering the position of the maximum Gaussian plane from the position in the first phase to the position in the second phase during an intermediate phase, and wherein the controller is configured such that the maximum Gaussian plane is in the constant diameter portion It should be lowered by at least 100 mm by no more than 40%. 如請求項26之拉錠器設備,其中該至少兩個階段包括對應於該第一階段與該第二階段之間該矽錠之形成之一中間階段,其中該控制器經組態以在該中間階段期間將該最大高斯平面之該位置自該第一階段中之該位置降低至該第二階段中之該位置,且其中該控制器經組態以使該最大高斯平面在該恆定直徑部分之不超過40%上降低至少150 mm。The ingot puller apparatus of claim 26, wherein the at least two stages include an intermediate stage corresponding to the formation of the silicon ingot between the first stage and the second stage, and wherein the controller is configured to lowering the position of the maximum Gaussian plane from the position in the first phase to the position in the second phase during an intermediate phase, and wherein the controller is configured such that the maximum Gaussian plane is in the constant diameter portion It should be lowered by at least 150 mm by no more than 40%. 如請求項26之拉錠器設備,其中該控制器經組態以使該第一階段之一長度維持該恆定直徑部分之至少10%且小於50%。The spindle puller device of claim 26, wherein the controller is configured to maintain a length of the first stage at least 10% and less than 50% of the constant diameter portion. 如請求項26之拉錠器設備,其中該控制器經組態以使該第二階段之一長度維持該恆定直徑部分之至少20%且小於50%。A puller apparatus as claimed in claim 26, wherein the controller is configured so that a length of the second stage is maintained at least 20% and less than 50% of the constant diameter portion.
TW112132639A 2022-08-29 2023-08-29 Axial positioning of magnetic poles while producing a silicon ingot TW202409363A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/897,682 2022-08-29
US17/897,685 2022-08-29

Publications (1)

Publication Number Publication Date
TW202409363A true TW202409363A (en) 2024-03-01

Family

ID=

Similar Documents

Publication Publication Date Title
US10513796B2 (en) Methods for producing low oxygen silicon ingots
EP2031100A1 (en) Manufacturing method of single crystal
JP3724571B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2011526876A (en) Control method of melt-solid interface shape of grown silicon crystal using unbalanced magnetic field and same direction rotation
EP1734157A1 (en) Production process of silicon single crystal
JPWO2005075714A1 (en) Single crystal semiconductor manufacturing apparatus and manufacturing method
JP2008162809A (en) Single crystal pulling apparatus and method for manufacturing single crystal
US10655242B2 (en) Growing apparatus and single-crystal ingot growing method using the same
JP2015205793A (en) Method for drawing up single crystal
JP2010155726A (en) Method for growing single crystal and single crystal grown by the same
KR20120078619A (en) Method and apparatus for manufacturing vitreous silica crucible
TW202409363A (en) Axial positioning of magnetic poles while producing a silicon ingot
JP2008214118A (en) Method for manufacturing semiconductor single crystal
CN107268080A (en) A kind of pulling growth method of the unparalleled crest line monocrystalline silicon of major diameter
US20240068122A1 (en) Axial positioning of magnetic poles while producing a silicon ingot
US20240068123A1 (en) Ingot puller apparatus that axially position magnetic poles
US8574362B2 (en) Method and apparatus for manufacturing an ultra low defect semiconductor single crystalline ingot
WO2024049722A1 (en) Axial positioning of magnetic poles while producing a silicon ingot
KR101193786B1 (en) Single Crystal Grower, Manufacturing Method for Single Crystal, and Single Crystal Ingot Manufacturied by the same
JP2007254200A (en) Method for manufacturing single crystal
JP2007176761A (en) Manufacturing method and manufacturing device for silicon single crystal
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
KR101727722B1 (en) Apparatus and method for manufacturing single crystal
JP2009292684A (en) Silicon single crystal production method and production apparatus therefore