JP2015158158A - Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method - Google Patents

Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method Download PDF

Info

Publication number
JP2015158158A
JP2015158158A JP2014032805A JP2014032805A JP2015158158A JP 2015158158 A JP2015158158 A JP 2015158158A JP 2014032805 A JP2014032805 A JP 2014032805A JP 2014032805 A JP2014032805 A JP 2014032805A JP 2015158158 A JP2015158158 A JP 2015158158A
Authority
JP
Japan
Prior art keywords
state
exhaust gas
regeneration
collection device
particulate collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014032805A
Other languages
Japanese (ja)
Inventor
和成 山本
Kazunari Yamamoto
和成 山本
貴幸 古川
Takayuki Furukawa
貴幸 古川
藤井 謙治
Kenji Fujii
謙治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014032805A priority Critical patent/JP2015158158A/en
Publication of JP2015158158A publication Critical patent/JP2015158158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine exhaust emission control system and an internal combustion engine exhaust emission control method capable of partially accelerating the regeneration of a particulate collector under control over a flow of exhaust gas in an exhaust emission control device depending on regeneration progress situations of a central portion and a peripheral portion of the particulate collector during a regeneration treatment on the particulate collector within the exhaust emission control device, performing the regeneration treatment efficiently without uneven regeneration, improving PM collection efficiency, and saving fuel for regeneration treatment to improve fuel economy.SOLUTION: During a regeneration treatment on a particulate collector 23, a regeneration control is exerted so that regeneration of a central portion of the particulate collector 23 is preferentially performed over that of an outer peripheral portion of the particulate collector 23 in a first state in which exhaust gas Ga flows to the entire particulate collector 23, the first state is switched to a second state in which the exhaust gas Ga easily flows to the outer peripheral portion by preventing a flow of the exhaust gas Ga to the central portion after the regeneration of the central portion, and the regeneration of the outer peripheral portion is performed after the regeneration of the central portion.

Description

本発明は、内燃機関より排出される排気ガス中のPMを捕集する微粒子捕集装置の再生処理能力を向上させ、PM捕集効率を向上させるとともに、内燃機関の燃費を改善することができる内燃機関の排気ガス浄化システム及びその排気ガス浄化方法に関する。   INDUSTRIAL APPLICABILITY The present invention can improve the regeneration processing capability of a particulate collection device that collects PM in exhaust gas discharged from an internal combustion engine, improve PM collection efficiency, and improve the fuel efficiency of the internal combustion engine. The present invention relates to an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method thereof.

内燃機関より排出される排気ガスの中にはPM(Particulate Matter)と呼ばれる粒子状物質が含まれる。このPMは、排気通路に配設した排気ガス浄化装置に、種々の形状、材質で構成されている微粒子捕集装置を組み込んで、この微粒子捕集装置により捕集し、大気中へ排出される排気ガスを浄化している。この微粒子捕集装置ではPMを捕集し、微粒子捕集装置内のPM堆積量が増加するにつれて、圧力損失が増加して燃費の悪化を生じたり、PMの捕集限界を超えて微粒子捕集装置をすり抜けるPM量が増加して浄化性能が低下したりするため、定期的に微粒子捕集装置を昇温して、捕集されたPMを燃焼してPM捕集能力を回復する再生処理を行う必要がある。   Particulate matter called PM (Particulate Matter) is contained in the exhaust gas discharged from the internal combustion engine. The PM is collected by an exhaust gas purification device disposed in the exhaust passage and incorporated with a particulate collection device composed of various shapes and materials, and is collected by the particulate collection device and discharged into the atmosphere. Exhaust gas is purified. This particulate collection device collects PM, and as the amount of PM deposited in the particulate collection device increases, pressure loss increases and fuel consumption deteriorates, or particulate collection exceeds the PM collection limit. Because the amount of PM that passes through the device increases and the purification performance decreases, the temperature of the particulate collection device is periodically raised, and the regeneration process that recovers the PM collection ability by burning the collected PM There is a need to do.

この微粒子捕集装置の再生処理は、微粒子捕集装置内のPM堆積量を、例えば、微粒子捕集装置の前後の差圧によって管理し、一定圧以上の差圧が生じると、PMが所定量以上堆積したと判断して、再生処理を行っている。この再生処理では、微粒子捕集装置を所定温度以上に、所定の時間の間昇温させてPMを燃焼させており、この捕集と再生の繰り返しにより、微粒子捕集装置のPM捕集能力を維持し、大気中に排出される排気ガス中のPMの減少を図っている。この微粒子捕集装置の再生処理は、毎回同じ条件で行われているため、PM堆積量に関係なく、一定量の燃料を消費する。   In the regeneration process of the particulate collection device, the amount of PM deposited in the particulate collection device is managed by, for example, the differential pressure before and after the particulate collection device. It is judged that the above has accumulated, and the regeneration process is performed. In this regeneration process, the particulate collection device is heated to a predetermined temperature or higher for a predetermined time to burn PM, and the PM collection capability of the particulate collection device is increased by repeating this collection and regeneration. Maintaining and reducing PM in exhaust gas discharged into the atmosphere. Since the regeneration process of the particulate collection device is performed under the same conditions every time, a certain amount of fuel is consumed regardless of the PM accumulation amount.

これに関連して、再生処理に要する燃料消費量を最小限にするため、PM燃焼時の燃焼速度をPM堆積量ごとに算出してPM燃焼に必要な活性化エネルギーを算出し、その値からPMが燃焼するのに必要な温度と時間の関係を算出し、燃料消費量を最小とする条件で再生を実行する方法が提案されている(例えば、特許文献1参照)。   In this connection, in order to minimize the fuel consumption required for the regeneration process, the activation rate necessary for PM combustion is calculated by calculating the combustion speed for each PM deposition amount at the time of PM combustion, and from that value There has been proposed a method of calculating the relationship between temperature and time required for PM to burn and executing regeneration under conditions that minimize fuel consumption (see, for example, Patent Document 1).

しかし、この再生方法では、微粒子捕集装置内のPM堆積量に基づいて、再生処理に必要な燃料消費量を最適化することで、燃費の悪化の抑制を図っているが、微粒子捕集装置の中心部と外周部の再生処理を並行して行うため、微粒子捕集装置の中心部と外周部の再生処理の進捗状況に違いが生じる。   However, in this regeneration method, the fuel consumption deterioration is optimized by optimizing the fuel consumption necessary for the regeneration process based on the PM accumulation amount in the particulate collection device. Since the regeneration processing of the central portion and the outer peripheral portion of the particle is performed in parallel, there is a difference in the progress of the regeneration processing of the central portion and the outer peripheral portion of the particulate collection device.

ここで、微粒子捕集装置の中心部と外周部の再生の進捗状況の違いについて、図12に示す、酸化触媒装置(DOC)22Xと微粒子捕集装置23Xを備えて構成され、排気通路に配設された排気ガス浄化装置(DPD)21Xを参照しながら説明すると、この微粒子捕集装置23Xでは、その中心部からPMが堆積していくが、微粒子捕集装置23X内の流路面積の関係から、その外周部にも同等のPMが堆積する。しかしながら、図12に示すように、排気ガスGaの流速は、微粒子捕集装置23Xの外周部に近づくにつれ低下する上に、外周部では大気中への放熱もあり温度が低下することから、再生処理時にはその外周部付近での再生が困難となり中心部と外周部で、その再生の進捗状況に違い(以後、この再生の進捗状況の違いを「再生状況のムラ」と称する)が生じる。   Here, the difference in the progress of regeneration between the central portion and the outer peripheral portion of the particulate collection device is configured to include an oxidation catalyst device (DOC) 22X and a particulate collection device 23X shown in FIG. Explaining with reference to the provided exhaust gas purification device (DPD) 21X, in this particulate collection device 23X, PM accumulates from the center, but the relationship of the flow path area in the particulate collection device 23X. Therefore, the equivalent PM is deposited on the outer peripheral portion. However, as shown in FIG. 12, the flow rate of the exhaust gas Ga decreases as it approaches the outer periphery of the particulate collection device 23X, and the outer periphery also radiates heat to the atmosphere, resulting in a decrease in temperature. At the time of processing, reproduction near the outer peripheral part becomes difficult, and a difference in the progress of the reproduction occurs between the central part and the outer peripheral part (hereinafter, this difference in the progress of the reproduction is referred to as “unevenness of the reproduction situation”).

特に、微粒子捕集装置23Xの中心部はその外周部に比べ、再生が早期に完了するため、中心部の再生が完了した後は、中心部のガス流速と外周部のガス流速の差がさらに大きくなり、この再生状況のムラによる弊害はより大きくなる。   In particular, since the regeneration of the central portion of the particulate collection device 23X is completed earlier than the outer peripheral portion thereof, after the regeneration of the central portion is completed, the difference between the gas flow rate at the central portion and the gas flow rate at the outer peripheral portion is further increased. The adverse effect due to the unevenness of the reproduction situation becomes larger.

そのため、微粒子捕集装置23X前後の圧力差が速やかに降下しないので、また、微粒子捕集装置23Xの外周部での再生を進行させるために必要以上の燃料を使用することになるので、燃費が悪化する。   Therefore, the pressure difference between the front and rear of the particulate collection device 23X does not drop quickly, and more fuel is used than necessary to promote regeneration at the outer periphery of the particulate collection device 23X. Getting worse.

特開2013−44256号公報JP 2013-44256 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、微粒子捕集装置の再生処理時に、微粒子捕集装置の中心部と外周部の再生の進行状況に応じて、排気ガス浄化装置を通過する排気ガスの流れの状態を制御することで、微粒子捕集装置の再生を部分的に促進して微粒子捕集装置の再生処理を効率よく、かつ、再生のムラなく行うことができて、PM捕集効率を向上させるとともに、再生処理用の燃料を節約できて燃費を改善することができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide an exhaust gas according to the progress of regeneration of the central portion and the outer peripheral portion of the particulate collection device during the regeneration processing of the particulate collection device. By controlling the state of the flow of exhaust gas that passes through the purification device, the regeneration of the particulate collection device can be partially promoted so that the regeneration processing of the particulate collection device can be performed efficiently and without unevenness of regeneration. It is possible to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine that can improve PM collection efficiency and save fuel for regeneration processing and improve fuel efficiency.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化装置の入口に、前記排気ガス浄化装置内の排気ガスの流れを、排気ガスが前記微粒子捕集装置の全体へ流れる第1状態と、前記微粒子捕集装置の中心部への流れが妨げられて前記微粒子捕集装置の外周部へ流れ易い第2状態とに切り替える流路変更装置を備えるとともに、前記微粒子捕集装置の再生処理時に、前記流路変更装置を制御して、前記第1状態で前記中心部の再生を前記外周部よりも優先して行うと共に、再生の進行に従って第2状態に移行して、前記中心部と前記外周部の再生が完了した時に再生処理を終了する再生処理制御を行う制御装置を備えて構成される。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine according to the present invention is an exhaust gas purification system for an internal combustion engine comprising an exhaust gas purification device having a particulate collection device in an exhaust passage of the internal combustion engine. The flow of the exhaust gas in the exhaust gas purification device at the inlet of the gas purification device is obstructed by the first state in which the exhaust gas flows to the entire particulate collection device and the flow to the center of the particulate collection device. And a flow path changing device that switches to a second state that easily flows to the outer periphery of the particulate collection device, and controls the flow passage changing device during the regeneration process of the particulate collection device to In the state, the reproduction of the central part is performed with priority over the outer peripheral part, and the reproduction is finished when the reproduction of the central part and the outer peripheral part is completed by shifting to the second state as the reproduction proceeds. Configured with a controller for management control.

この構成によれば、微粒子捕集装置の再生処理時に、微粒子捕集装置の中心部と外周部の再生の進行状況に応じて、排気ガス浄化装置内を通過する排気ガスの流れの状態を制御することで、微粒子捕集装置の再生を部分的に促進して、微粒子捕集装置の再生処理を効率よく、かつ、再生のムラなく行うことができて、PM捕集効率を向上させるとともに、再生処理用の燃料を節約できて燃費を改善することができる。   According to this configuration, during the regeneration process of the particulate collection device, the state of the flow of the exhaust gas passing through the exhaust gas purification device is controlled according to the progress of regeneration of the central portion and the outer peripheral portion of the particulate collection device. By partially promoting the regeneration of the particulate collection device, the regeneration processing of the particulate collection device can be performed efficiently and without unevenness of regeneration, improving the PM collection efficiency, Fuel for regeneration processing can be saved and fuel consumption can be improved.

より詳細には、微粒子捕集装置の中心部に対して優先して速やかな再生を行い、微粒子捕集装置の再生が進行するにつれて、微粒子捕集装置の外周部を流れる排気ガスの流量を多くするので、再生初期に発生する中心部の再生による微粒子の燃焼熱を外周部で利用することができ、これにより、外周部の温度を上昇させることができる。   More specifically, rapid regeneration is performed with priority on the center of the particulate collection device, and as the regeneration of the particulate collection device proceeds, the flow rate of the exhaust gas flowing through the outer periphery of the particulate collection device increases. Therefore, the heat of combustion of the fine particles due to the regeneration of the central portion that occurs in the early stage of the regeneration can be utilized in the outer peripheral portion, thereby increasing the temperature of the outer peripheral portion.

その後の段階で、昇温した外周部を通過する排気ガスの流量を増加させることにより、この排気ガスに含まれている酸素で外周部の微粒子の燃焼を促進することができるので、微粒子捕集装置の再生処理を効率よく行うことができると共に、最終的には中心部と外周部の再生処理をよりムラなく行うことができる。その結果、微粒子捕集装置のPM捕集効率を向上させるとともに、燃費を改善することができる。   At a later stage, by increasing the flow rate of the exhaust gas that passes through the heated outer peripheral portion, the oxygen contained in the exhaust gas can promote the combustion of the outer peripheral fine particles. The reproduction process of the apparatus can be efficiently performed, and finally, the reproduction process of the central portion and the outer peripheral portion can be performed more uniformly. As a result, the PM collection efficiency of the particulate collection device can be improved and the fuel consumption can be improved.

なお、この構成とは逆に、微粒子捕集装置の外周部の再生を先に行い、再生の進行に従って、内周部を流れる排気ガスの流量を多くすることも考えられるが、この場合は、外周部からの外部への放熱があるため、外周部で発生した燃焼熱の内のごく一部のみを中心部の再生に用いることになり、燃料熱の利用効率が悪くなる。   Contrary to this configuration, it is conceivable that the outer peripheral portion of the particulate collection device is regenerated first and the flow rate of the exhaust gas flowing through the inner peripheral portion is increased as the regeneration proceeds. Since there is heat radiation from the outer peripheral part to the outside, only a part of the combustion heat generated at the outer peripheral part is used for regeneration of the central part, and the utilization efficiency of fuel heat is deteriorated.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記第1状態から前記第2状態への移行の間に、前記第1状態と前記第2状態の中間である期間を設けて、再生の進行に従って連続的または段階的に前記第1状態から前記第2状態へ移行させると、より極め細かく、微粒子捕集装置の中心部の排気ガスの流量と外周部の排気ガスの流量の割合を変化させることができ、中心部の再生と外周部の再生の進行状況に合わせた排気ガスの分配の最適化が可能となる。   Further, in the exhaust gas purification system for an internal combustion engine described above, the regeneration is progressed by providing a period intermediate between the first state and the second state between the transition from the first state to the second state. When the transition from the first state to the second state is performed continuously or stepwise according to the above, the ratio of the exhaust gas flow rate at the central portion of the particulate collection device and the exhaust gas flow rate at the outer peripheral portion is changed more finely. This makes it possible to optimize the distribution of the exhaust gas in accordance with the progress of the regeneration at the center and the regeneration at the outer periphery.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化装置を、上流側の前記排気通路に接続する入口側接続部と、該入口側接続部からテーパー状に流路面積を拡大する流路拡大部と、該流路拡大部の下流の流路面積一定で、かつ、前記微粒子捕集装置が配置される流路部を有する容器を備えて構成すると共に、前記流路変更装置を、前記流路拡大部の面に平行した状態で前記排気ガス浄化装置の中心方向に移動する閉弁用羽根を有し、該閉弁用羽根を前記流路拡大部側に移動したときに、前記第1状態にし、前記閉弁用羽根を前記中心方向に移動したときに、前記第2状態にするように構成すると、基本的には、第1状態と第2状態との間で、内周部と外周部では流量の差があるものの、常時、微粒子捕集装置のセルの入口は全部が排気ガスが流入可能な状態になっているので、圧力損失が大きく変化することを防止できる。   Further, in the exhaust gas purification system for an internal combustion engine, the exhaust gas purification device has an inlet side connection portion connected to the exhaust passage on the upstream side, and a flow passage area is increased in a tapered shape from the inlet side connection portion. A flow path expanding section, and a container having a flow path section downstream of the flow path expanding section and having a flow path section in which the particulate collection device is disposed. , Having a valve closing blade that moves in the direction of the center of the exhaust gas purifying device in a state parallel to the surface of the flow channel expanding portion, and when the valve closing blade is moved to the flow channel expanding portion side, When the first state is set and the valve closing blade is moved in the central direction so as to be set to the second state, the inner state is basically between the first state and the second state. Although there is a difference in flow rate between the peripheral part and the outer peripheral part, it is always Since all mouth exhaust gas is in a state capable of flowing, it is possible to prevent the pressure loss is greatly changed.

なお、排気ガス浄化装置内に排気ガスの流れを中心部と外周部に分流する仕切り板を設ける構成等では、いずれかの流路を選択した場合に、微粒子捕集装置における排気ガスが流入可能なセルの入口数が通常の半分近くに減少するので、圧力損失が大きく変化する。これを避けるために、セルの径を大きくしたり、セル数を多くしたりすると、微粒子捕集装置が太くなり、大型化してしまうことになる。   In addition, in the configuration in which a partition plate that divides the flow of exhaust gas into the central part and the outer peripheral part is provided in the exhaust gas purification device, the exhaust gas in the particulate collection device can flow in when any flow path is selected Since the number of inlets of a simple cell is reduced to nearly half of the normal, the pressure loss changes greatly. In order to avoid this, if the diameter of the cell is increased or the number of cells is increased, the particulate collection device becomes thicker and larger.

また、上記の目的を達成するための内燃機関の排気ガス浄化方法は、内燃機関の排気通路に微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化方法において、前記微粒子捕集装置の再生処理時に、排気ガスが前記微粒子捕集装置の全体へ流れる第1状態で前記微粒子捕集装置の中心部の再生を前記微粒子捕集装置の外周部よりも優先して行うと共に、再生の進行に従って、排気ガスが前記中心部への流れが妨げられて前記外周部へ流れ易い第2状態に移行して、前記中心部と前記外周部の再生が完了した時に再生処理を終了することを特徴とする方法である。   Further, an exhaust gas purification method for an internal combustion engine for achieving the above object is the exhaust gas purification method for an internal combustion engine provided with an exhaust gas purification device having a particulate collection device in an exhaust passage of the internal combustion engine. At the time of regeneration processing of the collector, in the first state where exhaust gas flows to the whole of the particulate collection device, regeneration of the central portion of the particulate collection device is given priority over the outer peripheral portion of the particulate collection device, As the regeneration progresses, the flow shifts to the second state where the exhaust gas is prevented from flowing to the central part and easily flows to the outer peripheral part, and the regeneration process is finished when the regeneration of the central part and the outer peripheral part is completed. It is the method characterized by this.

また、上記の内燃機関の排気ガス浄化方法において、前記第1状態から前記第2状態への移行の間に、前記第1状態と前記第2状態の中間である期間を設けて、再生の進行に従って連続的または段階的に前記第1状態から前記第2状態へ移行させる。   Further, in the above exhaust gas purification method for an internal combustion engine, the progress of regeneration is provided by providing a period intermediate between the first state and the second state between the transition from the first state to the second state. To shift from the first state to the second state continuously or stepwise.

また、上記の内燃機関の排気ガス浄化方法において、前記排気ガス浄化装置が、上流側の前記排気通路に接続する入口側接続部と、該入口側接続部からテーパー状に流路面積を拡大する流路拡大部と、該流路拡大部の下流の流路面積一定で、かつ、前記微粒子捕集装置が配置される流路部を有する容器を備えて構成されると共に、流路変更装置が、前記流路拡大部の面に平行した状態で前記排気ガス浄化装置の中心方向に移動する閉弁用羽根を有して構成され、該閉弁用羽根を前記流路拡大部側に移動することで前記第1状態にし、前記閉弁用羽根を前記中心方向に移動することで前記第2状態にする。   Further, in the above exhaust gas purification method for an internal combustion engine, the exhaust gas purification device expands the flow passage area in a tapered shape from an inlet side connection part connected to the upstream side exhaust passage and the inlet side connection part. A flow path changing device is configured to include a flow path expanding section, and a container having a constant flow path area downstream of the flow path expanding section and having a flow path section in which the particulate collection device is disposed. And a valve closing vane that moves in the direction of the center of the exhaust gas purifying device in a state parallel to the surface of the flow channel expanding portion, and moves the valve closing blade toward the flow channel expanding portion side. Thus, the first state is established, and the valve closing blade is moved in the central direction to obtain the second state.

これらの方法によれば、上記の内燃機関の排気ガス浄化システムと同様の効果を奏することができる。   According to these methods, the same effect as the exhaust gas purification system of the internal combustion engine can be obtained.

本発明の内燃機関の排気ガス浄化システム及びその排気ガス浄化方法によれば、微粒子捕集装置の再生処理時に、微粒子捕集装置の中心部と外周部の再生の進行状況に応じて、排気ガス浄化装置内を通過する排気ガスの流れの状態を制御することで、微粒子捕集装置の再生を部分的に促進して、微粒子捕集装置の再生処理を効率よく、かつ、再生のムラなく行うことができて、PM捕集効率を向上させるとともに、再生処理用の燃料を節約できて燃費を改善することができる。   According to the exhaust gas purification system for an internal combustion engine and the exhaust gas purification method thereof according to the present invention, the exhaust gas is regenerated according to the progress of regeneration of the central portion and the outer peripheral portion of the particulate collection device during the regeneration processing of the particulate collection device. By controlling the state of the flow of exhaust gas that passes through the purification device, the regeneration of the particulate collection device is partially promoted, and the regeneration processing of the particulate collection device is performed efficiently and without unevenness of regeneration. As a result, PM collection efficiency can be improved, fuel for regeneration processing can be saved, and fuel consumption can be improved.

本発明に係る実施の形態の排気ガス浄化システムを備えた内燃機関の構成の一例を模式的に示す図である。It is a figure showing typically an example of composition of an internal-combustion engine provided with an exhaust-gas purification system of an embodiment concerning the present invention. 本発明に係る実施の形態の排気ガス浄化装置の構成を模式的に示す側断面図である。1 is a side sectional view schematically showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention. 図2の排気ガス浄化装置に配置された流路変更装置の羽根の様子を模式的に示す、図2のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 2 which shows typically the mode of the blade | wing of the flow-path change apparatus arrange | positioned at the exhaust gas purification apparatus of FIG. 本発明に係る内燃機関の排気ガス浄化方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the exhaust gas purification method of the internal combustion engine which concerns on this invention. 図4のステップS400の詳細を示す図である。It is a figure which shows the detail of step S400 of FIG. 第1状態における流路変更装置の羽根の様子を模式的に示す側断面図である。It is a sectional side view which shows typically the mode of the blade | wing of the flow-path change apparatus in a 1st state. 第1状態における流路変更装置の羽根の様子を模式的に示す、図6のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 6 which shows typically the mode of the blade | wing of the flow-path change apparatus in a 1st state. 第1状態から第2状態への移行途中における流路変更装置の羽根の様子を模式的に示す側断面図である。It is a sectional side view which shows typically the mode of the blade | wing of the flow-path change apparatus in the middle of the transition from a 1st state to a 2nd state. 第1状態から第2状態への移行途中における流路変更装置の羽根の様子を模式的に示す、図8のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 8 which shows typically the mode of the blade | wing of the flow-path change apparatus in the middle of the transition from a 1st state to a 2nd state. 第2状態における流路変更装置の羽根の様子を模式的に示す側断面図である。It is a sectional side view which shows typically the mode of the blade | wing of the flow-path change apparatus in a 2nd state. 第2状態における流路変更装置の羽根の様子を模式的に示す、図10のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 10 which shows typically the mode of the blade | wing of the flow-path change apparatus in a 2nd state. 従来技術の排気ガス浄化装置を通過する排気ガスの流速の様子を模式的に示す図である。It is a figure which shows typically the mode of the flow velocity of the exhaust gas which passes an exhaust-gas purification apparatus of a prior art.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、説明する。図1に示すように、この実施の形態の内燃機関の排気ガス浄化システム2は次のように構成される。   Hereinafter, an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for the internal combustion engine according to embodiments of the present invention will be described. As shown in FIG. 1, an exhaust gas purification system 2 for an internal combustion engine according to this embodiment is configured as follows.

エンジン(内燃機関)10は、燃料噴射装置11と吸気弁12と排気弁13が設けられ、この吸気弁12に連通する吸気通路14と、排気弁13に連通する排気通路15と、EGR通路16が設けられている。   The engine (internal combustion engine) 10 is provided with a fuel injection device 11, an intake valve 12, and an exhaust valve 13. An intake passage 14 that communicates with the intake valve 12, an exhaust passage 15 that communicates with the exhaust valve 13, and an EGR passage 16 Is provided.

この吸気通路14には、上流側より順に、エアクリーナ17、ターボチャージャ(ターボ式過給器)18のコンプレッサ18b、インタークーラ19a、インテークスロットルバルブ19bが設けられている。また、排気通路15には、上流側より順に、ターボチャージャ18のタービン18a、排気ガス浄化装置20が設けられている。   In this intake passage 14, an air cleaner 17, a compressor 18b of a turbocharger (turbo supercharger) 18, an intercooler 19a, and an intake throttle valve 19b are provided in this order from the upstream side. The exhaust passage 15 is provided with a turbine 18a of the turbocharger 18 and an exhaust gas purification device 20 in order from the upstream side.

また、EGR通路16は、コンプレッサ18bより下流の吸気通路14とタービン18aより上流の排気通路15を接続して設けられ、このEGR通路16には、上流側より順に、EGRクーラ16a、EGRバルブ16bが設けられている。   The EGR passage 16 is provided by connecting an intake passage 14 downstream of the compressor 18b and an exhaust passage 15 upstream of the turbine 18a. The EGR passage 16 is provided with an EGR cooler 16a and an EGR valve 16b in this order from the upstream side. Is provided.

そして、大気から導入される新気Aが、必要に応じて、EGR通路16から吸気通路14に流入する排気ガス(EGRガス)Geを伴って、吸気弁12経由で気筒(シリンダ)10aに送られる。この吸入ガス(A+Ge)が、ピストン10bにより圧縮され、気筒(シリンダ)10a内に噴射された燃料が燃焼することで、エンジン10で動力を発生させる。   Then, fresh air A introduced from the atmosphere is sent to the cylinder (cylinder) 10a via the intake valve 12 with the exhaust gas (EGR gas) Ge flowing into the intake passage 14 from the EGR passage 16 as necessary. It is done. The intake gas (A + Ge) is compressed by the piston 10b, and the fuel injected into the cylinder (cylinder) 10a burns to generate power in the engine 10.

このエンジン10での燃焼により発生した排気ガスGが、排気弁13経由で排気通路15に流出し、その一部はEGR通路16にEGRガスGeとして流れ、残りの排気ガスGa(=G−Ge)は、タービン18aを経由して、排気ガス浄化装置20に流入する。この排気ガスGaは排気ガス浄化装置20により浄化された後、浄化された排気ガスGcとしてマフラー(図示しない)を経由して大気中へ放出される。   Exhaust gas G generated by combustion in the engine 10 flows out to the exhaust passage 15 via the exhaust valve 13, part of which flows as EGR gas Ge into the EGR passage 16, and the remaining exhaust gas Ga (= G−Ge). ) Flows into the exhaust gas purification device 20 via the turbine 18a. The exhaust gas Ga is purified by the exhaust gas purification device 20 and then released into the atmosphere as a purified exhaust gas Gc via a muffler (not shown).

また、図1に示すように、排気ガス浄化システム2を構成する排気ガス浄化装置20は、この図1の構成では、酸化触媒装置(DOC)22、微粒子捕集装置(DPD)23、選択還元型触媒装置(SCR)24及び酸化触媒装置(DOC)25等で構成される。   Further, as shown in FIG. 1, the exhaust gas purification device 20 constituting the exhaust gas purification system 2 has an oxidation catalyst device (DOC) 22, a particulate collection device (DPD) 23, a selective reduction in the configuration of FIG. It comprises a type catalyst device (SCR) 24, an oxidation catalyst device (DOC) 25, and the like.

この酸化触媒装置22は、例えば、コージェライトハニカム等の多孔質のセラミックのハニカム構造体の担持体に、ロジウム、酸化セリウム、白金、酸化アルミニウム等を担持して形成される。この酸化触媒装置22は、排気ガスGa中に未燃燃料である炭化水素(HC)や一酸化炭素(CO)等があるとこれを酸化し、この酸化で発生する熱により排気ガスGaを昇温して、この昇温した排気ガスGaで下流側の微粒子捕集装置23を昇温させる。   The oxidation catalyst device 22 is formed, for example, by supporting rhodium, cerium oxide, platinum, aluminum oxide, or the like on a support of a porous ceramic honeycomb structure such as a cordierite honeycomb. The oxidation catalyst device 22 oxidizes unburned fuel such as hydrocarbon (HC) or carbon monoxide (CO) in the exhaust gas Ga, and the exhaust gas Ga is raised by the heat generated by the oxidation. The downstream particulate collection device 23 is heated with this heated exhaust gas Ga.

また、この微粒子捕集装置23は、一般的に、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成され、このフィルタの部分に、白金や酸化セリウム等の酸化触媒やPM酸化触媒を担持する場合が多い。この微粒子捕集装置23により、排気ガスGa中のPMは、多孔質のセラミックの壁で捕集される。   The particulate collection device 23 is generally formed of a monolith honeycomb wall flow type filter or the like in which the inlet and outlet of a porous ceramic honeycomb channel are alternately sealed. In many cases, an oxidation catalyst such as platinum or cerium oxide or a PM oxidation catalyst is supported. By the particulate collection device 23, PM in the exhaust gas Ga is collected by a porous ceramic wall.

また、燃料噴射装置26は、酸化触媒装置22の上流側に配設された、未燃燃料を排気通路15内に噴射する装置であり、微粒子捕集装置23の再生処理時に、排気通路15内に未燃燃料を噴射し、この未燃燃料を下流側の酸化触媒装置22で酸化して、この酸化で発生する熱により排気ガスGaを昇温して、この昇温した排気ガスGaで下流側の微粒子捕集装置23を再生処理可能な温度域まで昇温させる役割を持っている。   The fuel injection device 26 is a device arranged on the upstream side of the oxidation catalyst device 22 and injects unburned fuel into the exhaust passage 15. When the particulate collection device 23 is regenerated, the fuel injection device 26 is disposed in the exhaust passage 15. The unburned fuel is injected into the gas, the unburned fuel is oxidized by the downstream oxidation catalyst device 22, the exhaust gas Ga is heated by the heat generated by the oxidation, and the heated exhaust gas Ga is downstream. It has a role of raising the temperature of the side particulate collection device 23 to a temperature range in which regeneration processing is possible.

また、尿素噴射装置27は、選択還元型触媒装置24の上流側に配設された、NOx還元用の尿素水を排気通路15内に噴射する装置であり、尿素水は排気通路15内の排気ガスGaに噴出されると分解してアンモニアを生成し、アンモニアと排気ガスGa内のNOxを反応させることでNOxを水と窒素に無害化する役割を持っている。   The urea injection device 27 is a device that is disposed upstream of the selective catalytic reduction device 24 and injects urea water for NOx reduction into the exhaust passage 15. The urea water is exhausted in the exhaust passage 15. When it is injected into the gas Ga, it decomposes to produce ammonia, and has the role of detoxifying NOx into water and nitrogen by reacting ammonia with NOx in the exhaust gas Ga.

さらに、微粒子捕集装置23の前後差圧を検出するために、差圧センサ41を設け、排気ガス浄化装置20へ流入する排気ガスGaの温度を測定するために温度センサ42を設ける。なお、図1を除いて、図2等では簡略化のため、排気ガス浄化装置20内に、選択還元型触媒装置24、酸化触媒装置25及び差圧センサ41を図示していない。   Further, a differential pressure sensor 41 is provided to detect the differential pressure across the particulate collection device 23, and a temperature sensor 42 is provided to measure the temperature of the exhaust gas Ga flowing into the exhaust gas purification device 20. Except for FIG. 1, the selective reduction catalyst device 24, the oxidation catalyst device 25, and the differential pressure sensor 41 are not shown in the exhaust gas purification device 20 in FIG.

本発明においては、更に、図2及び図3に示すように、排気ガス浄化装置20を、上流側の排気通路15に接続する入口側接続部21aと、この入口側接続部21aからテーパー状に流路面積を拡大する流路拡大部21bと、この流路拡大部21bの下流の流路面積一定で、かつ、微粒子捕集装置23が配置される流路部21cを有する容器(ケース)21を備えて構成する。   Further, in the present invention, as shown in FIGS. 2 and 3, the exhaust gas purification device 20 is connected to the upstream side exhaust passage 15 and is tapered from the inlet side connection portion 21a. A container (case) 21 having a flow channel expanding portion 21b that expands the flow channel area, and a flow channel portion 21c that has a constant flow channel area downstream of the flow channel expanding portion 21b and in which the particulate collection device 23 is disposed. It comprises and comprises.

そして、この排気ガス浄化装置20の入口に、排気ガス浄化装置20内の排気ガスGaの流れを、排気ガスGaが微粒子捕集装置23の全体へ流れる第1状態と、微粒子捕集装置23の中心部23aへの流れが妨げられて微粒子捕集装置23の外周部23bへ流れ易い第2状態とに切り替える流路変更装置30を備えて構成する。   Then, the flow of the exhaust gas Ga in the exhaust gas purification device 20 is introduced to the inlet of the exhaust gas purification device 20, the first state in which the exhaust gas Ga flows to the entire particulate collection device 23, and the particulate collection device 23. The flow path changing device 30 is configured to switch to the second state in which the flow to the central portion 23a is hindered and easily flows to the outer peripheral portion 23b of the particulate collection device 23.

この流路変更装置30は、流路拡大部21bの面に平行した状態で排気ガス浄化装置20の中心方向に移動する開閉用軸31の先端側に設けられた閉弁用羽根32を有し、この閉弁用羽根32を流路拡大部21b側に移動することにより、図6及び図7に示すような第1状態から、図8及び図9に示すような閉弁用羽根32を中心方向に移動した状態にし、最終的に、図10及び図11に示すような第2状態にする。この切り替えは、連続的または段階的に行われる。   This flow path changing device 30 has a valve closing blade 32 provided on the front end side of an opening / closing shaft 31 that moves in the central direction of the exhaust gas purification device 20 in a state parallel to the surface of the flow path expanding portion 21b. Then, by moving the valve closing blade 32 toward the flow channel enlargement portion 21b, the valve closing blade 32 as shown in FIGS. 8 and 9 is centered from the first state as shown in FIGS. The state is moved to the direction, and finally the second state as shown in FIGS. This switching is performed continuously or stepwise.

より詳細には、この閉弁用羽根32は、図2に示すように排気ガスGaの通過方向であるX−X方向から見て、排気ガス浄化装置20の流路拡大部21bの中心から半径方向の上下左右均等の各位置に1枚ずつ(図3の構成では計4枚)配設される。この閉弁用羽根32は、制御装置51からの出力により作動するステッピングモータ等のアクチュエータ33で開閉用軸31を軸方向に移動させることにより各閉弁用羽根32を図6〜図11に示すように移動して、排気ガスGaの通路の中心部23aを流れる排気ガスGiを妨げるように構成される。   More specifically, the valve closing blade 32 has a radius from the center of the flow path expanding portion 21b of the exhaust gas purifying device 20 as viewed from the XX direction, which is the passage direction of the exhaust gas Ga, as shown in FIG. One sheet is disposed at each position that is equal in the vertical and horizontal directions (four sheets in the configuration of FIG. 3). Each of the valve closing blades 32 is shown in FIGS. 6 to 11 by moving the opening / closing shaft 31 in the axial direction by an actuator 33 such as a stepping motor operated by an output from the control device 51. The exhaust gas Gi that flows through the central portion 23a of the passage of the exhaust gas Ga is blocked.

この構成にすることで、第1状態と第2状態との間で、中心部23aと外周部23bでは流量の差があるものの、常時、微粒子捕集装置23のセルの入口は全部が排気ガスGaが流入可能な状態になっているので、圧力損失が大きく変化することを防止できる。   With this configuration, although there is a difference in flow rate between the central portion 23a and the outer peripheral portion 23b between the first state and the second state, the entire inlet of the cell of the particulate collection device 23 is always exhaust gas. Since Ga is in an inflowable state, the pressure loss can be prevented from changing greatly.

また、微粒子捕集装置23の再生処理と流路変更装置30を制御する制御装置51を備えて構成する。この制御装置51は、アクセル開度センサ(図示しない)等の各種センサの情報に基づいて、エンジン10の全般の制御を行う全体システム制御装置(ECU)50に組み込んでもよいし、独立して設けてもよい。   Further, the control device 51 is configured to control the regeneration processing of the particulate collection device 23 and the flow path changing device 30. The control device 51 may be incorporated into an overall system control device (ECU) 50 that performs overall control of the engine 10 based on information from various sensors such as an accelerator opening sensor (not shown), or provided independently. May be.

そして、この制御装置51は、微粒子捕集装置23の再生処理の進行状況に応じて、このアクチュエータ33を動作させて、閉弁用羽根32を流路拡大部21bの面に垂直な方向に移動させる。ここでは、閉弁用羽根32が流路拡大部21bの面に接した位置を「全開」とし、閉弁用羽根32が流路拡大部21bの中心に最も近づいた位置を「全閉」とする。   Then, the control device 51 operates the actuator 33 according to the progress of the regeneration process of the particulate collection device 23, and moves the valve closing blade 32 in a direction perpendicular to the surface of the flow path expanding portion 21b. Let Here, the position at which the valve closing blade 32 is in contact with the surface of the flow path expanding portion 21b is “full open”, and the position at which the valve closing blade 32 is closest to the center of the flow path expanded portion 21b is “fully closed”. To do.

この閉弁用羽根32の移動位置により排気ガス浄化装置20を通過する排気ガスGaを、微粒子捕集装置23の中心部23aを流れる排気ガスGiと外周部23bを流れる排気ガスGoに分流する量を変化させる。なお、中心部23aと外周部23bとは連続して構成されており、中心部23aと外周部23bとの間にある一点鎖線は便宜的に区分を示したものであり、境界としての仕切りなどの構成はなく、中心部23aと外周部23bとの間で熱移動が可能となっている、また、ここでは、閉弁用羽根32を4枚配設しているが、排気ガスGaの流路を調整して排気ガスGaを排気ガスGiと排気ガスGoに分流することができればよく、この枚数を限定する必要はない。   The amount by which the exhaust gas Ga passing through the exhaust gas purification device 20 is divided into the exhaust gas Gi flowing through the central portion 23a of the particulate collection device 23 and the exhaust gas Go flowing through the outer peripheral portion 23b depending on the moving position of the valve closing blade 32. To change. In addition, the center part 23a and the outer peripheral part 23b are comprised continuously, and the dashed-dotted line between the center part 23a and the outer peripheral part 23b shows the division for convenience, partition as a boundary, etc. However, four valve closing blades 32 are provided here, but the flow of exhaust gas Ga is not limited to this. It is only necessary to adjust the path so that the exhaust gas Ga can be divided into the exhaust gas Gi and the exhaust gas Go, and it is not necessary to limit the number.

そして、本発明においては、制御装置51は、微粒子捕集装置23の再生処理時に、流路変更装置30を制御して、第1状態で中心部23aの再生を外周部23bよりも優先して行うと共に、再生の進行に従って第2状態に移行して、中心部23aと外周部23bの再生が完了した時に再生処理を終了する再生処理制御を行う。この第1状態から第2状態への移行は、再生の進行に従って行うが、中心部23aの再生促進の第1状態から外周部23bの再生促進の第2状態への移行を1段階で行ってもよいが、再生の進行に従って、第1状態から第2状態への移行途中の状態を連続的又は段階的に介在させてもよく、これにより、中心部23aの再生促進、中心部23aと外周部23bの両方の部位での再生の促進、外周部23bの再生促進としてもよい。   And in this invention, the control apparatus 51 controls the flow-path change apparatus 30 at the time of the reproduction | regeneration processing of the particulate collection apparatus 23, and gives priority to reproduction | regeneration of the center part 23a over the outer peripheral part 23b in a 1st state. In addition, the process shifts to the second state according to the progress of reproduction, and performs reproduction process control for ending the reproduction process when reproduction of the central portion 23a and the outer peripheral portion 23b is completed. The transition from the first state to the second state is performed according to the progress of regeneration, but the transition from the first state of promoting regeneration of the central portion 23a to the second state of promoting regeneration of the outer peripheral portion 23b is performed in one stage. However, a state in the middle of the transition from the first state to the second state may be interposed in a continuous or stepwise manner according to the progress of the regeneration, thereby promoting the regeneration of the central portion 23a, the central portion 23a and the outer periphery. It is good also as acceleration | stimulation of reproduction | regeneration in both parts of the part 23b, and reproduction | regeneration promotion of the outer peripheral part 23b.

次に、本発明の実施の形態の内燃機関の排気ガス浄化方法について、図4、図5の制御フローを参照しながら説明する。図4の制御フローは、上級の制御フローで微粒子捕集装置23の再生が必要と判断されたときに、上級の制御フローから呼ばれてスタートし、制御フローの制御を実施しては、リターンして、上級の制御フローに戻り、また、微粒子捕集装置23の再生が必要と判断されたときに、上級の制御フローから呼ばれて、エンジン10の運転中は繰り返し実施されるものとして示してある。なお、制御の途中でエンジン10が停止するときには、割り込みが生じてリターンに行って上級の制御フローに戻り、そして、エンジン10が運転停止すると、この上級の制御フローの終了と共に終了する。   Next, an exhaust gas purification method for an internal combustion engine according to an embodiment of the present invention will be described with reference to the control flow of FIGS. The control flow of FIG. 4 is called from the high-level control flow when it is determined that regeneration of the particulate collection device 23 is necessary in the high-level control flow, and the control flow is controlled to return. Then, returning to the advanced control flow, and when it is determined that the particulate collection device 23 needs to be regenerated, it is called from the advanced control flow and is shown to be repeatedly executed during the operation of the engine 10. It is. Note that when the engine 10 stops in the middle of the control, an interrupt is generated and a return is made to return to the advanced control flow, and when the operation of the engine 10 is stopped, the operation ends with the end of the advanced control flow.

上級の制御フローでは、差圧センサ41で測定した微粒子捕集装置23の前後差圧の測定値が予め設定した再生開始判定用差圧を超えているか否かで、あるいは、堆積されるPM量を累積計算したPM堆積量が予め設定した再生開始判定用PM堆積量を超えているか否かで、微粒子捕集装置23の再生処理を開始するか否かを判定し、再生処理の開始と判定されると、この図4の制御フローが上級の制御フローから呼ばれてスタートする。   In the advanced control flow, whether the measured value of the differential pressure across the particle collection device 23 measured by the differential pressure sensor 41 exceeds a preset differential pressure for determining regeneration start, or the amount of PM deposited It is determined whether or not the regeneration process of the particulate collection device 23 is started based on whether or not the PM accumulation amount obtained by accumulating the calculated PM accumulation amount exceeds a preset regeneration start determination PM accumulation amount. Then, the control flow of FIG. 4 is called from the advanced control flow and starts.

図4の制御フローがスタートすると、ステップS100で、微粒子捕集装置23の再生処理制御を開始すると、ステップS200の「再生処理」の制御フローと、ステップS300の「再生処理の終了判定」の制御フローと、ステップS400の「流路制御」の制御フローが並行して行われる。   When the control flow of FIG. 4 starts, when the regeneration process control of the particulate collection device 23 is started in step S100, the “regeneration process” control flow in step S200 and the “regeneration process end determination” control in step S300 are started. The flow and the control flow of “channel control” in step S400 are performed in parallel.

ステップS200の「再生処理」の制御フローは、排気ガスGaの温度を昇温する排気ガス昇温制御と、これに続く昇温後の排気ガスGaの温度を維持する排気ガス温度維持制御である。   The control flow of the “regeneration process” in step S200 is an exhaust gas temperature increase control for increasing the temperature of the exhaust gas Ga, and an exhaust gas temperature maintenance control for maintaining the temperature of the exhaust gas Ga after the subsequent temperature increase. .

この排気ガス昇温制御では、気筒内燃料噴射制御におけるマルチ噴射により排気ガスGaを昇温し、更に、燃料噴射装置26からの燃料噴射や気筒内燃料噴射制御におけるポスト噴射等により排気ガスGa中に未燃燃料を供給し、この未燃燃料を酸化触媒装置22で酸化して、この酸化熱を利用して排気ガスGaの温度を、微粒子捕集装置23で捕集されたPMが燃焼を開始する温度、例えば、500℃〜600℃程度まで昇温する。   In this exhaust gas temperature raising control, the temperature of the exhaust gas Ga is raised by multi-injection in in-cylinder fuel injection control, and further in the exhaust gas Ga by fuel injection from the fuel injection device 26, post-injection in in-cylinder fuel injection control, etc. The unburned fuel is supplied to the catalyst, the unburned fuel is oxidized by the oxidation catalyst device 22, and the temperature of the exhaust gas Ga is burned by the oxidation heat using the oxidation heat. The temperature is increased to a starting temperature, for example, about 500 ° C. to 600 ° C.

また、排気ガス温度維持制御では、微粒子捕集装置23の温度、又は、排気ガスGaの温度をPM燃焼開始温度以上になるように、燃料噴射装置26からの燃料噴射や気筒内燃料噴射制御におけるポスト噴射を行う。   Further, in the exhaust gas temperature maintenance control, in the fuel injection from the fuel injection device 26 and in-cylinder fuel injection control so that the temperature of the particulate collection device 23 or the temperature of the exhaust gas Ga becomes equal to or higher than the PM combustion start temperature. Perform post-injection.

ステップS200の排気ガス温度維持制御では、並行して行われているステップS300の再生処理の終了判定で、終了判定が下され、その終了判定の信号が発信され、この信号をステップS200側で受取るまで行われ、この信号を受取るとステップS200の「再生処理」の制御を終了する。   In the exhaust gas temperature maintenance control in step S200, the end determination is made by the end determination of the regeneration process in step S300 being performed in parallel, a signal for the end determination is transmitted, and this signal is received on the step S200 side. When this signal is received, the “reproduction processing” control in step S200 is terminated.

ステップS300の制御フローは、再生処理の終了を判定する制御フローであり、差圧センサ41で測定した微粒子捕集装置23の前後差圧の測定値が予め設定した再生終了判定値以下になったか否かで判定したり、再生開始時PM堆積量PMcmから、制御時間ごとのPM除去量ΔPMemを差し引いたPM堆積量PMcが、予め設定された終了判定用PM堆積量PMend以下になったか否かなどで判定したりする。これらの判定の何れか、または、これらの判定の組合せで、再生処理制御を終了するとの「再生処理の終了判定」を行うと、この「終了判定の信号」をステップS200側とステップ400側に発信する。そして、このステップS300の「再生処理の終了判定」の制御を終了する。   The control flow of step S300 is a control flow for determining the end of the regeneration process, and whether the measured value of the differential pressure across the particle collection device 23 measured by the differential pressure sensor 41 is equal to or less than the preset regeneration end determination value. Whether or not the PM accumulation amount PMc obtained by subtracting the PM removal amount ΔPMem for each control time from the PM accumulation amount PMcm at the start of regeneration is equal to or less than a preset PM determination amount PMend for end determination. Etc. When “reproduction process end determination” is performed to end the reproduction process control by any of these determinations or a combination of these determinations, this “end determination signal” is sent to the steps S200 and 400. send. Then, the control of “reproduction process end determination” in step S300 ends.

ステップS400の「流路制御」の制御フローは、流路変更装置30を制御して、第1状態で中心部23aの再生を外周部23bよりも優先して行うと共に、再生の進行に従って第2状態に移行する制御である。この「流路制御」は、図5に示すように、ステップS401に進み、再生開始時PM堆積量PMcmを、他の制御(例えば、ステップS300の「再生処理の終了」の制御)から入力、又は、微粒子捕集装置23の前後差圧等から算出する。   The control flow of “flow path control” in step S400 controls the flow path changing device 30 to perform the regeneration of the central portion 23a in preference to the outer peripheral portion 23b in the first state, and the second according to the progress of the regeneration. This is the control to shift to the state. As shown in FIG. 5, the “flow path control” proceeds to step S401, and the regeneration start PM deposition amount PMcm is input from another control (for example, “regeneration processing end” control in step S300), Alternatively, it is calculated from the differential pressure before and after the particulate collection device 23.

次のステップS402では、第1状態を終了して、第2状態への移行を開始するための判定用の第1判定用閾値PM1と、第2状態への移行を完了するための判定用の第2判定用閾値PM2を設定する。この第1判定用閾値PM1は、再生開始時PM堆積量PMcmより小さい値となり、第2判定用閾値PM2は、第1判定用閾値PM1より小さい値となる。この第1判定用閾値PM1については、例えば、微粒子捕集装置23の中心部23aの再生がある程度終了した時のPM堆積量PMcを想定して、予め実験等により算出しておき、また、第2判定用閾値PM2については、例えば、微粒子捕集装置23の中心部23aの再生がある程度終了した時のPM堆積量PMcを想定して、予め実験等により算出しておき、これらの値を制御装置51に記憶させておく。   In the next step S402, the first determination threshold value PM1 for ending the first state and starting the transition to the second state, and the determination threshold for completing the transition to the second state, are used. A second determination threshold value PM2 is set. The first determination threshold PM1 is smaller than the regeneration start PM accumulation amount PMcm, and the second determination threshold PM2 is smaller than the first determination threshold PM1. The first determination threshold value PM1 is calculated in advance through experiments or the like, assuming, for example, the PM deposition amount PMc when the regeneration of the central portion 23a of the particulate collection device 23 is completed to some extent. As for the threshold value PM2 for 2 determination, for example, assuming the PM accumulation amount PMc when the regeneration of the central portion 23a of the particulate collection device 23 is completed to some extent, the threshold value PM2 is calculated in advance through experiments or the like, and these values are controlled. It is stored in the device 51.

次のステップS403で、開始時PM堆積量PMcmから、再生処理の進行で発生する、制御時間ごとのPM除去量ΔPMemを差し引いて、制御時点でのPM堆積量PMcを算出する。このPM除去量ΔPMemは、エンジンの運転状態(エンジン回転速度と負荷)と排気ガスGaの温度等に対して予め実験などにより設定されたマップデータ等を参照して、算出する。   In the next step S403, the PM deposition amount PMc at the time of control is calculated by subtracting the PM removal amount ΔPMem for each control time, which is generated as the regeneration process proceeds, from the starting PM deposition amount PMcm. This PM removal amount ΔPMem is calculated by referring to map data or the like set beforehand by experiments or the like with respect to the engine operating state (engine speed and load), the temperature of the exhaust gas Ga, and the like.

ステップS404で、このPM堆積量PMcが第1判定用閾値PM1以上であるか否かを判定する。この判定で、PM堆積量PMcが第1判定用閾値PM1以上である場合(YES)は、微粒子捕集装置23の中心部23aの再生が予め設定した程度まで終了していないとして、ステップS405に行き、微粒子捕集装置23の中心部23aを流れる排気ガスGiの流量が最大となるように、閉弁用羽根32を全開にする「中心部優先流路制御」を行う。この制御を予め設定された制御時間の間行った後、ステップS409に行く。   In step S404, it is determined whether or not the PM accumulation amount PMc is greater than or equal to the first determination threshold value PM1. In this determination, when the PM accumulation amount PMc is equal to or greater than the first determination threshold PM1 (YES), it is determined that the regeneration of the central portion 23a of the particulate collection device 23 has not been completed to a preset level, and the process proceeds to step S405. Then, the “center-priority channel control” is performed to fully open the valve closing blade 32 so that the flow rate of the exhaust gas Gi flowing through the center portion 23a of the particulate collection device 23 is maximized. After performing this control for a preset control time, the process goes to step S409.

また、PM堆積量PMcが第1判定用閾値PM1未満である場合(NO)は、微粒子捕集装置23の中心部23aの再生が予め設定した程度には終了しているとして、ステップS406に行く。   Further, when the PM accumulation amount PMc is less than the first determination threshold PM1 (NO), it is determined that the regeneration of the central portion 23a of the particulate collection device 23 has been completed to a preset level, and the process goes to step S406. .

このステップS406では、PM堆積量PMcが第2判定用閾値PM2以上であるか否かを判定する。この判定で、PM堆積量PMcが第2判定用閾値PM2以上である場合(YES)は、微粒子捕集装置23の中心部23aが予め設定した程度には終了しているが、十分には終了はしていないとして、ステップS407に行き、微粒子捕集装置23の中心部23aを流れる排気ガスGiの流量と外周部23bを流れる排気ガスGoの流量が適当な割合になるように、閉弁用羽根32を半開にする「並行流路制御」を行う。この制御を予め設定された制御時間の間行った後、ステップS409に行く。   In this step S406, it is determined whether or not the PM accumulation amount PMc is greater than or equal to the second determination threshold value PM2. In this determination, when the PM accumulation amount PMc is equal to or greater than the second determination threshold value PM2 (YES), the center portion 23a of the particulate collection device 23 is finished to a preset level, but is sufficiently finished. If not, go to step S407 and close the valve so that the flow rate of the exhaust gas Gi flowing through the central portion 23a of the particulate collection device 23 and the flow rate of the exhaust gas Go flowing through the outer peripheral portion 23b become an appropriate ratio. “Parallel flow path control” is performed to open the blades 32 halfway. After performing this control for a preset control time, the process goes to step S409.

なお、この「並行流路制御」で、微粒子捕集装置23の再生処理が進行するにつれて、微粒子捕集装置23の中心部23aを流れる排気ガスGiの流量を少なくし、微粒子捕集装置23の外周部23bを流れる排気ガスGoの流量を多くするように、連続的または段階的に全開状態から全閉状態に閉弁用羽根32を変化させる。   In this “parallel flow path control”, as the regeneration process of the particulate collection device 23 proceeds, the flow rate of the exhaust gas Gi flowing through the central portion 23a of the particulate collection device 23 is reduced, and the particulate collection device 23 The valve closing blade 32 is changed from the fully open state to the fully closed state continuously or stepwise so as to increase the flow rate of the exhaust gas Go flowing through the outer peripheral portion 23b.

この閉弁用羽根32の開度を、予め設定した時間や、より細かいPM堆積量PMcの量に応じて変化させると、より極め細かく、排気ガスGiの流量と排気ガスGoの流量の割合を変化させることができ、中心部23aの再生と外周部23bの再生の進行状況に合わせた排気ガスGaの分配の最適化が可能となる。   When the opening degree of the valve closing blade 32 is changed in accordance with a preset time or a finer amount of the PM accumulation amount PMc, the ratio of the flow rate of the exhaust gas Gi and the flow rate of the exhaust gas Go is more finely defined. The distribution of the exhaust gas Ga can be optimized in accordance with the progress of the regeneration of the central portion 23a and the regeneration of the outer peripheral portion 23b.

一方、制御を単純にするために、「並行流路制御」を省くこともできる。この場合は、第2判定用閾値PM2を第1判定用閾値PM1と同じ値に設定すればよい。   On the other hand, in order to simplify the control, “parallel flow path control” can be omitted. In this case, the second determination threshold value PM2 may be set to the same value as the first determination threshold value PM1.

このステップS406の判定で、PM堆積量PMcが第2判定用閾値PM2未満である場合(NO)は、微粒子捕集装置23の中心部23aが十分に終了はしているとして、ステップS408に行き、微粒子捕集装置23の外周部23bを流れる排気ガスGoの流量が最大となるように、閉弁用羽根32を全閉にする「外周部優先流路制御」を行う。この制御を予め設定された制御時間の間行った後、ステップS409に行く。   If it is determined in step S406 that the PM accumulation amount PMc is less than the second determination threshold value PM2 (NO), it is determined that the central portion 23a of the particulate collection device 23 has been sufficiently terminated, and the process proceeds to step S408. Then, “peripheral part priority flow path control” is performed to fully close the valve closing blade 32 so that the flow rate of the exhaust gas Go flowing through the outer peripheral part 23b of the particulate collection device 23 becomes maximum. After performing this control for a preset control time, the process goes to step S409.

ステップS409では、ステップS300からの「終了判定の信号」を受信しているか否かを判定する。この判定で「終了判定の信号」を受信していない場合(NO)は、ステップS403に戻る。また、この判定で「終了判定の信号」を受信している場合(YES)は、ステップS410に行き、流路制御の終了処理で、閉弁用羽根32を全開にして、ステップS400の「流路制御」を終了する。そして、図4の制御フローに戻る。   In step S409, it is determined whether the “end determination signal” from step S300 has been received. If the “end determination signal” is not received in this determination (NO), the process returns to step S403. If the “end determination signal” is received in this determination (YES), the process goes to step S410, and in the flow path control end process, the valve closing blade 32 is fully opened, End the “road control”. And it returns to the control flow of FIG.

そして、図4の制御フローで、ステップS300の「再生処理の終了」の制御から「終了判定の信号」が発信され、この「終了判定の信号」を受信して、ステップS200では再生処理の終了処理を行い、「再生処理」の制御を終了し、また、ステップS400では流路制御の終了処理を行い、「流路制御」の制御を終了する。これらの並行した3つの制御が全部終了すると、リターンに行き、上級の制御フローに戻る。そして、また、微粒子捕集装置23の再生が必要と判断されたときに、図4の制御フローが上級の制御フローから呼ばれて、繰り返し実施される。   Then, in the control flow of FIG. 4, an “end determination signal” is transmitted from the “end of reproduction process” control in step S300, and this “end determination signal” is received. In step S200, the end of the reproduction process is performed. The process is completed and the “regeneration process” control is terminated. In step S400, the flow path control termination process is performed, and the “flow path control” control is terminated. When these three parallel controls are all finished, the process goes to return and returns to the advanced control flow. When it is determined that the particulate collection device 23 needs to be regenerated, the control flow of FIG. 4 is called from the advanced control flow and is repeatedly performed.

また、上記では、開始時PM堆積量PMcmから、制御時間ごとのPM除去量ΔPMemを差し引いて算出した「制御時点でのPM堆積量PMc」を判定に用いているが、制御時間ごとのPM除去量ΔPMemを積算した「PM除去到達量PMem(=ΣΔPMem)」を判定に用いてもよい。この場合は、第1判定用閾値PM1と、第2判定用閾値PM2を設定する代わりに、第1判定用PM除去到達量PMe1と、第2判定用PM除去到達量PMe2がそれぞれ設定されることになる。   In the above description, the “PM deposition amount PMc at the control point” calculated by subtracting the PM removal amount ΔPMem for each control time from the start PM deposition amount PMcm is used for the determination. “PM removal arrival amount PMem (= ΣΔPMem)” obtained by integrating the amount ΔPMem may be used for the determination. In this case, instead of setting the first determination threshold PM1 and the second determination threshold PM2, the first determination PM removal arrival amount PMe1 and the second determination PM removal arrival amount PMe2 are set. become.

なお、制御を簡略化するために、開始時PM堆積量PMcmから、制御時間ごとのPM除去量ΔPMemを差し引いて算出した「制御時点でのPM堆積量PMc」の代わりに、微粒子捕集装置23の「前後差圧ΔPc」を用いることもできる。この場合は、第1判定用閾値PM1と、第2判定用閾値PM2を設定する代わりに、第1判定用差圧ΔP1と、第2判定用差圧ΔP2がそれぞれ設定されることになる。   In order to simplify the control, instead of the “PM deposition amount PMc at the time of control” calculated by subtracting the PM removal amount ΔPMem for each control time from the PM deposition amount PMcm at the start time, the particulate collection device 23 The “front-rear differential pressure ΔPc” can also be used. In this case, instead of setting the first determination threshold PM1 and the second determination threshold PM2, the first determination differential pressure ΔP1 and the second determination differential pressure ΔP2 are set.

本発明の内燃機関の排気ガス浄化システム2及び内燃機関の排気ガス浄化方法によれば、排気ガス浄化装置20内に配置された微粒子捕集装置23の再生処理時に、微粒子捕集装置23の中心部と外周部の再生の進行状況に応じて、排気ガス浄化装置20を通過する排気ガスGaの流れの状態を制御することで、微粒子捕集装置23の再生を部分的に促進して、微粒子捕集装置の再生処理を効率よく、かつ、再生のムラなく行うことができて、PM捕集効率を向上させるとともに、再生処理用の燃料を節約できて燃費を改善することができる。   According to the exhaust gas purification system 2 for an internal combustion engine and the exhaust gas purification method for an internal combustion engine of the present invention, the center of the particulate collection device 23 is regenerated during the regeneration process of the particulate collection device 23 disposed in the exhaust gas purification device 20. By controlling the state of the flow of the exhaust gas Ga passing through the exhaust gas purifying device 20 according to the progress of the regeneration of the part and the outer peripheral part, the regeneration of the particulate collection device 23 is partially promoted and the particulates The regeneration process of the collection device can be performed efficiently and without unevenness of regeneration, so that PM collection efficiency can be improved, fuel for regeneration process can be saved, and fuel efficiency can be improved.

つまり、微粒子捕集装置23の中心部23aに対して優先して速やかな再生を行い、微粒子捕集装置23の再生が進行するにつれて、微粒子捕集装置23の外周部23bを流れる排気ガスGoの流量を多くするので、再生初期に発生する中心部23aの再生による微粒子の燃焼熱を外周部23bで利用することができ、これにより、外周部23bの温度を上昇させることができる。   In other words, the center portion 23a of the particulate collection device 23 is preferentially regenerated and the exhaust gas Go flowing through the outer peripheral portion 23b of the particulate collection device 23 as the regeneration of the particulate collection device 23 progresses. Since the flow rate is increased, the heat of combustion of the fine particles due to the regeneration of the central portion 23a generated at the initial stage of the regeneration can be utilized in the outer peripheral portion 23b, thereby increasing the temperature of the outer peripheral portion 23b.

その後の段階で、昇温した外周部23bを通過する排気ガスGoの流量を増加させることにより、この排気ガスGoに含まれている酸素で外周部23bの微粒子の燃焼を促進することができるので、微粒子捕集装置23の再生処理を効率よく行うことができると共に、最終的には中心部23aと外周部23bの再生処理をよりムラなく行うことができる。その結果、微粒子捕集装置23のPM捕集効率を向上させるとともに、燃費を改善することができる。   At a later stage, by increasing the flow rate of the exhaust gas Go passing through the heated outer peripheral portion 23b, the combustion of the fine particles in the outer peripheral portion 23b can be promoted by the oxygen contained in the exhaust gas Go. In addition, the regeneration process of the particulate collection device 23 can be efficiently performed, and finally, the regeneration process of the central portion 23a and the outer peripheral portion 23b can be performed more uniformly. As a result, the PM collection efficiency of the particulate collection device 23 can be improved and the fuel consumption can be improved.

また、第1状態から第2状態への移行の間に、第1状態と第2状態の中間である期間を設けて、再生の進行に従って連続的または段階的に第1状態から第2状態へ移行させると、より極め細かく、微粒子捕集装置23の中心部23aの排気ガスGiの流量と外周部23bの排気ガスGoの流量の割合を変化させることができ、中心部23aの再生と外周部23bの再生の進行状況に合わせた排気ガスGaの分配の最適化が可能となる。   In addition, a period that is intermediate between the first state and the second state is provided between the transition from the first state to the second state, and the state changes from the first state to the second state continuously or stepwise as the reproduction progresses. When shifted, the ratio of the flow rate of the exhaust gas Gi in the central portion 23a of the particulate collection device 23 and the flow rate of the exhaust gas Go in the outer peripheral portion 23b can be changed more finely. It is possible to optimize the distribution of the exhaust gas Ga in accordance with the progress of the regeneration of 23b.

また、流路変更装置30を閉弁用羽根32を有して構成すると、基本的には、第1状態と第2状態との間で、中心部23aと外周部23bでは流量の差があるものの、常時、微粒子捕集装置23のセルの入口は全部が排気ガスGaが流入可能な状態になっているので、圧力損失が大きく変化することを防止できる。   Further, when the flow path changing device 30 is configured to include the valve closing blade 32, there is basically a difference in flow rate between the central portion 23a and the outer peripheral portion 23b between the first state and the second state. However, since all the inlets of the cells of the particulate collection device 23 are always in a state in which the exhaust gas Ga can flow in, the pressure loss can be prevented from changing greatly.

また、この閉弁用羽根32毎に、別個のアクチュエータを接続して、各閉弁用羽根32を独立して作動させるように制御すると、微粒子捕集装置23の中心部23aと外周部23bで捕集ムラが生じるような場合であっても、再生をよりムラなく行うことができ、微粒子捕集装置23のPM捕集効率を向上させるとともに、燃費を改善することができる。   In addition, when a separate actuator is connected to each valve closing blade 32 and each valve closing blade 32 is controlled to operate independently, the central portion 23a and the outer peripheral portion 23b of the particulate collection device 23 are used. Even if the collection unevenness occurs, the regeneration can be performed more uniformly, the PM collection efficiency of the particulate collection device 23 can be improved, and the fuel efficiency can be improved.

2 内燃機関の排気ガス浄化システム
10 エンジン(内燃機関)
11 燃料噴射装置
14 吸気通路
15 排気通路
20 排気ガス浄化装置
21 容器(ケース)
21a 入口側接続部
21b 流路拡大部
21c 流路部
22 酸化触媒装置(DOC)
23 微粒子捕集装置(DPD)
24 選択還元型触媒装置(SCR)
25 酸化触媒装置(DOC)
26 燃料噴射装置
27 尿素噴射装置
30 流路変更装置
31 開閉用軸
32 閉弁用羽根
33 アクチュエータ
41 差圧センサ
42 温度センサ
50 全体システム制御装置(ECU)
51 制御装置
A 新気
A+Ge 吸入ガス
G 発生した排気ガス
Ga 排気ガス浄化装置に流入する排気ガス(G−Ge)
Gc 浄化された排気ガス
Ge 排気ガス(EGRガス)
Gi 中心部を流れる排気ガス
Go 外周部を流れる排気ガス
PM1 第1判定用閾値
PM2 第2判定用閾値
PMc PM堆積量
PMcm 再生開始時PM堆積量
PMe1 第1判定用PM除去到達量
PMe2 第2判定用PM除去到達量
PMend 終了判定用PM堆積量
PMem PM除去到達量(ΣΔPMem)
ΔP1 第1判定用差圧
ΔP2 第2判定用差圧
ΔPc 前後差圧
ΔPMem PM除去量
2 Exhaust gas purification system for internal combustion engine 10 Engine (internal combustion engine)
11 Fuel injection device 14 Intake passage 15 Exhaust passage 20 Exhaust gas purification device 21 Container (case)
21a Inlet side connection part 21b Channel expansion part 21c Channel part 22 Oxidation catalyst device (DOC)
23 Fine particle collector (DPD)
24 Selective reduction catalyst system (SCR)
25 Oxidation catalyst equipment (DOC)
26 Fuel injection device 27 Urea injection device 30 Flow path changing device 31 Opening and closing shaft 32 Valve closing blade 33 Actuator 41 Differential pressure sensor 42 Temperature sensor 50 Overall system control device (ECU)
51 Control Device A Fresh Air A + Ge Intake Gas G Generated Exhaust Gas Ga Exhaust Gas (G-Ge) Flowing into Exhaust Gas Purification Device
Gc Purified exhaust gas Ge exhaust gas (EGR gas)
Gi Exhaust gas Go flowing through the central portion Exhaust gas PM1 flowing through the outer peripheral portion PM1 First determination threshold value PM2 Second determination threshold value PMc PM deposition amount PMcm Regeneration start PM deposition amount PMe1 First determination PM removal arrival amount PMe2 Second determination PM removal arrival amount PMend End determination PM deposition amount PMem PM removal arrival amount (ΣΔPMem)
ΔP1 First determination differential pressure ΔP2 Second determination differential pressure ΔPc Front-rear differential pressure ΔPMem PM removal amount

Claims (6)

内燃機関の排気通路に微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化システムにおいて、
前記排気ガス浄化装置の入口に、前記排気ガス浄化装置内の排気ガスの流れを、排気ガスが前記微粒子捕集装置の全体へ流れる第1状態と、前記微粒子捕集装置の中心部への流れが妨げられて前記微粒子捕集装置の外周部へ流れ易い第2状態とに切り替える流路変更装置を備えるとともに、
前記微粒子捕集装置の再生処理時に、前記流路変更装置を制御して、前記第1状態で前記中心部の再生を前記外周部よりも優先して行うと共に、再生の進行に従って第2状態に移行して、前記中心部と前記外周部の再生が完了した時に再生処理を終了する再生処理制御を行う制御装置を備えたことを特徴とする内燃機関の排気ガス浄化システム。
In an exhaust gas purification system for an internal combustion engine comprising an exhaust gas purification device having a particulate collection device in an exhaust passage of the internal combustion engine,
The flow of the exhaust gas in the exhaust gas purification device at the inlet of the exhaust gas purification device, the first state where the exhaust gas flows to the entire particulate collection device, and the flow to the center of the particulate collection device Is provided with a flow path changing device that is switched to a second state that is prevented from flowing and easily flows to the outer peripheral portion of the particulate collection device,
During the regeneration process of the particulate collection device, the flow path changing device is controlled to regenerate the central portion in preference to the outer peripheral portion in the first state, and to the second state as the regeneration proceeds. An exhaust gas purifying system for an internal combustion engine, comprising: a control device that performs a regeneration process control that ends the regeneration process when the regeneration of the central portion and the outer peripheral portion is completed.
前記第1状態から前記第2状態への移行の間に、前記第1状態と前記第2状態の中間である期間を設けて、再生の進行に従って連続的または段階的に前記第1状態から前記第2状態へ移行させることを特徴とする請求項1に記載の内燃機関の排気ガス浄化システム。   A period that is intermediate between the first state and the second state is provided between the transition from the first state to the second state, and the first state is continuously or stepwise from the first state according to the progress of reproduction. 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the system is shifted to a second state. 前記排気ガス浄化装置を、上流側の前記排気通路に接続する入口側接続部と、該入口側接続部からテーパー状に流路面積を拡大する流路拡大部と、該流路拡大部の下流の流路面積一定で、かつ、前記微粒子捕集装置が配置される流路部を有する容器を備えて構成すると共に、
前記流路変更装置を、前記流路拡大部の面に平行した状態で前記排気ガス浄化装置の中心方向に移動する閉弁用羽根を有し、該閉弁用羽根を前記流路拡大部側に移動したときに、前記第1状態にし、前記閉弁用羽根を前記中心方向に移動したときに、前記第2状態にすることを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化システム。
An inlet side connecting portion for connecting the exhaust gas purifying device to the exhaust passage on the upstream side, a channel expanding portion for expanding the channel area in a tapered shape from the inlet side connecting portion, and a downstream of the channel expanding portion And having a container having a flow channel portion in which the flow channel area is constant and the particulate collection device is disposed,
The flow path changing device has a valve closing blade that moves in the central direction of the exhaust gas purification device in a state parallel to the surface of the flow channel expanding portion, and the valve closing blade is connected to the flow channel expanding portion side. 3. The exhaust of the internal combustion engine according to claim 1, wherein when the valve is moved to the first state, the first state is set, and when the valve closing blade is moved in the central direction, the second state is set. Gas purification system.
内燃機関の排気通路に微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化方法において、
前記微粒子捕集装置の再生処理時に、排気ガスが前記微粒子捕集装置の全体へ流れる第1状態で前記微粒子捕集装置の中心部の再生を前記微粒子捕集装置の外周部よりも優先して行うと共に、再生の進行に従って、排気ガスが前記中心部への流れが妨げられて前記外周部へ流れ易い第2状態に移行して、前記中心部と前記外周部の再生が完了した時に再生処理を終了することを特徴とする内燃機関の排気ガス浄化方法。
In an exhaust gas purification method for an internal combustion engine comprising an exhaust gas purification device having a particulate collection device in an exhaust passage of the internal combustion engine,
During the regeneration process of the particulate collection device, the regeneration of the central portion of the particulate collection device is prioritized over the outer peripheral portion of the particulate collection device in the first state where exhaust gas flows to the entire particulate collection device. As the regeneration proceeds, the regeneration process is performed when the regeneration of the central portion and the outer peripheral portion is completed by shifting to a second state where the exhaust gas is prevented from flowing to the central portion and easily flows to the outer peripheral portion. An exhaust gas purification method for an internal combustion engine, characterized in that
前記第1状態から前記第2状態への移行の間に、前記第1状態と前記第2状態の中間である期間を設けて、再生の進行に従って連続的または段階的に前記第1状態から前記第2状態へ移行させることを特徴とする請求項4に記載の内燃機関の排気ガス浄化方法。   A period that is intermediate between the first state and the second state is provided between the transition from the first state to the second state, and the first state is continuously or stepwise from the first state according to the progress of reproduction. 5. The exhaust gas purification method for an internal combustion engine according to claim 4, wherein the second state is shifted to a second state. 前記排気ガス浄化装置が、上流側の前記排気通路に接続する入口側接続部と、該入口側接続部からテーパー状に流路面積を拡大する流路拡大部と、該流路拡大部の下流の流路面積一定で、かつ、前記微粒子捕集装置が配置される流路部を有する容器を備えて構成されると共に、
流路変更装置が、前記流路拡大部の面に平行した状態で前記排気ガス浄化装置の中心方向に移動する閉弁用羽根を有して構成され、該閉弁用羽根を前記流路拡大部側に移動することで前記第1状態にし、前記閉弁用羽根を前記中心方向に移動することで前記第2状態にすることを特徴とする請求項4又は5に記載の内燃機関の排気ガス浄化方法。
The exhaust gas purifying device includes an inlet side connecting portion connected to the exhaust passage on the upstream side, a channel expanding portion that tapers the channel area from the inlet side connecting portion, and a downstream side of the channel expanding portion. The flow path area is constant, and a container having a flow path portion in which the particulate collection device is disposed is configured,
The flow path changing device is configured to have a valve closing blade that moves in the central direction of the exhaust gas purification device in a state parallel to the surface of the flow path expanding portion, and the valve closing blade is expanded to the flow path. 6. The exhaust of the internal combustion engine according to claim 4, wherein the first state is set by moving to a part side, and the second state is set by moving the valve closing blade in the central direction. Gas purification method.
JP2014032805A 2014-02-24 2014-02-24 Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method Pending JP2015158158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032805A JP2015158158A (en) 2014-02-24 2014-02-24 Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032805A JP2015158158A (en) 2014-02-24 2014-02-24 Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method

Publications (1)

Publication Number Publication Date
JP2015158158A true JP2015158158A (en) 2015-09-03

Family

ID=54182326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032805A Pending JP2015158158A (en) 2014-02-24 2014-02-24 Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method

Country Status (1)

Country Link
JP (1) JP2015158158A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183511A (en) * 1981-05-07 1982-11-11 Toyota Motor Corp Exhaust gas purifier of internal combustion engine
JPS62138810U (en) * 1986-02-27 1987-09-01
JPH04164112A (en) * 1990-10-25 1992-06-09 Toyota Motor Corp Exhaust gas purification device
JPH05125923A (en) * 1991-10-30 1993-05-21 Nippondenso Co Ltd Exhaust purifying device of internal combustion engine
JP2012246895A (en) * 2011-05-31 2012-12-13 Isuzu Motors Ltd Exhaust gas cleaning system and exhaust gas cleaning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183511A (en) * 1981-05-07 1982-11-11 Toyota Motor Corp Exhaust gas purifier of internal combustion engine
JPS62138810U (en) * 1986-02-27 1987-09-01
JPH04164112A (en) * 1990-10-25 1992-06-09 Toyota Motor Corp Exhaust gas purification device
JPH05125923A (en) * 1991-10-30 1993-05-21 Nippondenso Co Ltd Exhaust purifying device of internal combustion engine
JP2012246895A (en) * 2011-05-31 2012-12-13 Isuzu Motors Ltd Exhaust gas cleaning system and exhaust gas cleaning method

Similar Documents

Publication Publication Date Title
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP3951899B2 (en) Diesel engine exhaust purification system
JP2002276405A (en) Exhaust emission control device of diesel engine
JP2004019496A (en) Exhaust emission control device of internal combustion engine
JP5720135B2 (en) Exhaust gas purification system
JP6191380B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2004162611A (en) Exhaust emission control device for internal combustion engine
JP2008106687A (en) Filter regeneration device
JP2006242175A (en) Device and method for continuously regenerating pm
JP2006226190A (en) Controller of lean burn engine
JP2010185369A (en) Fuel supply device of engine
JP2008128212A (en) Exhaust emission control device of internal combustion engine
JP2015158158A (en) Internal combustion engine exhaust emission control system and internal combustion engine exhaust emission control method
JP6213260B2 (en) Exhaust gas purification system and control method thereof
JP4139356B2 (en) Exhaust gas aftertreatment device
JP5544758B2 (en) Diesel engine control system
JP4378754B2 (en) Engine exhaust gas purification system
JP2012154237A (en) Exhaust gas purification system and method for forced regeneration of diesel particulate filter
JP2002276443A (en) Fuel injection control method and refreshing control method for continuous refreshing diesel particulate filter system
JP5845869B2 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
JP4407285B2 (en) Exhaust gas purification system
JP2005069238A5 (en)
JP4325580B2 (en) Control device for internal combustion engine
JP2010261390A (en) Exhaust emission control device for internal combustion engine
JP2015206302A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320