JP2015155569A - Method of preparing blast furnace blow coal, blast furnace blow coal and utilization thereof - Google Patents
Method of preparing blast furnace blow coal, blast furnace blow coal and utilization thereof Download PDFInfo
- Publication number
- JP2015155569A JP2015155569A JP2014031361A JP2014031361A JP2015155569A JP 2015155569 A JP2015155569 A JP 2015155569A JP 2014031361 A JP2014031361 A JP 2014031361A JP 2014031361 A JP2014031361 A JP 2014031361A JP 2015155569 A JP2015155569 A JP 2015155569A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- blast furnace
- ash
- blown
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 178
- 238000000034 method Methods 0.000 title claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 47
- 238000002844 melting Methods 0.000 claims abstract description 29
- 230000008018 melting Effects 0.000 claims abstract description 29
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 23
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 238000005342 ion exchange Methods 0.000 claims abstract description 8
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 239000002956 ash Substances 0.000 claims description 56
- 239000011575 calcium Substances 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 239000011777 magnesium Substances 0.000 claims description 22
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 19
- 239000010883 coal ash Substances 0.000 claims description 12
- 239000003610 charcoal Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- 238000000197 pyrolysis Methods 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000002893 slag Substances 0.000 abstract description 14
- 238000007664 blowing Methods 0.000 abstract description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 25
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 21
- 239000000292 calcium oxide Substances 0.000 description 21
- 239000000395 magnesium oxide Substances 0.000 description 21
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 21
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 21
- 238000002485 combustion reaction Methods 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000000265 homogenisation Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum (Al) Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 150000001640 boron group elements Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011335 coal coke Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003476 subbituminous coal Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/06—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
- C21B5/003—Injection of pulverulent coal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/007—Conditions of the cokes or characterised by the cokes used
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/16—Tuyéres
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacture Of Iron (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
本発明は、高炉吹込み炭の調製方法、高炉吹込み炭およびその利用方法に関する。 The present invention relates to a method for preparing blast furnace blown coal, blast furnace blown coal, and a method for using the same.
高炉設備は、鉄鉱石や石灰石やコークスの原料を高炉本体の頂部から内部に装入すると共に、当該高炉本体の側部の下方寄りの羽口から熱風及び補助燃料として高炉吹込み炭(微粉炭)を吹き込むことにより、鉄鉱石から銑鉄を製造することができるようになっている。 The blast furnace equipment is charged with iron ore, limestone and coke raw materials from the top of the blast furnace main body, and hot blast and auxiliary fuel (pulverized coal) as hot air and auxiliary fuel from the tuyere near the side of the blast furnace main body. ) Can be produced from iron ore.
ところで、前記高炉設備の操業を安定に行うために、前記高炉吹込み炭が前記高炉本体の前記羽口へ至る経路で高炉吹込み炭灰の付着あるいは当該高炉吹込み炭灰による閉塞を抑制することが求められている。 By the way, in order to stably operate the blast furnace facility, adhesion of blast furnace blown coal ash or blockage due to the blast furnace blown coal ash is suppressed in a path where the blast furnace blown coal reaches the tuyere of the blast furnace body. It is demanded.
例えば、予め微粉炭中の灰の軟化点を測定し、微粉炭の灰の軟化点が1300℃未満のものに石灰石や蛇紋岩などCaO源の造滓剤または他の微粉炭を、前記微粉炭の軟化点に基づき決定された必要量添加して、微粉炭中の灰の軟化点を1300℃以上に調整処理し、次いで、微粉炭中の灰の軟化点が1300℃以上の微粉炭のみを高炉本体の羽口から内部に吹き込むことにより、高炉吹込み炭の燃焼性を向上させることが提案されている(例えば、下記特許文献1参照)。
For example, the softening point of ash in pulverized coal is measured in advance, and the ash softening point of pulverized coal is less than 1300 ° C., and a CaO-source fossilizing agent such as limestone or serpentine or other pulverized coal is used. The required amount determined based on the softening point of the ash is adjusted to adjust the softening point of the ash in the pulverized coal to 1300 ° C or higher, and then only the pulverized coal whose ash softening point in the pulverized coal is 1300 ° C or higher is used. It has been proposed to improve the flammability of blast furnace-blown coal by blowing into the interior of the blast furnace body from the tuyere (see, for example,
また、例えば、羽口からCaO系、MgO系、SiO2系フラックスのいずれか1種または2種以上を高炉の内部に吹き込むようした高炉操業法が提案されている(例えば、下記特許文献2参照)。
In addition, for example, a blast furnace operation method in which any one or more of CaO-based, MgO-based, and SiO 2 -based fluxes are blown into a blast furnace from a tuyere has been proposed (see, for example,
しかしながら、前記特許文献1に記載の技術においては、前記造滓剤として添加する酸化カルシウムの粒径が大きく(微粉で10μm程度)、高炉内のスラグと均一化するのに時間がかかることから、高炉吹込み炭を多く吹き込んだ場合であっても、前記造滓剤の添加による、高炉吹込み炭の軟化点を上昇させる効果を得にくくなる可能性があった。
However, in the technique described in
前記特許文献2には、1450℃における粘性を10ポアズ以下にすることで、高炉内で生成するボッシュスラグの流動性を確保する高炉操業法しか記載されていないことから、高炉本体の羽口へ至る経路で高炉吹込み炭灰の付着あるいは高炉吹込み炭灰による閉塞を抑制することができない可能性があった。
Since only the blast furnace operation method that ensures the fluidity of the Bosch slag generated in the blast furnace by setting the viscosity at 1450 ° C. to 10 poise or less is described in
このようなことから、本発明は、前述した課題を解決するために為されたものであって、高炉本体内への吹込み量を増やしても、当該高炉本体内のスラグの流動不良が生じにくい高炉吹込み炭を得ることができる高炉吹込み炭の調製方法、高炉吹込み炭およびその利用方法を提供することを目的としている。 For this reason, the present invention has been made to solve the above-described problem, and even if the amount of injection into the blast furnace body is increased, the flow failure of the slag in the blast furnace body occurs. It aims at providing the preparation method of the blast furnace injection coal which can obtain the difficult blast furnace injection coal, the blast furnace injection coal, and its utilization method.
上述した課題を解決する第1の発明に係る高炉吹込み炭の調製方法は、
石炭の原炭時の石炭の灰分、及び当該灰分中のAl,Si,Ca,Mgの重量%を分析する第1の工程と、
分析して得られたデータに基づき、前記石炭の灰融点を導出する第2の工程と、
前記第1の工程および前記第2の工程で得られたデータに基づき、前記石炭の灰分の融点が1200〜1400℃となるように、当該石炭に担持する金属種を選定すると共に、その担持量を導出する第3の工程と、
前記担持量の前記金属をイオン交換法により前記石炭に担持する第4の工程と、
前記第4の工程で得られた前記石炭を乾留する第5の工程と
を有する
ことを特徴とする。
The method for preparing blast furnace blown coal according to the first invention for solving the above-described problems is as follows.
A first step of analyzing coal ash at the time of coal raw coal and weight% of Al, Si, Ca, Mg in the ash;
A second step of deriving the ash melting point of the coal based on the data obtained by analysis;
Based on the data obtained in the first step and the second step, the metal species to be supported on the coal is selected so that the melting point of the ash of the coal is 1200 to 1400 ° C., and the supported amount A third step of deriving
A fourth step of supporting the amount of the metal on the coal by an ion exchange method;
And a fifth step of carbonizing the coal obtained in the fourth step.
上述した課題を解決する第2の発明に係る高炉吹込み炭の調製方法は、前述した第1の発明に係る高炉吹込み炭の調製方法であって、
前記金属は、カルシウムまたはマグネシウムの少なくとも1種である
ことを特徴とする。
The method for preparing blast furnace blown coal according to the second invention for solving the above-described problem is a method for preparing blast furnace blown coal according to the first invention described above,
The metal is at least one of calcium and magnesium.
上述した課題を解決する第3の発明に係る高炉吹込み炭の調製方法は、前述した第1または第2の発明に係る高炉吹込み炭の調製方法であって、
前記第5の工程にて、前記石炭は、350〜550℃で熱処理されて残留揮発分が15〜35%になる
ことを特徴とする。
The method for preparing blast furnace blown coal according to the third invention for solving the above-described problem is a method for preparing blast furnace blown coal according to the first or second invention described above,
In the fifth step, the coal is heat-treated at 350 to 550 ° C. to have a residual volatile content of 15 to 35%.
上述した課題を解決する第4の発明に係る高炉吹込み炭の調製方法は、前述した第1乃至第3の何れか一つの発明に係る高炉吹込み炭の調製方法であって、
前記石炭への前記金属の担持量は、(CaO+MgO)/SiO2の重量比にて0.2〜1.55である
ことを特徴とする。
The method for preparing blast furnace blown coal according to the fourth invention for solving the above-described problem is a method for preparing blast furnace blown coal according to any one of the first to third inventions described above,
The amount of the metal supported on the coal is 0.2 to 1.55 in a weight ratio of (CaO + MgO) / SiO 2 .
上述した課題を解決する第5の発明に係る高炉吹込み炭の調製方法は、前述した第4の発明に係る高炉吹込み炭の調製方法であって、
前記石炭への前記金属の担持量は、(CaO+MgO)/SiO2の重量比にて0.25〜1.4である
ことを特徴とする。
The method for preparing blast furnace blown coal according to the fifth invention for solving the above-described problem is a method for preparing blast furnace blown coal according to the fourth invention described above,
The amount of the metal supported on the coal is (CaO + MgO) / SiO 2 in a weight ratio of 0.25 to 1.4.
上述した課題を解決する第6の発明に係る高炉吹込み炭の調製方法は、前述した第5の発明に係る高炉吹込み炭の調製方法であって、
前記石炭への前記金属の担持量は、(CaO+MgO)/SiO2の重量比にて0.35〜1である
ことを特徴とする。
The method for preparing blast furnace blown coal according to the sixth invention for solving the above-described problem is a method for preparing blast furnace blown coal according to the fifth invention described above,
The amount of the metal supported on the coal is 0.35 to 1 in a weight ratio of (CaO + MgO) / SiO 2 .
上述した課題を解決する第7の発明に係る高炉吹込み炭は、前述した第1乃至第6の何れか一つの発明に係る高炉吹込み炭の調製方法により得られたことを特徴とする。 A blast furnace blown coal according to a seventh invention for solving the above-described problems is obtained by the method for preparing a blast furnace blown coal according to any one of the first to sixth inventions described above.
上述した課題を解決する第8の発明に係る高炉吹込み炭の利用方法は、前述した第1乃至第6の何れか一つの発明に係る高炉吹込み炭の調製方法により得られた高炉吹込み炭を高炉設備の高炉本体の内部に羽口から吹き込むことを特徴とする。 The utilization method of the blast furnace injection coal which concerns on 8th invention which solves the subject mentioned above is the blast furnace injection obtained by the preparation method of the blast furnace injection coal which concerns on any one invention of the 1st thru | or 6 mentioned above. Charcoal is blown from the tuyere into the blast furnace body of the blast furnace facility.
本発明によれば、石炭に担持した金属がナノ粒子化し当該石炭中にまんべんなく分散しており、燃焼灰とナノ粒子化した前記金属と高炉本体内のスラグの混合均一化を加速することから、高炉本体内への吹込み量を増やしても、当該高炉本体内のスラグの流動不良が生じにくい高炉吹込み炭を得ることができる。 According to the present invention, the metal supported on the coal is nanoparticulate and dispersed evenly in the coal, accelerating the mixing and homogenization of the combustion ash, the nanoparticulated metal and the slag in the blast furnace body, Even if the amount of injection into the blast furnace body is increased, blast furnace injection charcoal that is less likely to cause poor flow of slag in the blast furnace body can be obtained.
本発明に係る高炉吹込み炭の調製方法、高炉吹込み炭およびその利用方法の実施形態を図面に基づいて説明するが、本発明は、図面に基づいて説明する以下の実施形態のみに限定されるものではない。 Embodiments of a method for preparing blast furnace blow coal, a blast furnace blow coal and a method for using the same according to the present invention will be described with reference to the drawings. However, the present invention is limited only to the following embodiments described with reference to the drawings. It is not something.
本発明に係る高炉吹込み炭の調製方法、高炉吹込み炭およびその利用方法の一つの実施形態を図1〜図3に基づいて説明する。 One embodiment of the preparation method of blast furnace injection coal concerning the present invention, blast furnace injection coal, and its utilization method is described based on Drawing 1-3.
本実施形態に係る高炉吹込み炭は、高炉設備の高炉本体の内部に羽口から吹き込む高炉吹込み炭であって、図1に示すように、石炭の原炭時の石炭の灰分を分析すると共に、石炭の灰分中のAl,Si,Ca,Mgの重量%を分析し(第1の工程S1)、分析して得られたデータに基づき、石炭の灰融点を導出し(第2の工程S2)、導出された前記石炭の灰融点に基づき、当該石炭に担持する金属種を選定すると共に、当該石炭への前記金属の担持量を導出し(第3の工程S3)、前記第3の工程S3で得られたデータに基づき前記担持量の前記金属をイオン交換法により前記石炭に担持し(第4の工程S4)、前記金属を担持した前記石炭(以下、金属担持石炭と称す)を乾留する(第5の工程S5)ことにより、容易に調製することができる。 The blast furnace injection coal according to the present embodiment is blast furnace injection coal that is injected from the tuyere into the inside of the blast furnace body of the blast furnace facility, and as shown in FIG. At the same time, the weight percent of Al, Si, Ca, Mg in the ash content of the coal is analyzed (first step S1), and the ash melting point of the coal is derived based on the data obtained by the analysis (second step). S2), based on the derived ash melting point of the coal, the metal species to be supported on the coal is selected, the amount of the metal supported on the coal is derived (third step S3), and the third Based on the data obtained in step S3, the supported amount of the metal is supported on the coal by an ion exchange method (fourth step S4), and the coal supporting the metal (hereinafter referred to as metal-supported coal) is used. Easy to prepare by dry distillation (fifth step S5) Kill.
前記第1の工程S1において、石炭の原炭時の石炭の灰分の組成は、石炭(原炭)の品質として最も基本的に使われるデータであって、原炭の産出時や使用時などで実施される、例えばJIS M8812(2004)に規定される工業分析により得られるデータを用いることが可能である。 In the first step S1, the composition of the ash content of the raw coal is the data that is most basically used as the quality of the coal (raw coal). It is possible to use data obtained by industrial analysis carried out, for example as defined in JIS M8812 (2004).
前記第1の工程S1において、石炭の灰分中のAl,Si,Ca,Maの重量%は、石炭(原炭)の品質として最も基本的に使用されるデータであって、原炭の産出時や使用時などで実施される、例えばJIS K 0083に規定される排ガス中の金属分析方法(ICP(高周波誘導結合プラズマ)による方法)、JIS M 8815に規定される石炭灰及びコークス灰の分析方法により得られるデータを用いることが可能である。 In the first step S1, the weight% of Al, Si, Ca, Ma in the ash content of coal is the data that is most basically used as the quality of coal (raw coal), For example, a method for analyzing metals in exhaust gas (method using ICP (High Frequency Inductively Coupled Plasma)) defined in JIS K 0083, a method for analyzing coal ash and coke ash defined in JIS M 8815 Can be used.
前記第1の工程S1にて分析する石炭(原炭)として、例えば、褐炭、亜瀝青炭等、一般的にカルボキシ基(−COOH)やヒドロキシ基(−OH)を多く含んだ低品位石炭(酸素原子含有割合(ドライベース):18重量%超、平均細孔径:3〜4nm)を用いることが好ましい。 As the coal (raw coal) to be analyzed in the first step S1, for example, lignite, subbituminous coal, etc., low-grade coal (oxygen) generally containing a lot of carboxy groups (—COOH) and hydroxy groups (—OH). It is preferable to use an atomic content ratio (dry base): more than 18% by weight and an average pore diameter: 3 to 4 nm.
前記第2の工程S2において、前記石炭の灰融点は、前記第1の工程S1で得たられデータ(前記石炭の灰分中のAl,Si,Ca,Mgの重量%)に基づき、灰分中のAl,Si,Ca,Mg酸化物を100重量%とし、Al2O3含有量を20重量%に換算し、例えば、図2に示すSiO2−CaO−MgO−20%Al2O3の4元系状態図を用いて導出することが可能である。 In the second step S2, the ash melting point of the coal is determined based on the data obtained in the first step S1 (weight% of Al, Si, Ca, Mg in the coal ash). Al, Si, Ca, Mg oxide is 100% by weight, and the Al 2 O 3 content is converted to 20% by weight. For example, SiO 2 —CaO—MgO—20% Al 2 O 3 4 shown in FIG. It is possible to derive using the original system phase diagram.
前記第3の工程S3において、前記石炭に担持する金属種は、前記第1の工程S1で得られたデータ(灰分中のAl,Si,Ca,Mg酸化物を100重量%とし、Al2O3含有量を20重量%に換算したときのSiO2重量%,CaO重量%,MgO重量%)および前記第2の工程S2で得られたデータ(石炭の灰融点)に基づき、選定することが好ましい。
前記金属の種類(金属種)として、例えば、マグネシウム(Mg)、カルシウム(Ca)などのアルカリ土類金属のうちの少なくとも1種を選択することが好ましい。特に、前記石炭の灰分中のケイ素(Si)成分が多く(SiO2重量%にて、例えば、75重量%以上)、灰の融点が高い(例えば、1500℃以上)場合には、前記石炭にカルシウム(Ca)を担持することが好ましい。
In the third step S3, the metal species supported on the coal is the data obtained in the first step S1 (Al, Si, Ca, Mg oxide in ash content is 100% by weight, Al 2 O 3 When selecting the content based on 20% by weight of SiO 2 wt%, CaO wt%, MgO wt%) and the data obtained in the second step S2 (the ash melting point of coal) preferable.
As the metal type (metal type), it is preferable to select at least one of alkaline earth metals such as magnesium (Mg) and calcium (Ca). In particular, when the ash content of the coal is large (SiO 2 wt%, for example, 75 wt% or more) and the ash has a high melting point (for example, 1500 ° C. or more), the coal contains It is preferable to carry calcium (Ca).
前記第3の工程S3において、前記石炭に担持する金属の担持量は、前記第1の工程で得られたデータ(灰分中のAl,Si,Ca,Mg酸化物を100重量%とし、Al2O3含有量を20重量%に換算したときのSiO2重量%,CaO重量%,MgO重量%、石炭の灰融点)と、当該第3の工程S3で選定された前記金属とに基づき、導出することが好ましい。 In the third step S3, the amount of the metal supported on the coal is the data obtained in the first step (Al, Si, Ca, Mg oxide in ash is 100% by weight, Al 2 Derived based on SiO 2 wt%, CaO wt%, MgO wt%, ash melting point of coal when the O 3 content is converted to 20 wt%, and the metal selected in the third step S3 It is preferable to do.
前記第4の工程S4において、前記金属担持石炭は、例えば、前記金属のアルカリ水溶液(例えば、Ca(OH)2やMg(OH)2など)中に前記石炭を一定時間(例えば、1時間〜8時間)浸漬し、脱水することにより得ることが可能である。 In the fourth step S4, the metal-supporting coal is, for example, the coal in an alkali aqueous solution of the metal (for example, Ca (OH) 2 or Mg (OH) 2 ) for a certain time (for example, 1 hour to 8 hours) soaking and dehydrating.
前記第5の工程S5において、前記金属担持石炭をキルンなどの熱処理炉で例えば350〜550℃で例えば30分〜2時間熱処理し、残留揮発分が15〜35%となるようにすることが好ましい。これにより、前記金属がナノ粒子化(数十nm〜数百nm)することになり、得られた高炉吹込み炭中にまんべんなく分散することになる。 In the fifth step S5, the metal-supported coal is preferably heat-treated at 350 to 550 ° C., for example, for 30 minutes to 2 hours in a heat treatment furnace such as a kiln so that the residual volatile content is 15 to 35%. . As a result, the metal is nanoparticulated (several tens to several hundreds of nanometers) and is evenly dispersed in the obtained blast furnace-blown coal.
このような本実施形態に係る高炉吹込み炭の調製方法により製造された高炉吹込み炭は、石炭の灰分中のAl,Si,Ca,Mg酸化物を100重量%とし当該灰分中のAl2O3含有量を20重量%としたときに前記石炭の灰融点が1400℃未満となるように、イオン交換法により石炭に金属を担持し、前記金属を担持した石炭を乾留したものであることから、石炭に担持した金属がナノ粒子化し当該石炭中にまんべんなく分散しており、燃焼灰とナノ粒子化した前記金属と高炉本体内のスラグの混合均一化を加速することから、高炉本体内への吹込み量を増やしても、当該高炉本体内のスラグの流動不良が生じにくい高炉吹込み炭を得ることができる。これにより、コークス使用量を削減することができる。 The blast furnace injection coal manufactured by the method for preparing the blast furnace injection coal according to this embodiment has Al, Si, Ca, Mg oxide in the ash content of coal as 100% by weight, and Al 2 in the ash content. The metal is supported on the coal by an ion exchange method so that the ash melting point of the coal is less than 1400 ° C. when the O 3 content is 20% by weight, and the coal supporting the metal is dry-distilled. From the above, the metal supported on the coal is nanoparticulated and dispersed evenly in the coal, accelerating the mixing and homogenization of the combustion ash, the nanoparticulated metal and the slag in the blast furnace body. Even if the blowing amount of the blast furnace is increased, it is possible to obtain blast furnace blowing charcoal in which poor flow of the slag in the blast furnace body hardly occurs. Thereby, the amount of coke used can be reduced.
さらに、ナノ粒子化した前記金属は、触媒作用が働き、酸素存在下で低温であっても燃焼・ガス化反応を促進することができる。
前記石炭の灰分や前記金属が前記石炭中に分散しており、ナノ粒子化した前記金属と燃焼灰とスラグとの混合は、石炭が燃焼した後に開始するため、高炉本体の羽口に吹き込む前に前記金属をナノ粒子化することで、燃焼が速く開始、終了し、混合開始が速くなることで、均一化速度が速くなる。
高炉本体の羽口に吹き込む前に前記石炭を乾留することで、熱分解熱が不要であり、不活性な熱分解ガスの発生量が少なくなるため、燃焼温度が高くなり、燃焼速度が大きくなることで、燃焼が速く終了し、混合開始が速くなる。
すなわち、高炉本体の羽口に吹き込む前に前記石炭を乾留することで、石炭性状の変化と前記金属のナノ粒子化により、燃焼が加速されて、ナノ粒子した前記金属と燃焼炭とスラグとの混合が早期に実施され、これらの混合均一化が加速されて、混合スラグの流動性が増すことになり、排出性が向上する。
Further, the metal in the form of nanoparticles has a catalytic action, and can promote the combustion / gasification reaction even at a low temperature in the presence of oxygen.
The coal ash and the metal are dispersed in the coal, and the mixing of the nanoparticulated metal with the combustion ash and slag starts after the coal burns, before being blown into the tuyere of the blast furnace body In addition, by making the metal into nanoparticles, the combustion starts and ends quickly, and the start of mixing becomes faster, so that the homogenization speed becomes faster.
By dry-distilling the coal before blowing into the tuyere of the blast furnace body, no heat of pyrolysis is required, and the amount of inert pyrolysis gas is reduced, resulting in a high combustion temperature and a high combustion rate. As a result, the combustion ends quickly and the start of mixing becomes faster.
That is, by carbonizing the coal before blowing into the tuyere of the blast furnace main body, the combustion is accelerated by the change in the properties of the coal and the nanoparticulation of the metal, and the nanoparticulate metal, combustion coal, and slag Mixing is carried out at an early stage, and the mixing and homogenization thereof is accelerated, so that the fluidity of the mixing slag is increased and the discharge performance is improved.
上記特許文献2においては、フラックスを吹き込むことから、当該フラックス用の貯蔵タンクや吹き込みノズルを高炉毎に設ける必要があり、高炉の数量に応じて装置が複雑化してしまうが、本実施形態においては、所望の高炉吹込み炭を得ることができることから、装置が複雑にならず、高炉の操業信頼性を高めることができる。
In
なお、前記石炭にカルシウムを担持する場合、前記石炭の灰分中のAl,Si,Ca,Mg酸化物の全重量を100重量%としAl2O3含有量を20重量%に換算したときに、酸化カルシウム(CaO)と酸化マグネシウム(MgO)の総重量%がシリカ(SiO2)の重量%に対して、0.2(=0.14/0.66)以上1.55(=0.486/0.314)以下であると好ましく、0.25(=0.16/0.64)以上1.4(=0.47/0.33)以下であるとより好ましく、0.35(=0.208/0.592)以上1(=0.4/0.4)以下であるとより一層好ましい。すなわち、酸化カルシウム(CaO)と酸化マグネシウム(MgO)の総重量%が14重量%〜48重量%となるように酸化カルシウムを前記石炭に担持することが好ましく、酸化カルシウム(CaO)と酸化マグネシウム(MgO)の総重量%が16重量%〜47重量%となるように酸化カルシウムを前記石炭に担持することがより好ましく、酸化カルシウム(CaO)と酸化マグネシウム(MgO)の総重量%が21重量%〜40重量%となるように酸化カルシウムを前記石炭に担持することがより一層好ましい。なぜなら、灰分の組成と灰融点が既に知られている各種石炭について、酸化カルシウムおよび酸化マグネシウムとシリカの重量比と灰融点に着目してまとめると、図3に示される黒丸のようになり、これらデータの近似線が図3に示される曲線L1のようになるからである。すなわち、図3に示すように、(CaO+MgO)/SiO2が0.2より小さい、または1.55より大きいと、前記高炉吹込み炭の灰融点が1400℃よりも高くなり好ましくないからであり、(CaO+MgO)/SiO2が0.25より小さい、または1.4より大きいと、前記高炉吹込み炭の灰融点が1300℃よりも高くなり好ましくないからであり、(CaO+MgO)/SiO2が0.35より小さい、または1より大きいと、前記高炉吹込み炭の灰融点が1200℃よりも高くなり好ましくないからである。 In the case of carrying calcium into the coal, Al in the ash of the coal, Si, Ca, the total weight is 100 wt% Al 2 O 3 content of Mg oxide when converted to 20 wt%, The total weight percent of calcium oxide (CaO) and magnesium oxide (MgO) is 0.2 (= 0.14 / 0.66) or more and 1.55 (= 0.486) based on the weight percent of silica (SiO 2 ). /0.314) or less, more preferably 0.25 (= 0.16 / 0.64) or more and 1.4 (= 0.47 / 0.33) or less, and 0.35 (= More preferably, it is 0.208 / 0.592) or more and 1 (= 0.4 / 0.4) or less. That is, calcium oxide is preferably supported on the coal so that the total weight percent of calcium oxide (CaO) and magnesium oxide (MgO) is 14% to 48% by weight, and calcium oxide (CaO) and magnesium oxide ( More preferably, the calcium oxide is supported on the coal so that the total weight% of MgO) is 16 wt% to 47 wt%, and the total weight% of calcium oxide (CaO) and magnesium oxide (MgO) is 21 wt%. It is even more preferable to support calcium oxide on the coal so as to be ˜40% by weight. This is because various coals whose ash content and ash melting point are already known are summarized by focusing on the weight ratio of calcium oxide and magnesium oxide to silica and the ash melting point, as shown by the black circles shown in FIG. This is because the approximate line of data becomes a curve L1 shown in FIG. That is, as shown in FIG. 3, when (CaO + MgO) / SiO 2 is smaller than 0.2 or larger than 1.55, the ash melting point of the blast furnace blowing coal becomes higher than 1400 ° C., which is not preferable. When (CaO + MgO) / SiO 2 is smaller than 0.25 or larger than 1.4, the ash melting point of the blast furnace blown coal becomes higher than 1300 ° C., and (CaO + MgO) / SiO 2 is not preferable. This is because if it is smaller than 0.35 or larger than 1, the ash melting point of the blast furnace-blown coal becomes higher than 1200 ° C., which is not preferable.
[他の実施形態]
上記では、イオン交換法により、Mg,Caなどのアルカリ土類金属を石炭に担持する高炉吹込み炭の調製方法について説明したが、前記金属としてベリリウム(Be)などのアルカリ土類金属を前記石炭に担持する高炉吹込み炭の調製方法とすることも可能である。このような高炉吹込み炭の調製方法であっても、上述した実施形態に係る高炉吹込み炭の調製方法と同様な作用効果を奏する。
[Other Embodiments]
In the above description, the method for preparing blast furnace blown coal in which alkaline earth metals such as Mg and Ca are supported on the coal by the ion exchange method has been described. However, alkaline metal such as beryllium (Be) is used as the metal. It is also possible to use a method for preparing blast furnace-blown coal supported on the steel. Even such a method for preparing blast furnace blown coal has the same effects as the method for preparing blast furnace blown coal according to the above-described embodiment.
また、アルミニウム(Al)などのホウ素族元素を石炭に担持する高炉吹込み炭の調製方法とすることも可能である。このような高炉吹込み炭の調製方法であっても、上述した実施形態に係る高炉吹込み炭の調製方法と同様な作用効果を奏する。 Moreover, it is also possible to set it as the preparation method of blast furnace injection coal which carry | supports boron group elements, such as aluminum (Al), to coal. Even such a method for preparing blast furnace blown coal has the same effects as the method for preparing blast furnace blown coal according to the above-described embodiment.
Li,Na,Kなどのアルカリ金属を石炭に担持する高炉吹込み炭の調製方法とすることも可能である。このような高炉吹込み炭の調製方法であっても、上述した実施形態に係る高炉吹込み炭の調製方法と同様な作用効果を奏する。 It is also possible to use a method for preparing blast furnace blown coal in which an alkali metal such as Li, Na, K or the like is supported on the coal. Even such a method for preparing blast furnace blown coal has the same effects as the method for preparing blast furnace blown coal according to the above-described embodiment.
本発明に係る高炉吹込み炭の調製方法の作用効果を確認するために行った実施例を以下に説明するが、本発明は、各種データに基づいて説明する以下の実施例のみに限定されるものではない。 Examples carried out to confirm the operational effects of the method for preparing blast furnace blow coal according to the present invention will be described below, but the present invention is limited only to the following examples described based on various data. It is not a thing.
まず、図1に示すように、炭種Aの石炭の原炭時の水分含有量及び石炭の灰分を分析すると共に、石炭の灰分中のAl,Si,Ca,Mgの重量%を予め分析する(第1の工程S1)。 First, as shown in FIG. 1, while analyzing the moisture content and raw coal ash of coal type A, the weight percentage of Al, Si, Ca, Mg in the ash of the coal is analyzed in advance. (First step S1).
前記炭種Aは、当該炭種Aの灰分中のAl,Si,Ca,Mg酸化物の全重量を100重量%としAl2O3含有量を20重量%に換算したときに、当該炭種Aの灰分中のSi,Ca,Mgの各酸化物の含有量が上述の表1に示す値をそれぞれ示している。よって、前記炭種Aの灰融点は、石炭の灰分中のAl,Si,Ca,Mg酸化物を100重量%としAl2O3含有量を20重量%に換算したときのSiO2−CaO−MgO−20%Al2O3の4元系状態図である図2において、炭種Aに位置づけられる。 When the total weight of Al, Si, Ca, Mg oxide in the ash content of the coal type A is 100% by weight and the Al 2 O 3 content is converted to 20% by weight, the coal type A The content of each oxide of Si, Ca, and Mg in the ash content of A indicates the value shown in Table 1 above. Therefore, the ash melting point of the coal type A is SiO 2 —CaO— when Al, Si, Ca, Mg oxide in the ash content of coal is 100 wt% and the Al 2 O 3 content is converted to 20 wt%. In FIG. 2, which is a quaternary phase diagram of MgO-20% Al 2 O 3 , it is positioned as coal type A.
続いて、前記炭種Aの灰分中のAl,Si,Ca,Mg酸化物の全重量を100重量%としAl2O3含有量を20重量%に換算したときの当該灰分中のCaO含有量とMgO含有量とSiO2含有量とに基づき、例えば、図2を用いて前記炭種Aの灰融点を求める。 Subsequently, the CaO content in the ash when the total weight of Al, Si, Ca, Mg oxide in the ash of the coal type A is 100% by weight and the Al 2 O 3 content is converted to 20% by weight. Based on the MgO content and the SiO 2 content, for example, the ash melting point of the coal type A is obtained using FIG.
続いて、前記炭種Aの灰融点および石炭の灰融点が1400未満となる領域から、前記炭種Aに担持する金属種を選定すると共に、選定した金属の炭種Aへの担持量を導出する。ここでは、CaOを約10重量%前記炭種Aに担持することにより、石炭の灰融点が1400℃以下となることが分かることから、前記炭種Aに担持する金属種としてCaOを選定し、その担持量として10重量%を導出する。 Subsequently, from the region where the ash melting point of the coal type A and the ash melting point of the coal are less than 1400, the metal type supported on the coal type A is selected and the loading amount of the selected metal on the coal type A is derived. To do. Here, it can be seen that by supporting about 10% by weight of CaO on the coal type A, the ash melting point of the coal becomes 1400 ° C. or lower, so CaO is selected as the metal type supported on the coal type A, 10% by weight is derived as the loading amount.
続いて、前記CaOを前記炭種Aにイオン交換法により担持し、乾留することで、灰融点が1400℃以下となる高炉吹込み炭を得ることができる。 Subsequently, the blast furnace blown coal with an ash melting point of 1400 ° C. or less can be obtained by carrying the CaO on the coal type A by ion exchange and dry distillation.
よって、本実施例によれば、石炭の原炭時の石炭の灰分を分析すると共に、石炭の灰分中のAl,Si,Ca,Mgの重量%を分析し、分析して得られたデータに基づき、前記石炭の灰融点を導出し、得られたデータに基づき、前記石炭の灰分の融点が1200〜1400℃となるように、当該石炭に担持するCaO(金属種)を選定すると共に、その担持量を導出し、前記担持量の前記金属をイオン交換法により前記石炭に担持し、乾留することにより、石炭に担持した金属がナノ粒子化し当該石炭中にまんべんなく分散しており、燃焼灰とナノ粒子化した前記金属と高炉本体内のスラグの混合均一化を加速することから、高炉本体内への吹込み量を増やしても、当該高炉本体内のスラグの流動不良が生じにくい高炉吹込み炭を得ることができることが明らかとなった。 Therefore, according to this example, the ash content of coal at the time of raw coal is analyzed, and the weight percent of Al, Si, Ca, Mg in the ash content of coal is analyzed, and the data obtained by analysis is obtained. Based on the obtained data, the ash melting point of the coal is derived, and based on the obtained data, the CaO (metal species) supported on the coal is selected so that the melting point of the coal ash is 1200 to 1400 ° C. Deriving the loading amount, loading the supported amount of the metal on the coal by ion exchange method, and by dry distillation, the metal supported on the coal is nanoparticulate and uniformly dispersed in the coal, and the combustion ash and Blast furnace injection is less likely to cause poor flow of slag in the blast furnace body, even if the amount of injection into the blast furnace body is increased, because the mixing and homogenization of the slag in the blast furnace body is accelerated. To get charcoal It became clear that you can.
本発明によれば、高炉本体内への吹込み量を増やしても、当該高炉本体内のスラグの流動不良が生じにくい高炉吹込み炭を得ることができるので、製鉄産業において極めて有益に利用することができる。 According to the present invention, even if the amount of injection into the blast furnace body is increased, it is possible to obtain blast furnace injection charcoal that is unlikely to cause poor flow of slag in the blast furnace body. be able to.
L1 データから求められた近似線(高炉吹込み炭の(CaO+MgO)/SiO2と灰融点の関係を示す線)
S1 第1の工程(分析工程)
S2 第2の工程(石炭の灰融点導出工程)
S3 第3の工程(担持金属種選定および担持量導出工程)
S4 第4の工程(担持工程)
S5 第5の工程(乾留工程)
Approximate line obtained from L1 data (line showing the relationship between (CaO + MgO) / SiO 2 and ash melting point of blast furnace-blown coal)
S1 1st process (analysis process)
S2 Second step (Deriving step of coal ash melting point)
S3 Third step (supported metal species selection and supported amount derivation step)
S4 Fourth step (supporting step)
S5 5th process (dry distillation process)
Claims (8)
石炭の原炭時の石炭の灰分、及び当該灰分中のAl,Si,Ca,Mgの重量%を分析する第1の工程と、
分析して得られたデータに基づき、前記石炭の灰融点を導出する第2の工程と、
前記第1の工程および前記第2の工程で得られたデータに基づき、前記石炭の灰分の融点が1200〜1400℃となるように、当該石炭に担持する金属種を選定すると共に、その担持量を導出する第3の工程と、
前記担持量の前記金属をイオン交換法により前記石炭に担持する第4の工程と、
前記第4の工程で得られた前記石炭を乾留する第5の工程と
を有する
ことを特徴とする高炉吹込み炭の調製方法。 A method for preparing blast furnace-blown coal that is blown into a blast furnace body of a blast furnace facility from a tuyere,
A first step of analyzing coal ash at the time of coal raw coal and weight% of Al, Si, Ca, Mg in the ash;
A second step of deriving the ash melting point of the coal based on the data obtained by analysis;
Based on the data obtained in the first step and the second step, the metal species to be supported on the coal is selected so that the melting point of the ash of the coal is 1200 to 1400 ° C., and the supported amount A third step of deriving
A fourth step of supporting the amount of the metal on the coal by an ion exchange method;
And a fifth step of dry distillation of the coal obtained in the fourth step.
前記金属は、カルシウムまたはマグネシウムの少なくとも1種である
ことを特徴とする高炉吹込み炭の調製方法。 A method for preparing blast furnace blown coal according to claim 1,
The said metal is at least 1 sort (s) of calcium or magnesium, The preparation method of blast furnace injection charcoal characterized by the above-mentioned.
前記第5の工程にて、前記石炭は、350〜550℃で熱処理されて残留揮発分が15〜35%になる
ことを特徴とする高炉吹込み炭の調製方法。 A method for preparing blast furnace-blown coal according to claim 1 or claim 2,
In the fifth step, the coal is heat-treated at 350 to 550 ° C to have a residual volatile content of 15 to 35%.
前記石炭への前記金属の担持量は、(CaO+MgO)/SiO2の重量比にて0.2〜1.55である
ことを特徴とする高炉吹込み炭の調製方法。 A method for preparing blast furnace-blown coal according to any one of claims 1 to 3,
The amount of the metal supported on the coal is 0.2 to 1.55 in a weight ratio of (CaO + MgO) / SiO 2 .
前記石炭への前記金属の担持量は、(CaO+MgO)/SiO2の重量比にて0.25〜1.4である
ことを特徴とする高炉吹込み炭の調製方法。 A method for preparing blast furnace blown coal according to claim 4,
The amount of the metal supported on the coal is 0.25 to 1.4 in a weight ratio of (CaO + MgO) / SiO 2 .
前記石炭への前記金属の担持量は、(CaO+MgO)/SiO2の重量比にて0.35〜1である
ことを特徴とする高炉吹込み炭の調製方法。 A method for preparing blast furnace blown coal according to claim 5,
The amount of the metal supported on the coal is 0.35 to 1 in a weight ratio of (CaO + MgO) / SiO 2 .
ことを特徴とする高炉吹込み炭。 A blast furnace blown coal obtained by the method for preparing a blast furnace blown coal according to any one of claims 1 to 6.
ことを特徴とする高炉吹込み炭の利用方法。 A blast furnace in which blast furnace blown coal obtained by the method for preparing blast furnace blown coal according to any one of claims 1 to 6 is blown into a blast furnace body of a blast furnace facility from a tuyere. How to use blow charcoal.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014031361A JP2015155569A (en) | 2014-02-21 | 2014-02-21 | Method of preparing blast furnace blow coal, blast furnace blow coal and utilization thereof |
KR1020167022427A KR20160110977A (en) | 2014-02-21 | 2014-11-17 | Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same |
PCT/JP2014/080297 WO2015125360A1 (en) | 2014-02-21 | 2014-11-17 | Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same |
DE112014006388.6T DE112014006388T5 (en) | 2014-02-21 | 2014-11-17 | Process for the production of blast furnace injection coal, blast furnace injection coal, and their use |
US15/119,913 US20170058372A1 (en) | 2014-02-21 | 2014-11-17 | Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same |
CN201480075882.6A CN106029911A (en) | 2014-02-21 | 2014-11-17 | Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014031361A JP2015155569A (en) | 2014-02-21 | 2014-02-21 | Method of preparing blast furnace blow coal, blast furnace blow coal and utilization thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015155569A true JP2015155569A (en) | 2015-08-27 |
Family
ID=53877889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014031361A Pending JP2015155569A (en) | 2014-02-21 | 2014-02-21 | Method of preparing blast furnace blow coal, blast furnace blow coal and utilization thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170058372A1 (en) |
JP (1) | JP2015155569A (en) |
KR (1) | KR20160110977A (en) |
CN (1) | CN106029911A (en) |
DE (1) | DE112014006388T5 (en) |
WO (1) | WO2015125360A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020046280A (en) * | 2018-09-19 | 2020-03-26 | 三菱重工業株式会社 | Ash melting temperature estimation device and ash melting temperature estimation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330114A (en) * | 1993-05-19 | 1994-11-29 | Nippon Steel Corp | Method for blowing powder to blast furnace |
JP2002206106A (en) * | 2000-10-25 | 2002-07-26 | Nippon Steel Corp | Operation method of blast furnace by pulverized coal blowing |
JP2006152331A (en) * | 2003-11-27 | 2006-06-15 | Jfe Steel Kk | Method for blowing used plastic into furnace, granulated used plastic for blowing into furnace, and manufacturing method therefor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03291313A (en) | 1990-04-06 | 1991-12-20 | Nippon Steel Corp | Method for operating blast furnace |
JPH05156330A (en) | 1991-12-04 | 1993-06-22 | Sumitomo Metal Ind Ltd | Method for injecting pulverized coal from tuyere in blast furnace |
CN1276980C (en) * | 2005-02-02 | 2006-09-27 | 东北大学 | Iron making process in blast furnace and additives therefor |
CN102230040B (en) * | 2011-06-17 | 2013-01-23 | 中冶京诚工程技术有限公司 | Iron-smelting method |
JP6016210B2 (en) * | 2012-08-13 | 2016-10-26 | 三菱重工業株式会社 | Production method of blast furnace injection coal |
JP2014077156A (en) * | 2012-10-09 | 2014-05-01 | Mitsubishi Heavy Ind Ltd | Method of preparing blast furnace coal |
-
2014
- 2014-02-21 JP JP2014031361A patent/JP2015155569A/en active Pending
- 2014-11-17 US US15/119,913 patent/US20170058372A1/en not_active Abandoned
- 2014-11-17 CN CN201480075882.6A patent/CN106029911A/en active Pending
- 2014-11-17 DE DE112014006388.6T patent/DE112014006388T5/en not_active Withdrawn
- 2014-11-17 KR KR1020167022427A patent/KR20160110977A/en active IP Right Grant
- 2014-11-17 WO PCT/JP2014/080297 patent/WO2015125360A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330114A (en) * | 1993-05-19 | 1994-11-29 | Nippon Steel Corp | Method for blowing powder to blast furnace |
JP2002206106A (en) * | 2000-10-25 | 2002-07-26 | Nippon Steel Corp | Operation method of blast furnace by pulverized coal blowing |
JP2006152331A (en) * | 2003-11-27 | 2006-06-15 | Jfe Steel Kk | Method for blowing used plastic into furnace, granulated used plastic for blowing into furnace, and manufacturing method therefor |
Non-Patent Citations (2)
Title |
---|
折笠 広典ら: ""Caイオン交換褐炭の配合による高反応性・高強度コークスの製造"", 鉄と鋼, vol. 96, no. 5, JPN6017025982, 4 June 2010 (2010-06-04), JP, pages 272 - 279, ISSN: 0003598193 * |
持田 勲ら: ""石炭の乾留とコークス化機構"", 鉄と鋼, vol. 71, no. 14, JPN6017025983, 19 June 2009 (2009-06-19), JP, pages 1589 - 1595, ISSN: 0003787433 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020046280A (en) * | 2018-09-19 | 2020-03-26 | 三菱重工業株式会社 | Ash melting temperature estimation device and ash melting temperature estimation method |
JP7001568B2 (en) | 2018-09-19 | 2022-01-19 | 三菱重工業株式会社 | Ash melting temperature estimation device and ash melting temperature estimation method |
Also Published As
Publication number | Publication date |
---|---|
WO2015125360A1 (en) | 2015-08-27 |
KR20160110977A (en) | 2016-09-23 |
DE112014006388T5 (en) | 2016-11-24 |
US20170058372A1 (en) | 2017-03-02 |
CN106029911A (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101800141B1 (en) | Method for operating blast furnace | |
US9617609B2 (en) | Method for preparing blast furnace blow-in coal | |
JP6041072B1 (en) | Raw material charging method to blast furnace | |
WO2009047927A1 (en) | Arc furnace steelmaking process using palm shell charcoal | |
WO2015125360A1 (en) | Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same | |
JP6016210B2 (en) | Production method of blast furnace injection coal | |
JP2009221549A (en) | Method for operating blast furnace | |
JP6322033B2 (en) | Blast furnace operation method | |
JP2016050323A (en) | Blast furnace operation method | |
KR101634053B1 (en) | Method for preparing blast furnace blow-in coal | |
KR102380361B1 (en) | Steel dust treatment method, zinc production method, steel raw material production method, and steel raw material | |
WO2016208435A1 (en) | Ferro-coke production method | |
JP5561032B2 (en) | Method for producing sintered ore | |
JP6016001B1 (en) | Ferro-coke manufacturing method | |
JP6269549B2 (en) | Blast furnace operation method | |
JP2011149090A (en) | Method for operating blast furnace using ferro coke | |
JP2018168416A (en) | Blast furnace operation method | |
JP2011190471A (en) | Method for operating blast furnace | |
JP6287916B2 (en) | Blast furnace operation method | |
JP2009235508A (en) | Method for operating blast furnace | |
JP6028696B2 (en) | Decarburization blowing method for high alloy steel | |
JP2014062152A (en) | Method for producing dry-distilled coal, method for operating blast furnace, and method for operation boiler | |
JP2006161165A (en) | Method for operating blast furnace | |
He et al. | PERFORMANCE INFLUENCE STUDY ON BLAST FURNACE RAW MATERIALS BY ZINC AND PB |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170711 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180508 |