JPH06330114A - Method for blowing powder to blast furnace - Google Patents

Method for blowing powder to blast furnace

Info

Publication number
JPH06330114A
JPH06330114A JP13924893A JP13924893A JPH06330114A JP H06330114 A JPH06330114 A JP H06330114A JP 13924893 A JP13924893 A JP 13924893A JP 13924893 A JP13924893 A JP 13924893A JP H06330114 A JPH06330114 A JP H06330114A
Authority
JP
Japan
Prior art keywords
powder
iron
flux
cao
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13924893A
Other languages
Japanese (ja)
Inventor
Akihiko Shinotake
昭彦 篠竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13924893A priority Critical patent/JPH06330114A/en
Publication of JPH06330114A publication Critical patent/JPH06330114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To prevent the accumulation of undissolved powder ore and to improve productivity by mixing an optimum ratio of CaO flux with reduced iron-contg. powder having SiO2 and Al2O3 as main impurities and blowing this mixture together with a specific ratio of pulverized coal into a blast furnace from tuyeres. CONSTITUTION:The iron-contg powder having the SiO2 and the Al2O3 as >=60% of the impurity content and >=60% reduction ratio is blown together with the pulverized coal into the blast furnace to improve a tapping rate and to reduce a fuel rate. A flux is mixed and blown with an into the iron-contg. powder described above. In the above-mentioned blast furnace operation method. The flux contg. >=70% CaO and CaCo3 is used as a slag forming agent at this time. The mixing ratio of the flux at which the m.p. of the mixture composed of the SiO2, Al2O3 and CaO in the iron-contg. powder and the CaO and CaCo3 in the flux is min. is determined from the state diagram of a ternary system at this time, The flux is mixed within this optimum point + or -20%. This powder mixture is blown at 50 to 300kg/t molten iron together with pulverized coal at 50 to 250kg/t molten iron into the furnace from the tuyeres at 0.2 to 1.2 weight ratio of the powder and the pulverized coal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、羽口より粉体吹き込み
を行う高炉の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace in which powder is blown from tuyere.

【0002】[0002]

【従来の技術】高炉操業において、羽口からCaO,M
gO系フラックスや鉄鉱石等の粉体を吹き込むことは、
炉内反応を制御し、溶銑中のSiやSの濃度を低くする
など成分を調整するために行われている。例えば特開昭
61−261408には、低焼結鉱比による高炉操業に
おいて溶銑中のSiやSの濃度を低くすることを目的と
して、溶融滓の塩基度(CaO/SiO2 )およびAl
23 の割合を特定範囲に調整するように粉末状の石灰
石や蛇紋岩を羽口から吹き込む方法が開示されている。
2. Description of the Related Art In a blast furnace operation, from tuyere to CaO, M
Blowing powder such as gO flux and iron ore,
It is performed to control the reaction in the furnace and adjust the components such as reducing the concentration of Si and S in the hot metal. For example, Japanese Patent Laid-Open No. 61-261408 discloses that the basicity (CaO / SiO 2 ) and Al of molten slag and Al for the purpose of lowering the concentration of Si and S in the hot metal during blast furnace operation with a low sinter ratio.
A method is disclosed in which powdered limestone or serpentine is blown from the tuyere so as to adjust the ratio of 2 O 3 to a specific range.

【0003】また、特開平3−191009にはフラッ
クス吹き込み用配管の詰まりや摩耗を防止する目的でC
aO,MgO系フラックスと微粉炭を混合して吹き込む
方法が開示されている。
In Japanese Patent Laid-Open No. 3-19109, C is used for the purpose of preventing clogging and wear of the flux blowing pipe.
A method of mixing and blowing aO, MgO based flux and pulverized coal is disclosed.

【0004】また、高炉1基あたりの出銑比の向上と燃
料比の低減を目的として、予備還元した鉄鉱石など還元
率60%以上の鉄含有粉体を微粉炭とともに羽口から高
炉に吹き込む方法は、例えば本願出願人の先願になる特
願平04−350221に記載されている。
Further, for the purpose of improving the tap ratio and reducing the fuel ratio per blast furnace, iron-containing powder having a reduction rate of 60% or more such as pre-reduced iron ore is blown into the blast furnace together with pulverized coal from the tuyere. The method is described in, for example, Japanese Patent Application No. 04-350221 filed by the applicant of the present application.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭61−26
1408の方法は、鉄源のほとんど全量を高炉の炉頂か
ら装入する塊鉱石や焼結鉱によってまかなう通常の高炉
操業法において、溶銑の成分調整のために羽口よりフラ
ックス吹き込みを行うものであり、また特開平3−19
1009の方法も同様の高炉操業法において、配管の詰
まりや摩耗を防止する目的でフラックスに微粉炭を混合
して羽口より吹き込みを行うものであるので、羽口から
相当量の鉄源を炉内に入れることは意図していないとい
う問題点がある。一方、特願平04−350221の方
法は高炉1基あたりの出銑比の向上と燃料比の低減を目
的として還元率60%以上の鉄含有粉体を微粉炭ととも
に羽口から高炉に吹き込む方法、すなわち相当量の鉄源
を羽口から炉内に入れることを意図したものであるが、
還元率60%以上の粉鉱石は、相当量の粉状固体鉄を含
むFe,FeO,脈石の混合物である。この粉体は還元
率の低い粉鉱石すなわちFeの含有量が低く酸化物が主
体の鉱石に比べて融点が高いため、羽口から吹き込まれ
た際に容易に溶解せず粉の状態で飛散し、炉芯に侵入す
るなどして操業に悪影響を与えることがある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method of 1408 is to blow flux from the tuyere in order to adjust the composition of the hot metal in the normal blast furnace operating method in which almost all of the iron source is charged by lump ore or sinter that is charged from the furnace top of the blast furnace. Yes, and JP-A-3-19
The method of 1009 is a similar blast furnace operation method in which pulverized coal is mixed with flux and blown from the tuyere for the purpose of preventing clogging and wear of the pipe, and therefore a considerable amount of iron source is fed from the tuyere. There is a problem that it is not intended to be put inside. On the other hand, the method of Japanese Patent Application No. 04-350221 is a method of injecting iron-containing powder having a reduction rate of 60% or more together with pulverized coal into the blast furnace from the tuyere for the purpose of improving the tap ratio and reducing the fuel ratio per blast furnace. That is, it is intended to put a considerable amount of iron source into the furnace through the tuyere,
Fine ore with a reduction rate of 60% or more is a mixture of Fe, FeO, and gangue that contains a considerable amount of solid iron powder. Since this powder has a low reduction ratio, that is, it has a low melting point, that is, Fe and has a higher melting point than an oxide-based ore, it does not easily dissolve when blown from the tuyere and scatters in powder form. , It may adversely affect the operation by invading the furnace core.

【0006】本発明は、出銑比の向上と燃料比の低減を
図るため相当量の鉄源を羽口から炉内に入れる操業にお
いて、炉芯内への未溶解粉鉱石の蓄積を防止し生産性を
向上させる高炉への粉体吹き込み方法を提供することを
目的とする。
The present invention prevents the accumulation of undissolved powdered ore in the core of a furnace in the operation of putting a considerable amount of iron source into the furnace from the tuyere in order to improve the tap ratio and reduce the fuel ratio. An object of the present invention is to provide a method for injecting powder into a blast furnace that improves productivity.

【0007】[0007]

【課題を解決するための手段】本発明は、還元率60%
以上の粉鉱石またはダスト等の鉄含有粉体を、その脈石
などの不純物組成に応じて混合割合を制御したフラック
スと共に高炉羽口より吹き込むことにより、混合粉体の
融点を低下せしめて高炉内に吹き込まれてからの溶解を
促進することを特徴とする。すなわち、本発明の要旨と
するところは、鉄または酸化鉄を除いた不純物成分のう
ち60%以上がSiO2 およびAl23 から成る還元
率60%以上の鉄含有粉体を微粉炭とともに高炉へ吹き
込む操業方法において、造滓剤としてCaOおよびCa
CO3 を70%以上含有するスラックスを用い、CaO
−SiO2 −Al23 3元系の酸化物の状態図より、
前記鉄含有粉体中のSiO2 ,Al23 ,CaOとフ
ラックス中のCaO,CaCO3 の混合物の融点が最低
となるフラックスの混合割合を見出し、フラックスを前
記鉄含有粉体に対してその最適点±20重量%以内の割
合で混合した混合粉体50〜300kg/t溶銑を、微
粉炭50〜250kg/t溶銑とともに、前記粉体と微
粉炭の重量比が0.2〜1.2となるように高炉羽口よ
り炉内に吹き込むことにある。
According to the present invention, the reduction rate is 60%.
By blowing iron-containing powder such as the above powdered ore or dust from the tuyere of the blast furnace together with the flux whose mixing ratio is controlled according to the composition of impurities such as gangue, the melting point of the mixed powder is lowered and the inside of the blast furnace is reduced. It is characterized by promoting dissolution after being blown into. That is, the gist of the present invention is that iron-containing powder having a reduction rate of 60% or more, in which 60% or more of the impurity components other than iron or iron oxide are composed of SiO 2 and Al 2 O 3, is combined with pulverized coal in a blast furnace. In the operating method of blowing into the
Using slacks containing 70% or more of CO 3 , CaO
From the state diagram of -SiO 2 -Al 2 O 3 3 elemental oxides of,
The mixing ratio of the flux having the lowest melting point of the mixture of SiO 2 , Al 2 O 3 and CaO in the iron-containing powder and CaO and CaCO 3 in the flux was found, The mixed powder 50 to 300 kg / t hot metal mixed at a ratio within the optimum point ± 20% by weight is used together with the pulverized coal 50 to 250 kg / t hot metal, and the weight ratio of the powder to the pulverized coal is 0.2 to 1.2. To blow into the furnace from the tuyere of the blast furnace.

【0008】[0008]

【作用】高炉羽口から吹き込まれた鉄含有粉体はレース
ウェイを通って炉芯部に流入する。鉄含有粉体の還元率
が低い場合、固体Feは少なく鉄成分の多くはFeOま
たはFe23 の形で存在し、これら酸化物は通常不純
物の主成分であるSiO2 やAl23 等の酸化物と融
点の低い化合物をつくりやすい。これに対して鉄含有粉
体が還元率60%以上の粉鉱石またはダスト等である場
合、該粉体は固体Fe,FeOおよび不純物の混合物で
ある。この粉体を高炉羽口より炉内に吹き込んだ場合、
容易に溶解せず粉の状態で飛散し、炉芯に侵入するなど
して操業に悪影響を与える場合がある。しかるにCaO
またはCaCO3 を70%以上含有するフラックスを還
元率60%以上の鉄含有粉体に混合して高炉羽口より吹
き込むならば、鉄含有粉体中の不純物とフラックスが低
融点の化合物をつくるため、炉内で容易に溶融して粉の
状態で炉芯に滞留することを回避できる。CaCO3
炉内でCO2 を放出してCaOとなるのでCaOに換算
できる。
[Function] The iron-containing powder blown from the tuyere of the blast furnace flows into the furnace core through the raceway. When the reduction rate of the iron-containing powder is low, the solid Fe is small and most of the iron components are present in the form of FeO or Fe 2 O 3 , and these oxides are usually the main components of impurities such as SiO 2 and Al 2 O 3. It is easy to form compounds with low melting points such as oxides. On the other hand, when the iron-containing powder is powdered ore or dust having a reduction rate of 60% or more, the powder is a mixture of solid Fe, FeO and impurities. When this powder is blown into the furnace from the tuyere of the blast furnace,
It may not be easily dissolved and may be scattered in the form of powder and enter the furnace core, which may adversely affect the operation. However, CaO
Or, if a flux containing 70% or more of CaCO 3 is mixed with iron-containing powder having a reduction rate of 60% or more and blown from the tuyere of the blast furnace, impurities and flux in the iron-containing powder form a compound with a low melting point. Therefore, it is possible to prevent the powder from easily melting in the furnace and staying in the core of the furnace in a powder state. CaCO 3 can be converted to CaO because it releases Ca 2 into CaO in the furnace.

【0009】鉄含有粉体中の不純物の割合と組成は原料
によって異なるため、鉄含有粉体の成分分析値と例えば
「PHASE DIAGRAMS FOR CERAM
ISTS」(THE AMERICAN CERAMI
C SOCIETY,INC.;1964)のP.21
9に記載されているCaO−SiO2 −Al23 3元
系の酸化物の状態図を用いて、状態図中で融点が最も低
くなるような粉体とフラックスの混合比を見出し、フラ
ックスをこの混合比に近くなるように粉体に配合すれ
ば、炉芯への粉体侵入などの操業への悪影響を回避しつ
つ鉄含有粉体と微粉炭を多量に吹き込むことができる。
Since the proportion and composition of impurities in the iron-containing powder differ depending on the raw material, the component analysis value of the iron-containing powder and, for example, "PHASE DIAGRRAMS FOR CERAM"
ISTS "(THE AMERICAN CERAMI
C SOCIETY, INC. 1964) P .; 21
Using the phase diagram of the CaO—SiO 2 —Al 2 O 3 ternary oxide described in No. 9, find the mixing ratio of the powder and the flux such that the melting point becomes the lowest in the phase diagram. By blending with the powder so that it becomes close to this mixing ratio, a large amount of the iron-containing powder and the pulverized coal can be blown while avoiding an adverse effect on the operation such as intrusion of the powder into the furnace core.

【0010】鉄含有粉体には通常MgO,TiO2 など
SiO2 とAl23 以外の不純物成分が含まれている
が、SiO2 とAl23 が不純物中の60%以上を占
めれば、その他の不純物は酸化物系化合物の融点を低く
する方向に働き、CaO−SiO2 −Al23 3元系
の状態図から求めた融点が、最低となる組成を大きな誤
差なく用いることができる。また、フラックス中にCa
O,CaCO3 以外に成分がふくまれている場合も同様
であり、CaO−SiO2 −Al23 3元系の状態図
から求めた融点が最低となる組成の信頼性を保つため、
フラックスはその中のCaO,CaCO3 が70%以上
であるものを用いる。
[0010] Normally MgO in the iron-containing powder, the impurity components other than SiO 2 and Al 2 O 3 such as TiO 2 is contained, SiO 2 and Al 2 O 3 is accounted for more than 60% of the impurity if, other impurities acts in a direction to lower the melting point of the oxide compound, melting point was determined from the phase diagram of CaO-SiO 2 -Al 2 O 3 3 -way systems, be used without large error the composition giving the lowest You can In addition, Ca in the flux
O, The same applies if the component is included in addition to CaCO 3, in order to keep the reliability of the composition having a melting point determined from the phase diagram of CaO-SiO 2 -Al 2 O 3 3 -way system becomes minimum,
A flux having CaO and CaCO 3 content of 70% or more is used as the flux.

【0011】フラックスの混合割合は設備制約、生成す
る溶銑成分およびスラグ組成の調整などにより最適点か
らずらすこともありうるが、化合物の融点を低く保つと
いう観点から変動範囲は最適点±20%とする。鉄含有
粉体の還元率が60%未満である場合、鉄含有粉体中の
主成分は酸化鉄すなわちFeOまたはFe23 である
ため、羽口から高炉内に吹き込まれると還元率60%以
上の鉄含有粉体に比べて酸化鉄を還元するために多くの
熱が必要であり、熱的な負荷の問題から吹き込み可能量
が還元率が60%以上の鉄含有粉体に比べて少ないとい
う問題点があり、また、粉体中のFeが少なくFeO,
Fe23 が多いことから酸化物系化合物の融点自体も
低く、炉芯への未溶解粉体の蓄積の問題は少ないので、
CaO系フラックスを吹き込み酸化物系化合物の融点を
下げる必要もない。
The mixing ratio of the flux may be deviated from the optimum point due to equipment restrictions, adjustment of the composition of the hot metal to be produced and the composition of the slag, but the fluctuation range is ± 20% from the viewpoint of keeping the melting point of the compound low. To do. When the reduction rate of the iron-containing powder is less than 60%, the main component in the iron-containing powder is iron oxide, that is, FeO or Fe 2 O 3 , so the reduction rate is 60% when blown into the blast furnace from the tuyere. Compared to the iron-containing powders described above, more heat is required to reduce the iron oxide, and the amount that can be blown is smaller than the iron-containing powders with a reduction rate of 60% or more due to the problem of thermal load. In addition, there is a small amount of Fe in the powder and FeO,
Since the amount of Fe 2 O 3 is large, the melting point of the oxide compound itself is low, and the problem of accumulation of undissolved powder in the furnace core is small,
It is not necessary to blow CaO-based flux to lower the melting point of the oxide-based compound.

【0012】羽口より微粉炭を吹き込んでいる操業にお
いてはレースウェイ近傍で微粉炭が燃焼するため、この
熱燃焼によって、還元に要するエネルギーが少ない高還
元率の鉄含有粉体を相当量同時に吹き込むことができる
が、これに合わせて相当量のフラックスを予め混合して
吹き込むならば、鉄含有粉体中の不純物の炉内での溶融
を促進して操業に問題なく容易に多量の鉄含有粉体を炉
内に吹き込むことができる。この場合鉄含有粉体とフラ
ックスの混合物の吹き込み量は微粉炭の吹き込み量に合
わせて増加でき、鉄含有粉体の還元率が高いほど吹き込
み量を多くすることができる。微粉炭および混合粉体の
吹き込み量は、生産性の向上と燃料比の低減を達成しつ
つ、高炉下部の熱的な負荷から考えて操業可能な範囲と
して、微粉炭50〜250kg/t溶銑、混合粉体50
〜300kg/t溶銑、混合粉体/微粉炭の比0.2〜
1.2とする。ただし、混合粉体の吹き込み量を多くす
るほど鉄含有粉体の還元率は高いことが好ましく、例え
ば微粉炭200kg/t溶銑を吹き込んでいる高炉にお
いては、混合粉体を100,200,300kg/t溶
銑吹き込むためには還元率はそれぞれ60,80,90
%以上であることが望ましい。
In an operation in which pulverized coal is blown from the tuyere, the pulverized coal is burned near the raceway. Due to this thermal combustion, a considerable amount of iron-containing powder with a high reduction rate that requires less energy for reduction is blown simultaneously. However, if a considerable amount of flux is mixed and blown in advance in accordance with this, the melting of impurities in the iron-containing powder in the furnace will be promoted and it will be easy to operate with a large amount of iron-containing powder. The body can be blown into the furnace. In this case, the blowing amount of the mixture of iron-containing powder and flux can be increased according to the blowing amount of pulverized coal, and the blowing amount can be increased as the reduction rate of the iron-containing powder is higher. The amount of pulverized coal and mixed powder to be blown is 50 to 250 kg / t of molten pig iron as an operable range in consideration of the thermal load in the lower part of the blast furnace while achieving improvement in productivity and reduction in fuel ratio. Mixed powder 50
~ 300 kg / t hot metal, mixed powder / pulverized coal ratio 0.2 ~
Set to 1.2. However, it is preferable that the reduction rate of the iron-containing powder is higher as the blowing amount of the mixed powder is larger. For example, in a blast furnace in which pulverized coal of 200 kg / t molten pig iron is blown, 100,200,300 kg / In order to inject t hot metal, the reduction rates are 60, 80 and 90, respectively.
% Or more is desirable.

【0013】[0013]

【実施例】循環流動層によって粉鉄鉱石を予備還元して
得られた表1にその組成を示す鉄含有粉体(還元率85
%の予備還元鉱石;以下粉体Fと呼ぶ)を高炉に吹き込
む際に、以下のごとく本発明の方法によって計算した量
のフラックスを混合して、さらに微粉炭とともに高炉羽
口より吹き込んだ。すなわち、粉体Fにおいて、SiO
2 とAl23 の合計に対するSiO2 の割合は67.
8%,Al23 の割合は32.2%である。SiO2
67.8%,Al23 32.2%の混合物は図1に示
すCaO−SiO2 −Al23 3元系の酸化物の状態
図中のB点に相当する。SiO2 とAl23 をこの比
に保ったままCaOを混合すると、その混合物はCaO
の混合割合に応じて図1の状態図中で線分AB上を移動
していく。A点は100%CaOに相当する。
EXAMPLE An iron-containing powder having a composition shown in Table 1 obtained by pre-reducing iron ore powder with a circulating fluidized bed (reduction ratio 85
% Of pre-reduced ore; hereinafter referred to as powder F) was blown into the blast furnace, and the amount of flux calculated by the method of the present invention was mixed as described below and further blown together with the pulverized coal from the tuyere of the blast furnace. That is, in the powder F, SiO
The ratio of SiO 2 to the total of 2 and Al 2 O 3 is 67.
The ratio of 8% and Al 2 O 3 is 32.2%. SiO 2
67.8%, Al 2 O 3 32.2 % of the mixture corresponds to point B in the phase diagram of CaO-SiO 2 -Al 2 O 3 3 elemental oxides of shown in FIG. If CaO is mixed while maintaining SiO 2 and Al 2 O 3 at this ratio, the mixture will be CaO.
The line segment AB is moved in the state diagram of FIG. Point A corresponds to 100% CaO.

【0014】[0014]

【表1】 [Table 1]

【0015】この状態図から線分AB上の混合物の融点
は図2のように描くことができる。このグラフ中で融点
が最低になるのはP点であり,組成はA38.4%,B
61.6%である。この組成になるのは重量比で粉体F
100に対してCaO7.33であるが、粉体F中にも
0.17のCaOが含まれているためフラックス中のC
aOは7.16が最適値となる。この混合物の融点は約
1270であるが、実際には粉体F中にはMgO,Fe
O等の成分も含まれるためこれを勘案すれば粉体Fとフ
ラックスの混合物の融点はさらに低くなる。また、フラ
ックスの混合割合を最適値±20%以内の範囲にとれ
ば、図2中でQ点とR点の間が相当することになる。こ
の計算結果に基づいて、粉体FとCaOを主成分とする
フラックスを、粉体F:CaO=14:1となるように
混合し、粉体F100kg/t溶銑相当を、微粉炭20
0kg/t溶銑とともに高炉羽口から炉内に吹き込ん
だ。この吹き込みにより、特に炉下部不活性などの悪影
響を生ずることなく順調に操業でき、還元鉱石吹き込み
の効果として粉体Fとフラックスの吹き込みを行わない
場合に比べて単位時間あたり8%の出銑量の上昇を達成
することができた。
From this state diagram, the melting point of the mixture on the line AB can be drawn as shown in FIG. In this graph, the lowest melting point is at point P, the composition is A38.4%, B
61.6%. This composition is powder F in weight ratio.
CaO is 7.33 with respect to 100, but since 0.17 CaO is also contained in the powder F, C in the flux is
The optimum value of aO is 7.16. Although the melting point of this mixture is about 1270, the powder F actually contains MgO, Fe.
Since components such as O are also included, the melting point of the mixture of the powder F and the flux is further lowered if this is taken into consideration. Further, when the mixing ratio of the flux is within the range of the optimum value ± 20%, the point between the points Q and R in FIG. 2 corresponds. Based on the result of this calculation, the powder F and the flux containing CaO as the main components were mixed so that the powder F: CaO = 14: 1, and the powder F equivalent to 100 kg / t molten pig iron was mixed with the pulverized coal 20.
It was blown into the furnace from the tuyere of the blast furnace together with 0 kg / t hot metal. By this blowing, it is possible to operate smoothly without causing adverse effects such as inertness in the lower part of the furnace, and as a result of the blowing of the reducing ore, 8% of the tapping amount per unit time is compared with the case where the blowing of the powder F and the flux is not performed. Could be achieved.

【0016】[0016]

【発明の効果】本発明によって以下の効果を奏する。
(1)高還元率の予備還元鉱石やダスト等の鉄含有粉体
中の不純物の融点がフラックス混合により低下するの
で、羽口より吹き込まれた後高炉内で容易に溶融して液
体状のフラグとなり、フラグの流動性が向上して炉芯の
通気・通液性が保たれて伝熱が良好に行われる。(2)
羽口より微粉炭吹き込みを行う高炉操業において、高還
元率の鉄含有粉体を、炉下部での固体粉の蓄積など操業
への悪影響を与えることなしに多量に高炉羽口より吹き
込んで生産性を向上させることができる。
The present invention has the following effects.
(1) Since the melting point of impurities in iron-containing powder such as pre-reduced ore or dust having a high reduction rate is lowered by flux mixing, it is easily melted in the blast furnace after being blown from the tuyere and is in a liquid state flag. As a result, the fluidity of the flag is improved, the air permeability and liquid permeability of the furnace core are maintained, and the heat transfer is performed well. (2)
In blast furnace operation in which pulverized coal is blown from the tuyere, a large amount of iron-containing powder with a high reduction rate is blown from the blast furnace tuyere without adversely affecting the operation, such as accumulation of solid powder in the lower part of the furnace. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】CaO−SiO2 −Al23 3元系状態図[1] CaO-SiO 2 -Al 2 O 3 3 ternary phase diagram

【図2】図1の状態図中の線分AB上の混合物の融点を
示す図
FIG. 2 is a diagram showing a melting point of a mixture on a line segment AB in the state diagram of FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月18日[Submission date] August 18, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】羽口より微粉炭を吹き込んでいる操業にお
いてはレースウェイ近傍で微粉炭が燃焼するため、この
燃焼熱によって、還元に要するエネルギーが少ない高還
元率の鉄含有粉体を相当量同時に吹き込むことができる
が、これに合わせて相当量のフラックスを予め混合して
吹き込むならば、鉄含有粉体中の不純物の炉内での溶融
を促進して操業に問題なく容易に多量の鉄含有粉体を炉
内に吹き込むことができる。この場合鉄含有粉体とフラ
ックスの混合物の吹き込み量は微粉炭の吹き込み量に合
わせて増加でき、鉄含有粉体の還元率が高いほど吹き込
み量を多くすることができる。微粉炭および混合粉体の
吹き込み量は、生産性の向上と燃料比の低減を達成しつ
つ、高炉下部の熱的な負荷から考えて操業可能な範囲と
して、微粉炭50〜250kg/t溶銑、混合粉体50
〜300kg/t溶銑、混合粉体/微粉炭の比0.2〜
1.2とする。ただし、混合粉体の吹き込み量を多くす
るほど鉄含有粉体の還元率は高いことが好ましく、例え
ば微粉炭200kg/t溶銑を吹き込んでいる高炉にお
いては、混合粉体を100,200,300kg/t溶
銑吹き込むためには還元率はそれぞれ60,80,90
%以上であることが望ましい。
In the operation in which the pulverized coal is blown from the tuyere, the pulverized coal burns near the raceway.
Due to the heat of combustion , it is possible to simultaneously inject a considerable amount of iron-containing powder with a high reduction rate, which requires less energy for reduction. By promoting the melting of the impurities in the furnace, a large amount of iron-containing powder can be easily blown into the furnace without any problems in the operation. In this case, the blowing amount of the mixture of iron-containing powder and flux can be increased according to the blowing amount of pulverized coal, and the blowing amount can be increased as the reduction rate of the iron-containing powder is higher. The amount of pulverized coal and mixed powder to be blown is 50 to 250 kg / t of molten pig iron as an operable range in consideration of the thermal load in the lower part of the blast furnace while achieving improvement in productivity and reduction in fuel ratio. Mixed powder 50
~ 300 kg / t hot metal, mixed powder / pulverized coal ratio 0.2 ~
Set to 1.2. However, it is preferable that the reduction rate of the iron-containing powder is higher as the blowing amount of the mixed powder is larger. For example, in a blast furnace in which pulverized coal of 200 kg / t molten pig iron is blown, 100,200,300 kg / In order to inject t hot metal, the reduction rates are 60, 80 and 90, respectively.
% Or more is desirable.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】この状態図から線分AB上の混合物の融点
は図2のように描くことができる。このグラフ中で融点
が最低になるのはP点であり,組成はA38.4%,B
61.6%である。この組成になるのは重量比で粉体F
100に対してCaO7.33であるが、粉体F中にも
0.17のCaOが含まれているためフラックス中のC
aOは7.16が最適値となる。この混合物の融点は約
1270であるが、実際には粉体F中にはMgO,F
eO等の成分も含まれるためこれを勘案すれば粉体Fと
フラックスの混合物の融点はさらに低くなる。また、フ
ラックスの混合割合を最適値±20%以内の範囲にとれ
ば、図2中でQ点とR点の間が相当することになる。こ
の計算結果に基づいて、粉体FとCaOを主成分とする
フラックスを、粉体F:CaO=14:1となるように
混合し、粉体F100kg/t溶銑相当を、微粉炭20
0kg/t溶銑とともに高炉羽口から炉内に吹き込ん
だ。この吹き込みにより、特に炉下部不活性などの悪影
響を生ずることなく順調に操業でき、還元鉱石吹き込み
の効果として粉体Fとフラックスの吹き込みを行わない
場合に比べて単位時間あたり8%の出銑量の上昇を達成
することができた。
From this state diagram, the melting point of the mixture on the line AB can be drawn as shown in FIG. In this graph, the lowest melting point is at point P, the composition is A38.4%, B
61.6%. This composition is powder F in weight ratio.
CaO is 7.33 with respect to 100, but since 0.17 CaO is also contained in the powder F, C in the flux is
The optimum value of aO is 7.16. Although the melting point of this mixture is about 1270 ° C. , the powder F actually contains MgO, F
Since a component such as eO is also included, the melting point of the mixture of the powder F and the flux is further lowered if this is taken into consideration. Further, when the mixing ratio of the flux is within the range of the optimum value ± 20%, the point between the points Q and R in FIG. 2 corresponds. Based on the result of this calculation, the powder F and the flux containing CaO as the main components were mixed so that the powder F: CaO = 14: 1, and the powder F equivalent to 100 kg / t molten pig iron was mixed with the pulverized coal 20.
It was blown into the furnace from the tuyere of the blast furnace together with 0 kg / t hot metal. By this blowing, it is possible to operate smoothly without causing adverse effects such as inertness in the lower part of the furnace, and as a result of the blowing of the reducing ore, 8% of the tapping amount per unit time is compared with the case where the blowing of the powder F and the flux is not performed. Could be achieved.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【発明の効果】本発明によって以下の効果を奏する。
(1)高還元率の予備還元鉱石やダスト等の鉄含有粉体
中の不純物の融点がフラックス混合により低下するの
で、羽口より吹き込まれた後高炉内で容易に溶融して液
体状のラグとなり、ラグの流動性が向上して炉芯の
通気・通液性が保たれて伝熱が良好に行われる。(2)
羽口より微粉炭吹き込みを行う高炉操業において、高還
元率の鉄含有粉体を、炉下部での固体粉の蓄積など操業
への悪影響を与えることなしに多量に高炉羽口より吹き
込んで生産性を向上させることができる。
The present invention has the following effects.
(1) Since the melting point of impurities in iron-containing powder such as pre-reduced ore and dust having a high reduction rate is lowered by flux mixing, it is easily melted in a blast furnace after being blown from the tuyere and becomes a liquid state . becomes lug, slag fluidity is maintained ventilation, liquid permeability in the furnace core with improved heat transfer is performed satisfactorily. (2)
In blast furnace operation in which pulverized coal is blown from the tuyere, a large amount of iron-containing powder with a high reduction rate is blown from the blast furnace tuyere without adversely affecting the operation, such as accumulation of solid powder in the lower part of the furnace. Can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄または酸化鉄を除いた不純物成分のう
ち60%以上がSiO2 およびAl23 から成る還元
率60%以上の鉄含有粉体を微粉炭とともに高炉へ吹き
込む操業方法において、造滓剤としてCaOおよびCa
CO3 を70%以上含有するフラックスを用い、CaO
−SiO2 −Al23 3元系の酸化物の状態図より、
前記鉄含有粉体中のSiO2 ,Al23 ,CaOとフ
ラックス中のCaO,CaCO3 の混合物の融点が最低
となるフラックスの混合割合を見出し、フラックスを前
記鉄含有粉体に対してその最適点±20重量%以内の割
合で混合した混合粉体50〜300kg/t溶銑を、微
粉炭50〜250kg/t溶銑とともに、前記粉体と微
粉炭の重量比が0.2〜1.2となるように高炉羽口よ
り炉内に吹き込むことを特徴とする高炉への粉体吹き込
み方法。
1. An operating method of blowing iron-containing powder having a reduction rate of 60% or more, which comprises 60% or more of SiO 2 and Al 2 O 3 out of impurity components other than iron or iron oxide, into a blast furnace together with pulverized coal, CaO and Ca as slag forming agents
CaO is used with a flux containing 70% or more of CO 3.
From the state diagram of -SiO 2 -Al 2 O 3 3 elemental oxides of,
The mixing ratio of the flux having the lowest melting point of the mixture of SiO 2 , Al 2 O 3 and CaO in the iron-containing powder and CaO and CaCO 3 in the flux was found, The mixed powder 50 to 300 kg / t hot metal mixed at a ratio within the optimum point ± 20% by weight is used together with the pulverized coal 50 to 250 kg / t hot metal, and the weight ratio of the powder to the pulverized coal is 0.2 to 1.2. The method for injecting powder into a blast furnace is characterized in that the powder is blown into the furnace from the tuyere of the blast furnace.
JP13924893A 1993-05-19 1993-05-19 Method for blowing powder to blast furnace Pending JPH06330114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13924893A JPH06330114A (en) 1993-05-19 1993-05-19 Method for blowing powder to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13924893A JPH06330114A (en) 1993-05-19 1993-05-19 Method for blowing powder to blast furnace

Publications (1)

Publication Number Publication Date
JPH06330114A true JPH06330114A (en) 1994-11-29

Family

ID=15240901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13924893A Pending JPH06330114A (en) 1993-05-19 1993-05-19 Method for blowing powder to blast furnace

Country Status (1)

Country Link
JP (1) JPH06330114A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403927B (en) * 1996-09-17 1998-06-25 Holderbank Financ Glarus Process for reconditioning combustion residues
AT403928B (en) * 1996-09-17 1998-06-25 Holderbank Financ Glarus Process for reconditioning combustion residues
US6039787A (en) * 1996-09-17 2000-03-21 "Holderbahk" Financiere Glarus AG Process for reclaiming combustion residues
CN104619866A (en) * 2012-10-09 2015-05-13 三菱重工业株式会社 Method for preparing blast furnace blow-in coal
WO2015125360A1 (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403927B (en) * 1996-09-17 1998-06-25 Holderbank Financ Glarus Process for reconditioning combustion residues
AT403928B (en) * 1996-09-17 1998-06-25 Holderbank Financ Glarus Process for reconditioning combustion residues
US6039787A (en) * 1996-09-17 2000-03-21 "Holderbahk" Financiere Glarus AG Process for reclaiming combustion residues
CN104619866A (en) * 2012-10-09 2015-05-13 三菱重工业株式会社 Method for preparing blast furnace blow-in coal
US9605225B2 (en) 2012-10-09 2017-03-28 Mitsubishi Heavy Industries, Ltd. Method for preparing blast furnace blow-in coal
WO2015125360A1 (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same
JP2015155569A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Method of preparing blast furnace blow coal, blast furnace blow coal and utilization thereof

Similar Documents

Publication Publication Date Title
JPH06330114A (en) Method for blowing powder to blast furnace
JP4116874B2 (en) Liquid iron manufacturing method
JP2711758B2 (en) Manganese sintered ore for steelmaking and refining and its production method
JPH05163047A (en) Production of super-quick hardening cement raw material modified in slag
JP2808045B2 (en) Unfired manganese ore pellets for steel refining
JPH03291313A (en) Method for operating blast furnace
JPH06172825A (en) Operation of blast furnace
JP2686204B2 (en) Smelting reduction method for chromium ore
JP3239722B2 (en) Hot metal pretreatment method
JPH0297611A (en) Method for melting cold iron source
JPH0587571B2 (en)
JP2828489B2 (en) Production method of chromium-containing hot metal
JPH06925B2 (en) Refining method of stainless steel
JP2002146422A (en) Method for dephosphorizing molten iron by which erosion of refractory hardly occurs
JPH0429721B2 (en)
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JPH0635604B2 (en) Blast furnace operation method
JPS59153812A (en) Manufacture of low si iron by blowing
KR890004042B1 (en) Dephosphorus drug for melting iron
JP3395573B2 (en) Method for producing and using sinter
JP2001026807A (en) Method for dephosphorizing molten iron
JPS59126707A (en) Manufacture of chromium steel by refining using chrome ore, and chromium additive
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition
JPH01205056A (en) Melting-reducing refining method for cr ore
JPH04358012A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020108