JP6028696B2 - Decarburization blowing method for high alloy steel - Google Patents

Decarburization blowing method for high alloy steel Download PDF

Info

Publication number
JP6028696B2
JP6028696B2 JP2013179309A JP2013179309A JP6028696B2 JP 6028696 B2 JP6028696 B2 JP 6028696B2 JP 2013179309 A JP2013179309 A JP 2013179309A JP 2013179309 A JP2013179309 A JP 2013179309A JP 6028696 B2 JP6028696 B2 JP 6028696B2
Authority
JP
Japan
Prior art keywords
decarburization
anthracite
lance
blowing
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013179309A
Other languages
Japanese (ja)
Other versions
JP2015048493A (en
Inventor
太 小笠原
太 小笠原
内田 祐一
祐一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013179309A priority Critical patent/JP6028696B2/en
Publication of JP2015048493A publication Critical patent/JP2015048493A/en
Application granted granted Critical
Publication of JP6028696B2 publication Critical patent/JP6028696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉を用いて、合金成分の多い鋼種(たとえばステンレス鋼等の高合金鋼)の脱炭処理を行なうにあたって、吹錬中に熱源として炉内に投入した炭素源の飛散を抑制することで、ダストの発生量を低減しつつ、炭素源の添加歩留りを向上する脱炭吹錬方法に関するものである。   The present invention suppresses the scattering of the carbon source introduced into the furnace as a heat source during the decarburization treatment of a steel type having a high alloy component (for example, high alloy steel such as stainless steel) using a converter. Thus, the present invention relates to a decarburization blowing method that improves the yield of carbon source addition while reducing the amount of dust generated.

転炉を用いた溶銑の脱炭処理では、スクラップの溶解や溶銑の昇温のために炭素源を投入して、吹錬が行なわれる。その炭素源は、通常、輸送時の発火や粉塵爆発を防止する観点から、揮発分を殆ど含有しないコークスが使用されている。ところがステンレス鋼を始めとする高合金鋼の脱炭吹錬では、炉内にスクラップや合金鉄等の冷鉄源が多量に装入されるので、吹錬中に熱補償のために投入すべき炭素源の必要量も、炭素鋼の脱炭吹錬に比べて、増大する。   In hot metal decarburization processing using a converter, a carbon source is used for melting of scrap and raising the temperature of hot metal, and blowing is performed. As the carbon source, coke containing almost no volatile component is usually used from the viewpoint of preventing ignition during transportation and dust explosion. However, in the decarburization blowing of high alloy steels such as stainless steel, a large amount of cold iron source such as scrap and alloy iron is charged in the furnace, so it should be added for heat compensation during blowing. The required amount of carbon source also increases compared to carbon steel decarburization blowing.

熱補償のための炭素源として投入されるコークスは、揮発分は少ないが、PやS等の鋼材の材質に悪影響を及ぼす不純物元素が含まれており、高合金鋼を得るための脱炭吹錬にてコークスを多量に投入すると、PやSが鋼材の許容範囲を超えて混入することになる。とりわけステンレス鋼においては、鋼中のP含有量が増加することによってPの活量が大幅に低下するので、脱燐処理が困難になるという問題がある。   Coke, which is input as a carbon source for heat compensation, has a small amount of volatile matter, but contains impurity elements that adversely affect the steel material such as P and S. When a large amount of coke is added by smelting, P and S are mixed beyond the allowable range of steel. In particular, stainless steel has a problem that dephosphorization treatment becomes difficult because the P activity is greatly reduced by increasing the P content in the steel.

したがって、脱燐処理を容易に行なうためには、不純物元素(とりわけP含有量)の少ない炭素源を昇熱材として使用する必要がある。しかし、コークスの原料として好適でありかつ不純物元素の少ない炭材資源は、埋蔵量が乏しく、高価であるから、そのような炭材資源から製造したコークスの製造コストが上昇するのは避けられない。
また、P含有量が少ない一般炭を使用すると、揮発分の含有量が多いので、輸送設備や投入ホッパーに発火や粉塵爆発を防止する装置が必要であるから、設備投資が膨大になる。
Therefore, in order to easily perform the dephosphorization treatment, it is necessary to use a carbon source having a small amount of impurity elements (particularly, the P content) as a heat raising material. However, since carbon materials that are suitable as a raw material for coke and have few impurity elements are scarce and expensive, the production cost of coke produced from such carbon materials is unavoidable. .
In addition, when steaming coal with a low P content is used, the content of volatile components is high, so that equipment for preventing ignition and dust explosion is required for transportation facilities and input hoppers.

これに対して無煙炭は、コークスの原料としては適していないが、P含有量が少ないので、溶銑から高合金鋼(特にステンレス鋼)を得る脱炭吹錬において、熱補償のための炭素源として好適である。しかも無煙炭は一般炭の中でも揮発分が少ないので、貯蔵および搬送に関わる機器に、発火や粉塵爆発を防止する装置を設置する必要はない。
そこで、高合金鋼を得るために、無煙炭等の揮発分の少ない石炭を用いて脱炭吹錬を行なう技術が種々検討されている。
On the other hand, anthracite is not suitable as a raw material for coke, but it has a low P content. Therefore, as a carbon source for heat compensation in decarburization blowing to obtain high alloy steel (especially stainless steel) from hot metal. Is preferred. Moreover, since anthracite has less volatile content than steam coal, it is not necessary to install a device for preventing ignition or dust explosion in equipment related to storage and transportation.
Therefore, various techniques for decarburization blowing using coal with low volatile content such as anthracite coal have been studied in order to obtain high alloy steel.

たとえば特許文献1には、クロム鉱石の溶融還元吹錬において、粒度調整を行ない、かつ揮発分が10質量%以下である石炭を用いる技術が開示されている。この技術は、一定濃度の揮発分が含有される石炭を炉内に投入することによって、石炭が熱崩壊を起こし、その微細な石炭が、スラグ中に存在する酸化クロムの還元反応を促進するものである。
しかしながら、熱崩壊によって微細化した石炭は、炉口から排出される排ガスに巻込まれて炉外に飛散し易いので、ダストの発生量が増大し、かつ石炭の添加歩留りの低下を招く。特にステンレス鋼を得るための脱炭吹錬にて発生するダストは、クロムを含有しているので、そのダストの処理に多大な費用を要する。したがって、ダストの発生量を低減することが必要である。
For example, Patent Document 1 discloses a technique of using coal having a particle size adjustment and a volatile content of 10% by mass or less in smelting reduction blowing of chromium ore. In this technology, when coal containing a certain concentration of volatile matter is put into the furnace, the coal undergoes thermal collapse, and the fine coal promotes the reduction reaction of chromium oxide present in the slag. It is.
However, since the coal refined by thermal collapse is easily trapped in the exhaust gas discharged from the furnace port and scattered outside the furnace, the amount of dust generated increases and the yield of coal addition decreases. In particular, the dust generated by decarburization blowing to obtain stainless steel contains chromium, and therefore requires a great deal of cost for processing the dust. Therefore, it is necessary to reduce the amount of dust generated.

特許文献2には、高クロム鋼を得るための脱炭吹錬において、脱炭吹錬の初期に無煙炭を投入する際に、上吹きランスから供給される酸素の供給速度を低下させることによって、炉口から排出される排ガスの線流速を低下させて、無煙炭が炉外へ飛散するのを抑制する技術が開示されている。しかし、この技術では、熱崩壊した無煙炭の飛散を抑制するために、脱炭吹錬に不可欠である酸素の供給速度を低下させなければならず、脱炭吹錬の生産性の低下を招く。   In Patent Document 2, in decarburization blowing for obtaining high chromium steel, when anthracite is introduced in the initial stage of decarburization blowing, by reducing the supply rate of oxygen supplied from the top blowing lance, A technique is disclosed in which the linear flow rate of the exhaust gas discharged from the furnace port is reduced to suppress the anthracite from being scattered outside the furnace. However, in this technique, in order to suppress the scattering of the anthracite coal that has been thermally collapsed, it is necessary to reduce the supply rate of oxygen, which is indispensable for decarburization blowing, leading to a reduction in productivity of decarburization blowing.

特開平9-227919号公報JP-A-9-227919 特開2006-233265号公報JP 2006-233265 A

本発明は、転炉を用いて、合金成分の多い鋼種(たとえばステンレス鋼等)の脱炭処理を行なうにあたって、吹錬中に熱源として炉内に投入した炭素源の飛散を抑制することで、ダストの発生量を低減しつつ、炭素源の添加歩留りを向上することができる吹錬方法を提供することを目的とする。   The present invention uses a converter to suppress the scattering of the carbon source introduced into the furnace as a heat source during blowing when performing decarburization treatment of a steel type having a high alloy component (for example, stainless steel). It aims at providing the blowing method which can improve the addition yield of a carbon source, reducing the generation amount of dust.

本発明者らは、高合金鋼を得るための脱炭吹錬の初期においては、スラグ中の酸化クロムや酸化鉄等の濃度が低いことから、炭素源を必ずしも熱崩壊によって微細化させて還元反応を促進する必要はなく、むしろ、炭素源の炉外への飛散を抑制するために熱崩壊(すなわち微細化)を抑止することが重要であるという観点から、様々な銘柄,種類の炭素源を実験用の小型溶解炉内の溶銑に投入した後、バグフィルターで回収して、その飛散量を測定した。   In the initial stage of decarburization blowing to obtain high alloy steel, the present inventors have reduced the concentration of chromium oxide, iron oxide, etc. in the slag, so that the carbon source is not necessarily refined by thermal decay and reduced. It is not necessary to promote the reaction, but rather, various brands and types of carbon sources from the viewpoint that it is important to suppress thermal decay (ie, refinement) in order to suppress the scattering of carbon sources outside the furnace. Was put into the hot metal in a small experimental melting furnace, and then collected with a bag filter, and the amount of scattering was measured.

また、小型溶解炉の炉口から排出されるガス流の線流速が、通常の転炉操業と同等になるように、小型溶解炉の排風量を調整し、バグフィルターで回収したダストの粒度を調査したところ、粒度3mm以下の微細な粒子が大部分を占めていた。つまり、炉内に投入され、熱崩壊によって微細化した炭素源は、排ガスに巻込まれて、ダストとして炉口から飛散する。   In addition, the exhaust velocity of the small melting furnace is adjusted so that the linear velocity of the gas flow discharged from the furnace port of the small melting furnace is equivalent to the normal converter operation, and the particle size of the dust collected by the bag filter is adjusted. As a result of the investigation, most of the fine particles having a particle size of 3 mm or less accounted for. That is, the carbon source that has been put into the furnace and refined by thermal collapse is caught in the exhaust gas and scattered from the furnace port as dust.

加えて、揮発分が3質量%以下の炭素源では、投入した炭素源の熱崩壊による微細化が抑止されることを見出した。
以上の結果から、高合金鋼を得るための脱炭吹錬において、ダストの飛散を抑制するためには、揮発分の含有量が3質量%以下の炭素源を用いることによって、炉内へ投入する際の熱崩壊を抑止することが重要であることが分かった。しかも、炭素源の熱崩壊を抑止することでダストの飛散を抑制するので、上吹きランスから供給される酸素の供給速度を低下させる必要はなく、高合金鋼の脱炭吹錬の生産性低下も防止できる。
In addition, it has been found that a carbon source having a volatile content of 3% by mass or less suppresses refinement due to thermal collapse of the input carbon source.
From the above results, in decarburization blowing to obtain high alloy steel, in order to suppress the scattering of dust, by using a carbon source having a volatile content of 3% by mass or less, it was introduced into the furnace. It was found that it is important to suppress thermal collapse when doing so. Moreover, since the scattering of dust is suppressed by suppressing the thermal collapse of the carbon source, there is no need to reduce the supply rate of oxygen supplied from the top blowing lance, and the productivity reduction of decarburization blowing of high alloy steel Can also be prevented.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、転炉を用いて高合金鋼を得るために溶銑の脱炭処理を行なう脱炭吹錬方法において、揮発分の含有量が2.7質量%以下である無煙炭を、熱補償のために転炉内に投入する脱炭吹錬方法である。
本発明の脱炭吹錬方法においては、転炉に鉄源として溶銑に加えてスクラップを装入することが好ましく、無煙炭として、粒度を3mm未満に調整した粒子を、酸化性ガスを供給する上吹きランスとは別に設けた炭材投入ランスから供給することが好ましい。また、炭材投入ランスを通して燃料ガスと酸素ガスとを供給して、炭材投入ランスの先端にバーナー火炎を形成し、バーナー火炎中に無煙炭の粒子を吹込むことが好ましい。
The present invention has been made based on such knowledge.
That is, the present invention relates to an anthracite having a volatile content of 2.7 % by mass or less for heat compensation in a decarburization blowing method in which hot metal is decarburized to obtain high alloy steel using a converter. This is a decarburization blowing method that is put into the converter.
In the decarburization blowing method of the present invention, it is preferable to add scrap to the converter as the iron source in addition to the hot metal, and as anthracite, supply the oxidizing gas with particles adjusted to a particle size of less than 3 mm. It is preferable to supply from a charcoal charging lance provided separately from the blowing lance. Further, through the carbonaceous material charged run scan by supplying the fuel gas and oxygen gas, a burner flame formed at the tip of the carbonaceous material charged lance, it is preferable to blowing particles anthracite the burner flame.

本発明によれば、転炉を用いて、合金成分の多い鋼種(たとえばステンレス鋼等)の脱炭処理を行なうにあたって、吹錬中に熱源として炉内に投入した炭素源の飛散を抑制することで、ダストの発生量を低減しつつ、炭素源の添加歩留りを向上することができるので、生産性を向上させる等の産業上格段の効果を奏する。   According to the present invention, when performing decarburization processing of a steel type (for example, stainless steel, etc.) with a large amount of alloy components using a converter, it is possible to suppress scattering of the carbon source input into the furnace as a heat source during blowing. Therefore, since the yield of carbon source can be improved while reducing the amount of dust generated, there are significant industrial effects such as improving productivity.

本発明を適用する転炉の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the converter to which this invention is applied. 炭素源の揮発分と飛散率との関係を示すグラフである。It is a graph which shows the relationship between the volatile matter of a carbon source, and a scattering rate.

ステンレス鋼等の高合金鋼を得るために、溶銑の脱炭吹錬を行なうにあたって、予め予備処理を施して低燐化した溶銑に加えて、ステンレススクラップやフェロクロムを転炉内に装入した後に、上吹きランスから酸素を供給し、さらに炭素源を投入して、その燃焼熱によって転炉内を昇温する。このとき本発明では、炭素源が熱崩壊によって微細化するのを抑止するために、揮発分の含有量が2.7質量%以下の炭素源として無煙炭を使用する。上記で説明した通り、無煙炭の揮発分の含有量が2.7質量%以下であれば、熱崩壊による微細化が抑止される。しかも、発火や粉塵爆発の危険性も低く、特段の設備改造は必要ない。したがって、揮発分の含有量は2.7質量%以下とする。 In order to obtain high alloy steel such as stainless steel, when decarburizing and blowing the hot metal, in addition to the hot metal preliminarily treated and low phosphorous, after the stainless scrap and ferrochrome are charged into the converter Then, oxygen is supplied from the top blowing lance, a carbon source is further charged, and the inside of the converter is heated by the combustion heat. At this time, in this invention, in order to suppress that a carbon source refines | miniaturizes by thermal collapse, anthracite is used as a carbon source whose volatile content is 2.7 mass% or less. As described above, if the content of volatile components of anthracite is 2.7 % by mass or less, refinement due to thermal collapse is suppressed. In addition, the risk of fire and dust explosion is low, and no special equipment modification is required. Therefore, the volatile content is 2.7 % by mass or less.

さらに、炉上添加ホッパーから添加する場合には、無煙炭の分級を行ない、粒度が3mm未満の微細粒を除去しても良い。粒度3mm未満の微細粒が混入した無煙炭を使用すると、炉内に投入された後、溶銑湯面に到達する前に、排ガスの上昇流に巻込まれ、ダストとして周辺に飛散する、あるいは集塵機に吸引される割合が多いからである。このような無煙炭の微細粒の飛散に起因するダストの発生量の増加、あるいは無煙炭の添加歩留りの低下を防止するためには、上吹きランスから供給される酸素の供給速度を低下させることも考えられるが、これは脱炭吹錬の生産性が低下する可能性もある。したがって、粒度3mm以上の炭素源を転炉内に投入することが好ましい。一方、炭素源の粒度が100mmを超えると、反応性が低下するという問題があることから、粒度は3〜100mmの範囲内が好ましい。   Furthermore, when adding from an on-furnace addition hopper, anthracite coal classification may be performed to remove fine particles having a particle size of less than 3 mm. When using anthracite mixed with fine particles with a particle size of less than 3mm, it is put into the furnace and before it reaches the hot metal surface, it is caught in the upward flow of exhaust gas and scattered as dust or is sucked into the dust collector. This is because there is a large proportion. In order to prevent an increase in the amount of dust generated due to the scattering of fine particles of anthracite coal or a decrease in the addition yield of anthracite coal, it is also possible to reduce the supply rate of oxygen supplied from the top blowing lance. However, this may reduce the productivity of decarburization blowing. Therefore, it is preferable to introduce a carbon source having a particle size of 3 mm or more into the converter. On the other hand, when the particle size of the carbon source exceeds 100 mm, there is a problem that the reactivity is lowered, and therefore the particle size is preferably in the range of 3 to 100 mm.

粒度の調整には、工業的に使用されるいかなる方法も使用できるが、簡便には篩い分けにより調整することができる。すなわち無煙炭を篩い目100mmあるいはそれ以下の篩いで篩った篩い下を、更に篩い目3mmあるいはそれ以上の篩いで篩い、その篩い上を使用することで粒度を3〜100mmの間に調整することができる。
さらに3mm未満の微粒の無煙炭を供給する場合には、上向きの排ガス流に吸引されないよう、上吹きランスからの下向きの噴流が存在する領域(以下、下向き酸素噴流領域という)に投入することが好ましい。
For adjusting the particle size, any industrially used method can be used, but it can be conveniently adjusted by sieving. That is, adjust the particle size to between 3 and 100 mm by using an anthracite sieve with a sieve of 100 mm or less and a sieve with a sieve of 3 mm or more and using the sieve. Can do.
Further, when supplying fine anthracite having a particle size of less than 3 mm, it is preferable that the anthracite be introduced into a region where there is a downward jet from the upper blowing lance (hereinafter referred to as a downward oxygen jet region) so as not to be sucked into the upward exhaust gas flow. .

また本発明者らは、図1に示すように、3mm未満の微粒の無煙炭を投入する炭材投入ランス2と上吹きランス3を有する転炉1において、炭材投入ランス2の中心軸と上吹きランス3の中心軸との水平方向の距離をD(mm)とし、炭材投入ランス2の先端位置と上吹きランス3の先端位置との垂直方向の距離をH(mm)として、そのDとHがH≧1.1Dを満足するように配置することで、下向き酸素噴流領域内に粒状の無煙炭を供給することが可能となることを見出した。   Further, as shown in FIG. 1, the present inventors, in a converter 1 having a carbon material charging lance 2 and an upper blowing lance 3 for charging fine anthracite coal having a particle size of less than 3 mm, are located above the central axis of the carbon material charging lance 2. The horizontal distance from the central axis of the blow lance 3 is D (mm), and the vertical distance between the tip position of the charcoal charging lance 2 and the tip position of the upper blow lance 3 is H (mm). It has been found that by arranging H and H so as to satisfy H ≧ 1.1D, it is possible to supply granular anthracite into the downward oxygen jet region.

さらに炭材投入ランス2に燃料ガスおよび酸素ガスを供給し、炭材投入ランス2の先端部に火炎(以下、バーナー火炎という)を形成し、そのバーナー火炎の中に無煙炭の粒子を吹込むことによって、無煙炭の粒子がバーナー火炎によって加熱され、伝熱媒体となって転炉1内の溶湯(図示せず)に伝熱する。その結果、着熱効率が向上して、昇熱に必要な炭材量が減少し、溶湯から発生するダスト(いわゆるバブルバースト系ダスト)の発生を低減することが可能となる。   Furthermore, fuel gas and oxygen gas are supplied to the charcoal charging lance 2, a flame (hereinafter referred to as a burner flame) is formed at the tip of the charcoal charging lance 2, and anthracite particles are blown into the burner flame. As a result, the anthracite particles are heated by the burner flame, and serve as a heat transfer medium to transfer heat to the molten metal (not shown) in the converter 1. As a result, the heat receiving efficiency is improved, the amount of carbon material required for heating is reduced, and the generation of dust (so-called bubble burst dust) generated from the molten metal can be reduced.

また本発明では、炭素源として無煙炭を使用するので、P含有量が少ない炭材で脱炭が可能となり、ステンレス鋼を得るための溶銑の脱炭吹錬に好適である。   Moreover, in this invention, since anthracite is used as a carbon source, it can decarburize with a carbon material with little P content, and is suitable for the decarburization blowing of hot metal for obtaining stainless steel.

<実施例1>
まず、粒度3mm以上に分級した無煙炭粒を用いて、容量150tonの転炉に溶銑(1200℃)およびステンレススクラップ,フェロクロムを装入し、さらに上吹きランスから酸素供給を開始した直後に、種々の炭素源を投入して脱炭吹錬を行ない、ステンレス鋼を製造した。転炉に投入した炭素源の種類とその揮発分の含有量は表1に示す通りであり、それぞれ2.7質量%、3.0質量%、4.3質量%、5.8質量%、10.2質量%であった。さらに比較として、揮発分の含有量が1.4質量%のコークス、および参考までに本実験で用いた炭素源サンプルの詳細分析値を表2に示す。投入量は、ステンレススクラップやフェロクロムの装入量に応じて、10〜20tonの範囲内で調整して炉内を昇温した。
<Example 1>
First, using anthracite particles classified to a particle size of 3mm or more, hot metal (1200 ° C), stainless scrap, and ferrochrome were charged into a converter with a capacity of 150 tons. A carbon source was added and decarburized and blown to produce stainless steel. The types of carbon sources charged into the converter and the volatile content thereof were as shown in Table 1, and were 2.7 mass%, 3.0 mass%, 4.3 mass%, 5.8 mass%, and 10.2 mass%, respectively. For further comparison, Table 2 shows the coke with a volatile content of 1.4% by mass and the detailed analysis values of the carbon source sample used in this experiment for reference. The input amount was adjusted within a range of 10 to 20 tons depending on the amount of stainless steel scrap or ferrochrome charged, and the temperature inside the furnace was raised.

また、脱炭吹錬の時間経過から転炉内の溶銑のC含有量が1.5質量%程度と推定される時に、サンプルを採取してC含有量(以下、実測C含有量という)を測定した。さらに、炉口から排出される排ガスの流量,CO濃度,CO2濃度を排ガス分析計によって測定し、得られたデータに基づいて脱炭量(以下、分析脱炭量という)を算出した。一方で、炭素源の投入量の実測値と上記の実測C含有量とに基づいて脱炭量(以下、実測脱炭量という)を算出した。 Further, when the C content of the hot metal in the converter was estimated to be about 1.5% by mass from the time of decarburization blowing, a sample was taken and the C content (hereinafter referred to as measured C content) was measured. . Further, the flow rate, CO concentration, and CO 2 concentration of the exhaust gas discharged from the furnace port were measured with an exhaust gas analyzer, and the decarburization amount (hereinafter referred to as analytical decarburization amount) was calculated based on the obtained data. On the other hand, a decarburization amount (hereinafter referred to as an actual decarburization amount) was calculated based on the actual measurement value of the input amount of the carbon source and the actual C content.

このようにして得た実測脱炭量と分析脱炭量との乖離を、炉外に飛散した炭素源の飛散量とみなし、炭素源の飛散量(ton)と投入量(ton)の比を飛散率(%)として表1に示す。なお、飛散率は下記の式で算出される値である。表1中の炭素源の揮発分含有量と飛散率との関係を図2に示す。
飛散率(%)=100×飛散量(ton)/投入量(ton)
The difference between the measured decarburization amount and the analytical decarburization amount obtained in this way is regarded as the amount of carbon source scattered outside the furnace, and the ratio of the carbon source scattered amount (ton) to the input amount (ton) The scattering rate (%) is shown in Table 1. The scattering rate is a value calculated by the following formula. The relationship between the volatile content of the carbon source in Table 1 and the scattering rate is shown in FIG.
Scattering rate (%) = 100 x scattering amount (ton) / input amount (ton)

Figure 0006028696
Figure 0006028696

Figure 0006028696
Figure 0006028696

また、脱炭吹錬開始前の溶銑中のP含有量と、脱炭吹錬終了後の溶鋼中のP含有量とを測定し、脱炭吹錬に起因するP含有量の上昇量を表1に併せて示す。なお、P含有量上昇量は下記の式で算出される値である。
P含有量上昇量(質量%)=溶鋼中のP含有量(質量%)−溶銑中のP含有量(質量%)
表1および図2から明らかなように、炭素源の揮発分が3質量%以下の範囲であれば、炭素源の飛散率が低く抑えられており、揮発分が3質量%を超えると飛散率が大幅に上昇した。
In addition, the P content in the hot metal before the start of decarburization blowing and the P content in the molten steel after the end of decarburization blowing are measured, and the amount of increase in the P content resulting from decarburization blowing is shown. Also shown in FIG. The P content increase amount is a value calculated by the following equation.
P content increase (mass%) = P content in molten steel (mass%) − P content in hot metal (mass%)
As is apparent from Table 1 and FIG. 2, if the volatile content of the carbon source is in the range of 3% by mass or less, the scattering rate of the carbon source is kept low, and if the volatile content exceeds 3% by mass, the scattering rate is Increased significantly.

また、炭素源としてコークスを使用した場合(比較例1)には、揮発分の含有量が3質量%以下であることから、飛散率は低く抑えられたが、脱炭吹錬に起因してP含有量が上昇した。
炭素源として無煙炭を使用した場合(発明例1,2および比較例2〜4)には、いずれも脱炭吹錬に起因するP含有量の上昇量は0.002〜0.004質量%であり、コークスを使用した比較例1(P含有量上昇量0.011質量%)に比べて低かった。揮発分の含有量が3質量%以下である発明例1〜2は、飛散率が9.5〜11%であったのに対して、揮発分が3質量%を超える比較例2〜4は、飛散率が19〜35%であった。
In addition, when coke was used as the carbon source (Comparative Example 1), the scattering rate was kept low because the volatile content was 3% by mass or less, but due to decarburization blowing. P content increased.
When anthracite is used as a carbon source (Invention Examples 1 and 2 and Comparative Examples 2 to 4), the increase in P content due to decarburization blowing is 0.002 to 0.004 mass%, and coke is used. It was low compared with the comparative example 1 (P content increase amount 0.011 mass%) used. Inventive Examples 1 and 2 having a volatile content of 3% by mass or less had a scattering rate of 9.5 to 11%, whereas Comparative Examples 2 to 4 having a volatile content exceeding 3% by mass were scattered. The rate was 19-35%.

<実施例2>
次に、粒度3mm未満の微細な無煙炭の粒子を昇熱用の炭材として使用して、脱炭吹錬を行なった。使用した炭材は、無煙炭を篩い目3mm未満の篩で分級した篩い下を用い、実施例1と同様に揮発分の含有量を変化させて調査した。添加方法は、炉上ホッパーから添加する方法、および酸素ガスを供給する上吹きランスとは別に設置した炭材投入ランスを用いて投入する方法について調査した。炭材投入ランスを用いる場合は、上吹きランスの中心軸と炭材投入ランスの中心軸との水平方向の距離Dを1m(=1000mm)とし、炭材投入ランスの先端位置と上吹きランスの先端位置との垂直方向の距離Hを種々変化させた。DとHの関係をD/Hとして表3に示す。
<Example 2>
Next, decarburization blowing was performed using fine anthracite particles having a particle size of less than 3 mm as a heating material. The charcoal material used was investigated by changing the content of volatile matter in the same manner as in Example 1 using an under-sieving material obtained by classifying anthracite coal with a sieve having a sieve size of less than 3 mm. Regarding the addition method, a method of adding from the furnace hopper and a method of charging using a carbon material charging lance installed separately from the top blowing lance for supplying oxygen gas were investigated. When using a carbon material input lance, the horizontal distance D between the center axis of the top blow lance and the center axis of the carbon material input lance is 1 m (= 1000 mm), and the tip position of the carbon material input lance and the top blow lance The distance H in the vertical direction from the tip position was variously changed. Table 3 shows the relationship between D and H as D / H.

Figure 0006028696
Figure 0006028696

炉上ホッパーから添加すると、炭材の飛散率が上昇した。また炭材投入ランスを用いると、炭材投入ランスの位置を下げるほど、炭材の飛散率が低下した。また、上吹きランスによって形成される下向き酸素噴流領域の中に炭材投入ランスの先端が入るように配置した場合は、炭材の飛散率が一層低下した。
さらに、炭材投入ランスに燃料ガスと酸素ガスを供給して、炭材投入ランスの先端部にバーナー火炎を形成し、そのバーナー火炎の中に無煙炭の粒子を吹込んだ。その結果、転炉内の溶湯の着熱効率が向上し、昇熱用炭材と昇熱用酸素の使用量削減を図ることができ、ひいては溶湯から発生するバブルバースト系ダストが低減された。
When added from the furnace hopper, the scattering rate of charcoal increased. Moreover, when using the carbonaceous material input lance, the carbon material scattering rate decreased as the position of the carbonaceous material input lance was lowered. In addition, when the tip of the carbonaceous material charging lance is placed in the downward oxygen jet region formed by the upper blowing lance, the scattering rate of the carbonaceous material is further reduced.
Furthermore, fuel gas and oxygen gas were supplied to the charcoal charging lance to form a burner flame at the tip of the charcoal charging lance, and anthracite particles were blown into the burner flame. As a result, the heat receiving efficiency of the molten metal in the converter was improved, and the amount of the heating carbon material and the heating oxygen could be reduced. As a result, bubble burst dust generated from the molten metal was reduced.

以上の通り、本発明によれば、ステンレス鋼を得るために転炉で行なう脱炭吹錬において、炭素源の飛散を抑制できることが確かめられた。その結果、ダストの発生量を低減しつつ、炭素源の添加歩留りを向上することが可能となる。   As described above, according to the present invention, it has been confirmed that in the decarburization blowing performed in a converter to obtain stainless steel, the scattering of the carbon source can be suppressed. As a result, it is possible to improve the yield of carbon source addition while reducing the amount of dust generated.

1 転炉
2 炭材投入ランス
3 上吹きランス
1 Converter 2 Charging material lance 3 Top blowing lance

Claims (4)

転炉を用いて高合金鋼を得るために溶銑の脱炭処理を行なう脱炭吹錬方法において、揮発分の含有量が2.7質量%以下である無煙炭を、熱補償のために前記転炉内に投入することを特徴とする脱炭吹錬方法。 In a decarburization blowing method in which hot metal is decarburized to obtain high alloy steel using a converter, anthracite having a volatile content of 2.7 % by mass or less is used in the converter for heat compensation. A decarburizing and blowing method characterized by being put into a slag. 前記転炉に鉄源として前記溶銑に加えてスクラップを装入することを特徴とする請求項1に記載の脱炭吹錬方法。   The decarburization blowing method according to claim 1, wherein scrap is charged into the converter as an iron source in addition to the hot metal. 前記無煙炭として、粒度を3mm未満に調整した粒子を、酸化性ガスを供給する上吹きランスとは別に設けた炭材投入ランスから供給することを特徴とする請求項1または2に記載の脱炭吹錬方法。 3. The decarburization according to claim 1, wherein particles having a particle size adjusted to less than 3 mm are supplied as anthracite from a carbon material charging lance provided separately from an upper blowing lance for supplying an oxidizing gas. Blowing method. 前記炭材投入ランスを通して燃料ガスと酸素ガスとを供給して、前記炭材投入ランスの先端にバーナー火炎を形成し、該バーナー火炎中に前記無煙炭の粒子を吹込むことを特徴とする請求項3に記載の脱炭吹錬方法。 The fuel gas and oxygen gas are supplied through the charcoal charging lance to form a burner flame at the tip of the charcoal charging lance, and the anthracite particles are blown into the burner flame. 3. The decarburization blowing method according to 3.
JP2013179309A 2013-08-30 2013-08-30 Decarburization blowing method for high alloy steel Active JP6028696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179309A JP6028696B2 (en) 2013-08-30 2013-08-30 Decarburization blowing method for high alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179309A JP6028696B2 (en) 2013-08-30 2013-08-30 Decarburization blowing method for high alloy steel

Publications (2)

Publication Number Publication Date
JP2015048493A JP2015048493A (en) 2015-03-16
JP6028696B2 true JP6028696B2 (en) 2016-11-16

Family

ID=52698761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179309A Active JP6028696B2 (en) 2013-08-30 2013-08-30 Decarburization blowing method for high alloy steel

Country Status (1)

Country Link
JP (1) JP6028696B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511808B2 (en) * 1996-07-09 2004-03-29 Jfeスチール株式会社 Stainless steel smelting method
JP4479541B2 (en) * 2005-02-24 2010-06-09 Jfeスチール株式会社 Method for producing high chromium molten steel
JP2012041584A (en) * 2010-08-17 2012-03-01 Jfe Steel Corp Method for producing high chromium steel
JP5928329B2 (en) * 2011-12-27 2016-06-01 Jfeスチール株式会社 Smelting reduction smelting method

Also Published As

Publication number Publication date
JP2015048493A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
JP5608989B2 (en) Hot metal heating method
JP2012007225A (en) Method for producing molten steel using particulate metallic iron
KR101341758B1 (en) Arc furnace steelmaking process using palm shell charcoal
JP6119700B2 (en) Blast furnace operation method
JP6028696B2 (en) Decarburization blowing method for high alloy steel
JP5892103B2 (en) Method for smelting reduction of chromium ore
JP2013147692A (en) Method of operating blast furnace at high tapping ratio of pig iron
US1945341A (en) Reduction and smelting of ores
Teguri et al. Manganese ore pre-reduction using a rotary kiln to manufacture super-low-phosphorus ferromanganese
JP5768563B2 (en) Blast furnace operation method
JP6137087B2 (en) Method for producing sintered ore
JP6531918B2 (en) Blast furnace
JP6052191B2 (en) Recycling method of steelmaking slag
JP2013181195A (en) Decarburization-blowing method for high-alloy steel
JP4479541B2 (en) Method for producing high chromium molten steel
JP6269549B2 (en) Blast furnace operation method
JP2005281749A (en) Smelting reduction process for metallic-oxide-containing ore
JP5526614B2 (en) Melting reduction method
JP4093198B2 (en) Blast furnace operation method
JP2009024240A (en) Method for producing molten iron
JPH03271309A (en) Production of low nitrogen-high carbon iron alloy with smelting reduction
JP3364414B2 (en) Smelting reduction smelting of chrome ore
JP2014111813A (en) Method of manufacturing reduced iron
JP2003171705A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6028696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250