JP2015148029A - Long and short composite spun yarns and fabric including the same - Google Patents
Long and short composite spun yarns and fabric including the same Download PDFInfo
- Publication number
- JP2015148029A JP2015148029A JP2014022383A JP2014022383A JP2015148029A JP 2015148029 A JP2015148029 A JP 2015148029A JP 2014022383 A JP2014022383 A JP 2014022383A JP 2014022383 A JP2014022383 A JP 2014022383A JP 2015148029 A JP2015148029 A JP 2015148029A
- Authority
- JP
- Japan
- Prior art keywords
- sheath
- long
- core
- fine particles
- short
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 84
- 239000002131 composite material Substances 0.000 title claims abstract description 70
- 239000000835 fiber Substances 0.000 claims abstract description 98
- 239000010419 fine particle Substances 0.000 claims abstract description 86
- 229920000742 Cotton Polymers 0.000 claims abstract description 20
- 229920000433 Lyocell Polymers 0.000 claims abstract description 18
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 17
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 17
- 230000002285 radioactive effect Effects 0.000 claims description 31
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 23
- 230000000694 effects Effects 0.000 abstract description 93
- 230000005855 radiation Effects 0.000 abstract description 13
- 238000009413 insulation Methods 0.000 abstract description 3
- 230000005923 long-lasting effect Effects 0.000 abstract description 2
- 238000009987 spinning Methods 0.000 description 37
- 238000000034 method Methods 0.000 description 31
- 238000010521 absorption reaction Methods 0.000 description 24
- 239000000306 component Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 17
- -1 polyethylene terephthalate Polymers 0.000 description 17
- 230000000191 radiation effect Effects 0.000 description 16
- 230000020169 heat generation Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000010445 mica Substances 0.000 description 9
- 229910052618 mica group Inorganic materials 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000002195 synergetic effect Effects 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 206010016322 Feeling abnormal Diseases 0.000 description 5
- 229910026551 ZrC Inorganic materials 0.000 description 5
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 206010061592 cardiac fibrillation Diseases 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000008358 core component Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002600 fibrillogenic effect Effects 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- JRHWHSJDIILJAT-UHFFFAOYSA-N 2-hydroxypentanoic acid Chemical compound CCCC(O)C(O)=O JRHWHSJDIILJAT-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002961 polybutylene succinate Polymers 0.000 description 2
- 239000004631 polybutylene succinate Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- VTGXVUQXDHXADV-UHFFFAOYSA-N 1-methyl-1-oxidopiperidin-1-ium Chemical compound C[N+]1([O-])CCCCC1 VTGXVUQXDHXADV-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- RGMMREBHCYXQMA-UHFFFAOYSA-N 2-hydroxyheptanoic acid Chemical compound CCCCCC(O)C(O)=O RGMMREBHCYXQMA-UHFFFAOYSA-N 0.000 description 1
- NYHNVHGFPZAZGA-UHFFFAOYSA-N 2-hydroxyhexanoic acid Chemical compound CCCCC(O)C(O)=O NYHNVHGFPZAZGA-UHFFFAOYSA-N 0.000 description 1
- JKRDADVRIYVCCY-UHFFFAOYSA-N 2-hydroxyoctanoic acid Chemical compound CCCCCCC(O)C(O)=O JKRDADVRIYVCCY-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229920000910 Supima Polymers 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical group CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- TVIDDXQYHWJXFK-UHFFFAOYSA-N n-Dodecanedioic acid Natural products OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Knitting Of Fabric (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Woven Fabrics (AREA)
Abstract
Description
本発明は、布帛に対し遠赤外線放射効果、吸湿発熱効果に加え好ましくは吸光熱変換効果をも付与できる紡績糸と、その紡績糸を使用した布帛とに関するものである。 The present invention relates to a spun yarn capable of imparting a far-infrared radiation effect and a hygroscopic heat generation effect to a fabric, and preferably a light absorption heat conversion effect, and a fabric using the spun yarn.
従来から、保温を目的とする布帛が数多く上市されており、中空糸などによるデッドエアーの利用や吸湿発熱効果の利用、太陽光を熱に変換して利用する方法など、様々な手法を用いた布帛が提案されている。例えば、中空糸によるデッドエアーを利用したものとして、表裏面をつなぐ接結糸に中空糸を配し、表側にポリエステル仮撚糸を、裏側にその他の糸を各々配した布帛が提案されている(例えば、特許文献1)。 Many fabrics have been put on the market for the purpose of keeping warm, and various techniques such as the use of dead air with hollow fibers, the use of moisture absorption heat generation, and the method of converting sunlight into heat are used. Fabrics have been proposed. For example, as a thing using dead air by a hollow fiber, a fabric in which a hollow fiber is arranged on a binding yarn connecting the front and back surfaces, a polyester false twist yarn on the front side, and other yarns on the back side is proposed ( For example, Patent Document 1).
また、吸湿発熱効果を利用したものとして、特定のアクリル酸系吸放湿吸水発熱性繊維を使用した布帛(例えば、特許文献2)や、セルロース分子にN−メチロール(メタ)アクリルアミドと特定の水溶性ビニル重合性化合物とを導入した吸湿発熱性セルロース繊維を使用した布帛(例えば、特許文献3)などが提案されている。 Moreover, as a thing using the moisture absorption exothermic effect, the fabric (for example, patent document 2) using a specific acrylic acid type moisture absorption / release moisture absorption exothermic fiber, N-methylol (meth) acrylamide, and a specific water-solubility are used for a cellulose molecule. A fabric (for example, Patent Document 3) using a hygroscopic exothermic cellulose fiber into which a polymerizable vinyl polymerizable compound is introduced has been proposed.
さらに、太陽光を熱に変換する手法を利用したものとして、特定の太陽光吸収性微粒子を含有するポリエステル繊維を使用した布帛(例えば、特許文献4)などが提案されている。 Furthermore, as a method using a method of converting sunlight into heat, a fabric using polyester fibers containing specific solar-absorbing fine particles (for example, Patent Document 4) has been proposed.
これに対して、近年、遠赤外線放射性微粒子を利用して布帛に保温効果を与える技術が提案されている。例えば、当該微粒子としてアルミナや酸化マグネシウムなどを所定量含有するポリエステル繊維を使用した布帛(例えば、特許文献5)が提案されている。 On the other hand, in recent years, a technique for imparting a heat retaining effect to a fabric using far-infrared radioactive fine particles has been proposed. For example, a fabric using polyester fibers containing a predetermined amount of alumina or magnesium oxide as the fine particles (for example, Patent Document 5) has been proposed.
しかしながら、デッドエアーを利用する手法は、空気を含ませることで放熱を抑えるという消極的な手法であるため、寒さに対する保温効果には限界があり、また空気層を利用するため、布帛が嵩高になってしまうという問題があった。 However, since the method using dead air is a passive method of suppressing heat dissipation by including air, there is a limit to the heat retention effect against the cold, and since the air layer is used, the fabric becomes bulky. There was a problem of becoming.
また、吸湿発熱効果を利用する手法は、発汗などによる湿気を吸収することで発熱を促す手法であり、湿気を吸収した際は発熱するものの、持続性が低く、すぐに放熱してしまうという問題があった。 Also, the method using the hygroscopic heat generation effect is a method that promotes heat generation by absorbing moisture due to sweating, etc., but it generates heat when it absorbs moisture, but it has low sustainability and immediately dissipates heat. was there.
さらに、太陽光を熱に変換する手法については、晴天時の屋外においては十分な効果が認められるものの、雨天時や室内ではその効果がほとんど期待できないという問題があっ た。 Furthermore, the method of converting sunlight into heat has a problem that it can be expected to be effective when it is raining or indoors, although it is sufficiently effective outdoors in fine weather.
そして、遠赤外線放射性微粒子の利用については、かかる微粒子のみで所望の保温効果を得るには、遠赤外線放射性微粒子を多量に繊維に含有又は付着させる必要がある。そうすると、これが要因となり紡糸操業性に悪影響を及ぼすという問題があった。加えて、この手法のみでは、実現可能な保温効果に限界があり、十分な暖かさを具現するに至っていないのが実情である。 And about utilization of far-infrared radioactive fine particles, in order to acquire a desired heat retention effect only with such fine particles, it is necessary to contain or attach a large amount of far-infrared radioactive fine particles to the fiber. In this case, there is a problem that this causes a negative effect on the spinning operability. In addition, there is a limit to the heat insulation effect that can be achieved only with this method, and the actual situation is that sufficient warmth has not been realized.
さらに、上記の手法は、専らフィラメント糸のみ又は紡績糸のみを使用した布帛に適用され、両者を併用する布帛へ適用された例は見当たらない。一般にフィラメント糸は強度に優れ、布帛に着用耐久性を与えるのに適しているといわれている。一方、紡績糸はその表面に毛羽を有しているため、紡績糸を使用することでふくらみ感に富む布帛が得られ、そのふくらみ感に由来する各種風合いも付加することができるとされている。特に、秋冬向け衣料については、単に保温効果を付与するだけでは足りず、着用耐久性の他、ふくらみ感に由来するウォーム感(ふっくらした温かみのある風合い)を与えることが商品価値を高めるうえで有利とされている。 Furthermore, the above-described method is applied only to fabrics using only filament yarns or spun yarns, and there is no example applied to fabrics using both. In general, filament yarn is said to be excellent in strength and suitable for imparting wearing durability to a fabric. On the other hand, since the spun yarn has fluff on its surface, it is said that by using the spun yarn, a fabric rich in swell can be obtained, and various textures derived from the swell can be added. . Especially for clothing for autumn and winter, it is not enough to simply give a warming effect. In addition to wearing durability, giving a warm feeling derived from a puffy feeling (puffy and warm texture) increases the value of the product. It is considered advantageous.
本発明はこのような従来技術の欠点を解消するものであり、布帛に対し、天候に左右されず持続性ある優れた保温効果や着用耐久性、ウォーム感などを付与することのできる長短複合紡績糸と、その長短複合紡績糸を用いた布帛とを提供することを目的とするものである。 The present invention eliminates the disadvantages of the prior art, and is a long / short composite spinning that can provide a fabric with a superior warming effect, durability to wear, warm feeling, etc. that is durable regardless of the weather. An object of the present invention is to provide a yarn and a fabric using the long and short composite spun yarn.
本発明者は、上記課題を解決するべく鋭意検討した結果、遠赤外線放射性微粒子を利用する手法と吸湿発熱効果を利用する手法とを併用することで、相乗的に保温効果が奏されることを見出した。そして、この保温効果は、天候に左右されない持続性ある優れた保温効果であり、結果、紡糸操業性を改善する目的で遠赤外線放射性微粒子の使用量を多少減らしても、十分な保温効果が確保できることを見出した。特に、吸光熱変換効果を追加利用すると、かかる相乗効果を一層向上させうることも見出した。この他、本発明者らは、長短繊維を複合した紡績糸(長短複合紡績糸)で布帛を構成することで、両繊維に由来する特性を併せ持つ布帛が提供できることも見出した。本発明は、これらの知見に基づいてさらに検討を重ね、完成するに至ったものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has demonstrated that a heat retention effect can be achieved synergistically by combining a method using far-infrared radioactive fine particles and a method using a hygroscopic heat generation effect. I found it. And this heat retention effect is an excellent heat retention effect that is not influenced by the weather, and as a result, even if the amount of far-infrared radioactive fine particles used is slightly reduced for the purpose of improving spinning operability, sufficient heat retention effect is secured I found out that I can do it. In particular, it has also been found that such a synergistic effect can be further improved by additionally utilizing an absorption heat conversion effect. In addition, the present inventors have also found that a fabric having characteristics derived from both fibers can be provided by forming the fabric with spun yarns (long / short composite spun yarns) composed of long and short fibers. The present invention has been further studied based on these findings and has been completed.
すなわち、本発明は以下を要旨とするものである。 That is, this invention makes the following a summary.
(1)遠赤外線放射性微粒子を含有する合成繊維フィラメントを芯部に配し、吸湿発熱性短繊維を鞘部に配してなる長短複合紡績糸であって、芯鞘質量比率(芯/鞘)が20/80〜50/50の範囲にあることを特徴とする長短複合紡績糸。
(2)前記吸湿発熱性短繊維が、綿、リヨセル及びモダールのいずれか1種以上であることを特徴とする(1)記載の長短複合紡績糸。
(3)鞘部にアクリル短繊維を含み、前記吸湿発熱性短繊維と前記アクリル短繊維との混合比率(吸湿発熱性短繊維/アクリル短繊維)が80/20〜30/70の範囲にあることを特徴とする(1)又は(2)記載の長短複合紡績糸。
(4)前記合成繊維フィラメントの断面が芯鞘構造をなし、前記遠赤外線放射性微粒子が鞘成分に含まれ、前記遠赤外線放射性微粒子の含有量が鞘成分100質量部に対して0.5〜2.5質量部であり、かつフィラメントにおける芯鞘の質量比率(芯/鞘)が95/5〜15/85の範囲にあることを特徴とする(1)〜(3)いずれかに記載の長短複合紡績糸。
(5)前記合成繊維フィラメントが発熱性微粒子を含有することを特徴とする(1)〜(4)いずれかに記載の長短複合紡績糸。
(6)前記合成繊維フィラメントの断面が芯鞘構造をなし、前記発熱性微粒子が鞘成分に含まれ、前記発熱性微粒子の含有量が鞘成分100質量部に対して0.5〜2.5質量部であり、かつフィラメントにおける芯鞘の質量比率(芯/鞘)が95/5〜15/85の範囲にあることを特徴とする(5)記載の長短複合紡績糸。
(7)(1)〜(6)いずれかに記載の長短複合紡績糸を用いてなる布帛。
(1) A long / short composite spun yarn in which a synthetic fiber filament containing far-infrared radioactive fine particles is arranged in a core portion and hygroscopic heat-generating short fibers are arranged in a sheath portion, and a core-sheath mass ratio (core / sheath) Is in the range of 20/80 to 50/50.
(2) The long / short composite spun yarn according to (1), wherein the moisture-absorbing exothermic short fibers are at least one of cotton, lyocell and modal.
(3) The sheath part includes acrylic short fibers, and the mixing ratio of the hygroscopic exothermic short fibers and the acrylic short fibers (hygroscopic exothermic short fibers / acrylic short fibers) is in the range of 80/20 to 30/70. The long and short composite spun yarn according to (1) or (2), wherein
(4) A cross section of the synthetic fiber filament has a core-sheath structure, the far-infrared radioactive fine particles are contained in a sheath component, and the content of the far-infrared radioactive fine particles is 0.5 to 2 with respect to 100 parts by mass of the sheath component. The mass ratio of the core-sheath in the filament (core / sheath) is in the range of 95/5 to 15/85, and the length according to any one of (1) to (3) Composite spun yarn.
(5) The long / short composite spun yarn according to any one of (1) to (4), wherein the synthetic fiber filament contains exothermic fine particles.
(6) A cross section of the synthetic fiber filament has a core-sheath structure, the exothermic fine particles are contained in a sheath component, and the content of the exothermic fine particles is 0.5 to 2.5 with respect to 100 parts by mass of the sheath component. The long / short composite spun yarn according to (5), which is a mass part and has a mass ratio (core / sheath) of the core-sheath in the filament in the range of 95/5 to 15/85.
(7) A fabric comprising the long and short composite spun yarn according to any one of (1) to (6).
本発明によれば、天候に左右されず持続性ある優れた保温効果は勿論のこと、着用耐久性、ウォーム感にも優れる布帛が提供できる。本発明の布帛は、長短複合紡績糸から構成されており、両繊維に由来する特性を備えているから、特段の工夫なく優れた着用耐久性及びウォーム感が得られる。本発明の布帛は、秋冬向け衣料に好適である。 ADVANTAGE OF THE INVENTION According to this invention, the cloth which is excellent also in wear durability and a warm feeling can be provided as well as the outstanding heat retention effect which is not influenced by the weather. Since the fabric of the present invention is composed of long and short composite spun yarns and has characteristics derived from both fibers, excellent wear durability and a warm feeling can be obtained without any special measures. The fabric of the present invention is suitable for clothing for autumn and winter.
本発明では、遠赤外線放射性微粒子を利用する技術と吸湿発熱効果を利用する技術とを併用することにより、優れた保温効果が奏される。このため、紡糸操業性を改善する目的で遠赤外線放射性微粒子の使用量を多少減らしても、一定の保温効果が確保できる。加えて、太陽光を熱に変換する手法によりもたらされる吸光熱変換効果を追加的に利用することで、遠赤外線放射が一層促進される。これにより、一層の保温効果が期待できるようになるから、遠赤外線放射性微粒子の使用量をさらに減らしても、一定の保温効果が確保できる。また、吸光熱変換効果のよりどころとなる発熱性微粒子についても、使用量をさほど増やさずとも一定の保温効果の向上が期待できる。この点から、本発明の長短複合紡績糸は、保温効果、紡糸操業性、工程通過性などを両立させうるものとして優れている。 In the present invention, an excellent heat retention effect can be achieved by using a technique that utilizes far-infrared radioactive fine particles and a technique that utilizes the hygroscopic heat generation effect. For this reason, even if the amount of far-infrared radioactive fine particles used is somewhat reduced for the purpose of improving spinning operability, a certain heat retaining effect can be secured. In addition, far-infrared radiation is further promoted by additionally utilizing the light absorption heat conversion effect brought about by the method of converting sunlight into heat. Thereby, since a further heat retention effect can be expected, a certain heat retention effect can be ensured even if the amount of far-infrared radioactive fine particles used is further reduced. Further, with respect to the exothermic fine particles that are the basis of the light absorption heat conversion effect, a constant improvement in the heat retention effect can be expected without increasing the amount used. From this point, the long and short composite spun yarns of the present invention are excellent in that they can achieve both a heat retaining effect, spinning operability, process passability, and the like.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の長短複合紡績糸は、遠赤外線放射性微粒子を含有する合成繊維フィラメントを芯部に配し、吸湿発熱性短繊維を鞘部に配してなるものである。 The long / short composite spun yarn of the present invention is formed by arranging a synthetic fiber filament containing far-infrared radioactive fine particles in a core portion and hygroscopic exothermic short fibers in a sheath portion.
まず、合成繊維マルチフィラメントを構成するポリマーとしては、繊維形成能を有するポリマーであれば、どのようなものでも使用できる。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのポリエステル;ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12などのポリアミド;ポリプロピレン、ポリエチレンなどのポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデンなどのポリ塩化ポリマー;ポリ4フッ化エチレン、ポリフッ化ビニリデンなどのフッ素系ポリマー;PLA(ポリ乳酸)やPBS(ポリブチレンサクシネート)などのバイオマス由来モノマーを化学的に重合してなるバイオマスポリマー;これらのポリマーを構成するモノマーの2種以上からなる共重合体などがあげられる。 First, as the polymer constituting the synthetic fiber multifilament, any polymer having fiber-forming ability can be used. For example, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, polytrimethylene terephthalate; polyamides such as nylon 6, nylon 66, nylon 46, nylon 11 and nylon 12; polyolefins such as polypropylene and polyethylene; polyvinyl chloride, poly Polychlorinated polymers such as vinylidene chloride; Fluoropolymers such as polytetrafluoroethylene and polyvinylidene fluoride; Biomass obtained by chemically polymerizing biomass-derived monomers such as PLA (polylactic acid) and PBS (polybutylene succinate) Examples of the polymer include a copolymer comprising two or more monomers constituting these polymers.
上記のポリマーは、粘度、熱的特性、相溶性などに鑑みて、他の構成モノマーを共重合成分として含む共重合体であってもよい。例えば、ポリエステル共重合体を使用する場合であれば、共重合体成分として、イソフタル酸、5−スルホイソフタル酸などの芳香族ジカルボン酸;アジピン酸、コハク酸、スベリン酸、セバシン酸、ドデカン二酸などの脂肪族ジカルボン酸;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノールなどの脂肪族ジオール;グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸などのヒドロキシカルボン酸;ε−カプロラクトンなどの脂肪族ラクトンがあげられる。 The above polymer may be a copolymer containing another constituent monomer as a copolymer component in view of viscosity, thermal characteristics, compatibility, and the like. For example, when a polyester copolymer is used, the copolymer component includes aromatic dicarboxylic acids such as isophthalic acid and 5-sulfoisophthalic acid; adipic acid, succinic acid, suberic acid, sebacic acid, dodecanedioic acid Aliphatic dicarboxylic acids such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like; glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid , Hydroxycarboxylic acids such as hydroxyheptanoic acid and hydroxyoctanoic acid; and aliphatic lactones such as ε-caprolactone.
本発明の長短複合紡績糸では、複数の合成繊維フィラメント(単糸)が束となり芯部が構成されている。そして、このフィラメントには、遠赤外線放射性微粒子が含有されている。 In the long and short composite spun yarn of the present invention, a plurality of synthetic fiber filaments (single yarn) are bundled to form a core portion. And this filament contains far-infrared radioactive fine particles.
遠赤外線放射性微粒子とは、遠赤外線を放射可能な物質からなる微粒子である。本発明で使用される遠赤外線放射性微粒子としては、特に限定されないが、例えば、マイカ、タルク、方解石などの鉱物;酸化錫、アルミナ、二酸化珪素などの酸化物系セラミックス;炭化珪素、炭化ホウ素などの炭化物系セラミックス;白金、タングステンなどの金属類があげられる。中でも、紡糸操業性と遠赤外線放射性とを同時に向上させる観点から、マイカ、酸化錫、タルクが好適であり、マイカ、酸化錫がより好適である。これらの遠赤外線放射性微粒子は、1種単独で使用してもよく、また2種以上を組合せて使用してもよい。
フィラメントに含まれる遠赤外線放射性微粒子の含有量としては、特に限定されないが、0.1〜10質量%が好ましい。
Far-infrared radioactive fine particles are fine particles made of a substance capable of emitting far-infrared rays. The far-infrared radioactive fine particles used in the present invention are not particularly limited. For example, minerals such as mica, talc and calcite; oxide ceramics such as tin oxide, alumina and silicon dioxide; silicon carbide, boron carbide and the like Carbide ceramics: metals such as platinum and tungsten. Among these, mica, tin oxide, and talc are preferable from the viewpoint of simultaneously improving spinning operability and far infrared radiation, and mica and tin oxide are more preferable. These far-infrared radioactive fine particles may be used alone or in combination of two or more.
Although it does not specifically limit as content of the far-infrared radioactive fine particle contained in a filament, 0.1-10 mass% is preferable.
遠赤外線放射性微粒子の平均粒子径としては、特に限定されないが、10μm以下が好ましく、0.1〜5μmがより好ましく、0.3〜3μmがさらに好ましい。このような範囲を満足する遠赤外線放射性微粒子を使用することで、紡糸操業性を改善しつつ優れた保温効果を得ることができる。ここで、平均粒子径とは、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径をいう。 Although it does not specifically limit as an average particle diameter of a far-infrared radiation fine particle, 10 micrometers or less are preferable, 0.1-5 micrometers is more preferable, 0.3-3 micrometers is further more preferable. By using far-infrared radioactive fine particles satisfying such a range, an excellent heat retaining effect can be obtained while improving spinning operability. Here, the average particle diameter refers to a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.
遠赤外線放射性微粒子を使用すると遠赤外線が放射されるので、布帛の使用場所や天候などによらず、一律に保温効果が期待できる。しかし、単に遠赤外線放射性微粒子を使用しただけでは、高いレベルの保温効果は得られない。遠赤外線がより放射されるための工夫が必要である。 When far-infrared radioactive fine particles are used, far-infrared rays are emitted, so that a heat retention effect can be expected uniformly regardless of the place where the fabric is used or the weather. However, a high level of heat retention effect cannot be obtained simply by using far-infrared radioactive fine particles. A device to radiate far infrared rays more is necessary.
具体的には、後述する吸湿発熱効果による熱を利用する。吸湿発熱効果とは前述のように湿気などの吸収による発熱効果をいう。本発明では、この吸湿発熱効果による熱を保温効果の向上そのものに利用するだけでなく、その熱を遠赤外線放射性微粒子の温度上昇に活用できる。遠赤外線放射性微粒子は、温度が上昇するとより多くの遠赤外線を放射する傾向にあるから、結果として優れた保温効果が得られる。 Specifically, heat generated by a moisture absorption exothermic effect described later is used. The moisture absorption exothermic effect means an exothermic effect due to absorption of moisture or the like as described above. In the present invention, not only can the heat generated by the hygroscopic heat generation effect be used to improve the heat retaining effect itself, but the heat can also be used to increase the temperature of the far-infrared radiation fine particles. The far-infrared radioactive fine particles tend to emit more far-infrared rays when the temperature rises, and as a result, an excellent heat retention effect is obtained.
吸湿発熱効果は、後述する吸湿発熱性短繊維の使用により奏される。 The hygroscopic exothermic effect is exhibited by the use of hygroscopic exothermic short fibers described later.
本発明では、遠赤外線放射性微粒子による保温効果と吸湿発熱性短繊維による保温効果との総和を超える相乗的な保温効果が奏される。一般に、フィラメントの紡糸操業性は、フィラメント中の微粒子の含有量が増えるほど低下する傾向にあるが、本発明では、上記のような相乗的な保温効果が奏されるから、ことさら遠赤外線放射性微粒子の含有量を増やす必要がなく、紡糸操業性改善のために微粒子の含有量を多少減らしても、十分な保温効果が確保できる。よって、遠赤外線放射性微粒子の含有量は、保温効果と紡糸操業性とを両立させる観点から、0.2〜5質量%が好ましく、0.5〜2.5質量%がより好ましく、0.5〜2質量%がさらに好ましい。 In this invention, the synergistic heat retention effect exceeding the sum total of the heat retention effect by a far-infrared radioactive fine particle and the heat retention effect by a hygroscopic exothermic short fiber is show | played. In general, the spinning operability of a filament tends to decrease as the content of fine particles in the filament increases. However, in the present invention, the synergistic heat-retaining effect as described above is exhibited. Therefore, even if the content of fine particles is slightly reduced to improve the spinning operability, a sufficient heat retention effect can be secured. Therefore, the content of the far-infrared radioactive fine particles is preferably 0.2 to 5% by mass, more preferably 0.5 to 2.5% by mass, from the viewpoint of achieving both the heat retaining effect and the spinning operability. More preferred is ˜2% by mass.
なお、遠赤外線の放射量は、一般に微粒子の種類により異なるから、微粒子の種類を特定することも遠赤外線放射効果を高めるうえで有効であり、この点でマイカが好適である。 Since the amount of far-infrared radiation generally varies depending on the type of fine particles, specifying the type of fine particles is also effective in enhancing the far-infrared radiation effect, and mica is preferable in this respect.
さらに、本発明における合成繊維マルチフィラメントには、艶消し剤、難燃剤、抗酸化剤などの各種微粒子及び薬剤などが適宜含まれていてもよい。中でも、発熱性微粒子が含まれていることが好ましい。発熱性微粒子を含有することで、発生した熱を暖かさそのものの向上に利用できるのは無論のこと、遠赤外線放射性微粒子の温度上昇にも活用できる。すなわち、発熱性微粒子によりもたらされる吸光熱変換効果を追加的に利用することで、遠赤外線放射効果をさらに促すことができる。 Furthermore, the synthetic fiber multifilament in the present invention may appropriately contain various fine particles such as a matting agent, a flame retardant, and an antioxidant, and a drug. Among these, it is preferable that exothermic fine particles are included. By containing exothermic fine particles, it goes without saying that the generated heat can be used to improve the warmth itself, and can also be used to increase the temperature of far-infrared radioactive fine particles. That is, the far-infrared radiation effect can be further promoted by additionally utilizing the absorption heat conversion effect brought about by the exothermic fine particles.
発熱性微粒子としては、電磁波(太陽光を含む)の吸収により発熱する微粒子であれば、どのようなものでも使用できる。例えば、酸化ジルコニウム、炭化ジルコニウム、カーボンなどがあげられる。中でも、紡糸操業性及び吸光熱変換効果の観点から、カーボン、炭化ジルコニウムが好ましい。これらの発熱性微粒子は、1種単独で使用してもよく、また2種以上を組合せて使用してもよい。 As the exothermic fine particles, any fine particles that generate heat by absorbing electromagnetic waves (including sunlight) can be used. Examples thereof include zirconium oxide, zirconium carbide, and carbon. Among these, carbon and zirconium carbide are preferable from the viewpoints of spinning operability and absorption heat conversion effect. These exothermic fine particles may be used individually by 1 type, and may be used in combination of 2 or more type.
フィラメントに含まれる発熱性微粒子の含有量としては、特に限定されないが、0.1〜10質量%が好ましい。特に、本発明では、前記した相乗的な保温効果が奏されるため、紡糸操業性改善のためにその含有量を多少減らしても、十分な保温効果が確保できる。かかる観点から、発熱性微粒子の含有量としては、0.2〜5質量%が好ましく、0.5〜2.5質量%がより好ましく、0.5〜2質量%がさらに好ましい。 Although it does not specifically limit as content of the exothermic fine particle contained in a filament, 0.1-10 mass% is preferable. In particular, in the present invention, since the above-described synergistic heat retaining effect is exhibited, a sufficient heat retaining effect can be ensured even if the content is slightly reduced to improve spinning operability. From this viewpoint, the content of the exothermic fine particles is preferably 0.2 to 5% by mass, more preferably 0.5 to 2.5% by mass, and further preferably 0.5 to 2% by mass.
発熱性微粒子の平均粒子径としては、特に限定されないが、0.01〜5μmが好ましく、0.05〜3μmがより好ましく、0.1〜2μmがさらに好ましい。このような範囲を満足する発熱性微粒子を使用することで、紡糸操業性を改善しつつ優れた保温効果を得ることができる。ここで、平均粒子径とは、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径をいう。 Although it does not specifically limit as an average particle diameter of exothermic fine particle, 0.01-5 micrometers is preferable, 0.05-3 micrometers is more preferable, 0.1-2 micrometers is further more preferable. By using exothermic fine particles satisfying such a range, an excellent heat retaining effect can be obtained while improving the spinning operability. Here, the average particle diameter refers to a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.
本発明における合成繊維マルチフィラメントは、例えば、上記の繊維形成能を有するポリマーに、上記遠赤外線放射性微粒子及び好ましくは上記発熱性微粒子を所定量練り込み、溶融紡糸することにより得ることができる。このとき、フィラメントの断面形状としては、特に限定されず適宜の形状が採用できる。断面形状は、紡糸口金を選択することにより調整可能である。 The synthetic fiber multifilament in the present invention can be obtained, for example, by kneading a predetermined amount of the far-infrared radiation fine particles and preferably the exothermic fine particles in the above-mentioned polymer having fiber-forming ability, and melt spinning. At this time, the cross-sectional shape of the filament is not particularly limited, and an appropriate shape can be adopted. The cross-sectional shape can be adjusted by selecting a spinneret.
また、フィラメント中における各微粒子の分散状態も適宜の態様が採用できる。一般に、遠赤外線放射効果をより高めるには、フィラメント鞘成分に集中して各微粒子を配することが好ましい。 Moreover, the dispersion | distribution state of each fine particle in a filament can employ | adopt an appropriate | suitable aspect. Generally, in order to further enhance the far-infrared radiation effect, it is preferable to concentrate each fine particle on the filament sheath component.
フィラメント断面が芯鞘構造をなし、その鞘成分に前記遠赤外線放射性微粒子を含む場合、赤外線放射性微粒子の含有量としては、鞘成分100質量部に対して0.5〜2.5質量部の範囲にあることが好ましい。このとき、微粒子の含有量が0.5質量部未満になると、所望の遠赤外線放射効果が得難くなり、2.5質量部を超えると、所望の紡糸操業性や工程通過性が得難くなる。 When the filament cross-section has a core-sheath structure and the sheath component contains the far-infrared radiation fine particles, the content of the infrared radiation fine particles is in the range of 0.5 to 2.5 parts by mass with respect to 100 parts by mass of the sheath component. It is preferable that it exists in. At this time, if the content of the fine particles is less than 0.5 parts by mass, it is difficult to obtain a desired far-infrared radiation effect, and if it exceeds 2.5 parts by mass, it is difficult to obtain desired spinning operability and processability. .
他方、フィラメント断面が芯鞘構造をなし、その鞘成分に前記発熱性微粒子を含む場合、発熱性微粒子の含有量としては、鞘成分100質量部に対して0.5〜2.5質量部の範囲にあることが好ましい。このとき、微粒子の含有量が0.5質量部未満になると、所望の吸光熱変換効果が得難くなり、2.5質量部を超えると、所望の紡糸操業性や工程通過性が得難くなる。 On the other hand, when the filament cross section has a core-sheath structure and the sheath component contains the exothermic fine particles, the content of the exothermic fine particles is 0.5 to 2.5 parts by mass with respect to 100 parts by mass of the sheath component. It is preferable to be in the range. At this time, if the content of the fine particles is less than 0.5 parts by mass, it is difficult to obtain a desired absorption heat conversion effect, and if it exceeds 2.5 parts by mass, it is difficult to obtain desired spinning operability and processability. .
そして、フィラメント断面が芯鞘構造をなし、遠赤外線放射性微粒子、もしくは遠赤外線放射性微粒子及び発熱性微粒子を鞘成分に含む場合、その芯鞘の質量比率としては、95/5〜15/85の範囲にあることが好ましく、85/15〜40/60の範囲がより好ましい。芯鞘の質量比率がこの範囲を満足すると、保温効果及び紡糸操業性を両立する点で有利となる。 And when the filament cross section has a core-sheath structure and includes far-infrared radioactive particles, or far-infrared radioactive particles and exothermic fine particles in the sheath component, the mass ratio of the core-sheath is in the range of 95/5 to 15/85. Preferably, it is in the range of 85/15 to 40/60. When the mass ratio of the core-sheath satisfies this range, it is advantageous in that both the heat retaining effect and the spinning operability are achieved.
しかしながら、一方で紡糸操業性や製織編時の工程通過性などを向上させるには、芯成分に集中して各微粒子を配することが一般に好ましいとされている。この点、本発明では、遠赤外線放射効果と吸湿発熱効果とさらに好ましくは吸光熱変換効果との相乗効果により、優れた保温効果を奏するから、紡糸操業性改善のためにフィラメント全体に含まれる微粒子の含有量を減らしても、一定レベルの保温効果が確保できる。特に上記両微粒子をフィラメント鞘成分に含有させると、両微粒子が接近することで、前記相乗効果がより効率的に奏されるから、両微粒子をさらに減らしても、保温効果の確保が可能となる。 However, on the other hand, in order to improve the spinning operability and process passability during weaving and knitting, it is generally preferable to concentrate each fine particle on the core component. In this respect, in the present invention, since the excellent heat retention effect is achieved by the synergistic effect of the far-infrared radiation effect, the moisture absorption heat generation effect, and more preferably the absorption heat conversion effect, the fine particles contained in the entire filament for improving the spinning operability Even if the content of is reduced, a certain level of heat retention effect can be secured. In particular, when both the above-mentioned fine particles are contained in the filament sheath component, the synergistic effect is more efficiently produced by the close proximity of both the fine particles. Therefore, even if both the fine particles are further reduced, the heat retaining effect can be ensured. .
このような点から、両微粒子を共にフィラメント鞘成分に含む場合には、両微粒子の含有量をそれぞれ鞘成分100質量部に対して0.3〜1.5質量部程度まで減らしても、十分な保温効果が確保できる。 From this point, when both fine particles are included in the filament sheath component, it is sufficient even if the content of both fine particles is reduced to about 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the sheath component, respectively. Secures warming effect.
さらに、本発明における合成繊維マルチフィラメントの太さ(単糸繊度)としては、特に限定されないが、0.01〜30dtexが好ましく、0.1〜10dtexがより好ましく、0.1〜3dtexがさらに好ましい。また、長短複合紡績糸の芯部を構成する繊維束としてのトータル繊度は、1〜500dtexが好ましく、5〜300dtexがより好ましく、10〜200dtexがさらに好ましい。 Furthermore, although it does not specifically limit as thickness (single yarn fineness) of the synthetic fiber multifilament in this invention, 0.01-30 dtex is preferable, 0.1-10 dtex is more preferable, 0.1-3 dtex is further more preferable . Moreover, 1-500 dtex is preferable, as for the total fineness as a fiber bundle which comprises the core part of long and short composite spun yarn, 5-300 dtex is more preferable, and 10-200 dtex is further more preferable.
単糸繊度を細くすることでフィラメント表面積が増加し、それに伴い遠赤外線放射効果が高まり、ひいては保温効果も高まることになる。また、単糸繊度を細くすると、空気層が増加するためデッドエアーに起因する保温効果がさらに付加される。ただし、単糸繊度を細くし過ぎると、フィラメントの紡糸操業性が低下する傾向にある。一方、単糸繊度を太くなり過ぎると、布帛の風合いが低下するばかりでなく、フィラメント表面積が低減し、所望の遠赤外線放射効果が得られない傾向にある。また、トータル繊度については、繊度が細くなり過ぎると、フィラメントの紡糸操業性が低下する傾向にあり、太くなり過ぎると、布帛に肉厚感が付与され風合いが低下する他、長短複合紡績糸の被覆性が低下する傾向にある。 By reducing the fineness of the single yarn, the surface area of the filament is increased, and as a result, the far-infrared radiation effect is enhanced and the heat retaining effect is also enhanced. Further, when the fineness of the single yarn is reduced, the air layer is increased, so that a heat retaining effect due to dead air is further added. However, if the single yarn fineness is too thin, the spinning operability of the filament tends to be lowered. On the other hand, if the single yarn fineness is too large, not only the texture of the fabric is lowered, but also the filament surface area is reduced and the desired far-infrared radiation effect tends not to be obtained. As for the total fineness, if the fineness is too thin, the spinning operability of the filament tends to be reduced. If the fineness is too thick, the fabric is given a sense of thickness and the texture is lowered. The covering property tends to be lowered.
長短複合紡績糸の芯部を構成する繊維束の形態は、特に限定されず、フラットヤーン、仮撚糸、混繊糸、撚糸などいずれのものでもよい。 The form of the fiber bundle constituting the core of the long / short composite spun yarn is not particularly limited, and any of flat yarn, false twisted yarn, mixed yarn, twisted yarn and the like may be used.
本発明では、このように優れた保温効果が奏される。かかる保温効果の獲得には、既述のように吸湿発熱効果の利用が必要となるが、本発明では、この吸湿発熱効果を得るために吸湿発熱性短繊維を使用する。 In this invention, the outstanding heat retention effect is show | played in this way. In order to obtain such a heat retaining effect, it is necessary to use the hygroscopic exothermic effect as described above. In the present invention, the hygroscopic exothermic short fibers are used in order to obtain the hygroscopic exothermic effect.
吸湿発熱性短繊維としては、ポリノジックレーヨン、ビスコースレーヨン、銅アンモニアレーヨン、リヨセル、モダール、麻、羊毛などがあげられる。これらを用いることで、ソフト感、ウォーム感に優れる布帛が得られるという効果も期待できる。中でも綿、リヨセル、モダールが好ましく、吸湿発熱効果と風合い、質感を高める観点からリヨセルが特に好ましい。本発明では、吸湿発熱性を本来的に有していない短繊維を吸湿発熱処理して吸湿発熱性を具備させたものを、吸湿発熱性短繊維として用いてもよい。 Examples of the hygroscopic exothermic short fibers include polynosic rayon, viscose rayon, copper ammonia rayon, lyocell, modal, hemp and wool. By using these, an effect that a fabric excellent in soft feeling and warm feeling can be obtained can be expected. Among them, cotton, lyocell, and modal are preferable, and lyocell is particularly preferable from the viewpoint of enhancing the moisture absorption heat generation effect, texture, and texture. In the present invention, a short fiber that does not inherently have a hygroscopic exothermic property may be used as a hygroscopic exothermic short fiber that is provided with a hygroscopic exothermic treatment by a hygroscopic exothermic treatment.
ここで、リヨセルとは、パルプ原料を溶剤に溶解したものを乾式又は湿式紡糸することにより得た繊維のことである。溶剤としては、N−メチルモルフォリン−N−オキサイド、ジメチルスルホキシド、N−メチルピペリジン−N−オキサイド、ジメチルアセトアミドなどがあげられ、溶解後紡糸前に溶解液を濾過することが好ましい。リヨセルは、吸湿発熱性及び静電気防止性に優れるものである。また、製造過程で誘導体化などの工程を含まないため、セルロース分子の重合度が低下し難く、繊維強度にも優れている。 Here, lyocell is a fiber obtained by dry or wet spinning a pulp material dissolved in a solvent. Examples of the solvent include N-methylmorpholine-N-oxide, dimethyl sulfoxide, N-methylpiperidine-N-oxide, dimethylacetamide and the like, and it is preferable to filter the solution after dissolution and before spinning. The lyocell is excellent in moisture absorption exothermic property and antistatic property. In addition, since the production process does not include steps such as derivatization, the degree of polymerization of the cellulose molecules is hardly lowered and the fiber strength is excellent.
また、リヨセル繊維は、外から摩擦を受けると一般にフィブリル化し易く、この点を改善するために、原綿段階でフィブリル化防止加工しておくとよい。フィブリル化防止加工としては、例えば、クロルヒドリン基を有する化合物とアルカリ化合物と中性塩とからなる反応促進剤を含む水溶液を用いて、60℃で60分間の条件で処理すればよい。 In addition, lyocell fibers are generally easily fibrillated when subjected to friction from the outside, and in order to improve this point, it is preferable to perform fibrillation prevention processing at the raw cotton stage. What is necessary is just to process on 60 degreeC conditions for 60 minutes using the aqueous solution containing the reaction accelerator which consists of a compound which has a chlorohydrin group, an alkali compound, and a neutral salt as a fibrillation prevention process, for example.
吸湿発熱性短繊維の単糸繊度としては、特に限定されないが、0.3〜3.5dtexが好ましく、0.4〜2.5dtexがより好ましい。0.3dtex未満になると、短繊維の曲げ剛性が低下し、強度に優れる布帛が得難くなる。一方、3.5dtexを超えると、長短複合紡績糸を得る過程で、糸斑、ネップなどが発生し、布帛の風合いも低下する傾向にある。また、長短複合紡績糸の被覆性も低下し易く、さらには、芯部鞘部の界面において繊維同士が絡みづらくなり、長短複合紡績糸とした後、芯部鞘部が外力により容易に剥離し易くなる。この他、単糸繊度が太くなり過ぎると、繊維表面積が低減し、布帛の吸放湿性を維持する点でも不利となることがある。 The single yarn fineness of the hygroscopic exothermic short fibers is not particularly limited, but is preferably 0.3 to 3.5 dtex, and more preferably 0.4 to 2.5 dtex. If it is less than 0.3 dtex, the bending rigidity of the short fiber is lowered, and it becomes difficult to obtain a fabric excellent in strength. On the other hand, when it exceeds 3.5 dtex, in the process of obtaining a long and short composite spun yarn, yarn unevenness, nep, etc. are generated, and the texture of the fabric tends to be lowered. In addition, the covering properties of the long and short composite spun yarns are likely to deteriorate, and furthermore, the fibers become difficult to be entangled at the interface between the core and the sheath. It becomes easy. In addition, if the single yarn fineness is too large, the fiber surface area may be reduced, which may be disadvantageous in terms of maintaining the moisture absorption / release properties of the fabric.
また、吸湿発熱性短繊維の平均繊維長としては、28〜60mmが好ましく、30〜55mmがより好ましい。平均繊維長がこの範囲を満足することで、糸斑、ネップなどの発生を抑えることができ、芯部鞘部の界面における繊維同士が絡みつきも促進され、被覆性のよい長短複合紡績糸を得ることができる。 Further, the average fiber length of the hygroscopic exothermic short fibers is preferably 28 to 60 mm, and more preferably 30 to 55 mm. When the average fiber length satisfies this range, it is possible to suppress the occurrence of yarn unevenness, nep, etc., and the entanglement of fibers at the interface of the core-sheath part is promoted, and a long and short composite spun yarn with good coverage is obtained. Can do.
本発明の長短複合紡績糸は、特定フィラメントからなる繊維束を芯部に、特定短繊維からなる繊維束を鞘部にそれぞれ配した芯鞘二層構造をなし、このような糸を用いることで、天候に左右されない持続性ある優れた保温効果を有し、かつ着用耐久性、ウォーム感、ソフトな風合いなどにも優れる布帛が得られる。すなわち、本発明の長短複合紡績糸は、両繊維束に由来する特性をバランスよく布帛に反映させるべく特定の構成を備えるものであり、例えば、繊維原料が同じでも、両繊維束を交撚状に複合する、芯部鞘部の繊維束を入れ換える、芯鞘質量比率が所定範囲を外れるなどの場合には、ある特定の効果だけが強く反映される一方で、その他の効果が著しく低下することがあり、用途展開を図るうえで不利となる。 The long and short composite spun yarn of the present invention has a core-sheath two-layer structure in which a fiber bundle made of a specific filament is arranged in the core part and a fiber bundle made of the specific short fiber is arranged in the sheath part. Thus, it is possible to obtain a fabric having an excellent heat retention effect that is not affected by the weather and excellent in wear durability, warm feeling, soft texture and the like. That is, the long and short composite spun yarn of the present invention has a specific configuration in order to reflect the properties derived from both fiber bundles in a well-balanced manner in the fabric. For example, even if the fiber raw material is the same, both fiber bundles are twisted. When the fiber bundle of the core / sheath part is replaced, the mass ratio of the core / sheath is out of the predetermined range, only certain specific effects are strongly reflected, while other effects are remarkably reduced. There are disadvantages in developing applications.
本発明では、このように両繊維束の特性をバランスよく布帛に反映させる観点から、両繊維束の芯鞘質量比率(芯/鞘)を20/80〜50/50の範囲に設定する必要がある。好ましくは25/75〜45/55である。芯鞘質量比率がこの範囲を外れると、遠赤外線放射効果と吸湿発熱効果とによる相乗効果が発揮されず、所望の保温効果が得られない。加えて、芯鞘質量比率が20/80に満たない場合、布帛に十分な着用耐久性が備わらず、布帛の防シワ性、耐洗濯収縮性、寸法安定性なども低下する。一方、50/50を超えると、長短複合紡績糸の被覆性が低下する他、布帛の風合い、吸放湿性なども低下する。 In the present invention, it is necessary to set the core-sheath mass ratio (core / sheath) of both fiber bundles in the range of 20/80 to 50/50 from the viewpoint of reflecting the properties of both fiber bundles in a well-balanced manner in this way. is there. Preferably it is 25 / 75-45 / 55. If the core-sheath mass ratio is outside this range, the synergistic effect of the far-infrared radiation effect and the hygroscopic heat generation effect is not exhibited, and a desired heat retaining effect cannot be obtained. In addition, when the core-sheath mass ratio is less than 20/80, the fabric is not provided with sufficient wearing durability, and the fabric has wrinkle resistance, washing shrinkage resistance, dimensional stability, and the like. On the other hand, when the ratio exceeds 50/50, the covering properties of the long and short composite spun yarns are lowered, and the texture of the fabric, the moisture absorption and desorption property, etc. are also lowered.
本発明では、長短複合紡績糸の鞘部に配される吸湿発熱性短繊維により、吸湿発熱効果に加えウォーム感、ソフトな風合い、吸放湿性などが布帛に付与されるが、さらに種々の特性を付与するべく、鞘部に吸湿発熱性短繊維以外の他の短繊維を混合してもよい。他の短繊維としては、アクリル短繊維、ポリエステル短繊維、ポリアミド短繊維、ポリビニルアルコール短繊維などがあげられる。他の短繊維の形態としては、ストレート形態のものでも嵩高加工されたものでもよい。 In the present invention, the moisture-absorbing and heat-generating short fibers arranged in the sheath of the long and short composite spun yarn give the fabric a warm feeling, soft texture, moisture absorption and desorption properties, etc. Other short fibers other than the hygroscopic exothermic short fibers may be mixed in the sheath. Examples of other short fibers include acrylic short fibers, polyester short fibers, polyamide short fibers, and polyvinyl alcohol short fibers. Other short fiber forms may be straight or bulky.
中でも、アクリル短繊維が好適である。アクリル短繊維は、熱収縮率が大きく、嵩高性に優れるため、これを鞘部に混合することで、保温効果の向上が期待できる。なお、本発明にいうアクリル短繊維とは、アクリルニトリルを95質量%以上含有する短繊維をいう。 Among these, acrylic short fibers are preferable. Since the acrylic short fiber has a large heat shrinkage ratio and is excellent in bulkiness, an improvement in the heat retaining effect can be expected by mixing this with the sheath. In addition, the acryl short fiber said to this invention means the short fiber containing 95 mass% or more of acrylonitrile.
アクリル短繊維の単糸繊度としては、特に限定されないが、0.1〜3.5dtexであることが好ましい。単糸繊度がこの範囲を満足すると、デッドエアーに起因する保温効果が付加され、また、通気抵抗が上がるのに伴い熱の放散も適度に抑えることができるようになる。さらに、吸湿発熱性短繊維による吸湿発熱効果も持続し易いものとなる。一方、当該単糸繊度が0.1dtex未満になると、短繊維の曲げ剛性が低下することで、着圧により短繊維間の空隙が減少し、保温効果の向上が期待できなくなる。また、3.5dtexを超えると、熱が放散し易くなり、布帛の風合いも硬いものとなり易い。 The single yarn fineness of the acrylic short fiber is not particularly limited, but is preferably 0.1 to 3.5 dtex. When the single yarn fineness satisfies this range, a heat retaining effect due to dead air is added, and heat dissipation can be moderately suppressed as the airflow resistance increases. Furthermore, the hygroscopic exothermic effect by the hygroscopic exothermic short fibers can be easily maintained. On the other hand, when the single yarn fineness is less than 0.1 dtex, the bending rigidity of the short fibers is reduced, and the voids between the short fibers are reduced due to the contact pressure, and an improvement in the heat retaining effect cannot be expected. Moreover, when it exceeds 3.5 dtex, it becomes easy to dissipate heat and the texture of the fabric tends to be hard.
アクリル短繊維の平均繊維長としては、可紡性の観点から28〜60mmが好ましく、30〜55mmがより好ましい。 The average fiber length of the acrylic short fibers is preferably 28 to 60 mm, more preferably 30 to 55 mm from the viewpoint of spinnability.
長短複合紡績糸鞘部にアクリル短繊維を含ませる場合、吸湿発熱性短繊維とアクリル短繊維との混合比率(吸湿発熱性短繊維/アクリル短繊維)としては、80/20〜30/70の範囲が好ましい。当該混合比率が30/70に満たない場合、十分な吸湿発熱効果が期待できない傾向にあり、一方、80/20を超えると、アクリル短繊維に由来する保温効果の向上が期待できない傾向にある。 When the acrylic short fiber is included in the long / short composite spun yarn sheath, the mixing ratio of the hygroscopic exothermic short fiber and the acrylic short fiber (hygroscopic exothermic short fiber / acrylic short fiber) is 80/20 to 30/70. A range is preferred. When the mixing ratio is less than 30/70, there is a tendency that a sufficient moisture absorption exothermic effect cannot be expected. On the other hand, when it exceeds 80/20, there is a tendency that improvement of the heat retaining effect derived from the acrylic short fibers cannot be expected.
次に、長短複合紡績糸の好ましい製造方法について説明する。 Next, a preferred method for producing long and short composite spun yarn will be described.
本発明の複合紡績糸を得るには、例えば、上記吸湿発熱性短繊維を含む粗糸と、上記遠赤外線放射性微粒子及び好ましくは発熱性微粒子を含有する合成繊維フィラメントからなる糸条とを用意し、糸条を芯部へ、粗糸を鞘部へそれぞれ配しながら精紡する方法があげられる。なお、当該粗糸として、他の短繊維を混合した混合粗糸を用いるときは、粗糸を作製する際、原料工程又は前紡の過程で他の短繊維を混合すれば、目的とする混合粗糸を得ることができる。 In order to obtain the composite spun yarn of the present invention, for example, a roving yarn containing the hygroscopic exothermic short fibers and a yarn made of synthetic fiber filaments containing the far-infrared emitting fine particles and preferably exothermic fine particles are prepared. And a method of spinning while arranging the yarn to the core and the roving to the sheath. In addition, when using the mixed roving mixed with other short fibers as the roving, if the other short fibers are mixed in the raw material process or the pre-spinning process when producing the roving, the intended mixing A roving yarn can be obtained.
本発明の複合紡績糸は、芯部に合成繊維フィラメントを、鞘部に吸湿発熱性短繊維をそれぞれ配するものであるから、上記糸条の周囲に上記粗糸が順次捲回するように、精紡条件を調整する。この場合、例えば、両者の送り出し量を調整することで、精紡機のフロントローラーから紡出される粗糸の紡出量が、同一フロントローラーから紡出される糸条の紡出量より多くよるようにすればよい。紡出後は、両者をスネルワイヤー手前で重ね合わせ、リング、トラベラーで実撚りを与える。 The composite spun yarn of the present invention is one in which the synthetic fiber filament is arranged in the core portion and the hygroscopic exothermic short fiber is arranged in the sheath portion, so that the roving yarn is sequentially wound around the yarn, Adjust spinning conditions. In this case, for example, by adjusting the feeding amount of both, the spinning amount of the roving yarn spun from the front roller of the spinning machine is larger than the spinning amount of the yarn spun from the same front roller. do it. After spinning, the two are overlapped before the snell wire, and a real twist is given by the ring and traveler.
実撚りとしては、紡調に乱れが生じない撚係数のものを採用すればよく、具体的には、撚係数として3.0〜4.2の範囲に調整することが好ましい。撚係数とは、K=T/N1/2(K:撚係数、T:撚数(回/インチ)、N:得られた長短複合紡績糸の太さ(英式綿番手))なる式で算出されるものである。撚係数が3.0未満になると、長短複合紡績糸を構成する短繊維が十分に集束せず、引張強度が低下する傾向にある。一方、4.2を超えると、短繊維が過度に集束し、ソフト感やウォーム感に優れる布帛が得難くなる他、精紡途中で糸切れすることがあり、作業工程上も好ましくない。 As the actual twist, a twist coefficient that does not disturb the spinning may be adopted. Specifically, it is preferable to adjust the twist coefficient to a range of 3.0 to 4.2. The twist coefficient is an equation of K = T / N 1/2 (K: twist coefficient, T: number of twists (times / inch), N: thickness of the obtained long / short composite spun yarn (English cotton count)) It is calculated by. When the twist coefficient is less than 3.0, the short fibers constituting the long and short composite spun yarn are not sufficiently converged, and the tensile strength tends to decrease. On the other hand, if it exceeds 4.2, the short fibers are excessively converged, and it becomes difficult to obtain a fabric excellent in soft feeling and warm feeling, and yarn breakage may occur during spinning, which is not preferable in terms of work process.
この他、長短複合紡績糸の被覆性を高める目的で、上記粗糸を複数本使用して上記糸条に捲回させてもよいし、精紡後、必要に応じて複数の長短複合紡績糸を上撚りしてもよい。 In addition, for the purpose of improving the covering property of the long and short composite spun yarns, a plurality of the roving yarns may be used and wound around the yarn, or after spinning, a plurality of long and short composite spun yarns may be used as necessary. May be twisted.
本発明では、既述のように、吸湿発熱性短繊維を併用することで遠赤外線放射効果が高まり、これにより優れた保温効果が奏されるから、肌に直接触れる場所や発汗が促されている環境下で布帛を使用することが、保温効果を奏するうえで好ましい。加えて、布帛は、着用耐久性、ソフト感及び吸放湿性などにも優れている。よって、本発明における布帛は、秋冬向けインナー衣料、アウター衣料、スポーツ衣料などに好適である。 In the present invention, as described above, the far-infrared radiation effect is enhanced by using the hygroscopic heat-generating short fibers in combination, and this provides an excellent heat retention effect. It is preferable to use the fabric under the present environment in order to achieve a heat retaining effect. In addition, the fabric is excellent in wear durability, soft feeling and moisture absorption / release properties. Therefore, the fabric in the present invention is suitable for an inner garment, an outer garment, a sports garment and the like for autumn and winter.
本発明における布帛は、雨天時や室内など太陽光の届きにくい場所でも、遠赤外線放射効果により暖かさを維持することができる。このため、本発明では、布帛をことさら厚くしなくても所望の保温効果が期待でき、この点でもインナー衣料、アウター衣料、スポーツ衣料などに好適であるといえる。 The fabric according to the present invention can maintain warmth by the far-infrared radiation effect even in places where it is difficult for sunlight to reach, such as in rainy weather or indoors. For this reason, in the present invention, a desired heat-retaining effect can be expected without making the fabric much thicker. In this respect, it can be said that it is suitable for inner clothing, outer clothing, sports clothing, and the like.
本発明における布帛には、本発明の効果を損なわない範囲で、上記長短複合紡績糸以外の糸条が含まれていてもよい。本発明における布帛には、保温効果の観点から、上記長短複合紡績糸が好ましくは60質量部以上、より好ましくは70質量%含ませるとよい。 The fabric in the present invention may contain yarns other than the above-mentioned long and short composite spun yarns as long as the effects of the present invention are not impaired. From the viewpoint of the heat retaining effect, the long and short composite spun yarn is preferably contained in the fabric of the present invention in an amount of 60 parts by mass or more, and more preferably 70% by mass.
布帛の形状としては、織物、編物などがあげられる。布帛の組織としては、特に限定されず、目的に応じて適宜の組織を採用すればよい。また、布帛の設計についても、特に限定されない。 Examples of the shape of the fabric include woven fabric and knitted fabric. The structure of the fabric is not particularly limited, and an appropriate structure may be adopted depending on the purpose. Also, the design of the fabric is not particularly limited.
本発明の布帛は、まず上記長短複合紡績糸を製織編して生機を得、その後、これを精練、リラックス、ファイナルセットすることにより得ることができる。一連の後加工の途中もしくは最終段階において、公知の知見に基づき布帛を染色、アルカリ減量加工、着色プリント、エンボス加工、撥水加工、抗菌加工、蓄光加工、消臭加工などしてもよい。一般には、リラックスの後、染色することが好ましい。 The fabric of the present invention can be obtained by first weaving and knitting the above-mentioned long and short composite spun yarn to obtain a living machine, and then scouring, relaxing, and final setting this. During or after the series of post-processing, the fabric may be dyed, alkali-reduced, colored print, embossed, water-repellent, antibacterial, phosphorescent, deodorized and the like based on known knowledge. In general, it is preferable to dye after relaxing.
布帛の用途については、特に限定されないが、例えば、各種インナー、Tシャツ、アウター、パンツ、ジャケット、ウインドブレーカー、ウェットスーツ、スキーウエア、手袋、帽子、テント、靴の中敷き、布団の側地など、保温性が求められる各種繊維製品全般に適用できる。 The use of the fabric is not particularly limited. For example, various inners, T-shirts, outers, pants, jackets, windbreakers, wet suits, ski wear, gloves, hats, tents, insoles of shoes, futon sides, etc. It can be applied to all types of textile products that require heat insulation.
以下、実施例及び比較例をあげてさらに詳細に本発明を説明するが、本発明はこれらに限定されない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.
各測定方法及び評価方法は以下の通りである。 Each measuring method and evaluation method are as follows.
(1)遠赤外線放射効果
各実施例及び比較例で得られた編物の遠赤外線放射強度を測定した。測定は、赤外分光光度計FT−IR装置(パーキンエルマー社製「Spectrum GX FT−IR(商品名)」)を使用し、測定温度40℃、測定波長域5〜20μmで行った。その際、同条件における黒体の遠赤外線放射強度も測定し、各波長における黒体の放射強度を100%とした場合の各編物の放射強度の比率(%)を求め、各波長で算出された比率の平均値を平均放射率(%)として算出した。
(1) Far-infrared radiation effect The far-infrared radiation intensity of the knitted fabric obtained in each Example and Comparative Example was measured. The measurement was performed using an infrared spectrophotometer FT-IR apparatus (“Spectrum GX FT-IR (trade name)” manufactured by PerkinElmer) at a measurement temperature of 40 ° C. and a measurement wavelength range of 5 to 20 μm. At that time, the far-infrared radiant intensity of the black body under the same conditions is also measured, and the ratio (%) of the radiant intensity of each knitted fabric when the radiant intensity of the black body at each wavelength is defined as 100% is calculated at each wavelength The average value of the ratio was calculated as the average emissivity (%).
(2)吸湿発熱効果
まず、温度が20℃、湿度が65%に保たれた室内において、編物から15cm四方の試料を切り出し、表面が貼付面となるように試料を発泡スチロール板に貼り付け、試料セットとした。次に、乾燥機を使用して、試料セットを70℃で12時間乾燥した。そして、温度が30℃、湿度が90%に保たれた室内において、その試料の裏面温度を時間毎にサーモグラフィー(NEC三栄株式会社製「サーモトレーサTH7102MX(商品名)」)で測定し、最高到達温度で評価した。
(2) Moisture absorption exothermic effect First, in a room maintained at a temperature of 20 ° C. and a humidity of 65%, a 15 cm square sample was cut out from the knitted fabric, and the sample was affixed to a styrofoam plate so that the surface was affixed. Set. Next, the sample set was dried at 70 ° C. for 12 hours using a dryer. Then, in a room where the temperature is kept at 30 ° C and the humidity is kept at 90%, the back surface temperature of the sample is measured by thermography ("Thermo Tracer TH7102MX (trade name)" manufactured by NEC Sanei Co., Ltd.) every hour. The temperature was evaluated.
(3)吸光熱変換効果
温度が20℃、湿度が65%に保たれた室内において、編物表面にレフランプから照度10000LUXの光を照射し、裏面温度を時間毎にサーモグラフィー(NEC三栄株式会社製「サーモトレーサTH7102MX(商品名)」)で測定し、その最高到達温度で評価した。
(3) Absorption heat conversion effect In a room where the temperature is kept at 20 ° C. and the humidity is kept at 65%, the surface of the knitted fabric is irradiated with light having an illuminance of 10,000 LUX from a reflex lamp, and the back surface temperature is changed every time by thermography (manufactured by NEC Sanei Co., Ltd. Thermotracer TH7102MX (trade name) ") and evaluated at the highest temperature reached.
(4)風合い
10人のパネラーにより得られた編物を官能検査(ハンドリング)し、以下の3段階で評価した。
○:ソフト感、ウォーム感に優れると判断した者が8人以上。
△:ソフト感、ウォーム感に優れると判断した者が5人以上7人以下。
×:ソフト感、ウォーム感に優れると判断した者が4人以下。
(4) Texture The knitted fabric obtained by 10 panelists was subjected to a sensory test (handling) and evaluated in the following three stages.
○: Eight or more people judged to have excellent softness and warm feeling.
Δ: 5 or more and 7 or less persons judged to be excellent in soft feeling and warm feeling.
X: Less than 4 persons judged to be excellent in soft feeling and warm feeling.
(5)着用耐久性
丸首肌着を作製し、10名が3ヶ月間着用した後、着用によるピリング、毛羽、シワ、寸法変化にかかる着用耐久性を、以下の3段階で評価した。
○:ピリング、毛羽、シワ及び寸法変化のいずれもが気にならないと判断した者が8人以上。
△:ピリング、毛羽、シワ及び寸法変化のいずれもが気にならないと判断した者が5人以上7人以下。
×:ピリング、毛羽、シワ及び寸法変化のいずれもが気にならないと判断した者が4人以下。
(5) Wear durability After producing a round neck underwear and 10 people wearing it for 3 months, the wear durability concerning pilling, fluff, a wrinkle, and a dimensional change by wear was evaluated in the following three steps.
○: Eight or more people judged that pilling, fluff, wrinkles and dimensional change were not bothered.
(Triangle | delta): The person who judged that all of pilling, fluff, wrinkles, and a dimensional change are not worried is 5 or more and 7 or less.
X: No more than 4 people judged that pilling, fluff, wrinkles and dimensional change were not bothered.
(実施例1)
ポリエチレンテレフタレート99質量部に、遠赤外線放射性微粒子として平均粒子径3μmのマイカを1.0質量部練り込んだ樹脂組成物を用意し、これを常法に基づいて溶融紡糸し、56dtex24fのフィラメント糸条を得た。なお、紡糸操業性は良好であった。一方、フィブリル化防止加工したリヨセル原綿(ユニチカトレーディング株式会社製「シルフ−KF(商品名)」、単糸繊度1.3dtex、平均繊維長38mm)を用意し、これを常法に基づいて紡績し、粗糸を得た。
Example 1
A resin composition prepared by kneading 1.0 part by mass of mica having an average particle size of 3 μm as far-infrared radioactive fine particles in 99 parts by mass of polyethylene terephthalate was melt-spun based on a conventional method, and a filament yarn of 56 dtex 24f was prepared. Got. The spinning operability was good. On the other hand, lyocell raw cotton ("Silph-KF (trade name)" manufactured by Unitika Trading Co., Ltd., single yarn fineness 1.3dtex, average fiber length 38mm) manufactured by Unitika Trading Co., Ltd. was prepared and spun based on a conventional method. A roving was obtained.
次に、フィラメント糸条及び粗糸を精紡機へ導入し、糸条の周囲に粗糸が順次捲回するように紡出量を調整しつつ、撚数24.26回/インチの実撚り(撚係数3.8)を与え、長短複合紡績糸をボビンに巻き取った。得られた長短複合紡績糸の太さは40番手(英式綿番手)であり、芯鞘質量比率(芯/鞘)は38/62であった。 Next, the filament yarn and the roving yarn are introduced into a fine spinning machine, and the actual twist of 24.26 times / inch of twist is adjusted while adjusting the spinning amount so that the roving yarn is sequentially wound around the yarn. A twist coefficient of 3.8) was applied, and long and short composite spun yarn was wound around a bobbin. The obtained long and short composite spun yarn had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62.
続いて、得られた長短複合紡績糸を、釜径38インチ、針密度28ゲージのダブルニット編機(株式会社福原精機製作所製「LPJ−H型(商品名)」)へ導入し、ポンチ組織の生機を製編した。なお、製編にあたり、ガイド摩耗に起因する毛羽立ち、糸切れは特段認められず、工程通過性は良好であった。 Subsequently, the obtained long and short composite spun yarn was introduced into a double knit knitting machine (“LPJ-H type (trade name)” manufactured by Fukuhara Seiki Seisakusho Co., Ltd.) having a hook diameter of 38 inches and a needle density of 28 gauge, and a punch structure We knitted the raw machine. In the knitting, fuzz and yarn breakage due to guide wear were not particularly observed, and the process passability was good.
その後、生機を順次、精練、リラックス、染色、ファイナルセットし、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2の編物を得た。 Thereafter, the raw machine was successively scoured, relaxed, dyed, and finally set to obtain a knitted fabric having a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例2)
単糸繊度1.3dtex、平均繊維長38mmのリヨセル繊維と、単糸繊度1.0dtex、平均繊維長38mmのアクリル短繊維とを原料工程で混合(原料混合)し、その後、常法に基づいて紡績することにより、リヨセル繊維とアクリル短繊維との混合比率(リヨセル繊維/アクリル短繊維)が60/40の混合粗糸を得た。
(Example 2)
A lyocell fiber having a single yarn fineness of 1.3 dtex and an average fiber length of 38 mm and an acrylic short fiber having a single yarn fineness of 1.0 dtex and an average fiber length of 38 mm are mixed (raw material mixing), and then based on a conventional method. By spinning, a mixed roving having a mixing ratio of lyocell fiber and acrylic short fiber (lyocell fiber / acrylic short fiber) of 60/40 was obtained.
以降は、粗糸として上記混合粗糸を用いる以外、実施例1の場合と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であり、混合比率(リヨセル繊維/アクリル短繊維/フィラメント糸条)は、37/25/38であった。また、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。 Thereafter, the same procedure as in Example 1 was performed except that the above mixed roving was used as the roving, and long and short composite spun yarn and knitted fabric were obtained. The obtained long and short composite spun yarn has a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62, and a mixing ratio (lyocell fiber / acrylic short fiber / filament yarn) is 37/25/38. The knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例3)
芯鞘質量比率(芯/鞘)を45/55に変更することで混合比率(リヨセル繊維/アクリル短繊維/フィラメント糸条)を33/22/45に変更すること以外は、実施例2と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸の太さは40番手であり、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった
(Example 3)
Example 2 except that the mixing ratio (lyocell fiber / acrylic short fiber / filament yarn) is changed to 33/22/45 by changing the core / sheath mass ratio (core / sheath) to 45/55. To obtain long and short composite spun yarn and knitted fabric. The obtained long and short composite spun yarn had a thickness of 40, and the knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例4)
マイカに代えて平均粒子径3μmのアルミナを1.0質量部使用する以外、実施例1と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であった。また、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。
Example 4
A long and short composite spun yarn and a knitted fabric were obtained in the same manner as in Example 1 except that 1.0 part by mass of alumina having an average particle diameter of 3 μm was used instead of mica. The obtained long and short composite spun yarn had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62. The knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例5)
ポリエチレンテレフタレート98質量部に、遠赤外線放射性微粒子として平均粒子径3μmのマイカを1.0質量部、及び発熱性微粒子として平均粒子径1.5μmの炭化ジルコニウムを1.0質量部練り込んだ樹脂組成物を用意し、これを常法に基づいて溶融紡糸し、56dtex24fのフィラメント糸条を得た。
(Example 5)
A resin composition in which 98 parts by mass of polyethylene terephthalate is kneaded with 1.0 part by mass of mica having an average particle size of 3 μm as far-infrared radiation fine particles and 1.0 part by mass of zirconium carbide with an average particle size of 1.5 μm as exothermic fine particles. A product was prepared and melt-spun according to a conventional method to obtain a filament yarn of 56 dtex 24f.
以降は、フィラメント糸条として上記で得たフィラメント糸条を用いる以外、実施例1の場合と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であった。また、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。 Thereafter, the same procedure as in Example 1 was performed except that the filament yarn obtained above was used as the filament yarn, and long and short composite spun yarn and knitted fabric were obtained. The obtained long and short composite spun yarn had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62. The knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例6)
炭化ジルコニウムに代えて平均粒子径1.5μmのカーボンを1.0質量部使用する以外、実施例5と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であった。また、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。
(Example 6)
A long and short composite spun yarn and a knitted fabric were obtained in the same manner as in Example 5 except that 1.0 part by mass of carbon having an average particle diameter of 1.5 μm was used instead of zirconium carbide. The obtained long and short composite spun yarn had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62. The knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例7)
ポリエチレンテレフタレート98質量部に、遠赤外線放射性微粒子として平均粒子径3μmのマイカを1.0質量部、及び発熱性微粒子として平均粒子径1.5μmのカーボンを1.0質量部練り込んだ樹脂組成物と、ポリエチレンテレフタレートからなる樹脂とを用意した。そして、両者を複合紡糸機に導入し、前者を鞘成分に、後者を芯成分にそれぞれ配しつつ両者の質量比率(芯成分/鞘成分)が15/85となるように複合紡糸し、56dtex24fのフィラメント糸条を得た。
(Example 7)
A resin composition in which 98 parts by mass of polyethylene terephthalate is kneaded with 1.0 part by mass of mica having an average particle diameter of 3 μm as far-infrared radiation fine particles and 1.0 part by mass of carbon having an average particle diameter of 1.5 μm as exothermic fine particles. And a resin made of polyethylene terephthalate were prepared. Then, both are introduced into a composite spinning machine, and the former is used as the sheath component and the latter is used as the core component, and the composite spinning is performed so that the mass ratio between the two (core component / sheath component) is 15/85, and 56 dtex24f. Of filament yarn was obtained.
以降は、フィラメント糸条として上記で得たフィラメント糸条を用いる以外、実施例1の場合と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であった。また、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。 Thereafter, the same procedure as in Example 1 was performed except that the filament yarn obtained above was used as the filament yarn, and long and short composite spun yarn and knitted fabric were obtained. The obtained long and short composite spun yarn had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62. The knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(実施例8、9)
フィブリル化防止加工したリヨセル原綿に代えて、単糸繊度1.0dtex、平均繊維長38mmのモダール原綿(実施例8)、又は単糸繊度1.15dtex、平均繊維長38mmのスーピマ綿原綿(実施例9)を使用する以外は、実施例7と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、いずれも太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であった。また、編物の性量は、いずれも仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。
(Examples 8 and 9)
Instead of lyocell raw cotton processed to prevent fibrillation, single yarn fineness 1.0 dtex, modal raw cotton having an average fiber length of 38 mm (Example 8), or single yarn fineness 1.15 dtex, Supima cotton raw cotton having an average fiber length of 38 mm (Example) Except for using 9), the same procedure as in Example 7 was carried out to obtain long / short composite spun yarn and knitted fabric. The obtained long and short composite spun yarns each had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62. The knitted fabrics had a finishing density of 50 courses / inch, 41 wales / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
(比較例1)
実施例1において、ポリエチレンテレフタレートからなる樹脂を使用して56dtex24fのフィラメント糸条を紡糸する以外は、実施例1と同様に行い、長短複合紡績糸及び編物を得た。得られた長短複合紡績糸は、太さ40番手(英式綿番手)、芯鞘質量比率(芯/鞘)38/62であった。また、編物の性量は、仕上密度50コース/インチ、41ウェール/インチ、仕上巾195cm、目付け250g/m2であった。
(Comparative Example 1)
In Example 1, long and short composite spun yarn and knitted fabric were obtained in the same manner as in Example 1 except that a filament yarn of 56 dtex 24f was spun using a resin made of polyethylene terephthalate. The obtained long and short composite spun yarn had a thickness of 40 (English cotton count) and a core-sheath mass ratio (core / sheath) of 38/62. The knitted fabric had a finishing density of 50 course / inch, 41 wal / inch, a finishing width of 195 cm, and a basis weight of 250 g / m 2 .
以上で得た編物の評価結果を表1に示す。 The evaluation results of the knitted fabric obtained above are shown in Table 1.
実施例にかかる編物は、いずれも天候に左右されない持続性ある保温効果を有しており、着用耐久性やウォーム感などにも優れていた。これに対し、比較例1では、長短複合紡績糸を構成するフィラメント中に遠赤外線放射性微粒子が含まれておらず、このため吸湿発熱性短繊維による吸湿発熱効果しか獲得できなかったため、各実施例ほどの保温効果は得られなかった。 All of the knitted fabrics according to the examples had a long-lasting heat retaining effect that was not affected by the weather, and were excellent in wear durability and warm feeling. On the other hand, in Comparative Example 1, since the far-infrared radioactive fine particles are not contained in the filament constituting the long and short composite spun yarn, and only the hygroscopic heat generation effect by the hygroscopic heat generating short fiber can be obtained, each Example A moderate heat retention effect was not obtained.
また、実施例2、3では、複合紡績糸において、アクリル短繊維を併用することで吸湿発熱性短繊維の含有量を減らしたため、得られた編物は、上記評価方法に基づく遠赤外線放射効果及び吸湿発熱効果にあっては、実施例1ほどの効果は得られなかった。しかしながら、アクリル短繊維は、熱収縮率が大きく嵩高性にも優れるため、保温性編物としての質感の点では、実施例1のものよりむしろ優れていた。 Further, in Examples 2 and 3, in the composite spun yarn, the content of the hygroscopic exothermic short fibers was reduced by using acrylic short fibers in combination, so that the obtained knitted fabric had a far infrared radiation effect based on the above evaluation method and In the moisture absorption exothermic effect, the effect as in Example 1 was not obtained. However, the acrylic short fibers were superior to those of Example 1 in terms of texture as a heat-retaining knitted fabric because they have a large heat shrinkage ratio and excellent bulkiness.
実施例4では、遠赤外線放射性微粒子としてアルミナを使用したため、マイカを使用したときほどの遠赤外線放射効果は奏されなかった。 In Example 4, since alumina was used as the far-infrared radiation fine particles, the far-infrared radiation effect was not as good as when mica was used.
実施例5、6では、発熱性微粒子による吸光熱変換効果を追加利用したことで、暖かさそのものの向上に加え遠赤外線放射効果をもさらに促すことができた。これにより、実施例1に比べて優れた保温効果が得られた。特に、実施例6ではカーボンを使用したため、炭化ジルコニウムを使用した実施例5の編物と比べ優れた保温効果が得られた。 In Examples 5 and 6, by additionally utilizing the absorption heat conversion effect by the exothermic fine particles, it was possible to further promote the far-infrared radiation effect in addition to the improvement of warmth itself. Thereby, the heat retention effect excellent compared with Example 1 was acquired. In particular, since carbon was used in Example 6, an excellent heat retention effect was obtained as compared with the knitted fabric of Example 5 using zirconium carbide.
実施例7では、複合紡績糸において、フィラメント100質量部に対し各々の微粒子が0.85質量部ずつしか含まれていなかったが、フィラメントの断面が芯鞘構造をなし、しかも両微粒子が鞘成分に配され近接していたことにより、十分な遠赤外線放射効果ひいては十分な保温効果が確保できた。 In Example 7, the composite spun yarn contained only 0.85 parts by mass of each fine particle per 100 parts by mass of the filament, but the cross section of the filament had a core-sheath structure, and both fine particles were sheath components. As a result, it was possible to secure a sufficient far-infrared radiation effect and thus a sufficient heat retention effect.
実施例8では、吸湿発熱性短繊維としてモダールを、実施例9では綿をそれぞれ使用したため、実施例8では、優れた吸湿発熱効果が得られたが、編物の質感の点でリヨセル使いほどのものは得られず、実施例9では、吸湿発熱効果の点でリヨセル使いほどのものは得られなかった。
In Example 8, modal was used as the moisture-absorbing exothermic short fiber, and cotton was used in Example 9. Thus, in Example 8, an excellent moisture-absorbing and exothermic effect was obtained, but in terms of the texture of the knitted fabric, it was as much as using lyocell. No product was obtained, and in Example 9, a product as much as using lyocell was not obtained in terms of the hygroscopic heat generation effect.
Claims (7)
A fabric comprising the long and short composite spun yarn according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014022383A JP6360319B2 (en) | 2014-02-07 | 2014-02-07 | Long / short composite spun yarn and fabric using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014022383A JP6360319B2 (en) | 2014-02-07 | 2014-02-07 | Long / short composite spun yarn and fabric using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015148029A true JP2015148029A (en) | 2015-08-20 |
JP6360319B2 JP6360319B2 (en) | 2018-07-18 |
Family
ID=53891620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014022383A Expired - Fee Related JP6360319B2 (en) | 2014-02-07 | 2014-02-07 | Long / short composite spun yarn and fabric using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6360319B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106811857A (en) * | 2016-12-30 | 2017-06-09 | 杭州浩然纺织科技有限公司 | A kind of production technology of tencel silk like fabric style fabric |
CN108330601A (en) * | 2018-02-06 | 2018-07-27 | 罗莱生活科技股份有限公司 | A kind of absorbing fast-drying knitting fabric and preparation method thereof |
CN108754810A (en) * | 2018-06-07 | 2018-11-06 | 南通赛晖科技发展股份有限公司 | A kind of production technology of warm cotton/fever cotton of substitution natural feather |
CN110863275A (en) * | 2019-11-08 | 2020-03-06 | 上海日舒科技纺织有限公司 | Processing method of high-moisture-absorption and high-moisture-release fiber |
CN111041636A (en) * | 2019-11-27 | 2020-04-21 | 江南大学 | Intelligent heat and moisture driven covering yarn and moisture absorption quick-drying fabric |
CN111041656A (en) * | 2020-01-20 | 2020-04-21 | 安正时尚集团股份有限公司 | Moisture-absorbing and warm-keeping fabric |
CN112553730A (en) * | 2020-11-30 | 2021-03-26 | 际华三五零九纺织有限公司 | Novel blended yarn and production method and application thereof |
CN115679529A (en) * | 2022-09-29 | 2023-02-03 | 宁波大千纺织品有限公司 | Super-soft silky skin-friendly all-cotton knitted fabric and preparation method thereof |
US11773515B2 (en) | 2021-02-19 | 2023-10-03 | New York Knitworks, Llc | Single, multi-effect, energy harvesting and heat managing spun yarn and manufacturing method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5621175U (en) * | 1979-07-26 | 1981-02-25 | ||
JPS5741078B2 (en) * | 1975-06-18 | 1982-09-01 | ||
JPH0491238A (en) * | 1990-07-27 | 1992-03-24 | Unitika Ltd | Thermally insulating multi-layered structural yarn |
JPH04276217A (en) * | 1991-03-01 | 1992-10-01 | Tadao Isshiki | Laying bedding and bedding set |
JPH05321028A (en) * | 1992-05-15 | 1993-12-07 | Teijin Ltd | Far-infrared radiating conjugate fiber having excellent abrasion resistance |
JP2006083499A (en) * | 2004-09-17 | 2006-03-30 | Toray Ind Inc | Sheath-core conjugate filament yarn, fabric produced by using the same, hollow fiber fabric and method for producing the same |
JP2009150008A (en) * | 2007-12-19 | 2009-07-09 | Unitika Textiles Ltd | Long and short composite spun yarn and cloth |
JP2011214160A (en) * | 2010-03-31 | 2011-10-27 | Unitika Trading Co Ltd | Bilayer-structured spun yarn, woven or knitted fabric, and method for producing woven or knitted fabric |
JP2013028868A (en) * | 2011-07-27 | 2013-02-07 | Unitika Trading Co Ltd | Long and short composite spun yarn, fabric including the same and method for producing the same |
-
2014
- 2014-02-07 JP JP2014022383A patent/JP6360319B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741078B2 (en) * | 1975-06-18 | 1982-09-01 | ||
JPS5621175U (en) * | 1979-07-26 | 1981-02-25 | ||
JPH0491238A (en) * | 1990-07-27 | 1992-03-24 | Unitika Ltd | Thermally insulating multi-layered structural yarn |
JPH04276217A (en) * | 1991-03-01 | 1992-10-01 | Tadao Isshiki | Laying bedding and bedding set |
JPH05321028A (en) * | 1992-05-15 | 1993-12-07 | Teijin Ltd | Far-infrared radiating conjugate fiber having excellent abrasion resistance |
JP2006083499A (en) * | 2004-09-17 | 2006-03-30 | Toray Ind Inc | Sheath-core conjugate filament yarn, fabric produced by using the same, hollow fiber fabric and method for producing the same |
JP2009150008A (en) * | 2007-12-19 | 2009-07-09 | Unitika Textiles Ltd | Long and short composite spun yarn and cloth |
JP2011214160A (en) * | 2010-03-31 | 2011-10-27 | Unitika Trading Co Ltd | Bilayer-structured spun yarn, woven or knitted fabric, and method for producing woven or knitted fabric |
JP2013028868A (en) * | 2011-07-27 | 2013-02-07 | Unitika Trading Co Ltd | Long and short composite spun yarn, fabric including the same and method for producing the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106811857A (en) * | 2016-12-30 | 2017-06-09 | 杭州浩然纺织科技有限公司 | A kind of production technology of tencel silk like fabric style fabric |
CN108330601A (en) * | 2018-02-06 | 2018-07-27 | 罗莱生活科技股份有限公司 | A kind of absorbing fast-drying knitting fabric and preparation method thereof |
CN108754810A (en) * | 2018-06-07 | 2018-11-06 | 南通赛晖科技发展股份有限公司 | A kind of production technology of warm cotton/fever cotton of substitution natural feather |
CN110863275A (en) * | 2019-11-08 | 2020-03-06 | 上海日舒科技纺织有限公司 | Processing method of high-moisture-absorption and high-moisture-release fiber |
CN111041636A (en) * | 2019-11-27 | 2020-04-21 | 江南大学 | Intelligent heat and moisture driven covering yarn and moisture absorption quick-drying fabric |
CN111041656A (en) * | 2020-01-20 | 2020-04-21 | 安正时尚集团股份有限公司 | Moisture-absorbing and warm-keeping fabric |
CN112553730A (en) * | 2020-11-30 | 2021-03-26 | 际华三五零九纺织有限公司 | Novel blended yarn and production method and application thereof |
CN112553730B (en) * | 2020-11-30 | 2022-03-15 | 际华三五零九纺织有限公司 | Novel blended yarn and production method and application thereof |
US11773515B2 (en) | 2021-02-19 | 2023-10-03 | New York Knitworks, Llc | Single, multi-effect, energy harvesting and heat managing spun yarn and manufacturing method thereof |
CN115679529A (en) * | 2022-09-29 | 2023-02-03 | 宁波大千纺织品有限公司 | Super-soft silky skin-friendly all-cotton knitted fabric and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6360319B2 (en) | 2018-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6360319B2 (en) | Long / short composite spun yarn and fabric using the same | |
Yan | Developments in fibers for technical nonwovens | |
JP6106487B2 (en) | Functional fiber | |
KR101102070B1 (en) | Core-Spun Yarn with Wicking and Stability Properties and Manufacturing Methods Thereof | |
JP6346768B2 (en) | Knitted fabric, textile product, and method of manufacturing knitted fabric | |
JP7015697B2 (en) | Multi-layered woven and knitted fabrics and textiles | |
JP2021503046A (en) | Low-density synthetic fiber using hollow microcapsules | |
KR101503637B1 (en) | Method for preparing sheath-core type and flat type composite fiber having non-circular cross-section and composite fiber made thereof | |
JP2018522145A (en) | Silicone-treated synthetic filament yarn | |
JP6751558B2 (en) | Double-sided knitted fabric | |
JP6360318B2 (en) | Composite-bound spun yarn and fabric using the same | |
WO2017126223A1 (en) | Fabric and fiber product | |
JP6388471B2 (en) | Thermal insulation fabric | |
JP4320231B2 (en) | Spun yarn | |
TW202246610A (en) | Durable pilling resistant nonwoven insulation | |
JP6498873B2 (en) | Functional fiber yarn and woven or knitted fabric using the same | |
JP6211885B2 (en) | Thermal insulation fabric | |
JP7253907B2 (en) | Spun yarns and woven and knitted fabrics with excellent spinnability and moisture absorption and desorption properties | |
JP2015105444A (en) | Functional composite yarn | |
JP2015218413A (en) | Far infrared radiation multifilament yarn | |
JP6487171B2 (en) | Functional fiber yarn | |
JP2009150008A (en) | Long and short composite spun yarn and cloth | |
JP6211878B2 (en) | Thermal insulation fabric | |
JP2015181896A (en) | Fiber product for foot warmer | |
US20190360137A1 (en) | Insulation with reactive flaps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170725 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6360319 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |