JP2015144496A - Dc power supply and air conditioner using the same - Google Patents

Dc power supply and air conditioner using the same Download PDF

Info

Publication number
JP2015144496A
JP2015144496A JP2014016333A JP2014016333A JP2015144496A JP 2015144496 A JP2015144496 A JP 2015144496A JP 2014016333 A JP2014016333 A JP 2014016333A JP 2014016333 A JP2014016333 A JP 2014016333A JP 2015144496 A JP2015144496 A JP 2015144496A
Authority
JP
Japan
Prior art keywords
mosfet
power supply
temperature
current
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014016333A
Other languages
Japanese (ja)
Inventor
浩二 月井
Koji Tsukii
浩二 月井
船山 裕治
Yuji Funayama
裕治 船山
田村 建司
Kenji Tamura
建司 田村
上田 和弘
Kazuhiro Ueda
和弘 上田
英司 菅原
Eiji Sugawara
英司 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014016333A priority Critical patent/JP2015144496A/en
Publication of JP2015144496A publication Critical patent/JP2015144496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC power supply which prevents the operation stop of the DC power supply while preventing the thermal destruction of a switching element.SOLUTION: The DC power supply for converting AC power into DC power includes: a DC power supply circuit including MOSFETs Q1, Q3; a temperature detection part 103 for detecting the temperature of the MOSFETs Q1, Q3; and a current detection part for detecting a current which flows through the DC power supply. When the current detected in the current detection part exceeds a predetermined value, the DC power supply suspends switching control of the MOSFETs Q1, Q3. Here, as the temperature detected by the temperature detection part is lower, the predetermined value becomes higher.

Description

本発明は、交流電力を直流電力に変換する直流電源装置及びこれを用いた空気調和機に関する。   The present invention relates to a DC power supply device that converts AC power into DC power and an air conditioner using the same.

負荷としてモータを搭載した電車や自動車並びに空気調和機等の機器には、交流電力を直流電力に変換する直流電源装置が搭載されている。そして、電力送電設備の負担軽減のため、直流電源装置には高効率、力率改善による低高調波電流が求められている。   Devices such as trains, automobiles, and air conditioners equipped with a motor as a load are equipped with a DC power supply device that converts AC power into DC power. In order to reduce the burden on power transmission facilities, DC power supply devices are required to have high efficiency and low harmonic current due to power factor improvement.

低高調波電流実現の方法として、リアクタを接続しスイッチング素子のスイッチング動作によって回路を複数回短絡することで、入力電流波形を入力電圧波形のように正弦波状に成形して力率を改善する方法が提案されている。   A method to improve the power factor by shaping the input current waveform into a sine wave like the input voltage waveform by connecting the reactor and short-circuiting the circuit multiple times by switching operation of the switching element as a method of realizing the low harmonic current Has been proposed.

この直流電源装置内の回路には、通常ダイオードやIGBT(Insulated−Gate− Bipolar−Transistor)やMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)といった半導体素子が使用されている。このダイオードによって交流電圧を全波整流乃至半波整流を行い、平滑コンデンサにて平滑する。また、IGBTやMOSFETをスイッチングさせることで力率改善制御を行う。   In the circuit in the DC power supply device, a semiconductor element such as a diode, an IGBT (Insulated-Gate-Bipolar-Transistor), or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is usually used. The diode performs full-wave rectification or half-wave rectification on the AC voltage and smoothes it with a smoothing capacitor. Moreover, power factor improvement control is performed by switching IGBT and MOSFET.

しかし、直流電源装置への入力が増える事で半導体が発熱し、熱破壊が発生するおそれがある。また、半導体素子の周囲温度が高い条件下においては、当然のことながらそれだけ発熱しやすくなる。   However, if the input to the DC power supply increases, the semiconductor generates heat and there is a risk of thermal destruction. In addition, under conditions where the ambient temperature of the semiconductor element is high, it naturally becomes easier to generate heat.

このような問題を解決するために、例えば特許文献1のような技術が提案されている。
特許文献1に記載のインバータ装置は、モータの回転を制御するスイッチング回路と、パルス幅変調された矩形波を用いてスイッチング回路をドライブするドライブ回路と、温度変化に伴うサーミスタの緩やかな抵抗値の変化を捉えて温度検出信号として出力する温度検出回路と、モータ電流が所定値を超えた場合に異常信号を出力する過電流検出回路とを備え、温度検出信号が変化した場合は、その変化に応じてドライブ回路の出力を変化させ、異常信号が変化した場合は、直ちにドライブ回路の出力を停止する。
In order to solve such a problem, for example, a technique such as Patent Document 1 has been proposed.
The inverter device described in Patent Document 1 includes a switching circuit that controls the rotation of a motor, a drive circuit that drives the switching circuit using a pulse-width-modulated rectangular wave, and a moderate resistance value of the thermistor that accompanies a temperature change. A temperature detection circuit that captures the change and outputs it as a temperature detection signal, and an overcurrent detection circuit that outputs an abnormal signal when the motor current exceeds a predetermined value. Accordingly, the output of the drive circuit is changed, and when the abnormal signal changes, the output of the drive circuit is immediately stopped.

しかし、特許文献1のインバータ装置はスイッチング素子保護のため、スイッチング素子の動作を停止させるのでインバータ装置の動作が停止してしまい、実際の製品動作上好ましくない。   However, since the inverter device of Patent Document 1 stops the operation of the switching element to protect the switching element, the operation of the inverter device stops, which is not preferable in actual product operation.

直流電源装置に置き換えて考えてみても、直流電源装置がアクティブ状態(力率改善動作中)において、スイッチング動作中の素子を過電流停止させた場合、素子の保護を行うことは可能であるが、力率改善制御、最悪の場合直流電源装置の動作自体を止めることになり、製品動作上好ましくない。   Considering the replacement with a DC power supply device, it is possible to protect the element when the DC power supply device is in an active state (during power factor correction operation) and the element during switching operation is overcurrent stopped. In the worst case, the operation of the DC power supply device is stopped, which is not preferable in terms of product operation.

特開2008−29198号公報JP 2008-29198 A

本発明はこのような事情に鑑みてなされたものであり、スイッチング素子の熱破壊を防止しつつ、直流電源装置の動作を止めることを防ぐ直流電源装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a DC power supply device that prevents the operation of the DC power supply device from being stopped while preventing thermal destruction of the switching element.

上記課題を解決するために、本発明の直流電源装置は、交流電力を直流電力に変換する直流電源装置において、MOSFETを有する直流電源回路と、MOSFETの温度を検出する温度検出部と、直流電源回路に流れる電流を検出する電流検出部とを備え、電流検出部で検出された電流が所定値を超えた場合にMOSFETのスイッチング制御を停止し、温度検出部で検出した温度が低いほど前記所定値は高くなる。   In order to solve the above-described problems, a DC power supply device according to the present invention is a DC power supply device that converts AC power into DC power, a DC power supply circuit having a MOSFET, a temperature detection unit that detects the temperature of the MOSFET, and a DC power supply. A current detection unit that detects a current flowing through the circuit, and stops switching control of the MOSFET when the current detected by the current detection unit exceeds a predetermined value. The lower the temperature detected by the temperature detection unit, the lower the predetermined value. The value gets higher.

本発明によれば、スイッチング素子の熱破壊を防止しつつ、直流電源装置の動作を止めることを防ぐ直流電源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the DC power supply device which prevents stopping the operation | movement of a DC power supply device can be provided, preventing the thermal destruction of a switching element.

空気調和機のサイクル構成図である。It is a cycle lineblock diagram of an air harmony machine. 直流電源装置の構成を示す図である。It is a figure which shows the structure of a DC power supply device. 入力電圧が正のサイクルで、ダイオードによる全波整流とMOSFETによる同期整流制御を行った場合の電流の経路を示す図である。It is a figure which shows the path | route of an electric current at the time of performing the full wave rectification by a diode and the synchronous rectification control by MOSFET in a cycle with a positive input voltage. 入力電圧が負のサイクルで、ダイオードによる全波整流とMOSFETによる同期整流制御を行った場合の電流の経路を示す図である。It is a figure which shows the path | route of the electric current at the time of performing the full-wave rectification by a diode, and the synchronous rectification control by MOSFET by a negative input voltage cycle. 入力電圧が正のサイクルで、MOSFET‐Q3ベタオン、リレーREL1、REL2がオンの状態でMOSFET‐Q1をスイッチングさせて、同期整流制御と力率改善制御を行った場合の回路電流の経路を示す図である。A diagram showing a circuit current path when the MOSFET-Q1 is switched in a state where the input voltage is a positive cycle and the MOSFET-Q3 beta-on and the relays REL1 and REL2 are turned on to perform the synchronous rectification control and the power factor improvement control. It is. 入力電圧が負のサイクルで、MOSFET‐Q1ベタオン、リレーREL1、REL2がオンの状態でMOSFET‐Q3をスイッチングさせて、同期整流制御と力率改善制御を行った場合の回路電流の経路を示す図である。A diagram showing a circuit current path when the MOSFET-Q3 is switched with the input voltage is negative and the MOSFET-Q1 beta-on and the relays REL1 and REL2 are turned on to perform the synchronous rectification control and the power factor improvement control. It is. IGBTとMOSFETの電流に対する電圧特性を表す図である。It is a figure showing the voltage characteristic with respect to the electric current of IGBT and MOSFET. IGBTとMOSFETの電流に対する損失特性を表す図である。It is a figure showing the loss characteristic with respect to the electric current of IGBT and MOSFET. 入力電圧が正のサイクルでMOSFET‐Q3をオフ、REL2もオフの状態でダイオードによる全波整流のみを行った場合の回路電流の経路を示す図である。It is a figure which shows the path | route of a circuit current at the time of performing only the full wave rectification by a diode in the state which turned off MOSFET-Q3 and REL2 in the cycle with a positive input voltage. 入力電圧が負のサイクルでMOSFET‐Q1をオフ、REL1もオフの状態でダイオードによる全波整流のみを行った場合の回路電流の経路を示す図である。It is a figure which shows the path | route of a circuit current at the time of performing only the full wave rectification by a diode in the state where MOSFET-Q1 is turned off and REL1 is also turned off in a cycle where the input voltage is negative. 入力電圧が正のサイクルでMOSFET‐Q1、Q2はオフ、リレーREL1、REL2もオフの状態でIGBT‐Q2をスイッチングさせて、IGBTによる力率改善制御を行った場合の回路電流の経路を示す図である。The figure which shows the path | route of a circuit current at the time of switching IGBT-Q2 in the state where MOSFET-Q1 and Q2 are off and relays REL1 and REL2 are also off in the cycle where the input voltage is positive, and performing power factor improvement control by IGBT It is. 入力電圧が負のサイクルでMOSFET‐Q1、Q2はオフ、リレーREL1、REL2もオフの状態でIGBT‐Q4をスイッチングさせて、IGBTによる力率改善制御を行った場合の回路電流の経路を示す図である。The figure which shows the path | route of a circuit current at the time of switching IGBT-Q4 in the state where MOSFET-Q1 and Q2 are off and relays REL1 and REL2 are off in the cycle where the input voltage is negative, and performing power factor improvement control by IGBT It is. MOSFET‐に流れる電流と素子温度、又はフィン温度、又は周囲温度との双方に係る特性領域上に対応付けられた電流閾値情報を表す図である。It is a figure showing the electric current threshold value matched on the characteristic area | region which concerns on both the electric current which flows into MOSFET-, element temperature, fin temperature, or ambient temperature. 直流電源装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a DC power supply device. 直流電源装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a DC power supply device. 直流電源装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a DC power supply device. 直流電源装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a DC power supply device. 直流電源装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a DC power supply device.

以下、本発明の実施例について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は空気調和機のサイクル構成図である。冷房運転時は、圧縮機34より吐出された高温且つ高圧の冷媒は、四方弁35を介して室外熱交換機37に流入する。室外熱交換機37に流入した冷媒は、室外送風ファン38によって送られる室外の空気と熱交換することで、凝縮されて液冷媒となる。液冷媒は、膨張弁36を通過することで低温低圧の二相冷媒になり、室内熱交換器39に流入する。室内熱交換器39に流入した低温低圧の二相冷媒は、室内送風ファン40によって送られる室内の空気と熱交換する。このとき、室内熱交換器39に送られた室内の空気は、室内熱交換器39に流入した低温低圧の二相冷媒によって冷却され、吹出口から室内に吐出される。吹出口から室内に吐出される空気は、吸込口における空気の温度よりも低いため、室内の温度を下げることができる。室内熱交換器39で熱交換された冷媒は四方弁35を介して再び圧縮機34に戻る。圧縮機34と室外熱交換器37と室外送風ファン38と膨張弁36は室外機に配置され、室内熱交換器39と室内送風ファン40は室内機に配置されている。本実施例に係る直流電源装置は、圧縮機34に接続されている。具体的には、本実施例に係る直流電源装置は、インバータを介して圧縮機34に接続されている。   FIG. 1 is a cycle configuration diagram of an air conditioner. During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 34 flows into the outdoor heat exchanger 37 via the four-way valve 35. The refrigerant flowing into the outdoor heat exchanger 37 is condensed and becomes liquid refrigerant by exchanging heat with the outdoor air sent by the outdoor fan 38. The liquid refrigerant passes through the expansion valve 36 to become a low-temperature and low-pressure two-phase refrigerant and flows into the indoor heat exchanger 39. The low-temperature and low-pressure two-phase refrigerant that has flowed into the indoor heat exchanger 39 exchanges heat with indoor air sent by the indoor fan 40. At this time, the indoor air sent to the indoor heat exchanger 39 is cooled by the low-temperature and low-pressure two-phase refrigerant flowing into the indoor heat exchanger 39 and is discharged into the room from the outlet. Since the air discharged into the room from the outlet is lower than the temperature of the air at the inlet, the room temperature can be lowered. The refrigerant heat-exchanged by the indoor heat exchanger 39 returns to the compressor 34 again via the four-way valve 35. The compressor 34, the outdoor heat exchanger 37, the outdoor blowing fan 38, and the expansion valve 36 are disposed in the outdoor unit, and the indoor heat exchanger 39 and the indoor blowing fan 40 are disposed in the indoor unit. The DC power supply device according to this embodiment is connected to the compressor 34. Specifically, the DC power supply device according to the present embodiment is connected to the compressor 34 via an inverter.

図2は、直流電源装置の構成図を示す図である。図2に示すように、本実施例に係る直流電源装置は、リアクトルL1と、ダイオードD1〜D4と、MOSFET‐Q1、Q3と、IGBT‐Q2、Q4と、リレーREL1、REL2と平滑コンデンサC1と、電流検出部101と、入力電流判定部102と、素子温度検出部103と、素子温度判定部104と、ゼロクロス検出部105と、ゼロクロス判定部106と、コンバータ制御部107と、と備えている。そして、直流電源装置の入力段は交流電源V1に接続されており、出力段は負荷108に接続されている。負荷108としては例えばモータやインバータ回路などがある。   FIG. 2 is a diagram illustrating a configuration diagram of the DC power supply device. As shown in FIG. 2, the DC power supply according to this embodiment includes a reactor L1, diodes D1 to D4, MOSFETs Q1 and Q3, IGBTs Q2 and Q4, relays REL1 and REL2, and a smoothing capacitor C1. , Current detection unit 101, input current determination unit 102, element temperature detection unit 103, element temperature determination unit 104, zero cross detection unit 105, zero cross determination unit 106, and converter control unit 107. . The input stage of the DC power supply device is connected to the AC power supply V1, and the output stage is connected to the load 108. Examples of the load 108 include a motor and an inverter circuit.

リアクタL1にはダイオードD1〜D4の4素子から成るダイオードブリッジ回路が接続されており、その出力段には平滑コンデンサC1が接続されている。そして、平滑コンデンサのマイナス側にアノードが接続されているダイオードD3には、REL1とMOSFET‐Q1がシリーズに接続された直列回路とIGBT‐Q2が並列に接続されている。同様に、平滑コンデンサのマイナス側にアノードが接続されているダイオードD4には、REL2とMOSFET‐Q3がシリーズに接続された直列回路とIGBT‐Q4が並列に接続されている。   A diode bridge circuit composed of four elements D1 to D4 is connected to the reactor L1, and a smoothing capacitor C1 is connected to its output stage. A series circuit in which REL1 and MOSFET-Q1 are connected in series and IGBT-Q2 are connected in parallel to a diode D3 whose anode is connected to the negative side of the smoothing capacitor. Similarly, a series circuit in which REL2 and MOSFET-Q3 are connected in series and IGBT-Q4 are connected in parallel to a diode D4 whose anode is connected to the negative side of the smoothing capacitor.

電流検出部101は直流電源装置回路内に通流する電流を検出する機能を持つ。これを実現するには、例えばトランス、シャント抵抗、ホール素子などを使用すればよい。入力電流判定部102は電流検出部によって検出した電流値と予め設定された閾値との大小関係を判定する機能を持つ。   The current detection unit 101 has a function of detecting current flowing in the DC power supply circuit. In order to realize this, for example, a transformer, a shunt resistor, a Hall element or the like may be used. The input current determination unit 102 has a function of determining the magnitude relationship between the current value detected by the current detection unit and a preset threshold value.

ここで、温度検出部103は、MOSFETの素子温度(素子のパッケージ温度)、MOSFETの放熱フィンの温度、又は、MOSFETの周囲温度を検出する。実際にはサーミスタ等を使用する。温度判定部104は温度検出部103によって検出した、素子温度や放熱フィンの温度や周囲温度などの温度情報を、予め設定されている閾値と照合して、閾値との大小関係を判定する機能を持つ。ゼロクロス検出部105は入力電圧のゼロクロスを検出して、ゼロクロス判定部106によってその判定を行う。MOSFET‐Q1、Q3やIGBT‐Q2、Q4による力率改善制御は、この入力電圧のゼロクロスを基準にしてスイッチングを行う。   Here, the temperature detection unit 103 detects the element temperature of the MOSFET (element package temperature), the temperature of the MOSFET radiation fin, or the ambient temperature of the MOSFET. Actually, a thermistor or the like is used. The temperature determination unit 104 has a function of comparing the temperature information detected by the temperature detection unit 103, such as the element temperature, the temperature of the radiating fin, and the ambient temperature, with a preset threshold value and determining the magnitude relationship with the threshold value. Have. The zero cross detection unit 105 detects the zero cross of the input voltage, and the zero cross determination unit 106 performs the determination. The power factor correction control by the MOSFETs Q1, Q3 and IGBT-Q2, Q4 performs switching based on the zero cross of the input voltage.

コンバータ制御部107は入力電流判定部102、素子温度判定部104、ゼロクロス判定部106から送信された判定結果に基づいてMOSFET‐Q1、Q3とIGBT‐Q2、Q4とリレーREL1、REL2の駆動制御を行う機能を持つ。   Converter control unit 107 performs drive control of MOSFET-Q1, Q3 and IGBT-Q2, Q4 and relays REL1 and REL2 based on the determination results transmitted from input current determination unit 102, element temperature determination unit 104, and zero-cross determination unit 106. Has the ability to do.

以下、本実施例の直流電源装置の動作状態について説明する。電源電圧が正のサイクルで全波整流を行う場合について説明する。図3は入力電圧が正のサイクルで、ダイオードによる全波整流とMOSFETによる同期整流制御を行った場合の電流の経路を示す図である。電源電圧が正のサイクルで全波整流を行う場合、図3のようにMOSFET‐Q3とREL2がオン状態となり、電流の経路は入力電源V1、リアクタL1、ダイオードD1、平滑コンデンサC1、MOSFET−Q3とダイオードD4、入力電源V1、となる。このように、通常のダイオード整流に加えてMOSFETによる同期整流制御を行っているため、低損失、高効率となる。   Hereinafter, the operation state of the DC power supply device of the present embodiment will be described. A case where full-wave rectification is performed in a cycle where the power supply voltage is positive will be described. FIG. 3 is a diagram showing a current path when full-wave rectification using a diode and synchronous rectification control using a MOSFET are performed in a cycle where the input voltage is positive. When full-wave rectification is performed in a cycle where the power supply voltage is positive, MOSFET-Q3 and REL2 are turned on as shown in FIG. 3, and the current path is input power supply V1, reactor L1, diode D1, smoothing capacitor C1, and MOSFET-Q3. And a diode D4 and an input power source V1. Thus, since synchronous rectification control by MOSFET is performed in addition to normal diode rectification, low loss and high efficiency are achieved.

次に、電源電圧が負のサイクルで全波整流を行う場合について説明する。図4は、入力電圧が負のサイクルで、ダイオードによる全波整流とMOSFETによる同期整流制御を行った場合の電流の経路を示す図である。電源電圧が負のサイクルで全波整流を行う場合、図4のようにMOSFET‐Q1とREL1がオン状態となり、電流の経路は入力電源V1、ダイオードD2、平滑コンデンサC1、MOSFET−Q1とダイオードD3、リアクタL1、入力電源V1、となる。この場合も正のサイクル時と同様に同期整流制御を行っている。   Next, a case where full-wave rectification is performed in a cycle where the power supply voltage is negative will be described. FIG. 4 is a diagram illustrating a current path when full-wave rectification using a diode and synchronous rectification control using a MOSFET are performed in a cycle where the input voltage is negative. When full-wave rectification is performed in a cycle in which the power supply voltage is negative, MOSFET-Q1 and REL1 are turned on as shown in FIG. 4, and the current path is input power supply V1, diode D2, smoothing capacitor C1, MOSFET-Q1 and diode D3. , Reactor L1 and input power source V1. In this case, the synchronous rectification control is performed as in the positive cycle.

次に、電源電圧が正のサイクルで力率改善制御を行う場合について説明する。図5は、入力電圧が正のサイクルで、MOSFET‐Q3ベタオン、リレーREL1、REL2がオンの状態でMOSFET‐Q1をスイッチングさせて、同期整流制御と力率改善制御を行った場合の回路電流の経路を示す図である。電源電圧が正のサイクルで力率改善制御を行う場合、図5のようにMOSFET‐Q3とREL2がオン状態となる。そして、MOSFET‐Q1がオン・オフ動作を行うことで、回路を短絡させる。そして、電流の経路は図5の通りである。このとき、リアクタL1にはエネルギーがチャージされ、MOSFET‐Q1がオン、オフのタイミングで平滑コンデンサC1にエネルギーがチャージされることで直流電圧が昇圧される。   Next, a case where power factor correction control is performed in a cycle where the power supply voltage is positive will be described. FIG. 5 shows the circuit current when the synchronous rectification control and the power factor improvement control are performed by switching the MOSFET-Q1 with the input voltage being positive and the MOSFET-Q3 beta-on and the relays REL1 and REL2 being on. It is a figure which shows a path | route. When power factor correction control is performed in a cycle where the power supply voltage is positive, MOSFET-Q3 and REL2 are turned on as shown in FIG. Then, the MOSFET-Q1 performs an on / off operation to short-circuit the circuit. The current path is as shown in FIG. At this time, the reactor L1 is charged with energy, and the DC voltage is boosted by charging the smoothing capacitor C1 with the timing when the MOSFET-Q1 is turned on and off.

次に、電源電圧が負のサイクルで力率改善制御を行う場合について説明する。図6は、入力電圧が負のサイクルで、MOSFET‐Q1ベタオン、リレーREL1、REL2がオンの状態でMOSFET‐Q3をスイッチングさせて、同期整流制御と力率改善制御を行った場合の回路電流の経路を示す図である。電源電圧が負のサイクルで力率改善制御を行う場合、図6のようにMOSFET‐Q1とREL1がベタオン状態となる。そして、MOSFET‐Q3がオン・オフ動作を行うことで、回路を短絡させる。そして、電流の経路は図6の通りである。このとき、リアクタL1にはエネルギーがチャージされ、MOSFET‐Q3がオンからオフのタイミングで平滑コンデンサC1にエネルギーがチャージされることで直流電圧が昇圧される。   Next, a case where power factor correction control is performed in a cycle where the power supply voltage is negative will be described. FIG. 6 shows the circuit current in the case where the synchronous rectification control and the power factor improvement control are performed by switching the MOSFET-Q3 with the MOSFET-Q1 beta-on and the relays REL1 and REL2 on in the negative cycle of the input voltage. It is a figure which shows a path | route. When power factor correction control is performed in a cycle in which the power supply voltage is negative, MOSFET-Q1 and REL1 are in a beta-on state as shown in FIG. Then, the MOSFET-Q3 performs an on / off operation to short-circuit the circuit. The current path is as shown in FIG. At this time, the reactor L1 is charged with energy, and the DC voltage is boosted by charging the smoothing capacitor C1 with the timing when the MOSFET-Q3 is turned from on to off.

以上が、全波整流と力率改善制御を行った場合の素子の動作状態と回路に流れる電流の経路である。   The above is the operating state of the element and the path of the current flowing through the circuit when full-wave rectification and power factor correction control are performed.

図7はIGBTのコレクタ電流とコレクタ‐エミッタ間電圧の関係と、MOSFETのドレイン電流とドレイン‐ソース間電圧の関係を比較した図である。同じ電流値で比較した場合に、低入力領域においてはIGBTのコレクタ‐エミッタ間電圧よりもMOSFETのドレイン‐ソース間電圧の方が小さく、高入力領域においては関係が逆転していることが分かる。   FIG. 7 is a graph comparing the relationship between the collector current and the collector-emitter voltage of the IGBT and the relationship between the drain current and the drain-source voltage of the MOSFET. When comparing at the same current value, it can be seen that the drain-source voltage of the MOSFET is smaller than the collector-emitter voltage of the IGBT in the low input region, and the relationship is reversed in the high input region.

図8はIGBTのコレクタ電流と導通損失の関係と、MOSFETのドレイン電流と導通損の関係を示した図である。各素子の電流‐電圧の関係に従って、導通損失も低入力領域ではMOSFETが有利、高入力領域ではIGBTが有利、という関係になっている。これは、MOSFETの損失は電流の2乗で変化するため、高入力領域においては損失が急激に悪化するためである。すなわち、高入力領域においてはMOSFETよりもIGBTの方が損失は小さく発熱量も小さいため、熱破壊しにくいといえる。   FIG. 8 is a diagram showing the relationship between the collector current and conduction loss of the IGBT and the relationship between the drain current and conduction loss of the MOSFET. According to the current-voltage relationship of each element, the MOSFET is advantageous in the low input region and the conduction loss is advantageous in the high input region. This is because the loss of the MOSFET changes with the square of the current, and the loss rapidly deteriorates in the high input region. That is, in the high input region, the IGBT has a smaller loss and a smaller amount of heat generation than the MOSFET, so that it can be said that the thermal destruction is less likely.

そこで、本実施例に係る直流電源装置は高入力・高負荷・高温領域のように、MOSFETが熱破壊する危険性の高い領域においては、MOSFETのスイッチングを停止・回路から分断後、代わりにIGBTを使用して直流電源装置の動作を継続させる。すなわち、本実施例に係る直流電源装置は、MOSFET(第1のMOSFET(Q1)又は第2のMOSFET(Q3))と並列に接続されたIGBT(第1のIGBT(Q2)又は第2のIGBT(Q4))を備え、電流検出部101で検出された電流と温度検出部103で検出された温度が所定値未満であるとき、MOSFETのスイッチング制御を行い、電流検出部103で検出された電流と温度検出部103で検出された温度が所定値以上であるとき、IGBTのスイッチング制御を行う。このようにスイッチング素子を切り換えることで、直流電源装置の動作を停止することなく、MOSFETの熱破壊を防ぐことができる。   Therefore, the DC power supply according to the present embodiment stops switching of the MOSFET in a region where there is a high risk of thermal destruction of the MOSFET, such as a high input / high load / high temperature region. Is used to continue the operation of the DC power supply. That is, the DC power supply device according to the present embodiment includes an IGBT (first IGBT (Q2) or second IGBT) connected in parallel with the MOSFET (first MOSFET (Q1) or second MOSFET (Q3)). (Q4)), and when the current detected by the current detection unit 101 and the temperature detected by the temperature detection unit 103 are less than a predetermined value, switching control of the MOSFET is performed, and the current detected by the current detection unit 103 When the temperature detected by the temperature detector 103 is equal to or higher than a predetermined value, IGBT switching control is performed. By switching the switching elements in this way, thermal destruction of the MOSFET can be prevented without stopping the operation of the DC power supply device.

以下、温度と電流を検出してMOSFETが熱破壊する危険性が高いと判断した場合の各素子のスイッチングの状態、電流の流れ、直流電源装置全体の動作について説明する。   Hereinafter, the switching state of each element, the flow of current, and the operation of the entire DC power supply device when it is determined that the risk of thermal destruction of the MOSFET is high by detecting temperature and current will be described.

まず、電源電圧が正のサイクルで全波整流を行い、更にMOSFETの保護を行う場合について説明する。図9は、入力電圧が正のサイクルでMOSFET‐Q3をオフ、REL2もオフの状態でダイオードによる全波整流のみを行った場合の回路電流の経路を示す図である。電源電圧が正のサイクルで全波整流を行い、更にMOSFETの保護を行う場合は、図9に示すように保護制御実施前にオン状態であった、MOSFET‐Q3とリレーREL2をオフにすることでダイオードD4にのみ電流を通流させる。   First, a case where full-wave rectification is performed in a cycle in which the power supply voltage is positive and further MOSFET protection is described. FIG. 9 is a diagram showing circuit current paths when only full-wave rectification is performed by a diode with MOSFET-Q3 off and REL2 off in a cycle where the input voltage is positive. When full-wave rectification is performed in a cycle in which the power supply voltage is positive, and further MOSFET protection is performed, MOSFET-Q3 and relay REL2 that were on before the protection control is performed are turned off as shown in FIG. The current is passed only through the diode D4.

次に、電源電圧が負のサイクルで全波整流を行い、更にMOSFETの保護を行う場合について説明する。図10は、入力電圧が負のサイクルでMOSFET‐Q1をオフ、REL1もオフの状態でダイオードによる全波整流のみを行った場合の回路電流の経路を示す図である。電源電圧が負のサイクルで全波整流を行い、更にMOSFETの保護を行う場合は、図10に示すように保護制御実施前にオン状態であったMOSFET‐Q1とリレーREL1をオフにすることでダイオードD3にのみ電流を通流させる。   Next, a case where full-wave rectification is performed in a cycle in which the power supply voltage is negative and MOSFET protection is further described. FIG. 10 is a diagram showing a circuit current path when only full-wave rectification by a diode is performed in a state in which MOSFET-Q1 is turned off and REL1 is also turned off in a cycle where the input voltage is negative. When full-wave rectification is performed in a cycle in which the power supply voltage is negative and further MOSFET protection is performed, the MOSFET-Q1 and the relay REL1 that are on before the protection control is performed are turned off as shown in FIG. Current is passed only through the diode D3.

次に、電源電圧が正のサイクルで力率改善制御を行い、更にMOSFETの保護を行う場合について説明する。図11は、入力電圧が正のサイクルでMOSFET‐Q1、Q3はオフ、リレーREL1、REL2もオフの状態でIGBT‐Q2をスイッチングさせて、IGBTによる力率改善制御を行った場合の回路電流の経路を示す図である。電源電圧が正のサイクルで力率改善制御を行い、更にMOSFETの保護を行う場合は、図11に示すように保護制御実施前にスイッチングさせていたMOSFET‐Q1をオフにさせ、REL1もオフとする。そして、MOSFET‐Q1に並列接続されていたIGBT‐Q2をスイッチング動作させる。また、MOSFET‐Q3とREL2もオフ状態にさせる。以上、電流の流れる経路は、入力電源V1、リアクトルL1、IGBT‐Q2、ダイオードD4、入力電源V1、となる。   Next, a case where power factor correction control is performed in a cycle in which the power supply voltage is positive and further MOSFET protection is described. FIG. 11 shows the circuit current when the IGBT-Q2 is switched while the MOSFET-Q1 and Q3 are off and the relays REL1 and REL2 are off in the cycle where the input voltage is positive, and the power factor improvement control by the IGBT is performed. It is a figure which shows a path | route. When power factor correction control is performed in a cycle in which the power supply voltage is positive and further MOSFET protection is performed, as shown in FIG. 11, MOSFET-Q1 that has been switched before the protection control is performed is turned off, and REL1 is also turned off. To do. Then, the IGBT-Q2 connected in parallel to the MOSFET-Q1 is switched. Further, the MOSFET-Q3 and REL2 are also turned off. As described above, the path through which the current flows is the input power supply V1, the reactor L1, the IGBT-Q2, the diode D4, and the input power supply V1.

次に、電源電圧が負のサイクルで力率改善制御を行い、更にMOSFETの保護を行う場合について説明する。図12は、入力電圧が負のサイクルでMOSFET‐Q1、Q2はオフ、リレーREL1、REL2もオフの状態でIGBT‐Q4をスイッチングさせて、IGBTによる力率改善制御を行った場合の回路電流の経路を示す図である。電源電圧が負のサイクルで力率改善制御を行い、更にMOSFETの保護を行う場合は、図12に示すように保護制御実施前にスイッチングさせていたQ3をオフにさせ、REL2もオフとする。そして、MOSFET‐Q3に並列接続されていたIGBT‐Q4をスイッチング動作させる。また、MOSFET‐Q1とREL1もオフ状態にさせる。以上、電流の流れる経路は、入力電源V1、IGBT‐Q4、ダイオードD3、リアクトルL1、入力電源V1、となる。   Next, a case where power factor correction control is performed in a cycle in which the power supply voltage is negative and MOSFET protection is further described. FIG. 12 shows the circuit current when the IGBT-Q4 is switched while the MOSFET-Q1 and Q2 are off and the relays REL1 and REL2 are off in a cycle where the input voltage is negative, and the power factor improvement control by the IGBT is performed. It is a figure which shows a path | route. When power factor correction control is performed in a cycle in which the power supply voltage is negative and further MOSFET protection is performed, Q3 that has been switched before the protection control is performed is turned off and REL2 is also turned off as shown in FIG. Then, the IGBT-Q4 connected in parallel to the MOSFET-Q3 is switched. Also, MOSFET-Q1 and REL1 are turned off. As described above, the path through which the current flows is the input power supply V1, the IGBT-Q4, the diode D3, the reactor L1, and the input power supply V1.

まとめると、本実施例に係る直流電圧装置は、図2に示すように、第1の入力端と第1の出力端との間を結ぶ第1の経路(LH1)と、第1の経路(LH1)上に設けられた第1のリアクトル(L1)と、第1の経路(LH1)上に設けられ、第1のリアクトル(L1)に対して第1の出力端側で直列に接続されて、そのアノードを第1のリアクトル(L1)側に向けて設けられる第1のダイオード(D1)と、第2の入力端と第2の出力端との間を結ぶ第2の経路(LH2)と、第1のダイオード(D1)のカソード側と第2の経路(LH2)とを接続する経路(LH3)上に設けられた第2のダイオード(D2)と、第1のリアクトル(L1)と第1のダイオード(D1)との間と、第2の経路(LH2)とを接続する経路(LH4)上に設けられた第3のダイオード(D3)と、第2の経路(LH2)上に設けられた第4のダイオード(D4)とを有し、第3のダイオード(D3)は第1のMOSFET(Q1)及び第1のIGBT(Q2)と並列に接続され、第4のダイオード(D4)は第2のMOSFET(Q3)及び第2のIGBT(Q4)と並列に接続され、電流検出部(101)で検出された電流と温度検出部(103)で検出された温度が所定値未満であるとき、第1のMOSFET(Q1)及び第2のMOSFET(Q3)のスイッチング制御を行い、電流検出部(101)で検出された電流と温度検出部(103)で検出された温度が所定値以上であるとき、第1のIGBT(Q2)及び第2のIGBT(Q4)のスイッチング制御を行う。   In summary, as shown in FIG. 2, the DC voltage device according to the present embodiment includes a first path (LH1) connecting the first input terminal and the first output terminal, and a first path ( The first reactor (L1) provided on the LH1) and the first reactor (LH1) are connected in series on the first output end side with respect to the first reactor (L1). , A first diode (D1) provided with the anode directed toward the first reactor (L1), and a second path (LH2) connecting the second input terminal and the second output terminal The second diode (D2) provided on the path (LH3) connecting the cathode side of the first diode (D1) and the second path (LH2), the first reactor (L1) and the second On the path (LH4) connecting the first diode (D1) to the second path (LH2) The third diode (D3) is provided, and the fourth diode (D4) is provided on the second path (LH2). The third diode (D3) is a first MOSFET (Q1). ) And the first IGBT (Q2) in parallel, the fourth diode (D4) is connected in parallel with the second MOSFET (Q3) and the second IGBT (Q4), and the current detection unit (101) And the temperature detected by the temperature detector (103) are less than a predetermined value, the switching control of the first MOSFET (Q1) and the second MOSFET (Q3) is performed, and the current detector ( When the current detected in 101) and the temperature detected by the temperature detection unit (103) are equal to or higher than a predetermined value, switching control of the first IGBT (Q2) and the second IGBT (Q4) is performed.

図7に示すように、線I1で示すIGBTのコレクタ電流に対するコレクタ−エミッタ間電圧特性は、コレクタ電流の立ち上がり区間において右肩上がりに急増し、その後、なだらかな右肩上がりの略線形の増加特性を描く。一方、線M1で示すMOSFETのドレイン電流に対するドレイン−ソース間電圧特性は、全ての電流区間においてなだらかな右肩上がりの略線形の増加特性を描く。これら特性I1及び特性M1は、図7に示すように、臨界点において交差している。つまり、臨界点に比べて低入力領域では、IGBTに係るコレクタ−エミッタ間電圧特性I1がMOSFETに係るドレイン−ソース間電圧特性M1を上回っているが、臨界点に比べて高入力領域では、両者T1、M1の関係が逆転している。   As shown in FIG. 7, the collector-emitter voltage characteristic with respect to the collector current of the IGBT indicated by the line I <b> 1 increases rapidly in the rising period of the collector current, and then gradually increases in a substantially linear manner. Draw. On the other hand, the drain-source voltage characteristic with respect to the drain current of the MOSFET indicated by the line M1 draws a substantially linear increase characteristic that gently rises in all current sections. These characteristic I1 and characteristic M1 intersect at a critical point as shown in FIG. That is, in the low input region compared to the critical point, the collector-emitter voltage characteristic I1 related to the IGBT exceeds the drain-source voltage characteristic M1 related to the MOSFET, but in the high input region compared to the critical point, both The relationship between T1 and M1 is reversed.

図7に表す関係に起因して、図8に示すように、臨界点に比べて低入力領域では、線I2で示すIGBTに係る損失特性が、線M2で示すMOSFETに係る損失特性を上回っているが、臨界点に比べて高入力領域では、両者I2、M2の関係が逆転している。つまり、MOSFETの損失は、低入力領域ではIGBTよりも小さいが、高入力領域では、IGBTよりも大きくなる。これは、MOSFETの損失が電流の2乗で増大するからである。このため、MOSFETは、高負荷時の温度上昇割合がIGBTと比べて大きく、熱破壊を起こしやすいという欠点がある。   Due to the relationship shown in FIG. 7, as shown in FIG. 8, in the low input region compared to the critical point, the loss characteristic related to the IGBT indicated by line I2 exceeds the loss characteristic related to the MOSFET indicated by line M2. However, in the high input region compared to the critical point, the relationship between both I2 and M2 is reversed. That is, the loss of the MOSFET is smaller than the IGBT in the low input region, but is larger than the IGBT in the high input region. This is because the MOSFET loss increases with the square of the current. For this reason, the MOSFET has a disadvantage that the rate of temperature increase at high load is larger than that of the IGBT, and thermal breakdown is likely to occur.

この欠点を無くすために、仮に、MOSFETによるスイッチング制御を行うか否かを判定する際の基準となる電流閾値を、余裕をみて低い固定値に設定したとする。この場合、本来保護制御を行うための素子温度となるまでにはまだ余裕があるにも関わらず、電流閾値が低い素子温度に対応して設定されているため、熱破壊危険状態に達したと判定して、保護制御が実施されてしまう。このため、MOSFETによる同期整流制御が停止するので、直流電源装置の高効率制御を行う妨げになる。   In order to eliminate this defect, it is assumed that the current threshold value used as a reference when determining whether or not to perform switching control by the MOSFET is set to a low fixed value with a margin. In this case, although there is still a margin before the element temperature for originally carrying out protection control, the current threshold is set corresponding to the element temperature that is low, so that a thermal destruction danger state has been reached. Judgment and protection control will be implemented. For this reason, synchronous rectification control by the MOSFET is stopped, which hinders high-efficiency control of the DC power supply device.

そこで、本実施例の直流電源装置では、素子温度、又はフィン温度、又は周囲温度が予め定められた温度よりも低い領域では、電流閾値が大きく(又は高く)なり、素子温度がその低い領域よりも高い領域では、電流閾値が小さく(又は低く)なるように、素子温度、又はフィン温度、又は周囲温度の変化に応じた可変温度特性を有する電流閾値を図13のように設定した。すなわち、本実施例に係る直流電源装置は、交流電力を直流電力に変換し、MOSFET(第1のMOSFET(Q1)又は第2のMOSFET(Q3))を有する直流電源回路LHと、MOSFETの温度を検出する温度検出部103と、直流電源回路LH内に流れる電流を検出する電流検出部101とを備え、電流検出部101で検出された電流が所定値(電流閾値)を超えた場合にMOSFETのスイッチング制御を停止し、温度検出部で検出した温度が低いほど所定値(電流閾値)は高くなる。このような本実施例に係る直流電源装置によれば、直流電源装置の高効率運転を妨げることなく、MOSFETの温度保護を行うことが可能である。   Therefore, in the DC power supply device of this embodiment, the current threshold value is larger (or higher) in the region where the element temperature, the fin temperature, or the ambient temperature is lower than the predetermined temperature, and the element temperature is lower than the lower region. In the higher region, the current threshold having variable temperature characteristics corresponding to changes in the element temperature, the fin temperature, or the ambient temperature is set as shown in FIG. 13 so that the current threshold becomes smaller (or lower). That is, the DC power supply device according to the present embodiment converts the AC power into DC power and has a MOSFET (first MOSFET (Q1) or second MOSFET (Q3)) and a temperature of the MOSFET. And a current detection unit 101 for detecting a current flowing in the DC power supply circuit LH. When the current detected by the current detection unit 101 exceeds a predetermined value (current threshold), the MOSFET As the temperature detected by the temperature detector is lower, the predetermined value (current threshold value) is higher. According to such a DC power supply device according to the present embodiment, it is possible to protect the temperature of the MOSFET without disturbing the high-efficiency operation of the DC power supply device.

ここで、温度検出部103は、上述したとおり、MOSFETの素子温度(素子のパッケージ温度)、MOSFETの放熱フィンの温度、又は、MOSFETの周囲温度等を検出することで、MOSFETの温度を検出する。   Here, as described above, the temperature detection unit 103 detects the MOSFET temperature by detecting the element temperature of the MOSFET (element package temperature), the temperature of the heat dissipation fin of the MOSFET, the ambient temperature of the MOSFET, or the like. .

図13は、直流電源装置へ流れる回路電流と、MOSFET‐Q1、Q3の素子温度、又はフィン温度、又は周囲温度との双方に係る特性領域上に対応付けられた電流制限閾値情報を表す図である。図13の縦軸は、直流電源装置へ流れる回路電流、横軸は素子温度、又はフィン温度、又は周囲温度であり、縦軸と横軸との双方に係る特性領域が、電流制限閾値情報により区画される。また、電流制限閾値情報は、定常領域Dsと保護制御実施領域Dpを決定する。定常領域Dsから保護制御実施領域Dpに入ると保護制御実施される。   FIG. 13 is a diagram showing current limit threshold information associated with the characteristic region related to both the circuit current flowing to the DC power supply device and the element temperature, the fin temperature, or the ambient temperature of the MOSFETs Q1 and Q3. is there. The vertical axis in FIG. 13 is the circuit current flowing to the DC power supply device, the horizontal axis is the element temperature, the fin temperature, or the ambient temperature, and the characteristic region related to both the vertical axis and the horizontal axis is represented by the current limit threshold information. Partitioned. Further, the current limit threshold information determines the steady region Ds and the protection control execution region Dp. When entering the protection control execution area Dp from the steady area Ds, the protection control is executed.

電流制限閾値情報は、MOSFET‐Q1、Q3の温度が熱破壊危険状態に到達していることを判定するための電流閾値である。電流制限閾値情報は、温度検出部103(図2参照)で検出される素子温度、又はフィン温度、又は周囲温度が低い領域では、高く、素子温度、又はフィン温度、又は周囲温度が低い領域と比べて高い領域では、低くなるように、素子温度、又はフィン温度、又は周囲温度の変化に応じた可変温度特性を有して設定されている。   The current limit threshold information is a current threshold for determining that the temperatures of the MOSFETs Q1 and Q3 have reached the danger state of thermal destruction. The current limit threshold information is high in the region where the element temperature, the fin temperature, or the ambient temperature detected by the temperature detection unit 103 (see FIG. 2) is low, and is the region where the element temperature, the fin temperature, or the ambient temperature is low. In contrast, the temperature is set to have a variable temperature characteristic corresponding to changes in the element temperature, the fin temperature, or the ambient temperature so as to be lower in a higher region.

次に、図14〜図18に示すフローチャートを使って、制御の流れを説明する。図14−18は、実施例に係る直流電源装置の動作を示すフローチャートである。   Next, the flow of control will be described using the flowcharts shown in FIGS. FIG. 14-18 is a flowchart illustrating the operation of the DC power supply device according to the embodiment.

まず、図14のステップ1(S1)で直流電源装置が駆動される。ここで、電流検出部101で直流電源装置内に流れる電流を検出し、入力電流判定部102で電流値を判定する。温度検出部103で素子温度、又はフィン温度、又は周囲温度を検出し、温度判定部104で温度を判定する。そして、次のステップ2(S2)では、前述の回路電流と温度との電流温度交点を、電流制限閾値情報と照合する。   First, the DC power supply is driven in step 1 (S1) of FIG. Here, a current flowing through the DC power supply device is detected by the current detection unit 101, and a current value is determined by the input current determination unit 102. The temperature detection unit 103 detects the element temperature, the fin temperature, or the ambient temperature, and the temperature determination unit 104 determines the temperature. In the next step 2 (S2), the current-temperature intersection between the circuit current and the temperature is checked against the current limit threshold information.

この照合により、ステップ3(S3)において、その電流温度交点が、図14に示す定常領域Dsか保護制御実施領域Dpのどちらの領域に存在するか否かが判定される。   By this collation, in step 3 (S3), it is determined whether the current temperature intersection exists in either the steady region Ds or the protection control execution region Dp shown in FIG.

このとき、保護制御実施領域Dpにいると判定された場合は入力電圧のサイクルが正か負か、直流電源装置の動作状態がパッシブかアクティブか、の判定により以降のステップに進んでいく(S4〜S6)。   At this time, if it is determined that the current state is in the protection control execution region Dp, the process proceeds to the subsequent steps by determining whether the cycle of the input voltage is positive or negative and whether the operating state of the DC power supply is passive or active (S4). To S6).

図15〜図18に示すように、各動作状態に応じて前述したように、MOSFET‐Q1、Q3とIGBT‐Q2、Q4とリレーREL1とREL2の駆動制御をコンバータ制御手段107によって行う(S7、S10、S13、S16)。そして、制御実施後に再び定常領域Dsにいるか否かの判定を行い(S8、S11、S14、S17)、定常領域Dsに戻り、熱破壊の危険性が無いと判断された場合にIGBTによるスイッチングから、MOSFETによるスイッチング制御に戻す(S9、S12、S15、S18)。   As shown in FIGS. 15 to 18, as described above in accordance with each operation state, drive control of MOSFET-Q 1, Q 3 and IGBT-Q 2, Q 4 and relays REL 1 and REL 2 is performed by converter control means 107 (S 7, S10, S13, S16). Then, after performing the control, it is determined whether or not the vehicle is in the steady region Ds again (S8, S11, S14, S17). When the control returns to the steady region Ds and it is determined that there is no risk of thermal destruction, switching from the IGBT is performed. Return to switching control by the MOSFET (S9, S12, S15, S18).

一連の動作が終了した後、再びステップ2(S2)に戻り、再び回路電流と素子温度等の温度情報の照合を行う。   After the series of operations is completed, the process returns to Step 2 (S2) again, and the circuit current and temperature information such as the element temperature are collated again.

以上のように、本実施例に係る直流電圧装置は、回路電流と温度情報に基づいてMOSFETによるスイッチング制御からIGBTによるスイッチング制御に切り替えることで、直流電源装置の動作を停止することなく、MOSFETの熱破壊を防ぐことが可能である。   As described above, the DC voltage device according to the present embodiment switches the switching control by the MOSFET to the switching control by the IGBT based on the circuit current and the temperature information, so that the operation of the DC power supply device is not stopped. It is possible to prevent thermal destruction.

また、本実施例に係る直流電圧装置は、素子温度、又はフィン温度、又は周囲温度が予め定められた温度よりも低い領域では、電流閾値が大きく(又は高く)なり、素子温度がその低い領域よりも高い領域では、電流閾値が小さく(又は低く)なるように、素子温度、又はフィン温度、又は周囲温度の変化に応じた可変温度特性を有する電流閾値を設定したので、直流電源装置の高効率運転を妨げることなく、MOSFETの温度保護を行うことが可能である。   Further, in the DC voltage device according to the present embodiment, in the region where the element temperature, the fin temperature, or the ambient temperature is lower than the predetermined temperature, the current threshold value is large (or high), and the element temperature is low. In the higher region, the current threshold having a variable temperature characteristic corresponding to the change in the element temperature, the fin temperature, or the ambient temperature is set so that the current threshold becomes smaller (or lower). It is possible to protect the MOSFET temperature without hindering efficient operation.

本実施例の同期整流制御に使用しているMOSFETを低オン抵抗のスーパー・ジャンクションMOSFETやSiC−MOSFETを使用することで、さらに高効率な直流電源装置を提供することが可能である。   By using a low junction resistance super junction MOSFET or SiC-MOSFET as the MOSFET used for the synchronous rectification control of this embodiment, it is possible to provide a more efficient DC power supply device.

また、保護制御を行うための電流値情報として、電流検出部101によって検出した回路全体に通流する電流値用いた場合を例に挙げて説明したが、MOSFET−Q1、Q3のドレイン電流を検出して保護制御を行ってもよい。この場合、MOSFET−Q1、Q3に通流する電流を直接検出することが可能であるため、より確実な保護制御を行うことが可能である。   In addition, the case where the current value flowing through the entire circuit detected by the current detection unit 101 is used as the current value information for performing the protection control has been described as an example, but the drain currents of the MOSFETs Q1 and Q3 are detected. Then, protection control may be performed. In this case, since it is possible to directly detect the current flowing through the MOSFETs Q1 and Q3, more reliable protection control can be performed.

また、本実施例の直流電源装置を空気調和機の室外機に適用することで、MOSFETの保護が可能な信頼性が高く、高効率運転が可能な空気調和機を提供することが可能である。   In addition, by applying the DC power supply device of this embodiment to an outdoor unit of an air conditioner, it is possible to provide an air conditioner that can protect MOSFETs and has high reliability and can be operated with high efficiency. .

101 電流検出部
102 入力電流判定部
103 温度検出部
104 温度判定部
105 ゼロクロス検出部
106 ゼロクロス判定部
107 コンバータ制御部
108 負荷
LH 直流電圧回路
LH1 第1の経路
LH2 第2の経路
L1 リアクトル
D1、D2、D3、D4 ダイオード
Q1、Q3 MOSFET
Q2、Q4 IGBT
REL1、REL2 リレー
C1 平滑コンデンサ
V1 交流電源
DESCRIPTION OF SYMBOLS 101 Current detection part 102 Input current determination part 103 Temperature detection part 104 Temperature determination part 105 Zero cross detection part 106 Zero cross determination part 107 Converter control part 108 Load LH DC voltage circuit LH1 1st path | route LH2 2nd path | route L1 reactor D1, D2 , D3, D4 Diode Q1, Q3 MOSFET
Q2, Q4 IGBT
REL1, REL2 Relay C1 Smoothing capacitor V1 AC power supply

Claims (4)

交流電力を直流電力に変換する直流電源装置において、
MOSFETを有する直流電源回路と、
前記MOSFETの温度を検出する温度検出部と、
前記直流電源回路に流れる電流を検出する電流検出部とを備え、
前記電流検出部で検出された電流が所定値を超えた場合に前記MOSFETのスイッチング制御を停止し、
前記温度検出部で検出した温度が低いほど前記所定値は高くなる直流電源装置。
In a DC power supply device that converts AC power into DC power,
A DC power supply circuit having a MOSFET;
A temperature detector for detecting the temperature of the MOSFET;
A current detector for detecting a current flowing in the DC power supply circuit;
When the current detected by the current detection unit exceeds a predetermined value, the switching control of the MOSFET is stopped,
The DC power supply device, wherein the predetermined value increases as the temperature detected by the temperature detection unit decreases.
前記MOSFETと並列に接続されたIGBTを備え、
前記電流検出部で検出された電流が前記所定値未満であるとき、前記MOSFETのスイッチング制御を行い、
前記電流検出部で検出された電流が前記所定値以上であるとき、前記IGBTのスイッチング制御を行うことを特徴とする請求項1に記載の直流電源装置。
An IGBT connected in parallel with the MOSFET,
When the current detected by the current detection unit is less than the predetermined value, switching control of the MOSFET,
2. The DC power supply device according to claim 1, wherein when the current detected by the current detection unit is equal to or greater than the predetermined value, switching control of the IGBT is performed.
前記温度検出部は、前記MOSFETの素子温度、前記MOSFETの放熱フィンの温度、又は、前記MOSFETの周囲温度を検出することを特徴とする請求項1に記載の直流電源装置。   2. The DC power supply device according to claim 1, wherein the temperature detection unit detects an element temperature of the MOSFET, a temperature of a heat radiation fin of the MOSFET, or an ambient temperature of the MOSFET. 請求項1乃至3のいずれかに記載の直流電源装置に接続された圧縮機と、室外熱交換器と、室外送風ファンとを有する室外機と、
室内熱交換器と、室内送風ファンとを有する室内機とを備える空気調和機。
An outdoor unit having a compressor connected to the DC power supply device according to any one of claims 1 to 3, an outdoor heat exchanger, and an outdoor fan.
An air conditioner comprising an indoor heat exchanger and an indoor unit having an indoor fan.
JP2014016333A 2014-01-31 2014-01-31 Dc power supply and air conditioner using the same Pending JP2015144496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016333A JP2015144496A (en) 2014-01-31 2014-01-31 Dc power supply and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016333A JP2015144496A (en) 2014-01-31 2014-01-31 Dc power supply and air conditioner using the same

Publications (1)

Publication Number Publication Date
JP2015144496A true JP2015144496A (en) 2015-08-06

Family

ID=53889201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016333A Pending JP2015144496A (en) 2014-01-31 2014-01-31 Dc power supply and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP2015144496A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074274A1 (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner
WO2020090788A1 (en) * 2018-11-02 2020-05-07 株式会社デンソー Power conversion device
JP2020078239A (en) * 2018-11-02 2020-05-21 株式会社デンソー Power conversion device
JP2020171194A (en) * 2020-07-06 2020-10-15 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner
JP2021193878A (en) * 2020-11-19 2021-12-23 日立ジョンソンコントロールズ空調株式会社 Dc power supply device and air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308132A (en) * 1995-04-28 1996-11-22 Origin Electric Co Ltd Feeding device for transmitter and its control method
JPH10201235A (en) * 1996-12-27 1998-07-31 Canon Inc Power supply circuit
JP2002078104A (en) * 2000-08-24 2002-03-15 Nippon Yusoki Co Ltd Freighter control device
JP2005295653A (en) * 2004-03-31 2005-10-20 Densei Lambda Kk Switching power supply
JP2007014075A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Motor driving unit
JP2007209098A (en) * 2006-01-31 2007-08-16 Toshiba Kyaria Kk Inverter device
JP2010017061A (en) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp Power converter and lift controller
WO2011096232A1 (en) * 2010-02-05 2011-08-11 パナソニック株式会社 Power conversion device
JP2013059228A (en) * 2011-09-09 2013-03-28 Daikin Ind Ltd Control device for switching power-supply circuit and heat pump unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308132A (en) * 1995-04-28 1996-11-22 Origin Electric Co Ltd Feeding device for transmitter and its control method
JPH10201235A (en) * 1996-12-27 1998-07-31 Canon Inc Power supply circuit
JP2002078104A (en) * 2000-08-24 2002-03-15 Nippon Yusoki Co Ltd Freighter control device
JP2005295653A (en) * 2004-03-31 2005-10-20 Densei Lambda Kk Switching power supply
JP2007014075A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Motor driving unit
JP2007209098A (en) * 2006-01-31 2007-08-16 Toshiba Kyaria Kk Inverter device
JP2010017061A (en) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp Power converter and lift controller
WO2011096232A1 (en) * 2010-02-05 2011-08-11 パナソニック株式会社 Power conversion device
JP2013059228A (en) * 2011-09-09 2013-03-28 Daikin Ind Ltd Control device for switching power-supply circuit and heat pump unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074274A1 (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner
JP2018068028A (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Electric power conversion system and air conditioner
CN109874379A (en) * 2016-10-19 2019-06-11 日立江森自控空调有限公司 Power inverter and air conditioner
WO2020090788A1 (en) * 2018-11-02 2020-05-07 株式会社デンソー Power conversion device
JP2020078239A (en) * 2018-11-02 2020-05-21 株式会社デンソー Power conversion device
JP6996539B2 (en) 2018-11-02 2022-01-17 株式会社デンソー Power converter
JP2020171194A (en) * 2020-07-06 2020-10-15 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner
JP2021193878A (en) * 2020-11-19 2021-12-23 日立ジョンソンコントロールズ空調株式会社 Dc power supply device and air conditioner
JP7175364B2 (en) 2020-11-19 2022-11-18 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner

Similar Documents

Publication Publication Date Title
JP5748842B2 (en) Power conversion device, motor drive device, and refrigeration air conditioner
JP5855025B2 (en) Backflow prevention means, power conversion device and refrigeration air conditioner
JP5584357B2 (en) Variable speed drive
JP7104209B2 (en) Power converter and air conditioner equipped with it
JP6111520B2 (en) Power converter
JP2015144496A (en) Dc power supply and air conditioner using the same
JP6431413B2 (en) Power conversion device, air conditioner equipped with the same, and power conversion method
CN104821733A (en) Power supply device and control method of power supply device
JP2011036075A (en) Inverter driver and refrigeration and air-conditioning equipment
JP2022118033A (en) air conditioner
JP2013123340A (en) Motor controller and air conditioner
JP2011259640A (en) Motor control device and compression device
JP2015163013A (en) Compressor control device, power factor improvement circuit, heat radiation structure for electrical component, and electrical equipment
JP6116100B2 (en) DC power supply device and air conditioner using the same
US11309709B2 (en) High-frequency current compensator and air-conditioning system
JP5121906B2 (en) Inverter drive device and refrigeration air conditioner
KR101870719B1 (en) Power converter apparatus and air conditioner having the apparatus
JP7325673B2 (en) Power converter and air conditioner
KR102002118B1 (en) Apparatus for converting power and air conditioner having the same
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
JP4874372B2 (en) Inverter drive device and refrigeration air conditioner
US20230100590A1 (en) Outdoor unit of air-conditioning apparatus
WO2020090071A1 (en) Electric power converter and air conditioner provided with same
US10003184B2 (en) Backflow preventing device, power conversion device, and refrigeration air-conditioning apparatus
JP2014050165A (en) Inverter control circuit and refrigerating cycle apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523