JP2015143717A - 胃癌の評価方法 - Google Patents

胃癌の評価方法 Download PDF

Info

Publication number
JP2015143717A
JP2015143717A JP2015096911A JP2015096911A JP2015143717A JP 2015143717 A JP2015143717 A JP 2015143717A JP 2015096911 A JP2015096911 A JP 2015096911A JP 2015096911 A JP2015096911 A JP 2015096911A JP 2015143717 A JP2015143717 A JP 2015143717A
Authority
JP
Japan
Prior art keywords
gastric cancer
discriminant
multivariate discriminant
amino acid
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015096911A
Other languages
English (en)
Inventor
今泉 明
Akira Imaizumi
明 今泉
敏彦 安東
Toshihiko Ando
敏彦 安東
木村 毅
Takeshi Kimura
毅 木村
泰志 野口
Yasushi Noguchi
泰志 野口
明 合地
Akira Gochi
明 合地
山本 浩史
Hiroshi Yamamoto
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2015096911A priority Critical patent/JP2015143717A/ja
Publication of JP2015143717A publication Critical patent/JP2015143717A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioethics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】血液中のアミノ酸の濃度のうち胃癌の状態と関連するアミノ酸の濃度を利用して胃癌の状態を精度よく評価することができる胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体を提供することを課題とする。
【解決手段】本発明にかかる胃癌の評価方法は、評価対象から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、評価対象につき胃癌の状態を評価する。
【選択図】図1

Description

本発明は、血液(血漿)中のアミノ酸濃度を利用した胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体に関するものである。
日本における胃癌による死亡は、2003年で男32846人・女17711人で、全ての癌による死亡の総数のうち2位で、男では癌による死亡の第2位、女性では癌による死亡の1位となっている。
胃癌の治療は、腫瘍が粘膜と粘膜下層に限局している場合は予後がよく、初期(I〜II期)の胃癌の5年生存率は50%以上、特にIA期の胃癌(深達度が粘膜及び粘膜下層でリンパ節転移がないもの)では5年生存率は約90%である。
しかし、胃癌の病期の進行とともに生存率は低下するため、早期発見が胃癌治癒にとっては重要である。
ここで、胃癌の診断には、ペプシノゲン検査、X線検査、内視鏡検査、腫瘍マーカーなどがある。
しかし、ペプシノゲン検査、X線検査、腫瘍マーカーは確定診断とはならない。例えばペプシノゲン検査の場合、侵襲性は低いが、感度は報告により異なり概ね40〜85%で、特異度は70〜85%である。しかし、ペプシノゲン検査での要精密検査率は20%であり、見逃しも多いと考えられている。また、X線検査(間接撮影)の場合、感度は報告より異なるが概ね70〜80%で、特異度は85〜90%である。しかし、バリウム飲用による副作用や放射線被爆の可能性がある。なお、腫瘍マーカーについては、現時点では胃癌の存在診断に有効なものは存在しない。
一方、内視鏡検査は確定診断になるが、侵襲度の高い検査であり、スクリーニングの段階で内視鏡検査を行うことは現実的ではない。さらに、内視鏡検査のような侵襲的診断では、患者が苦痛を伴うなど負担があり、また検査による出血などのリスクも起こりえる。
そこで、患者に対する身体的負担および費用対効果の面から、胃癌発症の可能性の高い被験者を絞り込んで、その者を治療の対象とすることが望ましい。具体的には、侵襲が少なく且つ感度・特異度の高い方法で被験者を選択し、選択した被験者に対し胃内視鏡を実施することで被験者を絞り込み、胃癌の確定診断が得られた被験者を治療の対象とすることが望ましい。
ところで、血中アミノ酸の濃度が、癌発症により変化することについては知られている。例えば、シノベールによれば(非特許文献1)、例えばグルタミンは主に酸化エネルギー源として、アルギニンは窒素酸化物やポリアミンの前駆体として、メチオニンは癌細胞がメチオニン取り込み能の活性化により、それぞれ癌細胞での消費量が増加するという報告がある。また、ヴィッセルスら(非特許文献2)やクボタ(非特許文献3)によれば、胃癌患者の血漿中アミノ酸組成は健常者と異なっていることが報告されている。
また、アミノ酸濃度と生体状態とを関連付ける方法については、特許文献1や特許文献2に公開されている。
国際公開第2004/052191号 国際公開第2006/098192号
Cynober, L. ed., Metabolic and therapeutic aspects of amino acids in clinical nutrition. 2nd ed., CRC Press Vissers, Y. LJ., et.al., Plasma arginine concentration are reduced in cancer patients: evidence for arginine deficiency?, The American Journal of Clinical Nutrition, 2005, 81, p1142−1146 Kubota, A., Meguid, M.M., and Hitch, D. C., Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors., Cancer, 1991, 69, p2343−2348
しかしながら、これまでに、複数のアミノ酸を変数として胃癌発症の有無を診断する技術の開発は時間的および金銭的な観点から行われておらず、実用化されていないという問題点があった。また、特許文献1や特許文献2に開示されている指標式で胃癌発症の有無の評価を行っても、十分な精度を得ることができないという問題点があった。
本発明は、上記問題点に鑑みてなされたものであって、血液中のアミノ酸の濃度のうち胃癌の状態と関連するアミノ酸の濃度を利用して胃癌の状態を精度よく評価することができる胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体を提供することを目的とする。
本発明者らは、上述した課題を解決するために鋭意検討した結果、胃癌と非胃癌との2群判別に有用なアミノ酸(具体的には胃癌と非胃癌との2群間で統計的有意差をもって変動するアミノ酸)や胃癌の病期の判別に有用なアミノ酸(具体的には胃癌の病期Ia,Ib,II,IIIa,IIIb,IVで統計的有意差をもって変動するアミノ酸)、胃癌の他器官への転移の有無の判別に有用なアミノ酸(具体的には他器官への転移有と転移無との2群間で統計的有意差をもって変動するアミノ酸)を同定すると共に、さらに同定したアミノ酸の濃度を変数として含む多変量判別式(指標式、相関式)が胃癌(具体的には初期胃癌)の状態(具体的には病態進行)に有意な相関があることを見出し、本発明を完成するに至った。
すなわち、上述した課題を解決し、目的を達成するために、本発明にかかる胃癌の評価方法は、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定する測定ステップと、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき胃癌の状態を評価する濃度値基準評価ステップとを含むことを特徴とする。
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記胃癌または非胃癌であるか否かを判別、前記胃癌の病期を判別、または前記胃癌の他器官への転移の有無を判別する濃度値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値および前記アミノ酸の濃度を変数とする予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき前記胃癌の前記状態を評価する判別値基準評価ステップとをさらに含み、前記多変量判別式は、Asn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記胃癌または非胃癌であるか否かを判別、前記胃癌の病期を判別、または前記胃癌の他器官への転移の有無を判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記多変量判別式は、前記判別値基準判別ステップで前記胃癌または前記非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、前記判別値基準判別ステップで前記胃癌の前記病期を判別する場合は数式4であり、前記判別値基準判別ステップで前記胃癌の前記他器官への転移の有無を判別する場合は数式5であることを特徴とする。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる胃癌の評価方法は、前記に記載の胃癌の評価方法において、前記多変量判別式は、Orn,Gln,Trp,Citを前記変数とする前記ロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを前記変数とする前記線形判別式、またはGlu,Phe,His,Trpを前記変数とする前記ロジスティック回帰式、またはGlu,Pro,His,Trpを前記変数とする前記線形判別式、またはVal,Ile,His,Trpを前記変数とする前記ロジスティック回帰式、またはThr,Ile,His,Trpを前記変数とする前記線形判別式であることを特徴とする。
また、本発明は胃癌評価装置に関するものであり、本発明にかかる胃癌評価装置は、制御手段と記憶手段とを備え評価対象につき胃癌の状態を評価する胃癌評価装置であって、前記制御手段は、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含む前記記憶手段で記憶した多変量判別式および前記アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき前記胃癌の前記状態を評価する判別値基準評価手段とを備えたことを特徴とする。
また、本発明にかかる胃癌評価装置は、前記に記載の胃癌評価装置において、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記胃癌または非胃癌であるか否かを判別、前記胃癌の病期を判別、または前記胃癌の他器官への転移の有無を判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる胃癌評価装置は、前記に記載の胃癌評価装置において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる胃癌評価装置は、前記に記載の胃癌評価装置において、前記多変量判別式は、前記判別値基準判別手段で前記胃癌または前記非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、前記判別値基準判別手段で前記胃癌の前記病期を判別する場合は数式4であり、前記判別値基準判別手段で前記胃癌の前記他器官への転移の有無を判別する場合は数式5であることを特徴とする。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌評価装置は、前記に記載の胃癌評価装置において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる胃癌評価装置は、前記に記載の胃癌評価装置において、前記多変量判別式は、Orn,Gln,Trp,Citを前記変数とする前記ロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを前記変数とする前記線形判別式、またはGlu,Phe,His,Trpを前記変数とする前記ロジスティック回帰式、またはGlu,Pro,His,Trpを前記変数とする前記線形判別式、またはVal,Ile,His,Trpを前記変数とする前記ロジスティック回帰式、またはThr,Ile,His,Trpを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる胃癌評価装置は、前記に記載の胃癌評価装置において、前記制御手段は、前記アミノ酸濃度データと前記胃癌の前記状態を表す指標に関する胃癌状態指標データとを含む前記記憶手段で記憶した胃癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記胃癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記胃癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は胃癌評価方法に関するものであり、本発明にかかる胃癌評価方法は、制御手段と記憶手段とを備えた情報処理装置で実行する、評価対象につき胃癌の状態を評価する胃癌評価方法であって、前記制御手段で、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含む前記記憶手段で記憶した多変量判別式および前記アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき前記胃癌の前記状態を評価する判別値基準評価ステップとを実行することを特徴とする。
また、本発明にかかる胃癌評価方法は、前記に記載の胃癌評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記胃癌または非胃癌であるか否かを判別、前記胃癌の病期を判別、または前記胃癌の他器官への転移の有無を判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる胃癌評価方法は、前記に記載の胃癌評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる胃癌評価方法は、前記に記載の胃癌評価方法において、前記多変量判別式は、前記判別値基準判別ステップで前記胃癌または前記非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、前記判別値基準判別ステップで前記胃癌の前記病期を判別する場合は数式4であり、前記判別値基準判別ステップで前記胃癌の前記他器官への転移の有無を判別する場合は数式5であることを特徴とする。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌評価方法は、前記に記載の胃癌評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる胃癌評価方法は、前記に記載の胃癌評価方法において、前記多変量判別式は、Orn,Gln,Trp,Citを前記変数とする前記ロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを前記変数とする前記線形判別式、またはGlu,Phe,His,Trpを前記変数とする前記ロジスティック回帰式、またはGlu,Pro,His,Trpを前記変数とする前記線形判別式、またはVal,Ile,His,Trpを前記変数とする前記ロジスティック回帰式、またはThr,Ile,His,Trpを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる胃癌評価方法は、前記に記載の胃癌評価方法において、前記制御手段で、前記アミノ酸濃度データと前記胃癌の前記状態を表す指標に関する胃癌状態指標データとを含む前記記憶手段で記憶した胃癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成ステップをさらに実行し、前記多変量判別式作成ステップは、前記胃癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成ステップと、前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証ステップと、前記候補多変量判別式検証ステップでの検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記胃癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択ステップと、をさらに含み、前記候補多変量判別式作成ステップ、前記候補多変量判別式検証ステップおよび前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は胃癌評価システムに関するものであり、本発明にかかる胃癌評価システムは、制御手段と記憶手段とを備え評価対象につき胃癌の状態を評価する胃癌評価装置と、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置とを、ネットワークを介して通信可能に接続して構成された胃癌評価システムであって、前記情報通信端末装置は、前記評価対象の前記アミノ酸濃度データを前記胃癌評価装置へ送信するアミノ酸濃度データ送信手段と、前記胃癌評価装置から送信された前記胃癌の前記状態に関する前記評価対象の評価結果を受信する評価結果受信手段とを備え、前記胃癌評価装置の前記制御手段は、前記情報通信端末装置から送信された前記評価対象の前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、前記アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含む前記記憶手段で記憶した多変量判別式および前記アミノ酸濃度データ受信手段で受信した前記評価対象の前記アミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき前記胃癌の前記状態を評価する判別値基準評価手段と、前記判別値基準評価手段での前記評価対象の前記評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、を備えたことを特徴とする。
また、本発明にかかる胃癌評価システムは、前記に記載の胃癌評価システムにおいて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記胃癌または非胃癌であるか否かを判別、前記胃癌の病期を判別、または前記胃癌の他器官への転移の有無を判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる胃癌評価システムは、前記に記載の胃癌評価システムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる胃癌評価システムは、前記に記載の胃癌評価システムにおいて、前記多変量判別式は、前記判別値基準判別手段で前記胃癌または前記非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、前記判別値基準判別手段で前記胃癌の前記病期を判別する場合は数式4であり、前記判別値基準判別手段で前記胃癌の前記他器官への転移の有無を判別する場合は数式5であることを特徴とする。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌評価システムは、前記に記載の胃癌評価システムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる胃癌評価システムは、前記に記載の胃癌評価システムにおいて、前記多変量判別式は、Orn,Gln,Trp,Citを前記変数とする前記ロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを前記変数とする前記線形判別式、またはGlu,Phe,His,Trpを前記変数とする前記ロジスティック回帰式、またはGlu,Pro,His,Trpを前記変数とする前記線形判別式、またはVal,Ile,His,Trpを前記変数とする前記ロジスティック回帰式、またはThr,Ile,His,Trpを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる胃癌評価システムは、前記に記載の胃癌評価システムにおいて、前記制御手段は、前記アミノ酸濃度データと前記胃癌の前記状態を表す指標に関する胃癌状態指標データとを含む前記記憶手段で記憶した胃癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記胃癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記胃癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は胃癌評価プログラムに関するものであり、本発明にかかる胃癌評価プログラムは、制御手段と記憶手段とを備えた情報処理装置に実行させる、評価対象につき胃癌の状態を評価する胃癌評価プログラムであって、前記制御手段に、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含む前記記憶手段で記憶した多変量判別式および前記アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき前記胃癌の前記状態を評価する判別値基準評価ステップとを実行させることを特徴とする。
また、本発明にかかる胃癌評価プログラムは、前記に記載の胃癌評価プログラムにおいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記胃癌または非胃癌であるか否かを判別、前記胃癌の病期を判別、または前記胃癌の他器官への転移の有無を判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる胃癌評価プログラムは、前記に記載の胃癌評価プログラムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる胃癌評価プログラムは、前記に記載の胃癌評価プログラムにおいて、前記多変量判別式は、前記判別値基準判別ステップで前記胃癌または前記非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、前記判別値基準判別ステップで前記胃癌の前記病期を判別する場合は数式4であり、前記判別値基準判別ステップで前記胃癌の前記他器官への転移の有無を判別する場合は数式5であることを特徴とする。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌評価プログラムは、前記に記載の胃癌評価プログラムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる胃癌評価プログラムは、前記に記載の胃癌評価プログラムにおいて、前記多変量判別式は、Orn,Gln,Trp,Citを前記変数とする前記ロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを前記変数とする前記線形判別式、またはGlu,Phe,His,Trpを前記変数とする前記ロジスティック回帰式、またはGlu,Pro,His,Trpを前記変数とする前記線形判別式、またはVal,Ile,His,Trpを前記変数とする前記ロジスティック回帰式、またはThr,Ile,His,Trpを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる胃癌評価プログラムは、前記に記載の胃癌評価プログラムにおいて、前記制御手段に、前記アミノ酸濃度データと前記胃癌の前記状態を表す指標に関する胃癌状態指標データとを含む前記記憶手段で記憶した胃癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成ステップをさらに実行させ、前記多変量判別式作成ステップは、前記胃癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成ステップと、前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証ステップと、前記候補多変量判別式検証ステップでの検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記胃癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択ステップと、をさらに含み、前記候補多変量判別式作成ステップ、前記候補多変量判別式検証ステップおよび前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は記録媒体に関するものであり、本発明にかかる記録媒体は、前記に記載の胃癌評価プログラムを記録したことを特徴とする。
本発明にかかる胃癌の評価方法によれば、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、評価対象につき胃癌の状態を評価するので、血液中のアミノ酸の濃度のうち胃癌の状態と関連するアミノ酸の濃度を利用して胃癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる胃癌の評価方法によれば、測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別するので、血液中のアミノ酸の濃度のうち、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用なアミノ酸の濃度を利用して、これらの判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌の評価方法によれば、測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき胃癌の状態を評価するので、胃癌の状態と有意な相関がある多変量判別式で得られる判別値を利用して胃癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる胃癌の評価方法によれば、算出した判別値に基づいて、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別するので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌の評価方法によれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌の評価方法によれば、多変量判別式は、胃癌または非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、胃癌の病期を判別する場合は数式4であり、胃癌の他器官への転移の有無を判別する場合は数式5であるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌の評価方法によれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるであるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌の評価方法によれば、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式であるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む記憶手段で記憶した多変量判別式およびアミノ酸の濃度値に関する予め取得した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象につき胃癌の状態を評価するので、胃癌の状態と有意な相関がある多変量判別式で得られる判別値を利用して胃癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、算出した判別値に基づいて、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別するので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、多変量判別式は、胃癌または非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、胃癌の病期を判別する場合は数式4であり、胃癌の他器官への転移の有無を判別する場合は数式5であるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式であるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価装置、胃癌評価方法および胃癌評価プログラムによれば、アミノ酸濃度データと胃癌の状態を表す指標に関する胃癌状態指標データとを含む記憶手段で記憶した胃癌状態情報に基づいて、記憶手段で記憶する多変量判別式を作成する。具体的には、(1)胃癌状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、(2)作成した候補多変量判別式を所定の検証手法に基づいて検証し、(3)その検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる胃癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4)(1)、(2)および(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。これにより、胃癌の状態の評価に最適な多変量判別式(具体的には胃癌(初期胃癌)の状態(病態進行)と有意な相関がある多変量判別式(より具体的には、胃癌と非胃癌との2群判別に有用な多変量判別式、胃癌の病期の判別に有用な多変量判別式、胃癌の他器官への転移の有無の2群判別に有用な多変量判別式))を作成することができるという効果を奏する。
また、本発明にかかる胃癌評価システムによれば、まず、情報通信端末装置は、評価対象のアミノ酸濃度データを胃癌評価装置へ送信する。そして、胃癌評価装置は、情報通信端末装置から送信された評価対象のアミノ酸濃度データを受信し、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む記憶手段で記憶した多変量判別式および受信した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象につき胃癌の状態を評価し、その評価対象の評価結果を情報通信端末装置へ送信する。そして、情報通信端末装置は、胃癌評価装置から送信された胃癌の状態に関する評価対象の評価結果を受信する。これにより、胃癌の状態と有意な相関がある多変量判別式で得られる判別値を利用して胃癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる胃癌評価システムによれば、胃癌評価装置は、算出した判別値に基づいて、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別するので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価システムによれば、多変量判別式は、胃癌または非胃癌であるか否かを判別する場合は数式1、数式2または数式3であり、胃癌の病期を判別する場合は数式4であり、胃癌の他器官への転移の有無を判別する場合は数式5であるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、本発明にかかる胃癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価システムによれば、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式であるので、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる胃癌評価システムによれば、胃癌評価装置は、アミノ酸濃度データと胃癌の状態を表す指標に関する胃癌状態指標データとを含む記憶手段で記憶した胃癌状態情報に基づいて、記憶手段で記憶する多変量判別式を作成する。具体的には、(1)胃癌状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、(2)作成した候補多変量判別式を所定の検証手法に基づいて検証し、(3)その検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる胃癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4)(1)、(2)および(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。これにより、胃癌の状態の評価に最適な多変量判別式(具体的には胃癌(初期胃癌)の状態(病態進行)と有意な相関がある多変量判別式(より具体的には、胃癌と非胃癌との2群判別に有用な多変量判別式、胃癌の病期の判別に有用な多変量判別式、胃癌の他器官への転移の有無の2群判別に有用な多変量判別式))を作成することができるという効果を奏する。
また、本発明にかかる記録媒体によれば、当該記録媒体に記録された胃癌評価プログラムをコンピュータに読み取らせて実行することでコンピュータに胃癌評価プログラムを実行させるので、胃癌評価プログラムと同様の効果を得ることができるという効果を奏する。
なお、本発明は、胃癌の状態を評価する際(具体的には、胃癌または非胃癌であるか否かを判別する際、胃癌の病期を判別する際、胃癌の他器官への転移の有無を判別する際、など)、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度やタンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。また、本発明は、胃癌の状態を評価する際(具体的には、胃癌または非胃癌であるか否かを判別する際、胃癌の病期を判別する際、胃癌の他器官への転移の有無を判別する際、など)、多変量判別式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度やタンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。
図1は、本発明の基本原理を示す原理構成図である。 図2は、第1実施形態にかかる胃癌の評価方法の一例を示すフローチャートである。 図3は、本発明の基本原理を示す原理構成図である。 図4は、本システムの全体構成の一例を示す図である。 図5は、本システムの全体構成の他の一例を示す図である。 図6は、本システムの胃癌評価装置100の構成の一例を示すブロック図である。 図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。 図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。 図9は、胃癌状態情報ファイル106cに格納される情報の一例を示す図である。 図10は、指定胃癌状態情報ファイル106dに格納される情報の一例を示す図である。 図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。 図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。 図13は、選択胃癌状態情報ファイル106e3に格納される情報の一例を示す図である。 図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。 図15は、判別値ファイル106fに格納される情報の一例を示す図である。 図16は、評価結果ファイル106gに格納される情報の一例を示す図である。 図17は、多変量判別式作成部102hの構成を示すブロック図である。 図18は、判別値基準評価部102jの構成を示すブロック図である。 図19は、本システムのクライアント装置200の構成の一例を示すブロック図である。 図20は、本システムのデータベース装置400の構成の一例を示すブロック図である。 図21は、本システムで行う胃癌評価サービス処理の一例を示すフローチャートである。 図22は、本システムの胃癌評価装置100で行う多変量判別式作成処理の一例を示すフローチャートである。 図23は、非胃癌と胃癌の2群間のアミノ酸変数の分布を示す箱ひげ図である。 図24は、アミノ酸変数のROC曲線のAUCを示す図である。 図25は、2群間の診断性能を評価するためのROC曲線を示す図である。 図26は、指標式1と同等の診断性能を有する式の一覧を示す図である。 図27は、指標式1と同等の診断性能を有する式の一覧を示す図である。 図28は、指標式1と同等の診断性能を有する式の一覧を示す図である。 図29は、指標式1と同等の診断性能を有する式の一覧を示す図である。 図30は、2群間の診断性能を評価するためのROC曲線を示す図である。 図31は、指標式2と同等の診断性能を有する式の一覧を示す図である。 図32は、指標式2と同等の診断性能を有する式の一覧を示す図である。 図33は、指標式2と同等の診断性能を有する式の一覧を示す図である。 図34は、指標式2と同等の診断性能を有する式の一覧を示す図である。 図35は、2群間の診断性能を評価するためのROC曲線を示す図である。 図36は、指標式3と同等の診断性能を有する式の一覧を示す図である。 図37は、指標式3と同等の診断性能を有する式の一覧を示す図である。 図38は、指標式3と同等の診断性能を有する式の一覧を示す図である。 図39は、指標式3と同等の診断性能を有する式の一覧を示す図である。 図40は、胃癌の病理病期と指標式4の値とのプロットを示す図である。 図41は、指標式4と同等の診断性能を有する式の一覧を示す図である。 図42は、指標式4と同等の診断性能を有する式の一覧を示す図である。 図43は、指標式4と同等の診断性能を有する式の一覧を示す図である。 図44は、指標式4と同等の診断性能を有する式の一覧を示す図である。 図45は、胃癌の病理病期と指標式5の値とのプロットを示す図である。 図46は、指標式5と同等の診断性能を有する式の一覧を示す図である。 図47は、指標式5と同等の診断性能を有する式の一覧を示す図である。 図48は、指標式5と同等の診断性能を有する式の一覧を示す図である。 図49は、指標式5と同等の診断性能を有する式の一覧を示す図である。 図50は、2群間の診断性能を評価するためのROC曲線を示す図である。 図51は、指標式6と同等の診断性能を有する式の一覧を示す図である。 図52は、指標式6と同等の診断性能を有する式の一覧を示す図である。 図53は、指標式6と同等の診断性能を有する式の一覧を示す図である。 図54は、指標式6と同等の診断性能を有する式の一覧を示す図である。 図55は、2群間の診断性能を評価するためのROC曲線を示す図である。 図56は、指標式7と同等の診断性能を有する式の一覧を示す図である。 図57は、指標式7と同等の診断性能を有する式の一覧を示す図である。 図58は、指標式7と同等の診断性能を有する式の一覧を示す図である。 図59は、指標式7と同等の診断性能を有する式の一覧を示す図である。 図60は、2群間の診断性能を評価するためのROC曲線を示す図である。 図61は、指標式8と同等の診断性能を有する式の一覧を示す図である。 図62は、指標式8と同等の診断性能を有する式の一覧を示す図である。 図63は、指標式8と同等の診断性能を有する式の一覧を示す図である。 図64は、指標式8と同等の診断性能を有する式の一覧を示す図である。 図65は、ROC曲線のAUCに基づいて抽出したアミノ酸の一覧を示す図である。 図66は、胃癌患者および非胃癌患者のアミノ酸変数の分布を示す図である。 図67は、アミノ酸変数のROC曲線のAUCを示す図である。 図68は、2群間の診断性能を評価するためのROC曲線を示す図である。 図69は、指標式9と同等の診断性能を有する式の一覧を示す図である。 図70は、指標式9と同等の診断性能を有する式の一覧を示す図である。 図71は、2群間の診断性能を評価するためのROC曲線を示す図である。 図72は、指標式10と同等の診断性能を有する式の一覧を示す図である。 図73は、指標式10と同等の診断性能を有する式の一覧を示す図である。 図74は、2群間の診断性能を評価するためのROC曲線を示す図である。 図75は、指標式11と同等の診断性能を有する式の一覧を示す図である。 図76は、指標式11と同等の診断性能を有する式の一覧を示す図である。 図77は、ROC曲線のAUCに基づいて抽出したアミノ酸の一覧を示す図である。 図78は、胃癌患者および非胃癌患者のアミノ酸変数の分布を示す図である。 図79は、アミノ酸変数のROC曲線のAUCを示す図である。 図80は、指標式12と同等の診断性能を有する式の一覧を示す図である。 図81は、指標式12と同等の診断性能を有する式の一覧を示す図である。 図82は、指標式12と同等の診断性能を有する式の一覧を示す図である。 図83は、指標式12と同等の診断性能を有する式の一覧を示す図である。 図84は、2群間の診断性能を評価するためのROC曲線を示す図である。 図85は、指標式13と同等の診断性能を有する式の一覧を示す図である。 図86は、指標式13と同等の診断性能を有する式の一覧を示す図である。 図87は、指標式13と同等の診断性能を有する式の一覧を示す図である。 図88は、指標式13と同等の診断性能を有する式の一覧を示す図である。 図89は、2群間の診断性能を評価するためのROC曲線を示す図である。 図90は、指標式14と同等の診断性能を有する式の一覧を示す図である。 図91は、指標式14と同等の診断性能を有する式の一覧を示す図である。 図92は、指標式14と同等の診断性能を有する式の一覧を示す図である。 図93は、2群間の診断性能を評価するためのROC曲線を示す図である。 図94は、ROC曲線のAUCに基づいて抽出したアミノ酸の一覧を示す図である。
以下に、本発明にかかる胃癌の評価方法の実施の形態(第1実施形態)ならびに本発明にかかる胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体の実施の形態(第2実施形態)を、図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。
[第1実施形態]
[1−1.本発明の概要]
ここでは、本発明にかかる胃癌の評価方法の概要について図1を参照して説明する。図1は本発明の基本原理を示す原理構成図である。
まず、本発明では、評価対象(例えば動物やヒトなど個体)から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップS−11)。ここで、血中アミノ酸濃度の分析は次のように行った。採血した血液サンプルを、ヘパリン処理したチューブに採取し、採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで−70℃で凍結保存した。アミノ酸濃度測定時には、スルホサリチル酸を添加し3%濃度調整により除蛋白処理を行い、測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理としたアミノ酸分析機を使用した。なお、アミノ酸濃度の単位は、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
つぎに、本発明では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、評価対象につき胃癌の状態を評価する(ステップS−12)。
以上、本発明によれば、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、評価対象につき胃癌の状態を評価する。これにより、血液中のアミノ酸の濃度のうち胃癌の状態と関連するアミノ酸の濃度を利用して胃癌の状態を精度よく評価することができる。
ここで、ステップS−12を実行する前に、ステップS−11で測定した評価対象のアミノ酸濃度データから欠損値や外れ値などのデータを除去してもよい。これにより、胃癌の状態をさらに精度よく評価することができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期(具体的には、Ia,Ib,II,IIIa,IIIb,IV)を判別、または胃癌の他器官(具体的には、リンパ節や腹膜や肝臓など)への転移の有無を判別してもよい。具体的には、Asn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別してもよい。これにより、血液中のアミノ酸の濃度のうち胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用なアミノ酸の濃度を利用して、これらの判別を精度よく行うことができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象につき胃癌の状態を評価してもよい。これにより、胃癌の状態と有意な相関がある多変量判別式で得られる判別値を利用して胃癌の状態を精度よく評価することができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別してもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの判別を精度よく行うことができる。
また、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むものでもよい。具体的には、多変量判別式は、ステップS−12で胃癌または非胃癌であるか否かを判別する場合は数式1、数式2または数式3でもよく、ステップS−12で胃癌の病期を判別する場合は数式4でもよく、ステップS−12で胃癌の他器官への転移の有無を判別する場合は数式5でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
ここで、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ、且つ当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式などのいずれか1つでもよい。具体的には、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。この方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
ここで、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。
なお、本発明は、胃癌の状態を評価する際(具体的には、胃癌または非胃癌であるか否かを判別する際、胃癌の病期を判別する際、胃癌の他器官への転移の有無を判別する際、など)、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度やタンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。また、本発明は、胃癌の状態を評価する際(具体的には、胃癌または非胃癌であるか否かを判別する際、胃癌の病期を判別する際、胃癌の他器官への転移の有無を判別する際、など)、多変量判別式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度やタンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。
[1−2.第1実施形態にかかる胃癌の評価方法]
ここでは、第1実施形態にかかる胃癌の評価方法について図2を参照して説明する。図2は、第1実施形態にかかる胃癌の評価方法の一例を示すフローチャートである。
まず、動物やヒトなどの個体から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップSA−11)。なお、アミノ酸の濃度値の測定は、上述した方法で行う。
つぎに、ステップSA−11で測定した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA−12)。
つぎに、ステップSA−12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別する、もしくはステップSA−12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値およびAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む予め設定した多変量判別式に基づいて判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別する(ステップSA−13)。
[1−3.第1実施形態のまとめ、およびその他の実施形態]
以上、詳細に説明したように、第1実施形態にかかる胃癌の評価方法によれば、(1)個体から採取した血液からアミノ酸濃度データを測定し、(2)測定した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去し、(3)欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別する、もしくは欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値およびAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む予め設定した多変量判別式に基づいて判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別する。これにより、血液中のアミノ酸の濃度のうち胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用なアミノ酸の濃度を利用又はこれらの判別に有用な多変量判別式で得られる判別値を利用して、これらの判別を精度よく行うことができる。
また、ステップSA−13において、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むものでもよい。具体的には、多変量判別式は、ステップSA−13で胃癌または非胃癌であるか否かを判別する場合は数式1、数式2または数式3でもよく、ステップSA−13で胃癌の病期を判別する場合は数式4でもよく、ステップSA−13で胃癌の他器官への転移の有無を判別する場合は数式5でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、ステップSA−13において、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式などのいずれか1つでもよい。具体的には、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。この方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
[第2実施形態]
[2−1.本発明の概要]
ここでは、本発明にかかる胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体の概要について、図3を参照して説明する。図3は本発明の基本原理を示す原理構成図である。
まず、本発明は、制御部で、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む記憶部で記憶した多変量判別式およびアミノ酸の濃度値に関する予め取得した評価対象(例えば動物やヒトなど個体)のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、当該多変量判別式の値である判別値を算出する(ステップS−21)。
つぎに、本発明は、制御部で、ステップS−21で算出した判別値に基づいて評価対象につき胃癌の状態を評価する(ステップS−22)。
以上、本発明によれば、アミノ酸の濃度を変数としAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む記憶部で記憶した多変量判別式およびアミノ酸の濃度値に関する予め取得した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象につき胃癌の状態を評価する。これにより、胃癌の状態と有意な相関がある多変量判別式で得られる判別値を利用して胃癌の状態を精度よく評価することができる。
また、ステップS−22では、ステップS−21で算出した判別値に基づいて評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別してもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの判別を精度よく行うことができる。
また、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むものでもよい。具体的には、多変量判別式は、ステップS−22で胃癌または非胃癌であるか否かを判別する場合は数式1、数式2または数式3でもよく、ステップS−22で胃癌の病期を判別する場合は数式4でもよく、ステップS−22で胃癌の他器官への転移の有無を判別する場合は数式5でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
ここで、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ、且つ当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式などのいずれか1つでもよい。具体的には、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に特に有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成することができる。この方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
ここで、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。
なお、本発明は、胃癌の状態を評価する際(具体的には、胃癌または非胃癌であるか否かを判別する際、胃癌の病期を判別する際、胃癌の他器官への転移の有無を判別する際、など)、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度やタンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。また、本発明は、胃癌の状態を評価する際(具体的には、胃癌または非胃癌であるか否かを判別する際、胃癌の病期を判別する際、胃癌の他器官への転移の有無を判別する際、など)、多変量判別式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度やタンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。
ここで、多変量判別式作成処理(工程1〜工程4)の概要について詳細に説明する。
まず、本発明は、制御部で、アミノ酸濃度データと胃癌の状態を表す指標に関する胃癌状態指標データとを含む記憶部で記憶した胃癌状態情報から所定の式作成手法に基づいて、多変量判別式の候補である候補多変量判別式(例えば、y=a+a+・・・+a、y:胃癌状態指標データ、x:アミノ酸濃度データ、a:定数、i=1,2,・・・,n)を作成する(工程1)。なお、事前に、胃癌状態情報から欠損値や外れ値などを持つデータを除去してもよい。
なお、工程1において、胃癌状態情報から、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k−means法、クラスター解析、決定木などの多変量解析に関するものを含む。)を併用して複数の候補多変量判別式を作成してもよい。具体的には、多数の健常者および胃癌患者から得た血液を分析して得たアミノ酸濃度データおよび胃癌状態指標データから構成される多変量データである胃癌状態情報に対して、複数の異なるアルゴリズムを利用して複数群の候補多変量判別式を同時並行的に作成してもよい。例えば、異なるアルゴリズムを利用して判別分析およびロジスティック回帰分析を同時に行い、2つの異なる候補多変量判別式を作成してもよい。また、主成分分析を行って作成した候補多変量判別式を利用して胃癌状態情報を変換し、変換した胃癌状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。これにより、最終的に、診断条件に合った適切な多変量判別式を作成することができる。
ここで、主成分分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データの分散を最大にするような各アミノ酸変数からなる一次式である。また、判別分析を用いて作成した候補多変量判別式は、各群内の分散の和の全てのアミノ酸濃度データの分散に対する比を最小にするような各アミノ酸変数からなる高次式(指数や対数を含む)である。また、サポートベクターマシンを用いて作成した候補多変量判別式は、群間の境界を最大にするような各アミノ酸変数からなる高次式(カーネル関数を含む)である。また、重回帰分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データからの距離の和を最小にするような各アミノ酸変数からなる高次式である。ロジスティック回帰分析を用いて作成した候補多変量判別式は、尤度を最大にするような各アミノ酸変数からなる一次式を指数とする自然対数を項に持つ分数式である。また、k−means法とは、各アミノ酸濃度データのk個近傍を探索し、近傍点の属する群の中で一番多いものをそのデータの所属群と定義し、入力されたアミノ酸濃度データの属する群と定義された群とが最も合致するようなアミノ酸変数を選択する手法である。また、クラスター解析とは、全てのアミノ酸濃度データの中で最も近い距離にある点同士をクラスタリング(群化)する手法である。また、決定木とは、アミノ酸変数に序列をつけて、序列が上位であるアミノ酸変数の取りうるパターンからアミノ酸濃度データの群を予測する手法である。
多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程1で作成した候補多変量判別式を、所定の検証手法に基づいて検証(相互検証)する(工程2)。候補多変量判別式の検証は、工程1で作成した各候補多変量判別式に対して行う。
なお、工程2において、ブートストラップ法やホールドアウト法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異性、情報量基準などのうち少なくとも1つに関して検証してもよい。これにより、胃癌状態情報や診断条件を考慮した予測性または堅牢性の高い候補多変量判別式を作成することができる。
ここで、判別率とは、全入力データの中で、本発明で評価した胃癌の状態が正しい割合である。また、感度とは、入力データに記載された胃癌の状態が罹病になっているものの中で、本発明で評価した胃癌の状態が正しい割合である。また、特異性とは、入力データに記載された胃癌の状態が健常になっているものの中で、本発明で評価した胃癌の状態が正しい割合である。また、情報量基準とは、工程1で作成した候補多変量判別式のアミノ酸変数の数と、本発明で評価した胃癌の状態および入力データに記載された胃癌の状態の差異と、を足し合わせたものである。また、予測性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性を平均したものである。また、堅牢性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性の分散である。
多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる胃癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択する(工程3)。アミノ酸変数の選択は、工程1で作成した各候補多変量判別式に対して行う。これにより、候補多変量判別式のアミノ酸変数を適切に選択することができる。そして、工程3で選択したアミノ酸濃度データを含む胃癌状態情報を用いて再び工程1を実行する。
なお、工程3において、工程2での検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式のアミノ酸変数を選択してもよい。
ここで、ベストパス法とは、候補多変量判別式に含まれるアミノ酸変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することでアミノ酸変数を選択する方法である。
多変量判別式作成処理の説明に戻り、本発明は、制御部で、上述した工程1、工程2および工程3を繰り返し実行し、これにより蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する(工程4)。なお、候補多変量判別式の選出には、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。
以上、説明したように、多変量判別式作成処理では、胃癌状態情報に基づいて、候補多変量判別式の作成、候補多変量判別式の検証および候補多変量判別式の変数の選択に関する処理を一連の流れで体系化(システム化)して実行することにより、胃癌の状態の評価に最適な多変量判別式を作成することができる。
[2−2.システム構成]
ここでは、第2実施形態にかかる胃癌評価システム(以下では本システムと記す場合がある。)の構成について、図4から図20を参照して説明する。なお、本システムはあくまでも一例であり、本発明はこれに限定されない。
まず、本システムの全体構成について図4および図5を参照して説明する。図4は本システムの全体構成の一例を示す図である。また、図5は本システムの全体構成の他の一例を示す図である。本システムは、図4に示すように、評価対象につき胃癌の状態を評価する胃癌評価装置100と、アミノ酸の濃度値に関する評価対象のアミノ酸濃度データを提供するクライアント装置200(本発明の情報通信端末装置に相当)とを、ネットワーク300を介して通信可能に接続して構成されている。
なお、本システムは、図5に示すように、胃癌評価装置100やクライアント装置200の他に、胃癌評価装置100で多変量判別式を作成する際に用いる胃癌状態情報や胃癌の状態を評価するために用いる多変量判別式などを格納したデータベース装置400を、ネットワーク300を介して通信可能に接続して構成されてもよい。これにより、ネットワーク300を介して、胃癌評価装置100からクライアント装置200やデータベース装置400へ、あるいはクライアント装置200やデータベース装置400から胃癌評価装置100へ、胃癌の状態に関する情報などが提供される。ここで、胃癌の状態に関する情報とは、ヒトを含む生物の胃癌の状態に関する特定の項目について測定した値に関する情報である。また、胃癌の状態に関する情報は、胃癌評価装置100やクライアント装置200や他の装置(例えば各種の計測装置等)で生成され、主にデータベース装置400に蓄積される。
つぎに、本システムの胃癌評価装置100の構成について図6から図18を参照して説明する。図6は、本システムの胃癌評価装置100の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
胃癌評価装置100は、当該胃癌評価装置100を統括的に制御するCPU等の制御部102と、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して当該胃癌評価装置をネットワーク300に通信可能に接続する通信インターフェース部104と、各種のデータベースやテーブルやファイルなどを格納する記憶部106と、入力装置112や出力装置114に接続する入出力インターフェース部108と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。ここで、胃癌評価装置100は、各種の分析装置(例えばアミノ酸アナライザー等)と同一筐体で構成されてもよい。また、胃癌評価装置100の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷等に応じた任意の単位で、機能的または物理的に分散・統合して構成してもよい。例えば、処理の一部をCGI(Common Gateway Interface)を用いて実現してもよい。
記憶部106は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いることができる。記憶部106には、OS(Operating System)と協働してCPUに命令を与え各種処理を行うためのコンピュータプログラムが記録されている。記憶部106は、図示の如く、利用者情報ファイル106aと、アミノ酸濃度データファイル106bと、胃癌状態情報ファイル106cと、指定胃癌状態情報ファイル106dと、多変量判別式関連情報データベース106eと、判別値ファイル106fと、評価結果ファイル106gと、を格納する。
利用者情報ファイル106aは、利用者に関する利用者情報を格納する。図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。利用者情報ファイル106aに格納される情報は、図7に示すように、利用者を一意に識別するための利用者IDと、利用者が正当な者であるか否かの認証を行うための利用者パスワードと、利用者の氏名と、利用者の所属する所属先を一意に識別するための所属先IDと、利用者の所属する所属先の部門を一意に識別するための部門IDと、部門名と、利用者の電子メールアドレスと、を相互に関連付けて構成されている。
図6に戻り、アミノ酸濃度データファイル106bは、アミノ酸の濃度値に関するアミノ酸濃度データを格納する。図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。アミノ酸濃度データファイル106bに格納される情報は、図8に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、アミノ酸濃度データとを相互に関連付けて構成されている。ここで、図8では、アミノ酸濃度データを数値、すなわち連続尺度として扱っているが、アミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、アミノ酸濃度データに、他の生体情報(性差、年齢、喫煙の有無、心電図の波形を数値化したもの、酵素濃度、遺伝子発現量、ペプシノーゲンの値、ピロリ菌の感染の有無、アミノ酸以外の代謝物の濃度など)を組み合わせてもよい。
図6に戻り、胃癌状態情報ファイル106cは、多変量判別式を作成する際に用いる胃癌状態情報を格納する。図9は、胃癌状態情報ファイル106cに格納される情報の一例を示す図である。胃癌状態情報ファイル106cに格納される情報は、図9に示すように、個体番号と、胃癌の状態を表す指標(指標T、指標T、指標T・・・)に関する胃癌状態指標データ(T)と、アミノ酸濃度データと、を相互に関連付けて構成されている。ここで、図9では、胃癌状態指標データおよびアミノ酸濃度データを数値(すなわち連続尺度)として扱っているが、胃癌状態指標データおよびアミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、胃癌状態指標データは、胃癌の状態のマーカーとなる既知の単一の状態指標であり、数値データを用いてもよい。
図6に戻り、指定胃癌状態情報ファイル106dは、後述する胃癌状態情報指定部102gで指定した胃癌状態情報を格納する。図10は、指定胃癌状態情報ファイル106dに格納される情報の一例を示す図である。指定胃癌状態情報ファイル106dに格納される情報は、図10に示すように、個体番号と、指定した胃癌状態指標データと、指定したアミノ酸濃度データと、を相互に関連付けて構成されている。
図6に戻り、多変量判別式関連情報データベース106eは、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する候補多変量判別式ファイル106e1と、後述する候補多変量判別式検証部102h2での検証結果を格納する検証結果ファイル106e2と、後述する変数選択部102h3で選択したアミノ酸濃度データの組み合わせを含む胃癌状態情報を格納する選択胃癌状態情報ファイル106e3と、後述する多変量判別式作成部102hで作成した多変量判別式を格納する多変量判別式ファイル106e4と、で構成される。
候補多変量判別式ファイル106e1は、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する。図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。候補多変量判別式ファイル106e1に格納される情報は、図11に示すように、ランクと、候補多変量判別式(図11では、F(Gly,Leu,Phe,・・・)やF(Gly,Leu,Phe,・・・)、F(Gly,Leu,Phe,・・・)など)とを相互に関連付けて構成されている。
図6に戻り、検証結果ファイル106e2は、後述する候補多変量判別式検証部102h2での検証結果を格納する。図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。検証結果ファイル106e2に格納される情報は、図12に示すように、ランクと、候補多変量判別式(図12では、F(Gly,Leu,Phe,・・・)やF(Gly,Leu,Phe,・・・)、F(Gly,Leu,Phe,・・・)など)と、各候補多変量判別式の検証結果(例えば各候補多変量判別式の評価値)と、を相互に関連付けて構成されている。
図6に戻り、選択胃癌状態情報ファイル106e3は、後述する変数選択部102h3で選択した変数に対応するアミノ酸濃度データの組み合わせを含む胃癌状態情報を格納する。図13は、選択胃癌状態情報ファイル106e3に格納される情報の一例を示す図である。選択胃癌状態情報ファイル106e3に格納される情報は、図13に示すように、個体番号と、後述する胃癌状態情報指定部102gで指定した胃癌状態指標データと、後述する変数選択部102h3で選択したアミノ酸濃度データと、を相互に関連付けて構成されている。
図6に戻り、多変量判別式ファイル106e4は、後述する多変量判別式作成部102hで作成した多変量判別式を格納する。図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。多変量判別式ファイル106e4に格納される情報は、図14に示すように、ランクと、多変量判別式(図14では、F(Phe,・・・)やF(Gly,Leu,Phe)、F(Gly,Leu,Phe,・・・)など)と、各式作成手法に対応する閾値と、各多変量判別式の検証結果(例えば各多変量判別式の評価値)と、を相互に関連付けて構成されている。
図6に戻り、判別値ファイル106fは、後述する判別値算出部102iで算出した判別値を格納する。図15は、判別値ファイル106fに格納される情報の一例を示す図である。判別値ファイル106fに格納される情報は、図15に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、ランク(多変量判別式を一意に識別するための番号)と、判別値と、を相互に関連付けて構成されている。
図6に戻り、評価結果ファイル106gは、後述する判別値基準評価部102jでの評価結果(具体的には、後述する判別値基準判別部102j1での判別結果)を格納する。図16は、評価結果ファイル106gに格納される情報の一例を示す図である。評価結果ファイル106gに格納される情報は、評価対象である個体(サンプル)を一意に識別するための個体番号と、予め取得した評価対象のアミノ酸濃度データと、多変量判別式で算出した判別値と、胃癌の状態に関する評価結果(具体的には、胃癌または非胃癌であるか否かに関する判別結果、胃癌の病期に関する判別結果、胃癌の他器官への転移の有無に関する判別結果、など)と、を相互に関連付けて構成されている。
図6に戻り、記憶部106には、上述した情報以外にその他情報として、Webサイトをクライアント装置200に提供するための各種のWebデータや、CGIプログラム等が記録されている。Webデータとしては後述する各種のWebページを表示するためのデータ等があり、これらデータは例えばHTMLやXMLで記述されたテキストファイルとして形成されている。また、Webデータを作成するための部品用のファイルや作業用のファイルやその他一時的なファイル等も記憶部106に記憶される。記憶部106には、必要に応じて、クライアント装置200に送信するための音声をWAVE形式やAIFF形式の如き音声ファイルで格納したり、静止画や動画をJPEG形式やMPEG2形式の如き画像ファイルで格納したりすることができる。
通信インターフェース部104は、胃癌評価装置100とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有する。
入出力インターフェース部108は、入力装置112や出力装置114に接続する。ここで、出力装置114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下では、出力装置114をモニタ114として記載する場合がある。)。入力装置112には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。
制御部102は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部102は、図示の如く、大別して、要求解釈部102aと閲覧処理部102bと認証処理部102cと電子メール生成部102dとWebページ生成部102eと受信部102fと胃癌状態情報指定部102gと多変量判別式作成部102hと判別値算出部102iと判別値基準評価部102jと結果出力部102kと送信部102mとを備えている。制御部102は、データベース装置400から送信された胃癌状態情報やクライアント装置200から送信されたアミノ酸濃度データに対して、欠損値のあるデータの除去・外れ値の多いデータの除去・欠損値のあるデータの多い変数の除去などのデータ処理も行う。
要求解釈部102aは、クライアント装置200やデータベース装置400からの要求内容を解釈し、その解釈結果に応じて制御部102の各部に処理を受け渡す。閲覧処理部102bは、クライアント装置200からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行なう。認証処理部102cは、クライアント装置200やデータベース装置400からの認証要求を受けて、認証判断を行う。電子メール生成部102dは、各種の情報を含んだ電子メールを生成する。Webページ生成部102eは、利用者がクライアント装置200で閲覧するWebページを生成する。
受信部102fは、クライアント装置200やデータベース装置400から送信された情報(具体的には、アミノ酸濃度データや胃癌状態情報、多変量判別式など)を、ネットワーク300を介して受信する。胃癌状態情報指定部102gは、多変量判別式を作成するにあたり、対象とする胃癌状態指標データおよびアミノ酸濃度データを指定する。
多変量判別式作成部102hは、受信部102fで受信した胃癌状態情報や胃癌状態情報指定部102gで指定した胃癌状態情報に基づいて多変量判別式を作成する。具体的には、多変量判別式作成部102hは、胃癌状態情報から、候補多変量判別式作成部102h1、候補多変量判別式検証部102h2および変数選択部102h3を繰り返し実行させることにより蓄積された検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。
なお、多変量判別式が予め記憶部106の所定の記憶領域に格納されている場合には、多変量判別式作成部102hは、記憶部106から所望の多変量判別式を選択することで、多変量判別式を作成してもよい。また、多変量判別式作成部102hは、多変量判別式を予め格納した他のコンピュータ装置(例えばデータベース装置400)から所望の多変量判別式を選択しダウンロードすることで、多変量判別式を作成してもよい。
ここで、多変量判別式作成部102hの構成について図17を参照して説明する。図17は、多変量判別式作成部102hの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。多変量判別式作成部102hは、候補多変量判別式作成部102h1と、候補多変量判別式検証部102h2と、変数選択部102h3と、をさらに備えている。候補多変量判別式作成部102h1は、胃癌状態情報から所定の式作成手法に基づいて多変量判別式の候補である候補多変量判別式を作成する。なお、候補多変量判別式作成部102h1は、胃癌状態情報から、複数の異なる式作成手法を併用して複数の候補多変量判別式を作成してもよい。候補多変量判別式検証部102h2は、候補多変量判別式作成部102h1で作成した候補多変量判別式を所定の検証手法に基づいて検証する。なお、候補多変量判別式検証部102h2は、ブートストラップ法、ホールドアウト法、リーブワンアウト法のうち少なくとも1つに基づいて候補多変量判別式の判別率、感度、特異性、情報量基準のうち少なくとも1つに関して検証してもよい。変数選択部102h3は、候補多変量判別式検証部102h2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる胃癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択する。なお、変数選択部102h3は、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。
図6に戻り、判別値算出部102iは、多変量判別式作成部102hで作成したAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む多変量判別式および受信部102fで受信した評価対象のアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの濃度値に基づいて、当該多変量判別式の値である判別値を算出する。
ここで、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むものでもよい。具体的には、多変量判別式は、胃癌または非胃癌であるか否かを判別する場合には数式1、数式2または数式3でもよく、胃癌の病期を判別する場合には数式4でもよく、胃癌の他器官への転移の有無を判別する場合には数式5でもよい。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式などのいずれか1つでもよい。具体的には、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式でもよい。
判別値基準評価部102jは、判別値算出部102iで算出した判別値に基づいて評価対象につき胃癌の状態を評価する。判別値基準評価部102jは、判別値基準判別部102j1をさらに備えている。ここで、判別値基準評価部102jの構成について図18を参照して説明する。図18は、判別値基準評価部102jの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。判別値基準判別部102j1は、判別値に基づいて評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別する。具体的には、判別値基準判別部102j1は、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別する。
図6に戻り、結果出力部102kは、制御部102の各処理部での処理結果(判別値基準評価部102jでの評価結果(具体的には判別値基準判別部102j1での判別結果)を含む)等を出力装置114に出力する。
送信部102mは、評価対象のアミノ酸濃度データの送信元のクライアント装置200に対して評価結果を送信したり、データベース装置400に対して、胃癌評価装置100で作成した多変量判別式や評価結果を送信したりする。
つぎに、本システムのクライアント装置200の構成について図19を参照して説明する。図19は、本システムのクライアント装置200の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
クライアント装置200は、制御部210とROM220とHD230とRAM240と入力装置250と出力装置260と入出力IF270と通信IF280とで構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
制御部210は、Webブラウザ211、電子メーラ212、受信部213、送信部214を備えている。Webブラウザ211は、Webデータを解釈し、解釈したWebデータを後述するモニタ261に表示するブラウズ処理を行う。なお、Webブラウザ211には、ストリーム映像の受信・表示・フィードバック等を行う機能を備えたストリームプレイヤ等の各種のソフトウェアをプラグインしてもよい。電子メーラ212は、所定の通信規約(例えば、SMTP(Simple Mail Transfer Protocol)やPOP3(Post Office Protocol version 3)等)に従って電子メールの送受信を行う。受信部213は、通信IF280を介して、胃癌評価装置100から送信された評価結果などの各種情報を受信する。送信部214は、通信IF280を介して、評価対象のアミノ酸濃度データなどの各種情報を胃癌評価装置100へ送信する。
入力装置250はキーボードやマウスやマイク等である。なお、後述するモニタ261もマウスと協働してポインティングデバイス機能を実現する。出力装置260は、通信IF280を介して受信した情報を出力する出力手段であり、モニタ(家庭用テレビを含む)261およびプリンタ262を含む。この他、出力装置260にスピーカ等を設けてもよい。入出力IF270は入力装置250や出力装置260に接続する。
通信IF280は、クライアント装置200とネットワーク300(またはルータ等の通信装置)とを通信可能に接続する。換言すると、クライアント装置200は、モデムやTAやルータなどの通信装置および電話回線を介して、または専用線を介してネットワーク300に接続される。これにより、クライアント装置200は、所定の通信規約に従って胃癌評価装置100にアクセスすることができる。
ここで、プリンタ・モニタ・イメージスキャナ等の周辺装置を必要に応じて接続した情報処理装置(例えば、既知のパーソナルコンピュータ・ワークステーション・家庭用ゲーム装置・インターネットTV・PHS端末・携帯端末・移動体通信端末・PDA等の情報処理端末など)に、Webデータのブラウジング機能や電子メール機能を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより、クライアント装置200を実現してもよい。
また、クライアント装置200の制御部210は、制御部210で行う処理の全部または任意の一部を、CPUおよび当該CPUにて解釈して実行するプログラムで実現してもよい。ROM220またはHD230には、OS(Operating System)と協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。当該コンピュータプログラムは、RAM240にロードされることで実行され、CPUと協働して制御部210を構成する。また、当該コンピュータプログラムは、クライアント装置200と任意のネットワークを介して接続されるアプリケーションプログラムサーバに記録されてもよく、クライアント装置200は、必要に応じてその全部または一部をダウンロードしてもよい。また、制御部210で行う処理の全部または任意の一部を、ワイヤードロジック等によるハードウェアで実現してもよい。
つぎに、本システムのネットワーク300について図4、図5を参照して説明する。ネットワーク300は、胃癌評価装置100とクライアント装置200とデータベース装置400とを相互に通信可能に接続する機能を有し、例えばインターネットやイントラネットやLAN(有線/無線の双方を含む)等である。なお、ネットワーク300は、VANや、パソコン通信網や、公衆電話網(アナログ/デジタルの双方を含む)や、専用回線網(アナログ/デジタルの双方を含む)や、CATV網や、携帯回線交換網または携帯パケット交換網(IMT2000方式、GSM(登録商標)方式またはPDC/PDC−P方式等を含む)や、無線呼出網や、Bluetooth(登録商標)等の局所無線網や、PHS網や、衛星通信網(CS、BSまたはISDB等を含む)等でもよい。
つぎに、本システムのデータベース装置400の構成について図20を参照して説明する。図20は、本システムのデータベース装置400の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
データベース装置400は、胃癌評価装置100または当該データベース装置400で多変量判別式を作成する際に用いる胃癌状態情報や、胃癌評価装置100で作成した多変量判別式、胃癌評価装置100での評価結果などを格納する機能を有する。図20に示すように、データベース装置400は、当該データベース装置400を統括的に制御するCPU等の制御部402と、ルータ等の通信装置および専用線等の有線または無線の通信回路を介して当該データベース装置をネットワーク300に通信可能に接続する通信インターフェース部404と、各種のデータベースやテーブルやファイル(例えばWebページ用ファイル)などを格納する記憶部406と、入力装置412や出力装置414に接続する入出力インターフェース部408と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
記憶部406は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用いることができる。記憶部406には、各種処理に用いる各種プログラム等を格納する。通信インターフェース部404は、データベース装置400とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部404は、他の端末と通信回線を介してデータを通信する機能を有する。入出力インターフェース部408は、入力装置412や出力装置414に接続する。ここで、出力装置414には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下で、出力装置414をモニタ414として記載する場合がある。)。また、入力装置412には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。
制御部402は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部402は、図示の如く、大別して、要求解釈部402aと閲覧処理部402bと認証処理部402cと電子メール生成部402dとWebページ生成部402eと送信部402fとを備えている。
要求解釈部402aは、胃癌評価装置100からの要求内容を解釈し、その解釈結果に応じて制御部402の各部に処理を受け渡す。閲覧処理部402bは、胃癌評価装置100からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行う。認証処理部402cは、胃癌評価装置100からの認証要求を受けて、認証判断を行う。電子メール生成部402dは、各種の情報を含んだ電子メールを生成する。Webページ生成部402eは、利用者がクライアント装置200で閲覧するWebページを生成する。送信部402fは、胃癌状態情報や多変量判別式などの各種情報を、胃癌評価装置100へ送信する。
[2−3.本システムの処理]
ここでは、以上のように構成された本システムで行われる胃癌評価サービス処理の一例を、図21を参照して説明する。図21は、胃癌評価サービス処理の一例を示すフローチャートである。
なお、本処理で用いるアミノ酸濃度データは、個体から予め採取した血液を分析して得たアミノ酸の濃度値に関するものである。ここで、血液中のアミノ酸の分析方法について簡単に説明する。まず、採血した血液サンプルを、ヘパリン処理したチューブに採取し、その後、当該チューブに対して遠心分離を行うことで血漿を分離する。なお、分離したすべての血漿サンプルは、アミノ酸濃度の測定時まで−70℃で凍結保存する。そして、アミノ酸濃度の測定時に、血漿サンプルに対してスルホサリチル酸を添加し、3%濃度調整により除蛋白処理を行う。なお、アミノ酸濃度の測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理としたアミノ酸分析機を使用した。
まず、Webブラウザ211を表示した画面上で利用者が入力装置250を介して胃癌評価装置100が提供するWebサイトのアドレス(URLなど)を指定すると、クライアント装置200は胃癌評価装置100へアクセスする。具体的には、利用者がクライアント装置200のWebブラウザ211の画面更新を指示すると、Webブラウザ211は、胃癌評価装置100が提供するWebサイトのアドレスを所定の通信規約で胃癌評価装置100へ送信することで、アミノ酸濃度データ送信画面に対応するWebページの送信要求を、当該アドレスに基づくルーティングで胃癌評価装置100へ行う。
つぎに、胃癌評価装置100は、要求解釈部102aで、クライアント装置200からの送信を受け、当該送信の内容を解析し、解析結果に応じて制御部102の各部に処理を移す。具体的には、送信の内容がアミノ酸濃度データ送信画面に対応するWebページの送信要求であった場合、胃癌評価装置100は、主として閲覧処理部102bで、記憶部106の所定の記憶領域に格納されている当該Webページを表示するためのWebデータを取得し、取得したWebデータをクライアント装置200へ送信する。より具体的には、利用者からアミノ酸濃度データ送信画面に対応するWebページの送信要求があった場合、胃癌評価装置100は、まず、制御部102で、利用者IDや利用者パスワードの入力を利用者に対して求める。そして、利用者IDやパスワードが入力されると、胃癌評価装置100は、認証処理部102cで、入力された利用者IDやパスワードと利用者情報ファイル106aに格納されている利用者IDや利用者パスワードとの認証判断を行う。そして、胃癌評価装置100は、認証可の場合にのみ、閲覧処理部102bで、アミノ酸濃度データ送信画面に対応するWebページを表示するためのWebデータをクライアント装置200へ送信する。なお、クライアント装置200の特定は、クライアント装置200から送信要求と共に送信されたIPアドレスで行う。
つぎに、クライアント装置200は、胃癌評価装置100から送信されたWebデータ(アミノ酸濃度データ送信画面に対応するWebページを表示するためのもの)を受信部213で受信し、受信したWebデータをWebブラウザ211で解釈し、モニタ261にアミノ酸濃度データ送信画面を表示する。
つぎに、モニタ261に表示されたアミノ酸濃度データ送信画面に対し利用者が入力装置250を介して個体のアミノ酸濃度データなどを入力・選択すると、クライアント装置200は、送信部214で、入力情報や選択事項を特定するための識別子を胃癌評価装置100へ送信することで、評価対象の個体のアミノ酸濃度データを胃癌評価装置100へ送信する(ステップSA−21)。なお、ステップSA−21におけるアミノ酸濃度データの送信は、FTP等の既存のファイル転送技術等により実現してもよい。
つぎに、胃癌評価装置100は、要求解釈部102aで、クライアント装置200から送信された識別子を解釈することによりクライアント装置200の要求内容を解釈し、胃癌評価用(具体的には、胃癌と非胃癌との2群判別用、胃癌の病期の判別用、胃癌の他器官への転移の有無の2群判別用、など)の多変量判別式の送信要求をデータベース装置400へ行う。
つぎに、データベース装置400は、要求解釈部402aで、胃癌評価装置100からの送信要求を解釈し、記憶部406の所定の記憶領域に格納したAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含む多変量判別式(例えばアップデートされた最新のもの)を胃癌評価装置100へ送信する(ステップSA−22)。
ここで、ステップSA−22において、胃癌評価装置100へ送信する多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むものでもよい。具体的には、胃癌評価装置100へ送信する多変量判別式は、ステップSA−26で胃癌または非胃癌であるか否かを判別する場合には数式1、数式2または数式3でもよく、ステップSA−26で胃癌の病期を判別する場合には数式4でもよく、ステップSA−26で胃癌の他器官への転移の有無を判別する場合には数式5でもよい。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、ステップSA−22において、胃癌評価装置100へ送信する多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式などのいずれか1つでもよい。具体的には、胃癌評価装置100へ送信する多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式でもよい。
つぎに、胃癌評価装置100は、受信部102fで、クライアント装置200から送信された個体のアミノ酸濃度データおよびデータベース装置400から送信された多変量判別式を受信し、受信したアミノ酸濃度データをアミノ酸濃度データファイル106bの所定の記憶領域に格納すると共に、受信した多変量判別式を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSA−23)。
つぎに、胃癌評価装置100は、制御部102で、ステップSA−23で受信した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA−24)。
つぎに、胃癌評価装置100は、判別値算出部102iで、ステップSA−24で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データおよびステップSA−23で受信した多変量判別式に基づいて判別値を算出する(ステップSA−25)。
つぎに、胃癌評価装置100は、判別値基準判別部102j1で、ステップSA−25で算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別し、その判別結果を評価結果ファイル106gの所定の記憶領域に格納する(ステップSA−26)。
つぎに、胃癌評価装置100は、送信部102mで、ステップSA−26で得た判別結果(胃癌または非胃癌であるか否かに関する判別結果、胃癌の病期に関する判別結果、胃癌の他器官への転移の有無に関する判別結果)を、アミノ酸濃度データの送信元のクライアント装置200とデータベース装置400とへ送信する(ステップSA−27)。具体的には、まず、胃癌評価装置100は、Webページ生成部102eで、判別結果を表示するためのWebページを作成し、作成したWebページに対応するWebデータを記憶部106の所定の記憶領域に格納する。ついで、利用者がクライアント装置200のWebブラウザ211に入力装置250を介して所定のURLを入力し上述した認証を経た後、クライアント装置200は、当該Webページの閲覧要求を胃癌評価装置100へ送信する。ついで、胃癌評価装置100は、閲覧処理部102bで、クライアント装置200から送信された閲覧要求を解釈し、判別結果を表示するためのWebページに対応するWebデータを記憶部106の所定の記憶領域から読み出す。そして、胃癌評価装置100は、送信部102mで、読み出したWebデータをクライアント装置200へ送信すると共に、当該Webデータ又は判別結果をデータベース装置400へ送信する。
ここで、ステップSA−27において、胃癌評価装置100は、制御部102で、判別結果を電子メールで利用者のクライアント装置200へ通知してもよい。具体的には、まず、胃癌評価装置100は、電子メール生成部102dで、利用者IDなどを基にして利用者情報ファイル106aに格納されている利用者情報を送信タイミングに従って参照し、利用者の電子メールアドレスを取得する。ついで、胃癌評価装置100は、電子メール生成部102dで、取得した電子メールアドレスを宛て先とし利用者の氏名および判別結果を含む電子メールに関するデータを生成する。ついで、胃癌評価装置100は、送信部102mで、生成した当該データを利用者のクライアント装置200へ送信する。
また、ステップSA−27において、胃癌評価装置100は、FTP等の既存のファイル転送技術等で、判別結果を利用者のクライアント装置200へ送信してもよい。
図21の説明に戻り、データベース装置400は、制御部402で、胃癌評価装置100から送信された判別結果またはWebデータを受信し、受信した判別結果またはWebデータを記憶部406の所定の記憶領域に保存(蓄積)する(ステップSA−28)。
また、クライアント装置200は、受信部213で、胃癌評価装置100から送信されたWebデータを受信し、受信したWebデータをWebブラウザ211で解釈し、個体の判別結果が記されたWebページの画面をモニタ261に表示する(ステップSA−29)。なお、判別結果が胃癌評価装置100から電子メールで送信された場合には、クライアント装置200は、電子メーラ212の公知の機能で、胃癌評価装置100から送信された電子メールを任意のタイミングで受信し、受信した電子メールをモニタ261に表示する。
以上により、利用者は、モニタ261に表示されたWebページを閲覧することで、胃癌と非胃癌との2群判別に関する個体の判別結果や胃癌の病期の判別に関する個体の判別結果や胃癌の他器官への転移の有無の2群判別に関する個体の判別結果を確認することができる。なお、利用者は、モニタ261に表示されたWebページの表示内容をプリンタ262で印刷してもよい。
また、判別結果が胃癌評価装置100から電子メールで送信された場合には、利用者は、モニタ261に表示された電子メールを閲覧することで、胃癌と非胃癌との2群判別に関する個体の判別結果や胃癌の病期の判別に関する個体の判別結果や胃癌の他器官への転移の有無の2群判別に関する個体の判別結果を確認することができる。利用者は、モニタ261に表示された電子メールの表示内容をプリンタ262で印刷してもよい。
これにて、胃癌評価サービス処理の説明を終了する。
[2−4.第2実施形態のまとめ、およびその他の実施形態]
以上、詳細に説明したように、胃癌評価システムによれば、クライアント装置200は個体のアミノ酸濃度データを胃癌評価装置100へ送信し、データベース装置400は胃癌評価装置100からの要求を受けて、胃癌評価用の多変量判別式(具体的には、胃癌と非胃癌との2群判別用の多変量判別式、胃癌の病期の判別用の多変量判別式、胃癌の他器官への転移の有無の2群判別用の多変量判別式、など)を胃癌評価装置100へ送信し、胃癌評価装置100は、クライアント装置200からアミノ酸濃度データを受信すると共にデータベース装置400から多変量判別式を受信し、受信したアミノ酸濃度データおよび多変量判別式に基づいて判別値を算出し、算出した判別値と予め設定した閾値とを比較することで個体につき、胃癌または非胃癌であるか否かを判別、胃癌の病期を判別、または胃癌の他器官への転移の有無を判別し、この判別結果をクライアント装置200やデータベース装置400へ送信し、クライアント装置200は胃癌評価装置100から送信された判別結果を受信して表示し、データベース装置400は胃癌評価装置100から送信された判別結果を受信して格納する。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別を精度よく行うことができる。
また、胃癌評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つを変数として含むものでもよい。具体的には、多変量判別式は、胃癌または非胃癌であるか否かを判別する場合には数式1、数式2または数式3でもよく、胃癌の病期を判別する場合には数式4でもよく、胃癌の他器官への転移の有無を判別する場合には数式5でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別にさらに有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を胃癌の状態の評価に好適に用いることができる。
×Orn/(Trp+His) + b×(ABA+Ile)/Leu + c
・・・(数式1)
×Glu/His + b×Ser/Trp + c×Arg/Pro + d
・・・(数式2)
×Trp/Gln + b×His/Glu + c
・・・(数式3)
×Gly/(Glu+Trp+Val) + b×Arg/His + c
・・・(数式4)
×Ile/Glu + b×(Gly+Asn+Arg)/His + c
・・・(数式5)
(数式1においてa,bはゼロでない任意の実数、cは任意の実数であり、数式2においてa,b,cはゼロでない任意の実数、dは任意の実数であり、数式3においてa,bはゼロでない任意の実数、cは任意の実数であり、数式4においてa,bはゼロでない任意の実数、cは任意の実数であり、数式5においてa,bはゼロでない任意の実数、cは任意の実数である。)
また、胃癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式などのいずれか1つでもよい。具体的には、多変量判別式は、Orn,Gln,Trp,Citを変数とするロジスティック回帰式、またはOrn,Gln,Trp,Phe,Cit,Tyrを変数とする線形判別式、またはGlu,Phe,His,Trpを変数とするロジスティック回帰式、またはGlu,Pro,His,Trpを変数とする線形判別式、またはVal,Ile,His,Trpを変数とするロジスティック回帰式、またはThr,Ile,His,Trpを変数とする線形判別式でもよい。これにより、胃癌と非胃癌との2群判別や胃癌の病期の判別や胃癌の他器官への転移の有無の2群判別にさらに有用な多変量判別式で得られる判別値を利用して、これらの判別をさらに精度よく行うことができる。なお、これらの多変量判別式は、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成することができる。
また、本発明にかかる胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体は、上述した第2実施形態以外にも、請求の範囲の書類に記載した技術的思想の範囲内において種々の異なる実施形態にて実施されてよいものである。例えば、上述した第2実施形態で説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部または一部を手動的に行うこともでき、手動的に行なわれるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種の登録データおよび検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。例えば、胃癌評価装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。また、胃癌評価装置100の各部または各装置が備える処理機能(特に制御部102にて行なわれる各処理機能)については、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて、その全部または任意の一部を実現することができ、ワイヤードロジックによるハードウェアとして実現することもできる。
ここで、「プログラム」とは任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は、必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものを含む。なお、プログラムは、記録媒体に記録されており、必要に応じて胃癌評価装置100に機械的に読み取られる。記録媒体に記録されたプログラムを各装置で読み取るための具体的な構成や読み取り手順や読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
また、「記録媒体」とは任意の「可搬用の物理媒体」や任意の「固定用の物理媒体」や「通信媒体」を含むものとする。なお、「可搬用の物理媒体」とはフレキシブルディスクや光磁気ディスクやROMやEPROMやEEPROMやCD−ROMやMOやDVD等である。「固定用の物理媒体」とは各種コンピュータシステムに内蔵されるROMやRAMやHD等である。「通信媒体」とは、LANやWANやインターネット等のネットワークを介してプログラムを送信する場合における通信回線や搬送波のように、短期にプログラムを保持するものである。
最後に、胃癌評価装置100で行う多変量判別式作成処理の一例について図22を参照して詳細に説明する。図22は多変量判別式作成処理の一例を示すフローチャートである。なお、当該多変量判別式作成処理は、胃癌状態情報を管理するデータベース装置400で行ってもよい。
なお、本説明では、胃癌評価装置100は、データベース装置400から事前に取得した胃癌状態情報を、胃癌状態情報ファイル106cの所定の記憶領域に格納しているものとする。また、胃癌評価装置100は、胃癌状態情報指定部102gで事前に指定した胃癌状態指標データおよびアミノ酸濃度データを含む胃癌状態情報を、指定胃癌状態情報ファイル106dの所定の記憶領域に格納しているものとする。
まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、指定胃癌状態情報ファイル106dの所定の記憶領域に格納されている胃癌状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、作成した候補多変量判別式を候補多変量判別式ファイル106e1の所定の記憶領域に格納する(ステップSB−21)。具体的には、まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k−means法、クラスター解析、決定木などの多変量解析に関するものを含む。)の中から所望のものを1つ選択し、選択した式作成手法に基づいて、作成する候補多変量判別式の形(式の形)を決定する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、胃癌状態情報に基づいて、選択した式選択手法に対応する種々(例えば平均や分散など)の計算を実行する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、計算結果および決定した候補多変量判別式のパラメータを決定する。これにより、選択した式作成手法に基づいて候補多変量判別式が作成される。なお、複数の異なる式作成手法を併用して候補多変量判別式を同時並行(並列)的に作成する場合は、選択した式作成手法ごとに上記の処理を並行して実行すればよい。また、複数の異なる式作成手法を併用して候補多変量判別式を直列的に作成する場合は、例えば、主成分分析を行って作成した候補多変量判別式を利用して胃癌状態情報を変換し、変換した胃癌状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。
つぎに、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、ステップSB−21で作成した候補多変量判別式を所定の検証手法に基づいて検証(相互検証)し、検証結果を検証結果ファイル106e2の所定の記憶領域に格納する(ステップSB−22)。具体的には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、指定胃癌状態情報ファイル106dの所定の記憶領域に格納されている胃癌状態情報に基づいて候補多変量判別式を検証する際に用いる検証用データを作成し、作成した検証用データに基づいて候補多変量判別式を検証する。なお、ステップSB−21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成した場合には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証する。ここで、ステップSB−22において、ブートストラップ法やホールドアウト法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異性、情報量基準などのうち少なくとも1つに関して検証してもよい。これにより、胃癌状態情報や診断条件を考慮した予測性または堅牢性の高い候補指標式を選択することができる。
つぎに、多変量判別式作成部102hは、変数選択部102h3で、ステップSB−22での検証結果から所定の変数選択手法に基づいて、候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる胃癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、選択したアミノ酸濃度データの組み合わせを含む胃癌状態情報を選択胃癌状態情報ファイル106e3の所定の記憶領域に格納する(ステップSB−23)。なお、ステップSB−21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成し、ステップSB−22で各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証した場合には、ステップSB−23において、多変量判別式作成部102hは、変数選択部102h3で、ステップSB−22での検証結果に対応する候補多変量判別式ごとに所定の変数選択手法に基づいて候補多変量判別式の変数を選択する。ここで、ステップSB−23において、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。なお、ベストパス法とは、候補多変量判別式に含まれる変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することで変数を選択する方法である。また、ステップSB−23において、多変量判別式作成部102hは、変数選択部102h3で、指定胃癌状態情報ファイル106dの所定の記憶領域に格納されている胃癌状態情報に基づいてアミノ酸濃度データの組み合わせを選択してもよい。
つぎに、多変量判別式作成部102hは、指定胃癌状態情報ファイル106dの所定の記憶領域に格納されている胃癌状態情報に含まれるアミノ酸濃度データの全ての組み合わせが終了したか否かを判定し、判定結果が「終了」であった場合(ステップSB−24:Yes)には次のステップ(ステップSB−25)へ進み、判定結果が「終了」でなかった場合(ステップSB−24:No)にはステップSB−21へ戻る。なお、多変量判別式作成部102hは、予め設定した回数が終了したか否かを判定し、判定結果が「終了」であった場合には(ステップSB−24:Yes)次のステップ(ステップSB−25)へ進み、判定結果が「終了」でなかった場合(ステップSB−24:No)にはステップSB−21へ戻ってもよい。また、多変量判別式作成部102hは、ステップSB−23で選択したアミノ酸濃度データの組み合わせが、指定胃癌状態情報ファイル106dの所定の記憶領域に格納されている胃癌状態情報に含まれるアミノ酸濃度データの組み合わせまたは前回のステップSB−23で選択したアミノ酸濃度データの組み合わせと同じであるか否かを判定し、判定結果が「同じ」であった場合(ステップSB−24:Yes)には次のステップ(ステップSB−25)へ進み、判定結果が「同じ」でなかった場合(ステップSB−24:No)にはステップSB−21へ戻ってもよい。また、多変量判別式作成部102hは、検証結果が具体的には各候補多変量判別式に関する評価値である場合には、当該評価値と各式作成手法に対応する所定の閾値との比較結果に基づいて、ステップSB−25へ進むかステップSB−21へ戻るかを判定してもよい。
ついで、多変量判別式作成部102hは、検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで多変量判別式を決定し、決定した多変量判別式(選出した候補多変量判別式)を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSB−25)。ここで、ステップSB−25において、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。
これにて、多変量判別式作成処理の説明を終了する。
胃癌の確定診断が行われた胃癌患者群の血液サンプル、および非胃癌群の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。アミノ酸濃度の単位はnmol/mlである。胃癌患者および非胃癌患者のアミノ酸変数の分布に関する箱ひげ図を図23に示す。なお、図23において、横軸は非胃癌群(Control)と胃癌群とを表し、図中のABAおよびCysはそれぞれα−ABA(α−アミノ酪酸)およびCystineを表す。胃癌群と非胃癌群の判別を目的に2群間のt検定を実施した。
非胃癌群に比べて胃癌群では、Thr,Ser,Pro,Gly,Ala,Cit,Cys,Val,Met,Ile,Leu,Tyr,Phe,Orn,Lysが有意に増加し(有意差確率P<0.05)、またABA,Hisが有意に減少していた(有意差確率P<0.05)。これにより、アミノ酸変数Thr,Ser,Pro,Gly,Ala,Cit,Cys,Val,Met,Ile,Leu,Tyr,Phe,Orn,Lys,ABA,Hisが、胃癌群と非胃癌群の2群間の判別能を持つことが判明した。
更に、各アミノ酸変数による胃癌群と非胃癌群の2群判別に関して、ROC曲線(図24)の曲線下面積(AUC)による評価を行い、アミノ酸変数Ser,Asn,Pro,Cit,Cys,Met,Ile,Phe,His,OrnについてAUCが0.7より大きい値を示した。これにより、アミノ酸変数Ser,Asn,Cys,Pro,Cit,Met,Ile,Phe,His,Ornが、胃癌群と非胃癌群の2群間の判別能を持つことが判明した。
実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、胃癌判別に関して胃癌群と非胃癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式1が得られた。
指標式1:(Asn)/(ABA) + (Leu)/(His)
指標式1による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図25)のAUCによる評価を行い、0.972±0.011(95%信頼区間は0.951〜0.994)が得られた。また指標式1による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が4.51となり、感度93%、特異度94%、陽性適中率65%、陰性適中率99%、正診率94%が得られ、診断性能が高く有用な指標であることが判明した。なお、このほかに指標式1と同等の判別性能を有する分数式は複数得られた。それらを図26、図27、図28、図29に示す。
実施例1で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式2としてAsn,Orn,Phe,Hisから構成されるロジスティック回帰式(アミノ酸変数Asn,Orn,Phe,Hisの数係数と定数項は順に、0.291±0.051,0.088±0.028,0.116±0.025,−0.299±0.067,−9.499±3.204)が得られた。
指標式2による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図30)のAUCによる評価を行い、0.997±0.002(95%信頼区間は0.993〜1.00)が得られ診断性能が高く有用な指標であることが判明した。また指標式2による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が0.125となり、感度98%、特異度99%、陽性適中率92%、陰性適中率99%、正診率99%が得られ、診断性能が高く有用な指標であることが判明した。なお、このほかに指標式2と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図31、図32、図33、図34に示す。なお、図31、図32、図33、図34に示す式における各係数の値、及びその95%信頼区間は、それを実数倍したものでもよく、定数項の値、及びその95%信頼区間は、それに任意の実定数を加減乗除したものでもよい。
実施例1で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式3としてAsn,Orn,Phe,His,Gln,Tyrから構成される線形判別式(アミノ酸変数Asn,Orn,Phe,His,Gln,Tyrの数係数は順に、33.35±1.69,9.85±1.67,12.62±2.70,−15.80±2.48,−1.00±0.35,−9.02±2.16)が得られた。
指標式3による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図35)のAUCによる評価を行い、0.996±0.003(95%信頼区間は0.991〜1.00)が得られ診断性能が高く有用な指標であることが判明した。また指標式3による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が1177となり、感度98%、特異度99%、陽性適中率98%、陰性適中率99%、正診率99%が得られ、診断性能が高く有用な指標であることが判明した。なお、このほかに指標式3と同等の判別性能を有する線形判別式は複数得られた。それらを図36、図37、図38、図39に示す。なお、図36、図37、図38、図39に示す式における各係数の値、及びその95%信頼区間は、それを実数倍したものでもよく、定数項の値、及びその95%信頼区間は、それに任意の実定数を加減乗除したものでもよい。
実施例1で用いたサンプルデータを用いた。胃癌に関して胃癌の病理病期(Ia,Ib,II,IIIa,IIIb,IV)を、壁深達度、組織学的腹膜播種の有無、組織学的肝転移の有無、組織学的リンパ節転移の有無のデータと正準相関解析を行い、胃癌の病理病期を数値化した。得られた病理病期の数値データに対して、ステージと最も相関性の高い指標を重回帰分析(BIC最小基準による変数網羅法)により探索し、指標式4としてHis,Glu,Gly,Argからなる線形判別式(アミノ酸変数His,Glu,Gly,Argの数係数は順に−11.68±4.14,−3.91±3.25,1.00±0.66,3.22±2.39)が得られた。
このとき、数値化を行った病理病期と指標式4の値との間のピアソンの相関係数は0.542(95%信頼区間は0.400〜0.659,p<0.001)となり、診断性能が高く有用な指標であることが判明した(図40)。なお、このほかに指標式4と同等の判別性能を有する線形判別式は複数得られた。それらを図41、図42、図43、図44に示す。なお、図41、図42、図43、図44に示す式における各係数の値、及びその95%信頼区間は、それを実数倍したものでもよく、定数項の値、及びその95%信頼区間は、それに任意の実定数を加減乗除したものでもよい。
実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、胃癌に関して胃癌の病理病期(Ia,Ib,II,IIIa,IIIb,IV)に対して、ステージと最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式5が得られた。
指標式5:(Gly)/(Glu+Trp+Val) + (Arg)/(His)
このとき、病理病期と指標式5の値との間のスピアマンの順位相関係数は0.482(95%信頼区間は0.324〜0.615,p<0.001)となり、診断性能が高く有用な指標であることが判明した(図45)。なお、このほかに指標式5と同等の判別性能を有する指標式は複数得られた。それらを図46、図47、図48、図49に示す。
本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、胃癌に関して胃癌のリンパ節転移の有無に対して2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式6が得られた。
指標式6:(Ile)/(Glu)+(Gly+Asn+Arg)/(His)
指標式6による胃癌のリンパ節転移の診断性能を転移群と非転移群の2群判別に関して、ROC曲線(図50)のAUCによる評価を行い、0.760±0.044(95%信頼区間は0.673〜0.847)が得られた。また指標式6による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が7.706となり、感度69%、特異度69%、陽性適中率64%、陰性適中率74%、正診率69%が得られ、診断性能が高く有用な指標であることが判明した。なお、このほかに指標式6と同等の判別性能を有する分数式は複数得られた。それらを図51、図52、図53、図54に示す。
実施例1で用いたサンプルデータを用いた。胃癌に関して胃癌のリンパ節転移の有無の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式7としてHis,Met,Tyrから構成されるロジスティック回帰式(アミノ酸変数His,Met,Tyrの数係数と定数項は順に、−0.067±0.009,0.161±0.002,−0.045±0.025,2.476±1.319)が得られた。
指標式7による胃癌の診断性能を転移群と非転移群の2群判別に関して、ROC曲線(図55)のAUCによる評価を行い、0.729±0.046(95%信頼区間は0.631〜0.819)が得られ診断性能が高く有用な指標であることが判明した。また指標式7による転移群と非転移群の2群判別のカットオフ値について、転移群の有症率を0.443として最適なカットオフ値を求めると、カットオフ値が0.468となり、感度59%、特異度76%、陽性適中率67%、陰性適中率70%、正診率69%が得られ、診断性能が高く有用な指標であることが判明した。なお、このほかに指標式7と同等の判別性能を有する線形判別式は複数得られた。それらを図56、図57、図58、図59に示す。なお、図56、図57、図58、図59に示す式における各係数の値、及びその95%信頼区間は、それを実数倍したものでもよく、定数項の値、及びその95%信頼区間は、それに任意の実定数を加減乗除したものでもよい。
実施例1で用いたサンプルデータを用いた。胃癌に関してリンパ節転移の有無の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式8としてHis,Met,Tyrから構成される線形判別式(アミノ酸変数His,Met,Tyrの数係数は順に、−1.885±0.982,3.680±1.821,−1.000±0.704)が得られた。
指標式8による胃癌の診断性能を転移群と非転移群の2群判別に関して、ROC曲線(図60)のAUCによる評価を行い、0.731±0.046(95%信頼区間は0.642〜0.821)が得られ診断性能が高く有用な指標であることが判明した。また指標式8による胃癌群と非胃癌群の2群判別のカットオフ値について、転移群の有症率を0.443として最適なカットオフ値を求めると、カットオフ値が−83.3となり、感度61%、特異度76%、陽性適中率67%、陰性適中率71%、正診率70%が得られ、診断性能が高く有用な指標であることが判明した。なお、このほかに指標式8と同等の判別性能を有する線形判別式は複数得られた。それらを図61、図62、図63、図64に示す。なお、図61、図62、図63、図64に示す式における各係数の値、及びその95%信頼区間は、それを実数倍したものでもよく、定数項の値、及びその95%信頼区間は、それに任意の実定数を加減乗除したものでもよい。
2群判別を行う線形判別式を変数網羅法により全ての式を抽出した。このとき、各式に出現するアミノ酸変数の最大値は4として、この条件を満たす全ての式のROC曲線下面積を計算した。このとき、ROC曲線下面積がある閾値以上の式中で、各アミノ酸が出現する頻度を測定した結果、Asn,Cys,His,Met,Orn,PheがROC曲線下面積0.9,0.925,0.95,0.975をそれぞれ閾値としたときに、常に高頻度で抽出されるアミノ酸の上位10位以内となることが確認され、これらのアミノ酸を変数として用いた多変量判別式が胃癌群と非胃癌群の2群間の判別能を持つことが判明した(図65)。
胃生検による胃癌の診断が行われた胃癌患者群の血液サンプルおよび非胃癌患者群の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。胃癌患者および非胃癌患者のアミノ酸変数の分布を図66に示す。胃癌群と非胃癌胃癌群の判別を目的に2群間のt検定を実施した。
非胃癌群に比べて胃癌群では、Gluが有意に増加し、Asn,Val,Met,Ile,Leu,Tyr,Phe,His,Trp,Lys,Argが有意に減少していた。これにより、アミノ酸変数Glu,Asn,Val,Met,Ile,Leu,Tyr,Phe,His,Trp,Lys,Argが胃癌群と非胃癌群の2群間の判別能を持つことが判明した。
更に、胃癌群と非胃癌群の2群判別に関して、ROC曲線のAUCによる評価を行い、アミノ酸変数Asn,Glu,Met,Leu,Phe,His,Trp,Lys,ArgについてAUCが0.75より大きい値を示した(図67)。これにより、アミノ酸変数Asn,Glu,Met,Leu,Phe,His,Trp,Lys,Argが胃癌群と非胃癌群の2群間の判別能を持つことが判明した。
実施例11で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、胃癌判別に関して胃癌群と非胃癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式9が得られた。
指標式9:Glu/His + 0.15×Ser/Trp − 0.38×Arg/Pro
指標式9による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図68)のAUCによる評価を行い、0.997±0.003(95%信頼区間は0.991〜1)が得られた。また、指標式9による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.16%として最適なカットオフ値を求めると、カットオフ値が0.585となり、感度96.67%、特異度100.0%、陽性適中率100.0%、陰性適中率99.99%、正診率99.99%が得られ(図68)、診断性能が高く有用な指標であることが判明した。なお、この他に指標式9と同等の判別性能を有する多変量判別式は複数得られた。それらを図69および図70に示す。なお、図69および図70に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
実施例11で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式10としてGlu,Phe,His,Trpから構成されるロジスティック回帰式(アミノ酸変数Glu,Phe,His,Trpの数係数と定数項は順に、0.1254±0.001、−0.0684±0.004、−0.1066±0.002、−0.1257±0.0027、12.9742±0.1855)が得られた。
指標式10による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図71)のAUCによる評価を行い、0.977±0.023(95%信頼区間は0.932〜1)が得られ診断性能が高く有用な指標であることが判明した。また、指標式10による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.16%として最適なカットオフ値を求めると、カットオフ値が0.536となり、感度96.7%、特異度100%、陽性適中率100%、陰性適中率99.99%、正診率99.99%が得られ(図71)、診断性能が高く有用な指標であることが判明した。なお、この他に指標式10と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図72および図73に示す。なお、図72および図73に示す式における各係数の値は、それを実数倍したものでもよい。
実施例11で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式11としてGlu,Pro,His,Trpから構成される線形判別関数(アミノ酸変数Glu,Pro,His,Trpの数係数は順に、1±0.2、0.2703±0.0085、−1.0845±0.0359、−1.4648±0.0464)が得られた。
指標式11による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図74)のAUCによる評価を行い、0.984±0.015(95%信頼区間は0.955〜1)が得られ診断性能が高く有用な指標であることが判明した。また、指標式11による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.16%として最適なカットオフ値を求めると、カットオフ値が−72.45となり、感度96.7%、特異度98.3%、陽性適中率8.50%、陰性適中率99.99%、正診率98.33%が得られ(図74)、診断性能が高く有用な指標であることが判明した。なお、この他に指標式11と同等の判別性能を有する線形判別関数は複数得られた。それらを図75および図76に示す。なお、図75および図76に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
実施例11で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別を行う線形判別式を変数網羅法により全ての式を抽出した。このとき、各式に出現するアミノ酸変数の最大値は4として、この条件を満たす全ての式のROC曲線下面積を計算した。このとき、ROC曲線下面積が上位500までの判別式で、各アミノ酸が出現する頻度を測定した結果、Trp,Glu,His,Ala,Proが高頻度で抽出されるアミノ酸の上位5位となることが確認され、これらのアミノ酸を変数として用いた多変量判別式が胃癌群と非胃癌群の2群間の判別能を持つことが判明した(図77)。
胃生検による胃癌の診断が行われた胃癌患者群の血液サンプル、および非胃癌患者群の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。胃癌患者、および非胃癌患者のアミノ酸変数の分布を図78に示す。胃癌群と非胃癌胃癌群の判別を目的に2群間のウィルコクソンの順位和検定を実施した。
非胃癌群に比べて胃癌群では、Gluが有意に増加し、Thr、Asn、Ala、Cit、Val、Met、Leu、Tyr、Phe、His、Trp、Lys、Argが有意に減少していた。これにより、アミノ酸変数Glu、Thr、Asn、Ala、Val、Met、Leu、Tyr、Phe、His、Trp、Lys、Argが胃癌群と非胃癌群の2群間の判別能を持つことが判明した。
更に、胃癌群と非胃癌群の2群判別に関して、ROC曲線のAUCによる評価を行い、アミノ酸変数Thr、Asn、Val、Met、Tyr、Phe、His、Trp、ArgについてAUCが0.7より大きい値を示した(図79)。これにより、アミノ酸変数Thr、Asn、Val、Met、Tyr、Phe、His、Trp、Argが胃癌群と非胃癌群の2群間の判別能を持つことが判明した。
実施例16で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、胃癌判別に関して胃癌群と非胃癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式12が得られた。なお、この他に指標式12と同等の判別性能を有する多変量判別式は複数得られた。それらを図80、図81、図82および図83に示す。また、図80、図81、図82および図83に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式12:−6.272×Trp/Gln − 0.08814×His/Glu
指標式12による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図84)のAUC(曲線下面積)による評価を行い、0.905±0.022(95%信頼区間は0.860〜0.950)が得られた。また、指標式12による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.16%として最適なカットオフ値を求めると、カットオフ値が−0.712となり、感度84.3%、特異度84.9%、陽性適中率0.886%、陰性適中率99.97%、正診率84.88%が得られ(図84)、診断性能が高く有用な指標であることが判明した。
実施例16で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式13としてVal,Ile,His,Trpから構成されるロジスティック回帰式(アミノ酸変数Val,Ile,His,Trpの数係数と定数項は順に、−0.0149±0.0061、0.0467±0.0148、−0.0296±0.0197、−0.1659±0.0233、9.182±1.467)が得られた。なお、この他に指標式11と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図85、図86、図87および図88に示す。また図85、図86、図87および図88に示す式における各係数の値は、それを実数倍したものでもよい。
指標式13による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図89)のAUCによる評価を行い、0.909±0.027(95%信頼区間は0.857〜0.961)が得られ診断性能が高く有用な指標であることが判明した。また指標式13による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.16%として最適なカットオフ値を求めると、カットオフ値が−1.477となり、感度87.1%、特異度88.1%、陽性適中率1.16%、陰性適中率99.98%、正診率88.08%が得られ(図89)、診断性能が高く有用な指標であることが判明した。
実施例16で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式14としてThr、Ile、His、Trpから構成される線形判別関数(アミノ酸変数Thr、Ile、His、Trpの数係数は順に、−0.0021±−0.0011、0.0039±−0.0018、−0.0038±−0.0023、−0.0143±−0.0024)が得られた。なお、この他に指標式14と同等の判別性能を有する線形判別関数は複数得られた。それらを図90、図91および図92に示す。なお、図90、図91および図92に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式14による胃癌の診断性能を胃癌群と非胃癌群の2群判別に関して、ROC曲線(図93)のAUCによる評価を行い、0.914±0.024(95%信頼区間は0.867〜0.962)が得られ診断性能が高く有用な指標であることが判明した。また指標式14による胃癌群と非胃癌群の2群判別のカットオフ値について、胃癌群の有症率を0.16%として最適なカットオフ値を求めると、カットオフ値が−0.935となり、感度85.7%、特異度89.8%、陽性適中率1.33%、陰性適中率99.97%、正診率89.82%が得られ(図93)、診断性能が高く有用な指標であることが判明した。
実施例16で用いたサンプルデータを用いた。胃癌に関して胃癌群と非胃癌群の2群判別を行うロジスティック回帰式を用いたアミノ酸変数の中から各式に出現するアミノ酸変数の最大値は4として、全ての式のROC曲線下面積を計算した。このとき、各組み合わせでROC曲線下面積が上位100位、250位、500位、1000位までの判別式で、出現頻度の高い順にアミノ酸を10種類抽出した。その結果、上位100位、250位、500位、1000位までの判別式中常に出現頻度が上位10位以内になるアミノ酸として、Trp、Asn、Glu、Cit、Thr、Tyr、Argが抽出され、これらのアミノ酸を変数として用いた多変量判別式が胃癌群と非胃癌群の2群間の判別能を持つことが判明した(図94)。
以上のように、本発明にかかる胃癌の評価方法、胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体は、産業上の多くの分野、特に医薬品や食品、医療などの分野で広く実施することができ、特に、胃癌の病態予測や疾病リスク予測やプロテオームやメタボローム解析などを行うバイオインフォマティクス分野において極めて有用である。
100 胃癌評価装置
102 制御部
102a 要求解釈部
102b 閲覧処理部
102c 認証処理部
102d 電子メール生成部
102e Webページ生成部
102f 受信部
102g 胃癌状態情報指定部
102h 多変量判別式作成部
102h1 候補多変量判別式作成部
102h2 候補多変量判別式検証部
102h3 変数選択部
102i 判別値算出部
102j 判別値基準評価部
102j1 判別値基準判別部
102k 結果出力部
102m 送信部
104 通信インターフェース部
106 記憶部
106a 利用者情報ファイル
106b アミノ酸濃度データファイル
106c 胃癌状態情報ファイル
106d 指定胃癌状態情報ファイル
106e 多変量判別式関連情報データベース
106e1 候補多変量判別式ファイル
106e2 検証結果ファイル
106e3 選択胃癌状態情報ファイル
106e4 多変量判別式ファイル
106f 判別値ファイル
106g 評価結果ファイル
108 入出力インターフェース部
112 入力装置
114 出力装置
200 クライアント装置(情報通信端末装置)
300 ネットワーク
400 データベース装置

Claims (1)

  1. 評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データに含まれるAsn,Cys,His,Met,Orn,Phe,Trp,Pro,Lys,Leu,Glu,Arg,Ala,Thr,Tyrのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき胃癌の状態を評価する濃度値基準評価ステップ
    を含むことを特徴とする胃癌の評価方法。
JP2015096911A 2008-02-06 2015-05-11 胃癌の評価方法 Pending JP2015143717A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096911A JP2015143717A (ja) 2008-02-06 2015-05-11 胃癌の評価方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008026837 2008-02-06
JP2008026837 2008-02-06
JP2015096911A JP2015143717A (ja) 2008-02-06 2015-05-11 胃癌の評価方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009552454A Division JP5976987B2 (ja) 2008-02-06 2009-01-30 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラム、記録媒体および情報通信端末装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017121743A Division JP2017198694A (ja) 2008-02-06 2017-06-21 取得方法、胃癌評価装置、胃癌評価プログラムおよび胃癌評価システム

Publications (1)

Publication Number Publication Date
JP2015143717A true JP2015143717A (ja) 2015-08-06

Family

ID=40952080

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2009552454A Active JP5976987B2 (ja) 2008-02-06 2009-01-30 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラム、記録媒体および情報通信端末装置
JP2015096911A Pending JP2015143717A (ja) 2008-02-06 2015-05-11 胃癌の評価方法
JP2017121743A Pending JP2017198694A (ja) 2008-02-06 2017-06-21 取得方法、胃癌評価装置、胃癌評価プログラムおよび胃癌評価システム
JP2020028837A Active JP7198787B2 (ja) 2008-02-06 2020-02-21 取得方法、算出方法、胃癌評価装置、算出装置、胃癌評価プログラム、算出プログラムおよび胃癌評価システム
JP2022015164A Active JP7193020B2 (ja) 2008-02-06 2022-02-02 取得方法、算出方法、胃癌評価装置、算出装置、胃癌評価プログラム、算出プログラムおよび胃癌評価システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009552454A Active JP5976987B2 (ja) 2008-02-06 2009-01-30 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラム、記録媒体および情報通信端末装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2017121743A Pending JP2017198694A (ja) 2008-02-06 2017-06-21 取得方法、胃癌評価装置、胃癌評価プログラムおよび胃癌評価システム
JP2020028837A Active JP7198787B2 (ja) 2008-02-06 2020-02-21 取得方法、算出方法、胃癌評価装置、算出装置、胃癌評価プログラム、算出プログラムおよび胃癌評価システム
JP2022015164A Active JP7193020B2 (ja) 2008-02-06 2022-02-02 取得方法、算出方法、胃癌評価装置、算出装置、胃癌評価プログラム、算出プログラムおよび胃癌評価システム

Country Status (5)

Country Link
US (1) US20110035156A1 (ja)
JP (5) JP5976987B2 (ja)
KR (1) KR101272207B1 (ja)
CN (3) CN104407158B (ja)
WO (1) WO2009099005A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184257A (ja) * 2018-04-02 2019-10-24 味の素株式会社 胃癌の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、評価システム、及び端末装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470848B2 (ja) 2006-08-04 2014-04-16 味の素株式会社 肺癌の評価方法、肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラム、記録媒体、および、情報通信端末装置
EP2053405A4 (en) * 2006-08-04 2009-11-11 Ajinomoto Kk METHOD FOR EVALUATING STRESS, STRESS EVALUATION DEVICE, STRESS EVALUATION METHOD, STRESS EVALUATION SYSTEM, STRESS EVALUATION PROGRAM AND RECORDING MEDIUM
WO2008075663A1 (ja) 2006-12-21 2008-06-26 Ajinomoto Co., Inc. 大腸癌の評価方法、ならびに大腸癌評価装置、大腸癌評価方法、大腸癌評価システム、大腸癌評価プログラムおよび記録媒体
JP5746810B2 (ja) 2006-12-21 2015-07-08 味の素株式会社 乳癌の評価方法、ならびに乳癌評価装置、乳癌評価方法、乳癌評価システム、乳癌評価プログラムおよび記録媒体
KR101542037B1 (ko) * 2006-12-21 2015-08-05 아지노모토 가부시키가이샤 암 상태의 평가 방법, 및 암 평가 장치, 암 평가 방법, 암 평가 시스템, 암 평가 프로그램 및 기록 매체
JP5976987B2 (ja) * 2008-02-06 2016-08-24 味の素株式会社 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラム、記録媒体および情報通信端末装置
CN101960310A (zh) * 2008-03-04 2011-01-26 味之素株式会社 癌症种类的评价方法
KR101817058B1 (ko) * 2008-06-20 2018-01-11 아지노모토 가부시키가이샤 여성 생식기암의 평가 방법
CN102066946B (zh) 2008-06-20 2016-08-31 味之素株式会社 前列腺疾病的评价方法
KR101349083B1 (ko) * 2012-02-28 2014-01-16 한국식품연구원 간 추출물의 대사체 농도를 측정하여 노화 진단 판단 방법
JP6269502B2 (ja) * 2012-11-27 2018-01-31 味の素株式会社 膵臓癌の評価方法、膵臓癌評価装置、膵臓癌評価方法、膵臓癌評価プログラム、膵臓癌評価システムおよび端末装置
JP2016184221A (ja) * 2015-03-25 2016-10-20 富士フイルム株式会社 診療支援装置とその作動方法および作動プログラム、並びに診療支援システム
JPWO2018066621A1 (ja) 2016-10-04 2019-07-18 味の素株式会社 大腸癌の評価方法、評価装置、評価プログラム、評価システム、及び端末装置
WO2018101450A1 (ja) * 2016-12-01 2018-06-07 味の素株式会社 癌モニタリングの方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム、及び端末装置
CN117153392B (zh) * 2023-08-25 2024-08-27 几象智造(深圳)科技有限公司 一种胃癌预后预测的标志物、评估模型及其构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126472A (ja) * 1984-11-24 1986-06-13 Advance Res & Dev Co Ltd 診断方法
WO2006098192A1 (ja) * 2005-03-16 2006-09-21 Ajinomoto Co., Inc. 生体状態評価装置、生体状態評価方法、生体状態評価システム、生体状態評価プログラム、評価関数作成装置、評価関数作成方法、評価関数作成プログラムおよび記録媒体
US20080305962A1 (en) * 2005-07-29 2008-12-11 Ralph Markus Wirtz Methods and Kits for the Prediction of Therapeutic Success, Recurrence Free and Overall Survival in Cancer Therapies

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059724A (en) * 1997-02-14 2000-05-09 Biosignal, Inc. System for predicting future health
US6300136B1 (en) * 1997-09-03 2001-10-09 The Trustees Of The University Of Pennsylvania Methods for diagnosis and treatment of tumors in humans
CN1612936A (zh) * 2001-11-09 2005-05-04 苏尔斯精细医药公司 利用基因表达分布图识别、监控和治疗疾病以及鉴定生物学状态
CN100502763C (zh) * 2002-12-09 2009-06-24 味之素株式会社 生物体状态信息处理装置和其方法、以及生物体状态信息管理系统
US20060170928A1 (en) * 2003-12-24 2006-08-03 Vadivel Masilamani Masila's cancer detector based on optical analysis of body fluids
US7869033B2 (en) * 2003-12-24 2011-01-11 Vadivel Masilamani Cancer detection by optical analysis of body fluids
US20100004871A1 (en) * 2005-12-27 2010-01-07 Power3 Medical Products, Inc. Identities, specificities, and use of twenty two (22) differentially expressed protein biomarkers for blood based diagnosis of breast cancer
WO2007107334A1 (en) * 2006-03-20 2007-09-27 Nowicky Wassili Ex vivo cancer diagnostic method
JP5470848B2 (ja) * 2006-08-04 2014-04-16 味の素株式会社 肺癌の評価方法、肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラム、記録媒体、および、情報通信端末装置
US20090075284A1 (en) * 2006-09-19 2009-03-19 The Regents Of The University Of Michigan Metabolomic profiling of prostate cancer
WO2008075663A1 (ja) * 2006-12-21 2008-06-26 Ajinomoto Co., Inc. 大腸癌の評価方法、ならびに大腸癌評価装置、大腸癌評価方法、大腸癌評価システム、大腸癌評価プログラムおよび記録媒体
KR101542037B1 (ko) * 2006-12-21 2015-08-05 아지노모토 가부시키가이샤 암 상태의 평가 방법, 및 암 평가 장치, 암 평가 방법, 암 평가 시스템, 암 평가 프로그램 및 기록 매체
JP5746810B2 (ja) * 2006-12-21 2015-07-08 味の素株式会社 乳癌の評価方法、ならびに乳癌評価装置、乳癌評価方法、乳癌評価システム、乳癌評価プログラムおよび記録媒体
JP5976987B2 (ja) * 2008-02-06 2016-08-24 味の素株式会社 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラム、記録媒体および情報通信端末装置
CN101960310A (zh) * 2008-03-04 2011-01-26 味之素株式会社 癌症种类的评价方法
KR101817058B1 (ko) * 2008-06-20 2018-01-11 아지노모토 가부시키가이샤 여성 생식기암의 평가 방법
CN102066946B (zh) * 2008-06-20 2016-08-31 味之素株式会社 前列腺疾病的评价方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126472A (ja) * 1984-11-24 1986-06-13 Advance Res & Dev Co Ltd 診断方法
WO2006098192A1 (ja) * 2005-03-16 2006-09-21 Ajinomoto Co., Inc. 生体状態評価装置、生体状態評価方法、生体状態評価システム、生体状態評価プログラム、評価関数作成装置、評価関数作成方法、評価関数作成プログラムおよび記録媒体
US20080305962A1 (en) * 2005-07-29 2008-12-11 Ralph Markus Wirtz Methods and Kits for the Prediction of Therapeutic Success, Recurrence Free and Overall Survival in Cancer Therapies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
平井慶徳: "胃癌患者のアミノ酸代謝に関する研究", 日本外科学会雑誌, vol. 第66巻、第8号, JPN6016023080, 1965, pages 983 - 1013, ISSN: 0003340785 *
權雅憲, 印牧俊樹, 上辻章二, 上山泰男, 山中英治, 日置紘士郎, 胃癌腫瘍増大に伴う血漿遊離アミノ酸と各種, JPN6013047079, ISSN: 0003340784 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184257A (ja) * 2018-04-02 2019-10-24 味の素株式会社 胃癌の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、評価システム、及び端末装置
JP7230335B2 (ja) 2018-04-02 2023-03-01 味の素株式会社 取得方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、及び評価システム

Also Published As

Publication number Publication date
CN104407158B (zh) 2019-03-29
CN101939652A (zh) 2011-01-05
JP2022058852A (ja) 2022-04-12
JP7198787B2 (ja) 2023-01-04
CN104407158A (zh) 2015-03-11
KR20100120673A (ko) 2010-11-16
JP2017198694A (ja) 2017-11-02
US20110035156A1 (en) 2011-02-10
JP5976987B2 (ja) 2016-08-24
CN104237528B (zh) 2017-10-31
CN101939652B (zh) 2015-01-07
JP2020073943A (ja) 2020-05-14
CN104237528A (zh) 2014-12-24
JP7193020B2 (ja) 2022-12-20
JPWO2009099005A1 (ja) 2011-05-26
WO2009099005A1 (ja) 2009-08-13
KR101272207B1 (ko) 2013-06-07

Similar Documents

Publication Publication Date Title
JP7193020B2 (ja) 取得方法、算出方法、胃癌評価装置、算出装置、胃癌評価プログラム、算出プログラムおよび胃癌評価システム
JP5470848B2 (ja) 肺癌の評価方法、肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラム、記録媒体、および、情報通信端末装置
JP5746811B2 (ja) 大腸癌の評価方法、ならびに大腸癌評価装置、大腸癌評価方法、大腸癌評価システム、大腸癌評価プログラムおよび記録媒体
JP6551484B2 (ja) 取得方法、算出方法、前立腺疾患評価装置、算出装置、前立腺疾患評価プログラム、算出プログラム及び前立腺疾患評価システム
KR101542037B1 (ko) 암 상태의 평가 방법, 및 암 평가 장치, 암 평가 방법, 암 평가 시스템, 암 평가 프로그램 및 기록 매체
JP6586980B2 (ja) 取得方法、算出方法、女性生殖器癌評価装置、算出装置、女性生殖器癌評価プログラム、算出プログラム及び女性生殖器癌評価システム
WO2009110517A1 (ja) 癌種の評価方法
JP5746810B2 (ja) 乳癌の評価方法、ならびに乳癌評価装置、乳癌評価方法、乳癌評価システム、乳癌評価プログラムおよび記録媒体
JP6002117B2 (ja) 取得方法、評価装置、評価プログラム、記録媒体および評価システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171010