JP2015143618A - Optical characteristics measuring method and optical characteristics measuring apparatus - Google Patents

Optical characteristics measuring method and optical characteristics measuring apparatus Download PDF

Info

Publication number
JP2015143618A
JP2015143618A JP2014016281A JP2014016281A JP2015143618A JP 2015143618 A JP2015143618 A JP 2015143618A JP 2014016281 A JP2014016281 A JP 2014016281A JP 2014016281 A JP2014016281 A JP 2014016281A JP 2015143618 A JP2015143618 A JP 2015143618A
Authority
JP
Japan
Prior art keywords
window
mueller matrix
measuring
system including
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014016281A
Other languages
Japanese (ja)
Other versions
JP6273504B2 (en
Inventor
蓮花 金
Lianhua Jin
蓮花 金
英一 近藤
Hidekazu Kondo
英一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2014016281A priority Critical patent/JP6273504B2/en
Publication of JP2015143618A publication Critical patent/JP2015143618A/en
Application granted granted Critical
Publication of JP6273504B2 publication Critical patent/JP6273504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem in which, when optical characteristics of a measuring object in a cell are measured, a photoelastic effect of an entrance window and an emission window as optical windows of the cell reduces accuracy in measuring original optical characteristics of the measuring object.SOLUTION: An optical characteristics measuring method includes the steps of: arranging a measuring object in a cell; measuring a Mueller matrix of a system including a window from deflected incident light and emission light obtained through an emission window by radiating the incident light to the measuring object through an entrance window of the cell; acquiring a birefringence phase difference and a main axis azimuth of the entrance window and the emission window from the measured Mueller matrix of the system including the window; acquiring Mueller matrices of the entrance window and the emission window; acquiring a Mueller matrix of the measuring object; and acquiring Ψ indicating an amplitude ratio of p and s components of the emission light as angle, and a phase difference Δ, of the measuring object.

Description

本発明は、光学セル内に配置された測定対象物に対してエリプソメトリーを利用して測定対象物の表面や表面上の薄膜の光学特性(膜厚や屈折率)を測定する方法において、光学セルの窓における光弾性効果の影響を排除し、正確に測定する方法に関する。   The present invention relates to a method for measuring the optical properties (film thickness and refractive index) of a surface of a measurement object and a thin film on the surface using ellipsometry with respect to the measurement object placed in an optical cell. The present invention relates to a method for accurately measuring by eliminating the influence of the photoelastic effect on the cell window.

光は電磁波であり、横波の性質を有する。互いに直交する3軸(x、y、z)座標系を前提として、光の進行方向をz軸方向とすると、光の電界ベクトル(または磁界ベクトル)の振動方向はxy平面に沿った方向であり、x軸成分とy軸成分に分けることができる。そのときx軸成分とy軸成分の位相差と振幅比が時間と共にランダムに変化する光を無偏光、変化なしで一定の光を偏光という。光の偏光状態はx軸成分とy軸成分の位相差と振幅比の値と関係がある。   Light is an electromagnetic wave and has the property of a transverse wave. Assuming a three-axis (x, y, z) coordinate system orthogonal to each other and the light traveling direction is the z-axis direction, the vibration direction of the electric field vector (or magnetic field vector) of the light is along the xy plane. Can be divided into an x-axis component and a y-axis component. At that time, light in which the phase difference and amplitude ratio of the x-axis component and y-axis component change randomly with time is referred to as non-polarized light, and constant light without change is referred to as polarized light. The polarization state of light is related to the phase difference between the x-axis component and the y-axis component and the value of the amplitude ratio.

光学的異方性をもつ透明測定対象物または測定対象物表面に対して、ある偏光状態の光を照射し、透過光や反射光等の出射光を取得すると、入射光と出射光との間で偏光状態の変化が観察される。この偏光状態の変化から、透明測定対象物の異方性または測定対象物表面の光学特性に関する情報を取得することを偏光計測と称する。なお、測定対象物の異方性は、分子構造の異方性、応力の存在などと関係があり、測定試料表面の光学特性は屈折率や薄膜の膜厚と関係がある。   When a transparent measurement object with optical anisotropy or the surface of the measurement object is irradiated with light in a certain polarization state and output light such as transmitted light or reflected light is obtained, the light is between the incident light and the output light. A change in the polarization state is observed. Obtaining information related to the anisotropy of the transparent measurement object or the optical properties of the surface of the measurement object from this change in polarization state is referred to as polarization measurement. The anisotropy of the measurement object is related to the anisotropy of the molecular structure, the presence of stress, and the optical characteristics of the measurement sample surface are related to the refractive index and the film thickness of the thin film.

測定対象物表面の反射による偏光状態の変化を測定する偏光計測方法をエリプソメトリーといい、エリプソメトリーを用いた測定系をエリプソメータという。エリプソメトリーでは一般にx、 y、 z座標系の代わりにs、 p、 z直交座標系を用いる。図1に示すように、光のs軸成分とp軸成分をs偏光、p偏光と呼ぶ。p偏光とs偏光は異なる振幅反射係数をもつ。そのため、測定対象物表面での反射によりp、s偏光成分のそれぞれの振幅および位相は大きく変化する。エリプソメトリーでは、反射したp、s偏光成分の振幅比を角度で表したPsi(Ψ)と位相差を表したDel (Δ)の二つの値を決定する。   A polarization measurement method for measuring a change in polarization state due to reflection on the surface of an object to be measured is called ellipsometry, and a measurement system using ellipsometry is called an ellipsometer. Ellipsometry generally uses s, p, z orthogonal coordinate systems instead of x, y, z coordinate systems. As shown in FIG. 1, the s-axis component and the p-axis component of light are called s-polarized light and p-polarized light. p-polarized light and s-polarized light have different amplitude reflection coefficients. Therefore, the amplitude and phase of each of the p and s polarized components change greatly due to reflection on the surface of the measurement object. In ellipsometry, two values are determined: Psi (Ψ) representing the amplitude ratio of the reflected p and s polarized components as an angle and Del (Δ) representing the phase difference.

エリプソメトリーは測定精度が高くかつその場計測ができるため、真空容器や液体容器などのセル内でプロセス中の測定対象物の評価にもしばしば用いられる。セルは入射窓と出射窓の2つ観察光学窓を備えている。理想的な観察光学窓は光学的等方性なもので、つまり測定では光学窓による入射光および出射光の偏光状態が変わらないのが望ましい。しかし、実際の窓の製作過程、設置過程、実験過程では外部からの応力より窓は異方性を持つことになる。この応力により材料に光学的異方性が現れる現象を光弾性効果という。光弾性効果を表す量として複屈折量があり、複屈折量は複屈折位相差(δ)と主軸方位(θ)で決まる。複屈折位相差は光が異方性物質を透過した際、光のp軸成分とs軸成分に生じる位相差をいい、主軸方位はs、p座標系における異方性材料の進相軸(進相軸と垂直に遅相軸がある)の方位をいう。光弾性効果による異方性材料の主軸方位は主応力の方位により決まる。エリプソメトリーによるセル内の測定対象物のDelとPsiの計測には、2つの窓の複屈折量が含まれ、測定対象物の光学特性を正確に測定することは困難である。   Since ellipsometry has high measurement accuracy and can perform in-situ measurement, it is often used for evaluation of a measurement object in a process in a cell such as a vacuum container or a liquid container. The cell has two observation optical windows, an entrance window and an exit window. The ideal observation optical window is optically isotropic, that is, it is desirable that the polarization state of incident light and outgoing light by the optical window does not change during measurement. However, in the actual manufacturing process, installation process, and experimental process, the window has anisotropy due to external stress. The phenomenon in which optical anisotropy appears in a material due to this stress is called a photoelastic effect. There is a birefringence amount as an amount representing the photoelastic effect, and the birefringence amount is determined by the birefringence phase difference (δ) and the principal axis direction (θ). The birefringence phase difference is a phase difference generated between the p-axis component and the s-axis component of light when the light passes through the anisotropic substance. The principal axis direction is s, and the fast axis of the anisotropic material (p This is the orientation of the slow axis perpendicular to the fast axis. The principal axis orientation of the anisotropic material due to the photoelastic effect is determined by the orientation of the principal stress. The measurement of Del and Psi of the measurement object in the cell by ellipsometry includes birefringence amounts of two windows, and it is difficult to accurately measure the optical characteristics of the measurement object.

光学窓の影響を小さくするため、実験条件によりなるべく複屈折の小さい材料を選び、同時に小さい角度近似
を用いた窓補正行うことが非特許文献1に開示されている。しかしこの方法では、複屈折率の小さい材料は高価であることや、小さい角度近似のできる複屈折位相差はδ<0.1ラジアン程度までであることなど、制約が大きい。
In order to reduce the influence of the optical window, select a material with as little birefringence as possible according to the experimental conditions, and at the same time approximate a small angle
Non-Patent Document 1 discloses performing window correction using the. However, in this method, a material having a small birefringence is expensive, and a birefringence phase difference that can be approximated by a small angle is limited to about δ <0.1 radians.

特許文献1には、あらかじめ窓無状態での測定対象物からの反射光の偏光状態を測定し、続いてセル内で窓有状態での測定対象物からの反射光の偏光状態を測定し、窓の光弾性効果を求め、窓補正を行うことが開示されている。この窓補正式では計算の繁雑さを避けるため、入射窓と出射窓の光弾性効果による複屈折量が同じと仮定している。しかし、実際には入射窓と出射窓に生じる複屈折量が同じとは限らない。   In Patent Document 1, the polarization state of the reflected light from the measurement object in the absence of a window is measured in advance, and subsequently the polarization state of the reflected light from the measurement object in the presence of a window in the cell is measured. It is disclosed that the photoelastic effect of a window is obtained and window correction is performed. In this window correction formula, it is assumed that the birefringence amount due to the photoelastic effect of the entrance window and the exit window is the same in order to avoid complicated calculation. However, in practice, the amount of birefringence generated in the entrance window and the exit window is not always the same.

非特許文献2には、あらかじめ窓無状態での測定対象物からの反射光の偏光状態を測定する必要はないものの、入射窓―測定対象物―出射窓系と出射窓―測定対象物―入射窓系からの光の偏光状態を測定し、その偏光状態の違いから窓の光弾性効果を求め窓補正を行うことが開示されている。このとき、両光経路及び入力する光強度は一致しなければならない。そのためエリプソメータにビームスプリッターや反射鏡、光検出器となる光学素子を追加するなどの工夫が必要である。これらの従来の方法は計測・窓補正を行うため手間がかかる、また窓材の複屈折量はセル内の環境の影響で変わってしまうというような問題もある。   In Non-Patent Document 2, it is not necessary to measure the polarization state of the reflected light from the measurement object in the absence of a window in advance, but the incident window-measurement object-exit window system and exit window-measurement object-incident It is disclosed that the polarization state of light from a window system is measured, and the window is corrected by obtaining the photoelastic effect of the window from the difference in polarization state. At this time, both light paths and the input light intensity must match. Therefore, it is necessary to devise such as adding an optical element to be a beam splitter, a reflecting mirror, and a photodetector to the ellipsometer. These conventional methods are troublesome because they perform measurement and window correction, and the birefringence amount of the window material changes due to the influence of the environment in the cell.

特開2012-52972号公報JP 2012-52972 A

H. G. Tompkins,E. A. Irene, “Handbook of Ellipsometry,” Chapter 5, pp. 407-425, (2005)H. G. Tompkins, E. A. Irene, “Handbook of Ellipsometry,” Chapter 5, pp. 407-425, (2005) N. Nissim, S. Eliezer, L. Bakshi, D.Moreno, L. Perelmutter, “In situ correction of windows’ linear birefringence inellipsometry measurements,” Optics Communications, 282, 3414-3420 (2009)N. Nissim, S. Eliezer, L. Bakshi, D. Moreno, L. Perelmutter, “In situ correction of windows’ linear birefringence inellipsometry measurements, ”Optics Communications, 282, 3414-3420 (2009)

従来の測定方法では、以上説明したように制約があり、十分な測定精度が得られないという課題がある。   As described above, the conventional measurement method has limitations, and there is a problem that sufficient measurement accuracy cannot be obtained.

以上のような課題を解決するため、本発明による光学特性の測定方法は、測定対象物をセル内に配置するステップと、偏光した入射光と、前記入射光をセルの入射窓を通して前記測定対象物に照射し出射窓を通して得られた出射光とから、窓を含む系のミューラー行列を測定するステップと、測定した前記窓を含む系のミューラー行列から前記入射窓と前記出射窓の複屈折位相差と主軸方位を求めるステップと、前記入射窓と前記出射窓のミューラー行列を求めるステップと、前記測定対象物のミューラー行列を求めるステップと、前記測定対象物の、出射光のp,s成分の振幅比を角度で表したΨと位相差Δを求めるステップと、を備えたことを特徴としている。   In order to solve the above problems, a method for measuring an optical characteristic according to the present invention includes a step of placing a measurement object in a cell, polarized incident light, and the incident light through the incident window of the cell. A step of measuring the Mueller matrix of the system including the window from the emitted light obtained by irradiating the object and passing through the output window; and the birefringence of the incident window and the output window from the measured Mueller matrix of the system including the window Obtaining a phase difference and a principal axis direction; obtaining a Mueller matrix of the entrance window and the exit window; obtaining a Mueller matrix of the measurement object; and p and s components of the emitted light of the measurement object. And a step of obtaining ψ representing the amplitude ratio in angle and a phase difference Δ.

また、本発明による光学特性の測定装置は、光源と、偏光発生系と、偏光検出系と、光検出器と、入射窓と出射窓を有する、測定対象物を内部に収めるセルと、前記偏光発生系から照射される入射光と、前記偏光検出系に入る出射光の偏光特性から、窓を含む系のミューラー行列を算出する演算部を備え、前記演算部は、前記窓を含む系のミューラー行列から、前記測定対象物のミューラー行列をさらに算出することを特徴としている。   An optical property measuring apparatus according to the present invention includes a light source, a polarization generation system, a polarization detection system, a photodetector, a cell having an entrance window and an exit window, and a cell in which a measurement object is contained, and the polarization A calculation unit that calculates a Mueller matrix of a system including a window from incident light irradiated from a generation system and polarization characteristics of outgoing light entering the polarization detection system, and the calculation unit includes a Mueller of the system including the window; The Mueller matrix of the measurement object is further calculated from the matrix.

制約がなく、精度の高い光学統制の測定が可能であるという効果がある。   There is no restriction, and there is an effect that measurement of optical control with high accuracy is possible.

は、光の偏光状態を示す図である。FIG. 4 is a diagram showing a polarization state of light. は、本発明による光学特性の測定装置を説明するための模式図である。These are the schematic diagrams for demonstrating the measuring apparatus of the optical characteristic by this invention. は、本発明による光学特性の測定方法のフローを説明するための図である。These are the figures for demonstrating the flow of the measuring method of the optical characteristic by this invention. は、本発明の実施例1による光学特性の測定方法のフローを示す図である。FIG. 5 is a diagram showing a flow of a method for measuring optical characteristics according to Example 1 of the present invention. は、本発明の実施例2による光学特性の測定方法のフローを示す図である。FIG. 5 is a diagram showing a flow of a method for measuring optical characteristics according to Example 2 of the present invention. は、本発明により、光学特性を測定した例の波長依存性を示す図であり、補正前である窓を含む系と、補正後である測定対象と、測定対象物のみを測定した場合の光学特性を示す図である。These are figures which show the wavelength dependence of the example which measured the optical characteristic by this invention, the optical system at the time of measuring the system containing the window before correction | amendment, the measuring object after correction | amendment, and a measuring object only. It is a figure which shows a characteristic. は、本発明により、複屈折位相差と主軸方位を測定した例の波長依存性を示す図であり、光学窓である入射窓と出射窓の複屈折位相差と主軸方位を示す図である。These are figures which show the wavelength dependence of the example which measured birefringence phase difference and principal axis direction by this invention, and are figures which show the birefringence phase difference and principal axis direction of the incident window which is an optical window, and an output window.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図2は本発明を実施するための光学特性の測定装置の模式図である。
測定装置は、光を発光するための白色光源1と、この光源から光を受けて測定対象物へ照射するプロブ光について偏光状態を制御するための偏光発生系2と、この偏光発生系2から測定対象物4の表面で反射して得られる光の偏光状態を検出する偏光検出系7、光の強度を測定する光検出器8を備えている。9はプロブ光のビームを示している。測定対象物4はセル5の中に設置され、セル5は光学窓である入射窓3と、出射窓6を備えている。ここでセル5は、測定対象物4を設置するだけでなく、測定対象物4になんらかの処理を施す処理室を兼ねていてもよい。また10は演算部であり、入射光の偏光状態と出射光の偏光状態からミューラー行列を算出する。ここで、演算部は、白色光源1、偏光発生系2、偏光検出系7、光検出器8の制御部を兼ねていてもよい。
FIG. 2 is a schematic diagram of an optical characteristic measuring apparatus for carrying out the present invention.
The measuring device includes a white light source 1 for emitting light, a polarization generation system 2 for controlling the polarization state of the probe light received from the light source and irradiated on the measurement object, and the polarization generation system 2 A polarization detection system 7 that detects the polarization state of light obtained by reflection on the surface of the measurement object 4 and a photodetector 8 that measures the intensity of light are provided. Reference numeral 9 denotes a probe light beam. The measurement object 4 is installed in a cell 5, and the cell 5 includes an entrance window 3 and an exit window 6 which are optical windows. Here, the cell 5 may serve not only as the measurement object 4 but also as a processing chamber for performing some processing on the measurement object 4. Reference numeral 10 denotes an arithmetic unit that calculates a Mueller matrix from the polarization state of incident light and the polarization state of outgoing light. Here, the calculation unit may also serve as a control unit for the white light source 1, the polarization generation system 2, the polarization detection system 7, and the photodetector 8.

図3は本発明を実施するための光学特性の測定方法のフローを示す図である。本発明による光学特性の測定方法は、測定対象物をセル内に設置するステップと、測定対象物に入射窓、出射窓を含む系(以下、「窓を含む系」という)のミューラー行列を測定するステップと、演算部により入射窓と出射窓の光弾性効果を示す特性である複屈折位相差δiと主軸方位θiを求めるステップと、演算部により入射窓と出射窓のミューラー行列を求めるステップと、演算部により測定対象物のミューラー行列を求めるステップと、演算部により測定対象物の光学特性を示すΨとΔを測定するステップを備えている。 FIG. 3 is a diagram showing a flow of an optical characteristic measuring method for carrying out the present invention. The method for measuring optical characteristics according to the present invention includes a step of placing a measurement object in a cell, and measuring a Mueller matrix of a system including an entrance window and an exit window (hereinafter referred to as a “system including a window”). Calculating the birefringence phase difference δ i and the principal axis direction θ i , which are characteristics indicating the photoelastic effect of the entrance window and the exit window, and obtaining the Mueller matrix of the entrance window and the exit window by the operation unit. A step, a step of obtaining a Mueller matrix of the measurement object by the calculation unit, and a step of measuring Ψ and Δ indicating the optical characteristics of the measurement object by the calculation unit.

ここでiは1または2であり、1は入射光、2は出射光を示す。またΨとΔは測定対象物の光学特性を示すものであり、Ψは出射光の偏光特性を示すp、s成分の振幅比を角度で示したもの、Δはその位相差を示している。   Here, i is 1 or 2, 1 indicates incident light, and 2 indicates outgoing light. Also, Ψ and Δ indicate the optical characteristics of the measurement object, Ψ indicates the amplitude ratio of the p and s components indicating the polarization characteristics of the emitted light, and Δ indicates the phase difference.

また本測定で得られるミューラー行列は分光ミューラー行列であり、波長毎のミューラー行列のことである。ミューラー行列は測定対象物の光との相互作用を示す4×4のの行列で、その16の要素は上述したDel(Δ)、Psi(Ψ)やδi,θi等で決まる。 The Mueller matrix obtained by this measurement is a spectral Mueller matrix, which is a Mueller matrix for each wavelength. The Mueller matrix is a 4 × 4 matrix indicating the interaction of the measurement object with light, and its 16 elements are determined by the above-described Del (Δ), Psi (Ψ), δ i , θ i and the like.

以下に、本発明の実施例について詳細に説明する。   Hereinafter, examples of the present invention will be described in detail.

図4は、図2に示す光学特性の測定装置を用いた、本実施例の光学特性の測定方法のフローを示す図である。本実施例では、窓を含む系のミューラー行列の6つの行列要素m12、m13、m14とm21、m31、m41から入射窓と出射窓の光弾性効果を示すそれぞれ任意の2要素の比をとり、特性である複屈折位相差δiと主軸方位θiを求める。 FIG. 4 is a diagram showing a flow of an optical property measurement method of the present embodiment using the optical property measurement device shown in FIG. In the present example, six arbitrary matrix elements m 12 , m 13, m 14 and m 21 , m 31 , and m 41 of the Mueller matrix of the system including the window are used to represent any two of the photoelastic effects of the entrance window and the exit window. By taking the ratio of the elements, the characteristic birefringence phase difference δ i and the principal axis direction θ i are obtained.

また、測定対象物のミューラー行列の要素は、図4(a)に示すように、窓を含むミューラー行列の行列要素m22、〜m44の9つの要素から任意の2つを選択して連立方程式を立て、解くことにより得られる。 Also, the elements of the Mueller matrix of the object to be measured, as shown in FIG. 4 (a), the matrix element m 22 Mueller matrix containing the window, select any two of nine elements ~m 44 simultaneous It is obtained by establishing and solving an equation.

ミューラー行列を、
と記述する。
Mueller matrix
Is described.

測定対象物と光学窓である入射窓と出射窓のミューラー行列SとWはそれぞれΨとΔ、δとθを用いて、

と記述することができる。
The Mueller matrices S and W of the object to be measured and the optical window that are the entrance window and the exit window are respectively Ψ and Δ, δ and θ,
When
Can be described.

測定対象物をセルの中に配置したまま評価する時、測定したミューラー行列は式2で示すものではなく入射窓と出射窓のミューラー行列W1とW2を含む以下の式となる。
但し、
ここで、各記号は以下の式を表す。
When the measurement object is evaluated while being placed in the cell, the measured Mueller matrix is not shown in Equation 2, but the following equation including Mueller matrices W1 and W2 of the entrance window and the exit window.
However,
Here, each symbol represents the following formula.

次に式(4) と(5)のミューラー行列から各窓の複屈折(δi (0≦δi≦π)、θi (-π/2≦θi ≦π/2))と測定対象物のDel(Δ)、Psi(Ψ)を求める手順を説明する。 Next, from the Mueller matrix of equations (4) and (5), birefringence (δ i (0 ≤ δ i ≤ π), θ i (-π / 2 ≤ θ i ≤ π / 2)) of each window and measurement target A procedure for obtaining Del (Δ) and Psi (Ψ) of an object will be described.

まず行列要素m12、m13、m14とm21、m31、m41からそれぞれ任意の2要素の比をとり、連立方程式を立てる。例えば、Xi=cosδi,Yi=sin2θiと定義すると、行列要素m13、m14、m31、m41から以下の式が得られる。
式(8)を整理すると、
となる。
First, a simultaneous equation is established by taking an arbitrary ratio of two elements from matrix elements m 12 , m 13 , m 14 and m 21 , m 31 , m 41 . For example, if X i = cos δ i and Y i = sin 2θ i are defined, the following equations are obtained from the matrix elements m 13 , m 14 , m 31 , and m 41 .
Organizing equation (8)
It becomes.

また同様に、行列要素m12、m14、m21、m41から以下の式が得られる。
式(9)を式(10)に代入し整理するとYiが得られる。
以下の式からδi, θiを求められる。
Similarly, the following expression is obtained from the matrix elements m 12 , m 14 , m 21 , and m 41 .
Substituting equation (9) into equation (10) and rearranging yields Y i .
Δ i and θ i can be obtained from the following equations.

式(11)と(12)の+と−の符号は行列要素m12、m13、m14、m21、m31、m41を用いて,以下のステップで決める。 The signs of + and − in equations (11) and (12) are determined by the following steps using matrix elements m 12 , m 13 , m 14 , m 21 , m 31 and m 41 .

行列要素m12とm21に含まれるAiは常に正数であるため、m12とm21の値からNの符号が決まる。m12とm13の積m12・m13>0 (或いはm21・m31>0)の場合、Bi>0となる。また、m12・m13<0 (或いはm21・m31<0)の場合,Bi<0となる。同じく、m12とm14の積m12・m14<0 (或いはm21・m41>0)の場合、Ci>0となる。また、m12・m14>0 (或いはm21・m31<0)の場合、Ci<0となる。つづいて、
となる。
次に、求めたδi, θi を式(3)に代入し、入射窓と出射窓の完全なミューラー行列を求めることができる。すなわち各窓のAi、Bi、Ci、Di、Ei、Fiを求められる。
Since Ai included in the matrix elements m 12 and m 21 is always a positive number, the sign of N is determined from the values of m 12 and m 21 . For m 12 a product m 12 · m 13> 0 of m 13 (or m 21 · m 31> 0) , the Bi> 0. In addition, when m 12 · m 13 <0 (or m 21 · m 31 <0), Bi <0. Similarly, in the case of m 12 and product m 12 · m 14 of m 14 <0 (or m 21 · m 41> 0) , a Ci> 0. In the case of m 12 · m 14 > 0 (or m 21 · m 31 <0), Ci <0. Next,
It becomes.
Next, the obtained δ i and θ i are substituted into the equation (3), and a complete Mueller matrix of the entrance window and the exit window can be obtained. That is, Ai, Bi, Ci, Di, Ei, and Fi of each window are obtained.

次に、測定対象物試料のNは以下の式から求める。
Next, N of the measurement object sample is obtained from the following equation.

測定対象物のSCとSSはm22からm44の9つの行列要素の中から任意の2つ行列要素からなる2つの連立方程式から求められる。しかし、m23、m24、m32、m42の値は一般に小さく、計測系の測定ノイズが乗りやすい。そのため、図4(b)に示すように、値が主にSCとSS により決まるm33、m34、m43、m44を用いて導くことが望ましい。例えば、
m33とm34でなる連立方程式からSCとSSを求める。
The SC and SS of the object to be measured are obtained from two simultaneous equations composed of arbitrary two matrix elements among nine matrix elements from m 22 to m 44 . However, the values of m 23 , m 24 , m 32 , and m 42 are generally small, and measurement noise of the measurement system is likely to ride. Therefore, as shown in FIG. 4B, it is desirable to derive the values using m 33 , m 34 , m 43 , and m 44 whose values are mainly determined by SC and SS. For example,
Find SC and SS from simultaneous equations of m 33 and m 34 .

以下に、本発明の別な実施例について説明する。   In the following, another embodiment of the present invention will be described.

図5は、図2に示す光学特性の測定装置を用いた、本実施例の光学特性の測定方法のフローを示す図である。本実施例では、測定対象物のミューラー行列の要素は、図5に示すように、入射窓と出射窓のミューラー行列の逆行列を求め、窓を含むミューラー行列と演算することにより求められる。   FIG. 5 is a diagram showing a flow of the optical property measuring method of the present embodiment using the optical property measuring apparatus shown in FIG. In this embodiment, as shown in FIG. 5, the elements of the Mueller matrix of the measurement object are obtained by calculating an inverse matrix of the Mueller matrix of the entrance window and the exit window and calculating the Mueller matrix including the window.

δiとθiが求まると、入射窓と出射窓のミューラー行列W1とW2が求まる。続いて各窓の逆行列W1-1とW2-1を求め、以下の式から測定対象物のミューラー行列を導く。
When δ i and θ i are obtained, Mueller matrices W1 and W2 of the entrance window and the exit window are obtained. Subsequently, inverse matrices W1 -1 and W2 -1 of each window are obtained, and the Mueller matrix of the measurement object is derived from the following equation.

測定対象物のDel(Δ)とPsi(Ψ)は以下の式で求める。
Del (Δ) and Psi (Ψ) of the measurement object are obtained by the following equations.

図6、7は本発明により実際に測定した波長毎の測定対象物のDel(Δ)、Psi(Ψ)および各窓のδ、θである。ここで用いた測定対象物(試料)は厚み25nmの酸化膜が被覆されたシリコン基板であり、入射窓と出射窓は位相子を用いたものである。   6 and 7 show Del (Δ) and Psi (Ψ) of the measurement object for each wavelength actually measured according to the present invention, and δ and θ of each window. The measurement object (sample) used here is a silicon substrate coated with an oxide film having a thickness of 25 nm, and the entrance window and the exit window use phase shifters.

図6は、補正前の窓を含む系のΔ、Ψと、補正後の測定対象物のΔとΨ、また測定対象物のみで光学窓を通さずに測定したΔとΨを示したグラフである。補正後の測定対象物のΔとΨ、及び測定対象物のみで光学窓を通さずに測定したΔとΨはどの波長においても同じ値となり、線が重なっていることがわかる。すなわち、本測定方法により、精度よく光学特性が得られることを示している。図7は、入射窓と出射窓のδとθを示したものである。   FIG. 6 is a graph showing Δ and Ψ of a system including a window before correction, Δ and Ψ of a measurement object after correction, and Δ and Ψ measured without passing through an optical window only with the measurement object. is there. It can be seen that Δ and Ψ of the measurement object after correction, and Δ and Ψ measured without passing through the optical window with only the measurement object have the same value at any wavelength, and the lines overlap. That is, this measurement method shows that optical characteristics can be obtained with high accuracy. FIG. 7 shows δ and θ of the entrance window and the exit window.

本発明による光学特性の測定方法及び光学特性の測定装置は、光学窓を備えたセル内に測定対象物を配置した状態で精度よく測定ができるので、成膜やエッチングなどの製造過程におけるその場観察が可能となり、半導体素子やディスプレイデバイスなどの電子機器や光学機器等の製造過程において、製造管理やリアルタイムでの測定データ収集に用いることができる。   The optical property measuring method and the optical property measuring apparatus according to the present invention can accurately measure a measurement object placed in a cell having an optical window. Observation is possible, and it can be used for manufacturing management and collection of measurement data in real time in the manufacturing process of electronic devices such as semiconductor elements and display devices, and optical devices.

1 光源
2 偏光発生系
3 入射窓
4 測定対象物
5 セル
6 出射窓
7 偏光検出系
8 光検出器
9 プロブ光ビーム
10 演算部
DESCRIPTION OF SYMBOLS 1 Light source 2 Polarization generation system 3 Incident window 4 Measurement object 5 Cell 6 Output window 7 Polarization detection system 8 Photodetector 9 Probe light beam 10 Calculation part

Claims (11)

測定対象物をセル内に配置するステップと、
偏光した入射光と、前記入射光をセルの入射窓を通して前記測定対象物に照射し出射窓を通して得られた出射光とから、窓を含む系のミューラー行列を測定するステップと、
測定した前記窓を含む系のミューラー行列から前記入射窓と前記出射窓の複屈折位相差と主軸方位を求めるステップと、
前記入射窓と前記出射窓のミューラー行列を求めるステップと、
前記測定対象物のミューラー行列を求めるステップと、
前記測定対象物の、出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求めるステップと、
を備えたことを特徴とする光学特性の測定方法。
Placing a measurement object in a cell;
Measuring the Mueller matrix of the system including the window from the polarized incident light, and the exit light obtained by irradiating the object to be measured through the entrance window of the cell and passing through the exit window;
Determining the birefringence phase difference and principal axis orientation of the entrance window and the exit window from the measured Mueller matrix of the system including the window;
Obtaining a Mueller matrix of the entrance window and the exit window;
Obtaining a Mueller matrix of the measurement object;
Obtaining Ψ and phase difference Δ representing the amplitude ratio of the p and s components of the emitted light of the measurement object as an angle;
A method for measuring optical characteristics, comprising:
前記入射窓と前記出射窓の複屈折位相差と主軸方位を求めるステップは、測定した前記窓を含む系のミューラー行列の第1行k列要素(k=2、3、4)と、第j行1列要素(j=2、3、4)から得られる連立方程式を解くことにより求めることを特徴とする請求項1に記載の光学特性の測定方法。   The step of obtaining the birefringence phase difference and the principal axis direction of the entrance window and the exit window includes a first row k column element (k = 2, 3, 4) of a Mueller matrix of the system including the measured window, and the j th 2. The method for measuring an optical characteristic according to claim 1, wherein the optical characteristic is obtained by solving simultaneous equations obtained from row 1 column elements (j = 2, 3, 4). 前記測定対象物のミューラー行列を求めるステップは、得られた前記入射窓と出射窓のミューラー行列と、前記窓を含む系のミューラー行列の第j行(j=2、3、4)k列(k=2、3、4)の9つの要素のうち2つの要素から得られる連立方程式を解くことにより求めることを特徴とする請求項2に記載の光学特性の測定方法。   The step of obtaining the Mueller matrix of the object to be measured includes the obtained Mueller matrix of the entrance window and the exit window, and the jth row (j = 2, 3, 4) k columns of the Mueller matrix of the system including the window ( 3. The method for measuring optical characteristics according to claim 2, wherein the optical characteristic is obtained by solving simultaneous equations obtained from two elements among nine elements of k = 2, 3, 4). 前記測定対象物のミューラー行列を求めるステップは、得られた前記入射窓と出射窓のミューラー行列と、前記窓を含む系のミューラー行列の第j行(j=3、4)k列(k=3、4)の4つの要素のうち2つの要素から得られる連立方程式を解くことにより求めることを特徴とする請求項2に記載の光学特性の測定方法。   The step of obtaining the Mueller matrix of the object to be measured includes the obtained Mueller matrices of the entrance window and the exit window, and the j-th row (j = 3, 4) k columns (k =) of the Mueller matrix of the system including the window. 3. The method for measuring optical characteristics according to claim 2, wherein the optical characteristic is obtained by solving simultaneous equations obtained from two of the four elements of (3, 4). 前記測定対象物のミューラー行列を求めるステップは、得られた前記入射窓と前記出射窓のミューラー行列のそれぞれの逆行列と、得られた前記窓を含む系のミューラー行列を演算することにより得られることを特徴とする請求項2に記載の光学特性の測定方法。   The step of obtaining the Mueller matrix of the measurement object is obtained by calculating the inverse matrix of the obtained Mueller matrix of the entrance window and the exit window and the Mueller matrix of the system including the obtained window. The method for measuring an optical characteristic according to claim 2. 光源と、
偏光発生系と、
偏光検出系と、
光検出器と、
入射窓と出射窓を有する、測定対象物を内部に収めるセルと、
前記偏光発生系から照射される入射光と、前記偏光検出系に入る出射光の偏光特性から、窓を含む系のミューラー行列を算出する演算部を備え、
前記演算部は、前記窓を含む系のミューラー行列から、前記測定対象物のミューラー行列をさらに算出することを特徴とする光学特性の測定装置。
A light source;
A polarization generating system;
A polarization detection system;
A photodetector;
A cell having an entrance window and an exit window and containing an object to be measured;
A calculation unit that calculates a Mueller matrix of a system including a window from the polarization characteristics of incident light irradiated from the polarization generation system and emission light entering the polarization detection system,
The apparatus for measuring optical characteristics, wherein the calculation unit further calculates a Mueller matrix of the measurement object from a Mueller matrix of a system including the window.
前記演算部は、測定した前記窓を含む系のミューラー行列から前記入射窓と前記出射窓の複屈折位相差と主軸方位を求め、前記入射窓と前記出射窓のミューラー行列を求め、前記測定対象物のミューラー行列を算出することを特徴とする請求項6に記載の光学特性の測定装置。   The computing unit obtains the birefringence phase difference and principal axis direction of the entrance window and the exit window from the measured Mueller matrix of the system including the window, obtains the Mueller matrix of the entrance window and the exit window, and the measurement object 7. The apparatus for measuring optical characteristics according to claim 6, wherein a Mueller matrix of an object is calculated. 前記演算部は、測定した前記窓を含む系のミューラー行列の第1行k列要素(k=2、3、4)と、第j行1列要素(j=2、3、4)から得られる連立方程式を解くことにより、前記入射窓と前記出射窓の複屈折位相差と主軸方位を求めることを特徴とする請求項7に記載の光学特性の測定装置。   The computing unit is obtained from the first row k column element (k = 2, 3, 4) and the j th row 1 column element (j = 2, 3, 4) of the measured Mueller matrix including the window. 8. The apparatus for measuring optical characteristics according to claim 7, wherein a birefringence phase difference and a principal axis direction of the entrance window and the exit window are obtained by solving the simultaneous equations. 前記演算部は、得られた前記入射窓と前記出射窓のミューラー行列と、前記窓を含む系のミューラー行列の第j行k列(j=2、3、4、k=2、3、4)の9つの要素のうち2つの要素から得られる連立方程式を解くことにより、前記測定対象物のミューラー行列を求めることを特徴とする請求項7から8のいずれかに記載の光学特性の測定装置。   The computing unit is obtained Mueller matrix of the entrance window and the exit window, jth row k column (j = 2, 3, 4, k = 2, 3, 4) of the Mueller matrix of the system including the window 9. The optical characteristic measuring apparatus according to claim 7, wherein a Mueller matrix of the measurement object is obtained by solving simultaneous equations obtained from two of the nine elements. . 前記演算部は、得られた前記入射窓と前記出射窓のミューラー行列と、前記窓を含む系のミューラー行列の第j行k列(j=3、4、k=3、4)の4つの要素のうち2つの要素から得られる連立方程式を解くことにより、前記測定対象物のミューラー行列を求めることを特徴とする請求項7から8のいずれかに記載の光学特性の測定装置。   The calculation unit includes the obtained Mueller matrix of the entrance window and the exit window, and four rows of the j-th row and k-th column (j = 3, 4, k = 3, 4) of the Mueller matrix of the system including the window. 9. The optical characteristic measuring device according to claim 7, wherein a Mueller matrix of the measurement object is obtained by solving simultaneous equations obtained from two elements. 前記演算部は、得られた前記入射窓と前記出射窓のミューラー行列のそれぞれの逆行列と、得られた前記窓を含む系のミューラー行列を演算することにより、前記測定対象物のミューラー行列を求めることを特徴とする請求項7から8のいずれかに記載の光学特性の測定装置。   The calculation unit calculates the Mueller matrix of the measurement object by calculating the inverse matrix of the obtained Mueller matrix of the entrance window and the exit window, and the Mueller matrix of the system including the obtained window. 9. The optical characteristic measuring apparatus according to claim 7, wherein the optical characteristic measuring apparatus is obtained.
JP2014016281A 2014-01-31 2014-01-31 Optical characteristic measuring method and optical characteristic measuring apparatus Active JP6273504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016281A JP6273504B2 (en) 2014-01-31 2014-01-31 Optical characteristic measuring method and optical characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016281A JP6273504B2 (en) 2014-01-31 2014-01-31 Optical characteristic measuring method and optical characteristic measuring apparatus

Publications (2)

Publication Number Publication Date
JP2015143618A true JP2015143618A (en) 2015-08-06
JP6273504B2 JP6273504B2 (en) 2018-02-07

Family

ID=53888765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016281A Active JP6273504B2 (en) 2014-01-31 2014-01-31 Optical characteristic measuring method and optical characteristic measuring apparatus

Country Status (1)

Country Link
JP (1) JP6273504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132467A (en) * 2017-02-17 2018-08-23 国立大学法人山梨大学 Error correction method and two-dimensional polarization analysis method, as well as error correction device and two-dimensional polarization analysis device
CN108534993A (en) * 2018-03-21 2018-09-14 华中科技大学 A kind of LC variable phase delay device polarization characteristic detection method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619933B (en) * 2016-12-09 2018-04-01 國立清華大學 A stress measurement method of optical materials and system thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034777A (en) * 1998-09-29 2000-03-07 J.A. Woollam Co. Inc. Methods for uncorrelated evaluation of parameters in parameterized mathematical model equations for window retardence, in ellipsometer and polarimeter systems
WO2006103953A1 (en) * 2005-03-28 2006-10-05 National University Corporation Tokyo University Of Agriculture And Technology Optical characteristics measuring device and optical characteristics measuring method
JP2010145332A (en) * 2008-12-22 2010-07-01 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034777A (en) * 1998-09-29 2000-03-07 J.A. Woollam Co. Inc. Methods for uncorrelated evaluation of parameters in parameterized mathematical model equations for window retardence, in ellipsometer and polarimeter systems
WO2006103953A1 (en) * 2005-03-28 2006-10-05 National University Corporation Tokyo University Of Agriculture And Technology Optical characteristics measuring device and optical characteristics measuring method
JP2010145332A (en) * 2008-12-22 2010-07-01 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. STRAAIJER ET AL.: "THE INFLUENCE OF CELL WINDOW IMPERFECTIONS ON THE CALIBRATION AND MEASURED DATA OF TWO TYPES OF ROTA", SURFACE SCIENCE, vol. Vol. 96, JPN6017042256, 1980, pages pp. 217-231 *
GERALD E. JELLISON, JR.: "Windows in ellipsometry measurements", APPLIED OPTICS, vol. Vol. 38, No. 22, JPN6017042261, 1 August 1999 (1999-08-01), pages pp. 4784-4789 *
N. NISSIM ET AL.: "In situ correction of windows' linear birefringence in ellipsometry measurements", OPTICS COMMUNICATIONS, vol. Vol. 282, JPN6017042259, 2009, pages pp. 3414-3420 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132467A (en) * 2017-02-17 2018-08-23 国立大学法人山梨大学 Error correction method and two-dimensional polarization analysis method, as well as error correction device and two-dimensional polarization analysis device
CN108534993A (en) * 2018-03-21 2018-09-14 华中科技大学 A kind of LC variable phase delay device polarization characteristic detection method and system
CN108534993B (en) * 2018-03-21 2020-01-21 华中科技大学 Method and system for detecting polarization characteristic of liquid crystal variable phase retarder

Also Published As

Publication number Publication date
JP6273504B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
CN101666626B (en) Method for ellipsometry and device thereof
US8830463B2 (en) Rotating-element ellipsometer and method for measuring properties of the sample using the same
US10145785B2 (en) Optical element rotation type Mueller-matrix ellipsometer and method for measuring Mueller-matrix of sample using the same
KR102043477B1 (en) Spectral matching based calibration
US10317334B2 (en) Achromatic rotating-element ellipsometer and method for measuring mueller-matrix elements of sample using the same
TW201732243A (en) Raman spectroscopy based measurements in patterned structures
US9989454B2 (en) Method and apparatus for measuring parameters of optical anisotropy
JP6273504B2 (en) Optical characteristic measuring method and optical characteristic measuring apparatus
CN106595501A (en) Method of measuring thickness or uniformity of optical thin film
US8008621B2 (en) Apparatus of measuring the orientation relationship between neighboring grains using a goniometer in a transmission electron microscope and method for revealing the characteristics of grain boundaries
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP2006513418A (en) Film thickness measuring apparatus and method using improved high-speed Fourier transform
JP2007139722A (en) Instrument and method for measuring optical characteristic
CN114136894A (en) Error calibration method and device of polarization detection system based on vortex wave plate
US9041939B2 (en) Apparatus and method for compensating for sample misalignment
KR20170055661A (en) Apparatus of real time imaging spectroscopic ellipsometry for large-area thin film measurements
CN105181604A (en) Multi-angle incident single shot ellipsometry measurement method
JP6805469B2 (en) Error correction method and two-dimensional ellipsometry, as well as error correction device and two-dimensional ellipsometry device
JP2017009338A (en) Measurement method of optical characteristic and measurement instrument of optical characteristic
JP2007155480A (en) Surface measurement apparatus
CN111812040B (en) Method for measuring organic light emitting material, computing device and computer storage medium
US20240027186A1 (en) Apparatus to characterize substrates and films
JP2018200401A (en) Optical functional element, polarization analyzer, and method for manufacturing optical functional element
JP2009085887A (en) Measuring device and method
WO2021175984A1 (en) Birefringence measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6273504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250