JP2018132467A - Error correction method and two-dimensional polarization analysis method, as well as error correction device and two-dimensional polarization analysis device - Google Patents

Error correction method and two-dimensional polarization analysis method, as well as error correction device and two-dimensional polarization analysis device Download PDF

Info

Publication number
JP2018132467A
JP2018132467A JP2017027524A JP2017027524A JP2018132467A JP 2018132467 A JP2018132467 A JP 2018132467A JP 2017027524 A JP2017027524 A JP 2017027524A JP 2017027524 A JP2017027524 A JP 2017027524A JP 2018132467 A JP2018132467 A JP 2018132467A
Authority
JP
Japan
Prior art keywords
formula
polarizer
error
light
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017027524A
Other languages
Japanese (ja)
Other versions
JP6805469B2 (en
Inventor
蓮花 金
Lianhua Jin
蓮花 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2017027524A priority Critical patent/JP6805469B2/en
Publication of JP2018132467A publication Critical patent/JP2018132467A/en
Application granted granted Critical
Publication of JP6805469B2 publication Critical patent/JP6805469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an error correction method and two-dimensional polarization analysis method, as well as an error correction device and two-dimensional polarization analysis device for quickly and highly accurately measuring a change in polarization state of reflection light of a measurement object by a single time two-dimensional measurement.SOLUTION: An error correction method includes: a light intensity measurement step of irradiating a measurement object with optically modulated light with respective conditions of a polarizer and phase element changed, receiving, by light reception means, a two-dimensional image of the light reflected from the measurement object and passing through an analyzer, and obtaining light intensity for each pixel of the two-dimensional image; and an error calculation step of, when a manufacturing error of retardation of the phase element, an initial error of a principal-axis azimuth of the phase element, and an initial error of a transmission-axis azimuth of the polarizer are present, obtaining light intensity for each pixel of the two-dimensional image in a state corrected based on these errors, and obtaining, from results of these light intensity, a manufacturing error of the retardation of the phase element, an initial error of the principal-axis azimuth of the phase element, and an initial error of the transmission-axis azimuth of the polarizer.SELECTED DRAWING: Figure 2

Description

本発明は、誤差補正方法及び二次元偏光解析法、並びに誤差補正装置及び二次元偏光解析装置に関する。   The present invention relates to an error correction method, a two-dimensional ellipsometry, an error correction device, and a two-dimensional ellipsometer.

エリプソメトリーは、半導体計測からバイオテクノロジーまでの幅広い分野で応用されており、例えば、日本の堀場製作所(非特許文献1参照)、独国のSENTECH社(非特許文献2参照)、独国のACCURION社(非特許文献3参照)、米国のJ.A.WOOLLAM社(非特許文献4参照)などの国内外企業がエリプソメーターの開発及び市販を盛んに行っている。   Ellipsometry is applied in a wide range of fields from semiconductor measurement to biotechnology. For example, HORIBA, Ltd. (see Non-Patent Document 1), SENTTECH (Germany) (see Non-Patent Document 2), ACCURION (Germany) (See Non-Patent Document 3), J. A. Domestic and foreign companies such as WOOLAM (see Non-Patent Document 4) are actively developing and marketing ellipsometers.

現在市販されているエリプソメーターのほとんどは点計測用である。この点計測では一回の測定で、測定対象物の一ヶ所しか測定できない。このため、二次元情報を得るには、測定対象物を走査しながら点計測した後、測定結果のマッピングを行うマッピング方法が行われている。しかし、前記マッピング方法は、計測に時間がかかる上に、プローブ光のベーム径によって分解能が制限されてしまうため、最高分解能は50μm程度である。   Most of the ellipsometers currently on the market are for point measurement. In this point measurement, only one point of the measurement object can be measured in one measurement. For this reason, in order to obtain two-dimensional information, a mapping method is used in which point measurement is performed while scanning a measurement object, and then measurement results are mapped. However, the mapping method takes time to measure and the resolution is limited by the beam diameter of the probe light, so the maximum resolution is about 50 μm.

現在実用化されているイメージングエリプソメーターとしては、独国のAccurion社のNull法によるもののみである。前記Null法は、位相子と偏光子を少しずつ回転させて、光強度がゼロ又は最小値となる位置を求めることが必要である。このため、前記Null法の最高分解能は1μmと高精度であるが、計測に非常に時間がかかるので、点計測には用いられていない。前記Null法をイメージングエリプソメーターに用いた場合でも、一回の計測で二次元情報は得られず、更に、測定対象物の表面状態によっては膨大な数の測定を行う必要がある。   The only imaging ellipsometer that is currently in practical use is the Null method of the German company Accurion. In the Null method, it is necessary to rotate the phase shifter and the polarizer little by little to obtain the position where the light intensity becomes zero or the minimum value. For this reason, the highest resolution of the Null method is as high as 1 μm, but it takes a very long time to measure, so it is not used for point measurement. Even when the Null method is used for an imaging ellipsometer, two-dimensional information cannot be obtained by one measurement, and it is necessary to perform a huge number of measurements depending on the surface state of the measurement object.

前記イメージングエリプソメーターの実用化を制限する大きな理由の一つとして、エリプソメーターに用いる偏光素子に製造誤差やアライメント誤差が存在することがある。点計測の場合、プローブ光が常に偏光素子の中心部を通るため、位相子のリタデーションの製造誤差は一定と考えてよいが、二次元計測の場合、位相子のリタデーションの製造誤差が位相子の場所毎に存在する。そのため、高精度かつ定量的な二次元計測を実現するには、すべての誤差を補正する必要がある。
更に、二次元計測の場合、受光手段で受光した二次元画像のピクセル毎の信号処理は、点計測の場合の数十万倍〜数百万倍の計算処理が必要となるため、この点からも、イメージングエリプソメーターの実用化は極めて困難であるのが現状である。
One of the main reasons for limiting the practical application of the imaging ellipsometer is that there are manufacturing errors and alignment errors in the polarizing element used in the ellipsometer. In the case of point measurement, since the probe light always passes through the center of the polarizing element, the manufacturing error of the retardation of the phase shifter may be considered to be constant, but in the case of two-dimensional measurement, the manufacturing error of the retardation of the phase shifter is Present for each location. Therefore, in order to realize highly accurate and quantitative two-dimensional measurement, it is necessary to correct all errors.
Furthermore, in the case of two-dimensional measurement, the signal processing for each pixel of the two-dimensional image received by the light receiving means requires calculation processing several hundred thousand to several million times that in the case of point measurement. However, it is very difficult to put an imaging ellipsometer into practical use.

http://www.horiba.com/jp/thin-film-metrology/http://www.horiba.com/jp/thin-film-metrology/ http://www.sentech.com/en/Home__2235/http://www.sentech.com/en/Home__2235/ http://www.accurion.com/solutions-for-sciencehttp://www.accurion.com/solutions-for-science https://www.jawoollam.com/https://www.jawoollam.com/

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、一回の二次元計測により測定対象物の反射光の偏光状態の変化を迅速かつ高精度に測定するための誤差補正方法及び二次元偏光解析法、並びに誤差補正装置及び二次元偏光解析装置を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides an error correction method, a two-dimensional ellipsometry method, an error correction apparatus, two An object is to provide a two-dimensional ellipsometer.

前記課題を解決するための手段としての本発明の誤差補正方法は、偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める光強度測定工程と、
前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める誤差算出工程と、を含む。
The error correction method of the present invention as a means for solving the above-described problems is to irradiate a measurement object with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and reflect the light from the measurement object to detect it. A light intensity measuring step of receiving a two-dimensional image of the light that has passed through the photon by a light receiving means and obtaining a light intensity for each pixel of the two-dimensional image;
When there is a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, each pixel of the two-dimensional image is corrected with these errors. An error calculation step for obtaining a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, from the results of these light intensities, including.

前記誤差補正方法は、偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、下記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める光強度測定工程と、
前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び前記εPにより、前記数式(1)を下記数式(2)に補正し、前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出工程と、を含むことが好ましい。
The error correction method irradiates a measurement object with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and receives a two-dimensional image of light reflected from the measurement object and passed through the analyzer. A light intensity measurement step for obtaining a light intensity I for each pixel of the two-dimensional image represented by the following mathematical formula (1):
When there is a manufacturing error ε δ of retardation of the phaser, an initial error ε Q of the main axis direction of the phaser, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ , the ε Q , and by the epsilon P, equation (1) is corrected by the following equation (2), preferably contains, said epsilon [delta], the error calculation step of obtaining the epsilon Q, and the epsilon P from the equation (2) .

[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).

[数式(2)]
ただし、前記数式(2)中、a、b、δ、θQ、θP、N、C、及びSは、前記数式(1)と同じ意味を表す。εδは、位相子のリタデーションの製造誤差を表す。εQは、位相子の主軸方位の初期誤差を表す。εPは、偏光子の透過軸方位の初期誤差を表す。
[Formula (2)]
However, in said Numerical formula (2), a, b, (delta), (theta) Q , (theta) P , N, C, and S represent the same meaning as the said Numerical formula (1). epsilon [delta] represents a manufacturing error of retardation of retarder. ε Q represents the initial error of the principal axis orientation of the phaser. ε P represents the initial error of the transmission axis orientation of the polarizer.

本発明の誤差補正装置は、偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める光強度測定手段と、
前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める誤差算出手段と、を有する。
The error correction apparatus according to the present invention irradiates a measurement object with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and reflects a two-dimensional image of the light reflected from the measurement object and passed through the analyzer. A light intensity measuring means that receives light by a light receiving means and obtains a light intensity for each pixel of the two-dimensional image;
When there is a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, each pixel of the two-dimensional image is corrected with these errors. An error calculating means for obtaining a retardation error of the phase shifter, an initial error of the main axis direction of the phase shifter, and an initial error of the transmission axis direction of the polarizer from the results of the light intensity; Have

前記誤差補正装置は、偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める光強度測定手段と、
前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び前記εPにより、前記数式(1)を前記数式(2)に補正し、前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出手段と、を有することが好ましい。
The error correction device irradiates a measurement object with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and receives a two-dimensional image of light reflected from the measurement object and passed through the analyzer. A light intensity measuring means for obtaining a light intensity I for each pixel of the two-dimensional image represented by the mathematical formula (1);
When there is a manufacturing error ε δ of retardation of the phaser, an initial error ε Q of the main axis direction of the phaser, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ , the ε Q , and by the epsilon P, the corrected equation (1) into equation (2) preferably has, with the epsilon [delta], error calculating means for obtaining the epsilon Q, and the epsilon P from said equation (2) .

本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、一回の二次元計測により測定対象物の反射光の偏光状態の変化を迅速かつ高精度に測定するための誤差補正方法及び二次元偏光解析法、並びに誤差補正装置及び二次元偏光解析装置を提供することができる。   According to the present invention, the above-described problems can be solved and the above-described object can be achieved, and the change in the polarization state of the reflected light of the measurement object can be measured quickly and accurately by a single two-dimensional measurement. Error correction method and two-dimensional ellipsometry, error correction apparatus and two-dimensional ellipsometry apparatus can be provided.

図1は、光の偏光状態を示す模式図である。FIG. 1 is a schematic diagram showing the polarization state of light. 図2は、本発明で用いる反射型の二次元偏光解析装置の一例を示す概略図である。FIG. 2 is a schematic view showing an example of a reflection type two-dimensional ellipsometer used in the present invention. 図3は、本発明で用いる透過型の二次元偏光解析装置の一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of a transmission type two-dimensional ellipsometer used in the present invention. 図4は、第1の実施形態の誤差補正方法におけるフローチャートである。FIG. 4 is a flowchart of the error correction method according to the first embodiment. 図5は、第2の実施形態の誤差補正方法におけるフローチャートである。FIG. 5 is a flowchart of the error correction method according to the second embodiment. 図6は、第1の実施形態の二次元偏光解析法におけるフローチャートである。FIG. 6 is a flowchart in the two-dimensional ellipsometry of the first embodiment. 図7は、第2の実施形態の二次元偏光解析法におけるフローチャートである。FIG. 7 is a flowchart in the two-dimensional ellipsometry of the second embodiment. 図8は、第3の実施形態の二次元偏光解析法におけるフローチャートである。FIG. 8 is a flowchart in the two-dimensional ellipsometry of the third embodiment. 図9は、第4の実施形態の二次元偏光解析法におけるフローチャートである。FIG. 9 is a flowchart in the two-dimensional ellipsometry of the fourth embodiment. 図10は、第5の実施形態の二次元偏光解析法におけるフローチャートである。FIG. 10 is a flowchart in the two-dimensional ellipsometry of the fifth embodiment. 図11は、実施例4のPSI(Ψ)と位相差DEL(Δ)を測定した結果を示す図である。FIG. 11 is a diagram illustrating the results of measuring the PSI (Ψ) and the phase difference DEL (Δ) of Example 4. 図12は、実施例5のPSI(Ψ)と位相差DEL(Δ)を測定した結果を示す図である。FIG. 12 is a diagram illustrating the results of measuring the PSI (Ψ) and the phase difference DEL (Δ) of Example 5.

(誤差補正方法及び誤差補正装置)
本発明の誤差補正方法は、光強度測定工程と、誤差算出工程と、を含み、更に必要に応じてその他の工程を含む。
(Error correction method and error correction apparatus)
The error correction method of the present invention includes a light intensity measurement step and an error calculation step, and further includes other steps as necessary.

本発明の誤差補正装置は、光強度測定手段と、誤差算出手段と、を有し、更に必要に応じてその他の手段を有する。   The error correction apparatus of the present invention includes a light intensity measurement unit and an error calculation unit, and further includes other units as necessary.

本発明の誤差補正方法は、本発明の誤差補正装置により好適に実施することができ、前記光強度測定工程は前記光強度測定手段により行うことができ、前記誤差算出工程は前記誤差算出手段により行うことができ、前記その他の工程は前記その他の手段により行うことができる。   The error correction method of the present invention can be suitably implemented by the error correction apparatus of the present invention, the light intensity measurement step can be performed by the light intensity measurement means, and the error calculation step is performed by the error calculation means. The other steps can be performed by the other means.

<光強度測定工程及び光強度測定手段>
前記光強度測定工程は、偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める工程であり、光強度測定手段により実施することができる。
前記光強度測定工程は、偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、下記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める工程であることが好ましい。
<Light intensity measuring step and light intensity measuring means>
The light intensity measurement step irradiates a measurement object with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and receives a two-dimensional image of light reflected from the measurement object and passed through the analyzer. This is a step of receiving light by the means and obtaining the light intensity for each pixel of the two-dimensional image, and can be carried out by the light intensity measuring means.
The light intensity measurement step irradiates a measurement object with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and receives a two-dimensional image of light reflected from the measurement object and passed through the analyzer. Preferably, the step of receiving light by the means and obtaining the light intensity I for each pixel of the two-dimensional image represented by the following mathematical formula (1).

[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).

−測定対象物−
前記測定対象物としては、表面ラフネスが小さく、斜入射で測定が行えるものであれば特に制限はなく、半導体計測からバイオテクノロジーまでの幅広い分野に用いられ、例えば、半導体の基板、薄膜、ゲート絶縁膜、リソグラフィー膜等;化学分野のポリマー膜、自己組織化膜、タンパク質、DNA;ディスプレイのTFT膜、透明導電膜、有機LED等;反射防止用の各種誘電体膜、CD及びDVD等の相変化材料、磁気光学膜;化学気相成長法(CVD)、プラズマCVD、分子線エピタキシー(MBE)、エッチング、酸化・熱処理、溶液処理、薄膜形成過程等の実時間観測などが挙げられる。
なお、前記測定対象物としての標準試料は、N、C、及びSが既知の安定した物質であり、例えば、シリコン基板や均一な酸化シリコン(SiO)膜付きのシリコン基板などが挙げられる。
-Measurement object-
The measurement object is not particularly limited as long as it has a small surface roughness and can be measured by oblique incidence, and is used in a wide range of fields from semiconductor measurement to biotechnology, for example, semiconductor substrates, thin films, and gate insulation. Films, lithography films, etc .; polymer films in the chemical field, self-assembled films, proteins, DNA; TFT films for displays, transparent conductive films, organic LEDs, etc .; various dielectric films for antireflection, phase changes such as CD and DVD Materials, magneto-optic films; real-time observation of chemical vapor deposition (CVD), plasma CVD, molecular beam epitaxy (MBE), etching, oxidation / heat treatment, solution processing, thin film formation process, and the like.
The standard sample as the measurement object is a stable substance with known N, C, and S, and examples thereof include a silicon substrate and a silicon substrate with a uniform silicon oxide (SiO 2 ) film.

−二次元偏光解析装置−
前記光強度の二次元測定は、二次元偏光解析装置を用いて行われる。なお、前記測定対象物の偏光状態の変化(DEL(Δ)、PSI(Ψ))を二次元計測する反射型の二次元偏光解析装置は、イメージングエリプソメーターとも呼ばれ、光源と、偏光子と、位相子と、検光子と、受光手段とを有し、更に必要に応じてその他の手段を有する。
なお、透過型の二次元偏光解析装置では、測定対象物は存在せず(空気)、光源と偏光素子と、受光手段とを平行に配置している。
-Two-dimensional ellipsometer-
The two-dimensional measurement of the light intensity is performed using a two-dimensional ellipsometer. The reflection type two-dimensional ellipsometer that measures the change in the polarization state (DEL (Δ), PSI (Ψ)) of the measurement object is also called an imaging ellipsometer, and includes a light source, a polarizer, , A phaser, an analyzer, and a light receiving means, and other means as necessary.
In the transmission type two-dimensional ellipsometer, there is no object to be measured (air), and the light source, the polarizing element, and the light receiving means are arranged in parallel.

−−光源−−
前記光源としては、平行光源が好ましく、例えば、レーザー、重水素(D)ランプ、キセノン(Xe)ランプ、ハロゲンランプ、グローバーランプ、又はこれらの組み合わせなどが挙げられる。
-Light source-
The light source is preferably a parallel light source, and examples thereof include lasers, deuterium (D 2 ) lamps, xenon (Xe) lamps, halogen lamps, global lamps, and combinations thereof.

−−偏光子(検光子)−−
前記偏光子は、通常は、光源の前に設置され、非偏光な光源から直線偏光を取り出すために使用される。
前記検光子は、受光手段の手前に置かれ、検光子を通過する光強度から偏光状態が決定される。
前記偏光子と前記検光子は、全く同じ偏光素子であるが、それぞれ役割が違うために区別して呼ばれている。
前記偏光子(又は検光子)としては、方解石と呼ばれるCaCO結晶のプリズム(グランテーラー・プリズム)等が用いられている。前記方解石は、垂直方向にだけ光学異方性を示すので1軸性の結晶である。
前記グランテーラー・プリズムは、プリズムを2つ組み合わせた構造となっており、光源からの非偏光な光から直線偏光だけが取り出される。x軸方向の直線偏光だけが通過する場合、このx軸は透過軸と呼ばれる。即ち、偏光子の透過軸方位とは、透過軸の方位をいう。
-Polarizer (analyzer)-
The polarizer is usually installed in front of a light source and used to extract linearly polarized light from a non-polarized light source.
The analyzer is placed in front of the light receiving means, and the polarization state is determined from the light intensity passing through the analyzer.
The polarizer and the analyzer are the same polarizing element, but are called differently because they have different roles.
As the polarizer (or analyzer), a CaCO 3 crystal prism (Grant Taylor prism) called calcite is used. The calcite is a uniaxial crystal because it exhibits optical anisotropy only in the vertical direction.
The Grand Taylor prism has a structure in which two prisms are combined, and only linearly polarized light is extracted from non-polarized light from a light source. When only linearly polarized light in the x-axis direction passes, this x-axis is called the transmission axis. That is, the transmission axis direction of the polarizer means the direction of the transmission axis.

−−位相子−−
前記位相子は、補償子又は移相子とも呼ばれ、偏光子の後ろ又は検光子の手前に設置され、直線偏光を楕円偏光に変換するために用いられる。前記位相子は偏光子と同様に屈折率の異方性を利用しており、基本的に立方形の複屈折結晶だけで構成されている。
前記位相子により45°の直線偏光が左回り円偏光に変換される場合、屈折率に異方性がある場合には、進相軸の光は相対的に速く進み、遅相軸では遅く進む。そのため、45°の直線偏光を位相子に入射すると、位相子から出た光のx、y成分には位相差(リタデーション)δが発生する。この位相差(リタデーション)δは、下記式で表される。
δ=2π/λ|n−n|d(ただし、式中、dは位相子の厚さを示す。)
上記式からわかるように、入射光の波長が変わるとδは変化する。δ=π/2の位相子のように位相が波長に対してλ/4ずれる場合には、位相子はλ/4波長板とも呼ばれる。
位相子の主軸方位は、s、p座標系における位相子の進相軸(進相軸と垂直に遅相軸がある)の方位をいう。
前記位相子としては、例えば、MgFや雲母などが用いられている。
--- Phaser--
The phaser is also called a compensator or a phase shifter, and is installed behind the polarizer or in front of the analyzer, and is used to convert linearly polarized light into elliptically polarized light. Similar to the polarizer, the phase shifter utilizes the anisotropy of the refractive index, and is basically composed only of a cubic birefringent crystal.
When the 45 ° linearly polarized light is converted into counterclockwise circularly polarized light by the phaser, if the refractive index is anisotropic, the fast axis light travels relatively fast and the slow axis travels slowly. . Therefore, when 45-degree linearly polarized light is incident on the phase shifter, a phase difference (retardation) δ is generated in the x and y components of the light emitted from the phase shifter. This phase difference (retardation) δ is expressed by the following equation.
δ = 2π / λ | n e −n 0 | d (where, d represents the thickness of the retarder)
As can be seen from the above equation, δ changes as the wavelength of the incident light changes. When the phase is shifted by λ / 4 with respect to the wavelength as in the case of δ = π / 2, the phaser is also called a λ / 4 wavelength plate.
The main axis direction of the phaser is the direction of the fast axis of the phaser in the s, p coordinate system (there is a slow axis perpendicular to the fast axis).
As the phase shifter, for example, MgF 2 or mica is used.

−−受光手段−−
前記受光手段は、前記検光子を通過した光の強度を受光でき、受光単位を複数有する素子が用いられ、これらの中でも、複数のピクセルからなる二次元画像を取得できる撮像素子が好適に用いられる。前記撮像素子としては、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)、ゲートCCDなどが挙げられる。
--Reception means--
The light receiving means is capable of receiving the intensity of light that has passed through the analyzer, and an element having a plurality of light receiving units is used. Among these, an imaging element that can acquire a two-dimensional image composed of a plurality of pixels is preferably used. . Examples of the image pickup device include a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), and a gate CCD.

−−その他の手段−−
前記その他の手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、制御手段などが挙げられる。
-Other means-
There is no restriction | limiting in particular as said other means, According to the objective, it can select suitably, For example, a control means etc. are mentioned.

エリプソメトリー(偏光解析法)は、入射光の偏光状態が測定対象物の表面の反射により変化する現象から、測定対象物の薄膜の厚みや屈折率などを得る方法である。エリプソメトリーを用いた測定系をエリプソメーターという。
光は電磁波であり、その電界ベクトルは光の進行方向に対して垂直に振動している。光はその電界ベクトルの振動がランダムな無偏光と、規則的な偏光とに区別される。偏光では、その電界ベクトルの先端の軌跡が、光の進行方向に垂直な平面内で直線、円、楕円を描いており、このような光はそれぞれ直線偏光、円偏光、及び楕円偏光と呼ばれている。
Ellipsometry (polarimetric analysis) is a method for obtaining the thickness, refractive index, etc. of the thin film of the measurement object from the phenomenon that the polarization state of incident light changes due to the reflection of the surface of the measurement object. A measurement system using ellipsometry is called an ellipsometer.
Light is an electromagnetic wave, and its electric field vector oscillates perpendicular to the traveling direction of the light. Light is classified into non-polarized light whose field vector oscillation is random and regular polarized light. In polarized light, the locus of the tip of the electric field vector draws a straight line, a circle, and an ellipse in a plane perpendicular to the light traveling direction, and such light is called linearly polarized light, circularly polarized light, and elliptically polarized light, respectively. ing.

図1に示すように、電場が入射面に対し平行に振動する直線偏光をp偏光、電場が入射面に対し垂直に振動する直線偏光をs偏光と呼ぶ。p偏光とs偏光は異なる振幅反射係数をもつ。そのため、測定対象物表面での反射によりp、s偏光成分のそれぞれの振幅及び位相は大きく変化する。エリプソメトリーでは、反射後のp、s偏光の位相差及び振幅比を角度で表したDEL(Δ)及びPSI(Ψ)を決定する。   As shown in FIG. 1, linearly polarized light whose electric field oscillates parallel to the incident surface is called p-polarized light, and linearly polarized light whose electric field oscillates perpendicularly to the incident surface is called s-polarized light. p-polarized light and s-polarized light have different amplitude reflection coefficients. Therefore, the amplitude and phase of each of the p and s polarized components change greatly due to reflection on the surface of the measurement object. In ellipsometry, DEL (Δ) and PSI (Ψ), which represent the phase difference and amplitude ratio of p and s-polarized light after reflection in terms of angle, are determined.

前記反射光の偏光状態の変化は、下記数式(a)のストークスベクトルSで表される。前記ストークスベクトルSを用いると、あらゆる偏光状態を表示することができる。   The change in the polarization state of the reflected light is represented by the Stokes vector S in the following mathematical formula (a). When the Stokes vector S is used, all polarization states can be displayed.

[数式(a)]
ただし、前記数式(a)中、S0は、入射光強度を示す。S1は、x方向の直線偏光が示す光強度Ixからy方向の光強度Iyを引いたものを示す。S2は、+45°方向の直線偏光の光強度I+45°から−45°方向の光強度I-45°を引いたものを示す。S3は、右回り円偏光の光強度IRから左回り円偏光の光強度ILを引いたものを示す。Tは、転置行列を表す。
[Formula (a)]
However, in the mathematical formula (a), S 0 represents the incident light intensity. S 1 represents the light intensity I x indicated by the linearly polarized light in the x direction minus the light intensity I y in the y direction. S 2 represents the light intensity I + 45 ° of linearly polarized light in the + 45 ° direction minus the light intensity I −45 ° in the −45 ° direction. S 3 shows what the intensity I R of the right-handed circularly polarized light by subtracting the light intensity I L of the left-handed circularly polarized light. T represents a transposed matrix.

前記光源からの入射光(自然光、非偏光)のストークスベクトルSinは、下記数式(b)で表される。 The Stokes vector S in of incident light (natural light, non-polarized light) from the light source is expressed by the following mathematical formula (b).

[数式(b)]
ただし、前記数式(b)中、Tは、転置行列を表す。
[Formula (b)]
In the mathematical formula (b), T represents a transposed matrix.

ここで、光と測定対象物(物体又は物質)の相互作用を示す量としてミューラー行列がある。
前記ミューラー行列は4×4の行列で、測定対象物によってその16の要素が異なる。
以下に、偏光子(又は検光子)のミューラー行列を下記数式(c)、位相子(補償子)のミューラー行列を下記数式(d)、及び測定対象物のミューラー行列を下記数式(e)にそれぞれ示す。
Here, there is a Mueller matrix as a quantity indicating the interaction between light and a measurement object (object or substance).
The Mueller matrix is a 4 × 4 matrix, and its 16 elements differ depending on the measurement object.
In the following, the Mueller matrix of the polarizer (or analyzer) is represented by the following formula (c), the Mueller matrix of the phase shifter (compensator) is represented by the following formula (d), and the Mueller matrix of the measurement object is represented by the following formula (e). Each is shown.

[数式(c):偏光子(又は検光子)のミューラー行列:MP(θP)]
ただし、前記数式(c)中、θpは偏光子の透過軸方位である。
[Formula (c): Mueller matrix of polarizer (or analyzer): M PP )]
However, in the mathematical formula (c), θ p is the transmission axis direction of the polarizer.

[数式(d):位相子のミューラー行列:MR(δ,θ)]
ただし、前記数式(d)中、δは位相子のリタデーション、θは位相子の主軸方位である。
[Formula (d): Mueller matrix of phaser: M R (δ, θ)]
In the mathematical formula (d), δ is retardation of the retarder, and θ is the principal axis direction of the retarder.

[数式(e):測定対象物のミューラー行列:MS
ただし、前記数式(e)中、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す。
[Formula (e): Mueller matrix of measurement object: M S ]
In Equation (e), Ψ represents a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ represents a phase difference between s-polarized light and p-polarized light.

したがって、前記エリプソメトリーにおいては、N(=cos2Ψ)、C(=sin2ΨcosΔ)、及びS(=sin2ΨsinΔ)を測定することにより、前記測定対象物のPSI(Ψ)、及びDEL(Δ)を求めることができる。   Therefore, in the ellipsometry, N (= cos 2 Ψ), C (= sin 2 Ψ cos Δ), and S (= sin 2 Ψ sin Δ) are measured to obtain the PSI (Ψ) and DEL (Δ) of the measurement object. Can do.

図2に示す反射型の二次元偏光解析装置100において、光源2からの入射光Linは偏光子3、及び位相子4を通過し、測定対象物1表面により反射され、反射光Loutは検光子5を通過した後、受光手段6により受光する。
本発明においては、測定対象物1のN(=cos2Ψ)、C(=sin2ΨcosΔ)、及びS(=sin2ΨsinΔ)を測定するために、検光子5の透過軸方位を45°(π/4)に固定し、偏光子3と位相子4をそれぞれの条件を変えて光変調した光を測定対象物1に照射し、測定対象物1から反射した光(反射光)のストークスベクトルSoutは、下記数式(f)で表される。
前記条件としては、例えば、回転、偏光素子(偏光子、位相子)の位置合わせなどが挙げられる。
In the reflection-type two-dimensional polarization analyzer 100 shown in FIG. 2, the incident light L in the light source 2 passes through the polarizer 3, and the phase shifter 4 is reflected by the measuring object 1 surface, the reflected light L out is After passing through the analyzer 5, the light is received by the light receiving means 6.
In the present invention, in order to measure N (= cos 2 Ψ), C (= sin 2 Ψ cos Δ), and S (= sin 2 Ψ sin Δ) of the measurement object 1, the transmission axis direction of the analyzer 5 is set to 45 ° (π / 4). The Stokes vector S out of the light (reflected light) reflected from the measurement object 1 by irradiating the measurement object 1 with light that is fixed and light-modulated by changing the respective conditions of the polarizer 3 and the phase shifter 4 is as follows. It is expressed by the formula (f).
Examples of the conditions include rotation and alignment of polarizing elements (polarizers and phase shifters).

[数式(f)]
ただし、前記数式(f)中、MP(45°)は、透過軸方位を45°に固定した検光子のミューラー行列、MSは、測定対象物のミューラー行列、MR(δ、θQ)は、位相子のミューラー行列、MP(θP)は、偏光子のミューラー行列、(1,0,0,0)は、光源からの入射光のストークスベクトルSinである。Tは、転置行列を表す。
[Formula (f)]
In the equation (f), M P (45 °) is the Mueller matrix of the analyzer with the transmission axis direction fixed at 45 °, M S is the Mueller matrix of the measurement object, and M R (δ, θ Q ) Is the Mueller matrix of the phase shifter, M PP ) is the Mueller matrix of the polarizer, and (1, 0, 0, 0) is the Stokes vector S in of the incident light from the light source. T represents a transposed matrix.

前記数式(f)の反射光のストークスベクトルSoutにおいて、受光手段6から検出できるのは出射光のストークスベクトルSoutのうちS0成分のみである。したがって、受光手段6により受光される二次元画像のピクセル毎の光強度Iは、下記数式(1)で表される。 In Stokes vector S out of the reflected light of the equation (f), is only S 0 component of the Stokes vector S out of the emitted light can be detected from the light receiving means 6. Therefore, the light intensity I for each pixel of the two-dimensional image received by the light receiving means 6 is expressed by the following formula (1).

[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).

ここで、前記数式(1)中の位相子のリタデーションδは、90°であることが理想であるが、前記位相子のリタデーションδには位相子を製造する際に生じる製造誤差が必ず存在し、前記位相子のリタデーションの製造誤差は前記位相子の場所毎に異なる。
また、前記位相子と前記偏光子をそれぞれ回転させるときに、アライメント誤差としての位相子の主軸方位θQの初期誤差と、偏光子の透過軸方位θPの初期誤差が必ず生じる。
そこで、前記位相子のリタデーションの製造誤差をεδ、前記位相子の主軸方位の初期誤差をεQ、前記偏光子の透過軸方位の初期誤差をεPとすると、前記数式(1)は、下記数式(2)に示すように複雑になる。
Here, the retardation δ of the phase shifter in the formula (1) is ideally 90 °, but the retardation δ of the phase shifter always has a manufacturing error that occurs when the phase shifter is manufactured. The manufacturing error of the retardation of the phase shifter varies depending on the location of the phase shifter.
Further, the polarizer and the retarder when rotating respectively, the initial error of the principal axis directions theta Q retarder as alignment errors, initial error of the transmission axis azimuth theta P of the polarizer necessarily occur.
Therefore, if the manufacturing error of retardation of the phaser is ε δ , the initial error of the main axis direction of the phaser is ε Q , and the initial error of the transmission axis direction of the polarizer is ε P , the equation (1) is It becomes complicated as shown in the following formula (2).

[数式(2)]
ただし、前記数式(2)中、a、b、δ、θQ、θP、N、C、及びSは、上記数式(1)と同じ意味を表す。εδは、位相子のリタデーションの製造誤差を表す。εQは、位相子の主軸方位の初期誤差を表す。εPは、偏光子の透過軸方位の初期誤差を表す。
[Formula (2)]
However, in said Numerical formula (2), a, b, (delta), (theta) Q , (theta) P , N, C, and S represent the same meaning as the said Numerical formula (1). epsilon [delta] represents a manufacturing error of retardation of retarder. ε Q represents the initial error of the principal axis orientation of the phaser. ε P represents the initial error of the transmission axis orientation of the polarizer.

<誤差算出工程及び誤差算出手段>
前記誤差算出工程は、前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める工程であり、誤差算出手段により実施することができる。
前記誤差算出工程は、前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び、前記εPにより、前記数式(1)を前記数式(2)に補正し、前記εδ、前記εQ、及び、前記εPを求めることが好ましい。
<Error calculation process and error calculation means>
In the error calculation step, when there is a retardation manufacturing error, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, the error is corrected with these errors. The light intensity for each pixel of the two-dimensional image is obtained, and from the results of these light intensities, the production error of the retardation of the phaser, the initial error of the main axis direction of the phaser, and the initial error of the transmission axis direction of the polarizer are calculated. This is a step of obtaining, and can be performed by error calculation means.
In the error calculation step, when there is a manufacturing error ε δ of retardation of the phase shifter, an initial error ε Q of the main axis direction of the phase shifter, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ the epsilon Q and, by the epsilon P, equation (1) is corrected to the equation (2), the epsilon [delta], the epsilon Q, and it is preferable to obtain the epsilon P.

前記数式(2)において、未知のパラメーターは、a、b、N、C、S、εδ、εQ、及びεPの8つであり、これら8つの未知のパラメーターは、少なくとも8つの連立方程式を解くことにより求めることができる。
したがって、以下に詳細に説明するとおり、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光し、得られた8つの二次元画像に対応する8つの連立方程式を解くことにより、前記8つ未知のパラメーターのをすべて求めることができる。
In Equation (2), there are eight unknown parameters, a, b, N, C, S, ε δ , ε Q , and ε P , and these eight unknown parameters are at least eight simultaneous equations. Can be obtained by solving
Therefore, as will be described in detail below, when the main axis azimuth θ Q of the retarder is 0 and π / 4, the polarizer is transmitted through the transmission axis azimuth θ P = 0, π / 2, π / 4 of the polarizer. Or by rotating each to −π / 4, and receiving the eight two-dimensional images at the respective rotation angles by the light receiving means, and solving eight simultaneous equations corresponding to the obtained eight two-dimensional images. All of the eight unknown parameters can be obtained.

(A)位相子の主軸方位θQが0のとき、偏光子を該偏光子の透過軸方位θP=0、又はπ/2にそれぞれ回転させたとき、前記数式(2)は、下記数式(3)になる。 (A) When the main axis azimuth θ Q of the retarder is 0, when the polarizer is rotated to the transmission axis azimuth θ P = 0 or π / 2 of the polarizer, the formula (2) is expressed by the following formula: (3)

[数式(3)]
ただし、前記数式(3)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(3)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[Formula (3)]
However, in said Numerical formula (3), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (3), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.

(B)位相子の主軸方位θQが0のとき、偏光子を該偏光子の透過軸方位θP=π/4、又は−π/4にそれぞれ回転させたとき、前記数式(2)は、下記数式(4)になる。 (B) When the main axis azimuth θ Q of the retarder is 0, when the polarizer is rotated to the transmission axis azimuth θ P = π / 4 or −π / 4 of the polarizer, the equation (2) is The following formula (4) is obtained.

[数式(4)]
ただし、前記数式(4)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(4)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
[Formula (4)]
However, in said Numerical formula (4), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (4), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.

(C)位相子の主軸方位θQがπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、又はπ/2にそれぞれ回転させたとき、前記数式(2)は、下記数式(5)になる。なお、前記数式(5)では、位相子が0からπ/4に回転するため、位相子のリタデーションの製造誤差εδがε’δとなる。 (C) When the main axis azimuth θ Q of the retarder is π / 4, when the polarizer is rotated to the transmission axis azimuth θ P = 0 or π / 2 of the polarizer, The following formula (5) is obtained. In the above formula (5), since the phase shifter rotates from 0 to π / 4, the production error ε δ of retardation of the phase shifter becomes ε ′ δ .

[数式(5)]
ただし、前記数式(5)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(5)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[Formula (5)]
However, in the formula (5), a, b, ε Q , ε P , N, C, and S have the same meaning as the formula (1) and the formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said Equation (5), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.

(D)位相子の主軸方位θQがπ/4のとき、偏光子を該偏光子の透過軸方位θP=π/4、又は−π/4にそれぞれ回転させたとき、前記数式(2)は、下記数式(6)になる。なお、前記数式(6)では、位相子が0からπ/4に回転するため、位相子のリタデーションの製造誤差εδがε’δとなる。 (D) When the main axis azimuth θ Q of the phase shifter is π / 4, when the polarizer is rotated to the transmission axis azimuth θ P = π / 4 or −π / 4 of the polarizer, ) Becomes the following formula (6). In the equation (6), since the phase shifter rotates from 0 to π / 4, the retardation production error ε δ becomes ε ′ δ .

[数式(6)]
ただし、前記数式(6)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(6)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
[Formula (6)]
However, in said Numerical formula (6), a, b, (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said equation (6), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.

次に、前記数式(3)において、偏光子の透過軸方位θPが0とπ/2のときの差分をとると、下記数式(7)を導き出すことができる。前記数式(7)では、未知のパラメーターbが除かれており、受光手段(撮像素子)の暗電流の影響を除くことができる。 Next, in the above formula (3), the following formula (7) can be derived by taking the difference when the transmission axis direction θ P of the polarizer is 0 and π / 2. In the mathematical formula (7), the unknown parameter b is removed, and the influence of the dark current of the light receiving means (imaging device) can be removed.

[数式(7)]
ただし、前記数式(7)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[Formula (7)]
However, in said Numerical formula (7), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).

前記数式(7)において、位相子のリタデーションの製造誤差εδ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが既知であるとき(例えば、2回目以降の測定時など)には、前記εδ、前記εQ、及び前記εPを前記数式(7)に代入して、下記数式(7’)となる。 In Equation (7), when the retardation retardation production error ε δ , the phaser principal axis orientation initial error ε Q , and the polarizer transmission axis orientation initial error ε P are known (for example, the second time At the time of subsequent measurement, etc., the ε δ , the ε Q , and the ε P are substituted into the equation (7) to obtain the following equation (7 ′).

[数式(7’)]
ただし、前記数式(7’)中のe11〜e13は、以下のとおりである。
[Formula (7 ')]
However, e 11 to e 13 of the formula (7 ') in are as follows.

次に、前記数式(4)において、偏光子の透過軸方位θPがπ/4と−π/4のときの差分をとると、下記数式(8)が得られる。前記数式(8)では、未知のパラメーターbが除かれており、受光手段(撮像素子)の暗電流の影響を除くことができる。 Next, in Equation (4), the following equation (8) is obtained by taking the difference when the transmission axis direction θ P of the polarizer is π / 4 and −π / 4. In the formula (8), the unknown parameter b is removed, and the influence of the dark current of the light receiving means (imaging device) can be removed.

[数式(8)]
ただし、前記数式(8)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[Formula (8)]
However, in said Numerical formula (8), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).

前記数式(6)において、位相子のリタデーションの製造誤差εδ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが既知(例えば、2回目以降の測定時など)であるときには、前記εδ、前記εQ、及び前記εPを前記数式(8)に代入して、下記数式(8’)となる。 In the equation (6), the retardation error manufacturing error ε δ , the phaser principal axis orientation initial error ε Q , and the polarizer transmission axis orientation initial error ε P are known (for example, the second and subsequent measurements). by the time when, or the like), the epsilon [delta], the epsilon Q, and by substituting the epsilon P in equation (8), the following equation (8 ').

[数式(8’)]
ただし、前記数式(8’)中のe21〜e23は、以下のとおりである。
[Formula (8 ')]
However, e 21 to e 23 of the formula (8 ') in are as follows.

次に、前記数式(5)において、偏光子の透過軸方位θが0とπ/2のときの差分をとると、下記数式(9)が得られる。前記数式(9)によると、未知のパラメーターbが除かれており、受光手段(撮像素子)の暗電流の影響を除くことができる。 Next, in Equation (5), the following equation (9) is obtained by taking the difference when the transmission axis direction θ P of the polarizer is 0 and π / 2. According to the equation (9), the unknown parameter b is removed, and the influence of the dark current of the light receiving means (imaging device) can be removed.

[数式(9)]
ただし、前記数式(9)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
[Formula (9)]
However, in the formula (9), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).

前記数式(9)において、位相子のリタデーションの製造誤差ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが既知(例えば、2回目以降の測定時など)であるときには、前記εδ、前記εQ、及び前記εPを前記数式(9)に代入して、下記数式(9’)となる。 In the above formula (9), the retardation retardation manufacturing error ε ′ δ , the phaser principal axis orientation initial error ε Q , and the polarizer transmission axis orientation initial error ε P are known (for example, the second and subsequent times). (When measuring, etc.), the ε δ , the ε Q , and the ε P are substituted into the equation (9) to obtain the following equation (9 ′).

[数式(9’)]
ただし、前記数式(9’)中のe31〜e33は、以下のとおりである。
[Formula (9 ')]
However, e 31 to e 33 of the formula (9 ') in are as follows.

次に、前記数式(6)において、偏光子の透過軸方位θPがπ/4と−π/4のときの画像信号の差分をとると、下記数式(10)が得られる。前記数式(10)では、未知のパラメーターbが除かれており、受光手段(撮像素子)の暗電流の影響を除くことができる。 Next, when the difference between the image signals when the transmission axis direction θ P of the polarizer is π / 4 and −π / 4 in the equation (6), the following equation (10) is obtained. In the formula (10), the unknown parameter b is removed, and the influence of the dark current of the light receiving means (imaging device) can be removed.

[数式(10)]
ただし、前記数式(10)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
[Formula (10)]
However, in the formula (10), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).

前記数式(10)において、位相子のリタデーションの製造誤差ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが既知(例えば、2回目以降の測定時など)であるときには、前記εδ、前記εQ、及び前記εPを前記数式(10)に代入して、下記数式(10’)となる。 In the above formula (10), the retardation retardation manufacturing error ε ′ δ , the phaser principal axis orientation initial error ε Q , and the polarizer transmission axis orientation initial error ε P are known (for example, the second and subsequent times). (When measuring, etc.), the ε δ , the ε Q , and the ε P are substituted into the equation (10) to obtain the following equation (10 ′).

[数式(10’)]
ただし、前記数式(10’)中のe41〜e43は、以下のとおりである。
[Formula (10 ')]
However, e 41 to e 43 in said formula (10 ') are as follows.

上述したとおり、前記数式(2)から導き出した前記数式(7)〜(10)において、位相子の主軸方位θQが0とπ/4のとき、二次元画像の中心部は光軸(位相子の回転軸)位置にあるため、位相子の回転前後で位相子のリタデーションの製造誤差εδ、ε’δは変化しない。しかし、二次元画像の中心部以外の部分では、位相子のリタデーションが位相子の場所毎に異なるため、位相子の回転前後で位相子の場所毎のリタデーションの製造誤差εδ、ε’δが異なるが、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPは同じである。
したがって、前記数式(7)〜(10)において、補正が必要なパラメーターは、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPである。
As described above, in the mathematical formulas (7) to (10) derived from the mathematical formula (2), when the principal axis orientation θ Q of the phase shifter is 0 and π / 4, the central portion of the two-dimensional image is the optical axis (phase The manufacturing error ε δ and ε ′ δ of the retardation of the phase shifter do not change before and after the rotation of the phase shifter. However, in the portions other than the central portion of the two-dimensional image, the retardation of the phase shifter varies depending on the location of the phase shifter. Therefore, the retardation manufacturing errors ε δ and ε ′ δ before and after the rotation of the phase shifter are different. Although different, the initial error ε Q of the main axis orientation of the retarder and the initial error ε P of the transmission axis orientation of the polarizer are the same.
Therefore, in the above formulas (7) to (10), the parameters that need to be corrected are retardation retardation manufacturing errors ε δ , ε ′ δ , phase shift principal axis orientation initial error ε Q , and polarizer transmission. This is the initial error ε P of the axial direction.

<その他の工程及びその他の手段>
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、制御工程、記憶工程などが挙げられる。
前記その他の手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、制御手段、記憶手段などが挙げられる。
<Other processes and other means>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, a control process, a memory | storage process, etc. are mentioned.
There is no restriction | limiting in particular as said other means, According to the objective, it can select suitably, For example, a control means, a memory | storage means, etc. are mentioned.

前記制御手段としては、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリなどを有し、誤差補正装置全体の動作を制御するための制御プログラムに基づいて各種処理を実行する。   The control means includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a main memory, etc., and a control program for controlling the operation of the entire error correction apparatus. Various processes are executed based on this.

前記記憶手段としては、各種情報を記憶することができれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ソリッドステートドライブ、ハードディスクドライブ、CD(Compact Disc)ドライブ、DVD(Digital Versatile Disc)ドライブ、BD(Blu−ray(登録商標) Disc)ドライブなどが挙げられる。また、記憶手段は、ネットワーク上のコンピュータ群であるクラウドの一部であってもよい。   The storage means is not particularly limited as long as various kinds of information can be stored, and can be appropriately selected according to the purpose. For example, the storage means may be a solid state drive, a hard disk drive, a CD (Compact Disc) drive, a DVD (Digital Versatile). Disc) drive, BD (Blu-ray (registered trademark) Disc) drive, and the like. The storage unit may be a part of a cloud that is a group of computers on the network.

ここで、本発明の誤差補正方法の第1及び第2の実施形態について、フローチャートを参照して詳細に説明する。   Here, the first and second embodiments of the error correction method of the present invention will be described in detail with reference to flowcharts.

[第1の実施形態の誤差補正方法]
第1の実施形態の誤差補正方法は、図4に示すフローチャートにしたがって、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及び前記εPを求めるものである。
[Error Correction Method of First Embodiment]
The error correction method according to the first embodiment obtains the ε δ , ε ′ δ , the ε Q , and the ε P in the equations (7) to (10) according to the flowchart shown in FIG. is there.

まず、ステップS101では、図3に示すような透過型の二次元偏光解析装置101を用い、空気中での測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を受光手段により受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS102に移行させる。なお、空気のN、C、及びSは、それぞれ0、1、及び0である。 First, in step S101, the transmission type two-dimensional ellipsometer 101 as shown in FIG. 3 is used, and when the principal axis orientation θ Q of the phase shifter is 0 and π / 4 by measurement in the air, the polarizer is moved. By rotating the polarizer to the transmission axis orientation θ P = 0, π / 2, π / 4, or −π / 4, and receiving eight two-dimensional images at the respective rotation angles by the light receiving means. When the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10) that are the differences between them are obtained, the process proceeds to step S102. Note that N, C, and S of air are 0, 1, and 0, respectively.

次に、ステップS102では、前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、位相子のリタデーションの製造誤差εδ=ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを求める。前記二次元画像の中心部以外の部分は前記二次元画像の中心部とεδ、ε’δは異なるがεQ、εPは同じである。そこで、前記二次元画像の中心部のピクセルの信号から得られたεQ、εPを前記数式(7)〜(10)に代入し、画像の中心部以外の部分の位相子のリタデーションの製造誤差εδ、ε’δを求めると、本処理を終了させる。
以上により、前記数式(7)〜(10)中のεδ、ε’δ、εQ、及びεPをすべて求めることができる。
Next, in step S102, using the mathematical formulas (7) to (10), from the signal of the pixel at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , An initial error ε Q of the main axis direction and an initial error ε P of the transmission axis direction of the polarizer are obtained. The portions other than the central portion of the two-dimensional image are different from the central portion of the two-dimensional image in ε δ and ε ′ δ, but ε Q and ε P are the same. Therefore, by substituting ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image into the equations (7) to (10), the retardation of the portion other than the center of the image is manufactured. When the errors ε δ and ε ′ δ are obtained, this processing is terminated.
As described above, ε δ , ε ′ δ , ε Q , and ε P in the formulas (7) to (10) can all be obtained.

[第2の実施形態の誤差補正方法]
第2の実施形態の誤差補正方法は、図5に示すフローチャートにしたがって、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及び前記εPを求めるものである。
[Error Correction Method of Second Embodiment]
The error correction method of the second embodiment is to obtain the ε δ , ε ′ δ , the ε Q , and the ε P in the equations (7) to (10) according to the flowchart shown in FIG. is there.

まず、ステップS201では、図2に示すような反射型の二次元偏光解析装置100を用い、標準試料について、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θ=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップ202に移行する。なお、標準試料のN、C、及びSは既知である。 First, in step S201, a reflective two-dimensional ellipsometer 100 as shown in FIG. 2 is used. When the main axis orientation θ Q of the phase shifter is 0 and π / 4 with respect to a standard sample, the polarizer is moved to the polarizer. By rotating the transmission axis azimuth θ P = 0, π / 2, π / 4, or −π / 4, and receiving the two-dimensional images of the eight standard samples at the respective rotation angles, When the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10) which are the differences between them are obtained, the process proceeds to step 202. The standard samples N, C, and S are known.

次に、ステップS202では、前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、位相子のリタデーションの製造誤差εδ=ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを求める。前記二次元画像の中心部以外の部分は前記二次元画像の中心部とεδ、ε’δは異なるがεQ、εPは同じである。そこで、前記二次元画像の中心部のピクセルの信号から得られたεQ、εPを前記数式(7)〜(10)に代入して、二次元画像の中心部以外の部分のεδ、ε’δを求めると、本処理を終了させる。
以上により、前記数式(7)〜(10)中のεδ、ε’δ、εQ、及びεPをすべて求めることができる。
Next, in step S202, using the equations (7) to (10), from the signal of the pixel in the center of the two-dimensional image, the retardation error of the phase shifter ε δ = ε ′ δ , An initial error ε Q of the main axis direction and an initial error ε P of the transmission axis direction of the polarizer are obtained. The portions other than the central portion of the two-dimensional image are different from the central portion of the two-dimensional image in ε δ and ε ′ δ, but ε Q and ε P are the same. Therefore, by substituting ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image into the equations (7) to (10), ε δ of the portion other than the center of the two-dimensional image, When obtaining the epsilon '[delta], this processing is completed.
As described above, ε δ , ε ′ δ , ε Q , and ε P in the formulas (7) to (10) can all be obtained.

以上説明したように、本発明の誤差補正方法及び誤差補正装置は、一回の二次元計測により測定対象物の反射光の偏光状態の変化を迅速かつ高精度に測定するためのものであり、例えば、点計測の偏光解析法、二次元偏光解析法などに用いられるが、以下の本発明の二次元偏光解析法及び二次元偏光解析装置に特に好適に用いられる。   As described above, the error correction method and the error correction apparatus of the present invention are for measuring the change in the polarization state of the reflected light of the measurement object quickly and accurately by one two-dimensional measurement, For example, it is used for ellipsometry for point measurement, two-dimensional ellipsometry, and the like, but is particularly preferably used for the following two-dimensional ellipsometry and two-dimensional ellipsometer of the present invention.

(二次元偏光解析法及び二次元偏光解析装置)
本発明の二次元偏光解析法は、本発明の誤差補正方法を用いることを特徴とする。
本発明の二次元偏光解析装置は、本発明の誤差補正装置を有することを特徴とする。
(Two-dimensional ellipsometry and two-dimensional ellipsometer)
The two-dimensional ellipsometry of the present invention is characterized by using the error correction method of the present invention.
The two-dimensional ellipsometer of the present invention has the error correction apparatus of the present invention.

本発明の二次元偏光解析装置における各手段が行う制御は、本発明の二次元偏光解析法を実施することと同義であり、本発明の二次元偏光解析法は、本発明の二次元偏光解析装置により好適に実施することができるので、本発明の二次元偏光解析法の説明を通じて本発明の二次元偏光解析装置の詳細についても明らかにする。   The control performed by each means in the two-dimensional ellipsometry apparatus of the present invention is synonymous with the implementation of the two-dimensional ellipsometry method of the present invention, and the two-dimensional ellipsometry method of the present invention is the two-dimensional ellipsometry method of the present invention. Since the apparatus can be suitably implemented, the details of the two-dimensional ellipsometer of the present invention will be clarified through the description of the two-dimensional ellipsometry of the present invention.

本発明の二次元偏光解析法は、第1−1の形態では、本発明の前記誤差補正方法を用いた二次元偏光解析法であって、
透過モードでの空気中の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程(なお、空気のN、C、及びSは、それぞれ0、1、及び0である)と、
前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、前記位相子のリタデーションの製造誤差εδ=ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを求め、前記二次元画像の中心部のピクセルの信号から得られた前記εQ、及びεPを、前記数式(7)〜(10)に代入して、前記二次元画像の中心部以外の部分のεδ、ε’δを求め、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及びεPを得る工程と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程と、
前記測定対象物から求めた前記数式(7)〜(10)に、本発明の前記誤差補正方法で求めた前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを代入し、前記測定対象物のN、C、及びSを求める工程と、を含み、更に必要に応じてその他の工程を含む。
The two-dimensional ellipsometry of the present invention is a two-dimensional ellipsometry using the error correction method of the present invention in the 1-1 form,
According to the measurement in air in the transmission mode, when the main axis orientation θ Q of the phase shifter is 0 and π / 4, the polarizer is set to the transmission axis orientation θ P = 0, π / 2, π / 4 of the polarizer. Or by rotating each to −π / 4, and receiving the two two-dimensional images at the respective rotation angles by the light receiving means, the following mathematical formulas (3) to (6) are obtained, and these are the differences between them. Steps for obtaining the following mathematical formulas (7) to (10) (where N, C, and S of air are 0, 1, and 0, respectively);
Using the equations (7) to (10), from the pixel signal at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , the initial error of the principal axis orientation of the phaser ε Q and an initial error ε P of the transmission axis direction of the polarizer are obtained, and the ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image are expressed by the equations (7) to (7) 10) to obtain ε δ and ε ′ δ of the portion other than the central portion of the two-dimensional image, and the ε δ , ε ′ δ , ε Q , And obtaining ε P ;
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Alternatively, by rotating each to −π / 4 and receiving eight two-dimensional images at the respective rotation angles, the following mathematical formulas (3) to (6) are obtained, and the following mathematical formula (7) that is the difference between them is obtained. A process for obtaining (10);
The mathematical expressions (7) to (10) obtained from the measurement object include the production errors ε δ and ε ′ δ of the retardation of the phaser obtained by the error correction method of the present invention, and the principal axis orientation of the phaser. Substituting the initial error ε Q and the initial error ε P of the transmission axis direction of the polarizer to obtain N, C, and S of the measurement object, and further including other steps as necessary Including.

本発明の二次元偏光解析法は、第1−2の形態では、本発明の前記誤差補正方法を用いた二次元偏光解析法であって、
反射モードでの標準試料の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程(なお、標準試料のN、C、及びSは既知である)と、
前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、前記位相子のリタデーションの製造誤差εδ=ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを求め、前記二次元画像の中心部のピクセルの信号から得られた前記εQ、及びεPを前記数式(7)〜(10)に代入して、前記二次元画像の中心部以外の部分のεδ、ε’δを求め、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及びεPを得る工程と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程と、
前記測定対象物から求めた前記数式(7)〜(10)に、本発明の前記誤差補正方法で求めた前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを代入し、前記測定対象物のN、C、及びSを求める工程と、を含み、更に必要に応じてその他の工程を含む。
The two-dimensional ellipsometry of the present invention is a two-dimensional ellipsometry using the error correction method of the present invention in the 1-2 type,
When the main axis azimuth θ Q of the phase shifter is 0 and π / 4 by measurement of a standard sample in the reflection mode, the polarizer is transmitted through the transmission axis azimuth θ P = 0, π / 2, π / 4 of the polarizer. , Or by rotating each to −π / 4, and receiving the two-dimensional images of the eight standard samples at the respective rotation angles to obtain the following formulas (3) to (6), which are the differences between them. Steps for obtaining the following mathematical formulas (7) to (10) (N, C, and S of the standard sample are known);
Using the equations (7) to (10), from the pixel signal at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , the initial error of the principal axis orientation of the phaser ε Q and an initial error ε P of the transmission axis direction of the polarizer are obtained, and the ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image are expressed by the equations (7) to (10). ) To obtain ε δ , ε ′ δ of the portion other than the center portion of the two-dimensional image, and the ε δ , ε ′ δ , ε Q , and obtaining ε P ;
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Alternatively, by rotating each to −π / 4 and receiving eight two-dimensional images at the respective rotation angles, the following mathematical formulas (3) to (6) are obtained, and the following mathematical formula (7) that is the difference between them is obtained. A process for obtaining (10);
The mathematical expressions (7) to (10) obtained from the measurement object include the production errors ε δ and ε ′ δ of the retardation of the phaser obtained by the error correction method of the present invention, and the principal axis orientation of the phaser. Substituting the initial error ε Q and the initial error ε P of the transmission axis direction of the polarizer to obtain N, C, and S of the measurement object, and further including other steps as necessary Including.

本発明の二次元偏光解析法は、第2の形態では、本発明の前記誤差補正方法を用いた二次元偏光解析法であって、
透過モードでの空気中の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程(なお、空気のN、C、及びSは、それぞれ0、1、及び0である)と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程と、
前記空気中での前記数式(7)〜(10)と前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求める工程と、を含み、更に必要に応じてその他の工程を含む。
In the second embodiment, the two-dimensional ellipsometry of the present invention is a two-dimensional ellipsometry using the error correction method of the present invention,
According to the measurement in air in the transmission mode, when the main axis orientation θ Q of the phase shifter is 0 and π / 4, the polarizer is set to the transmission axis orientation θ P = 0, π / 2, π / 4 of the polarizer. Or by rotating each to −π / 4, and receiving the two two-dimensional images at the respective rotation angles by the light receiving means, the following mathematical formulas (3) to (6) are obtained, and these are the differences between them. Steps for obtaining the following mathematical formulas (7) to (10) (where N, C, and S of air are 0, 1, and 0, respectively);
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Alternatively, by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the following mathematical formulas (3) to (6) are obtained, and these are the differences. Obtaining the following mathematical formulas (7) to (10);
Using the mathematical formulas (7) to (10) in the air and the mathematical formulas (7) to (10) in the measurement object, the retardation production error ε δ , ε ′ δ , An initial error ε Q of the main axis direction of the phase shifter, an initial error ε P of the transmission axis direction of the polarizer, and N, C, and S of the measurement object, and further, if necessary Including other processes.

本発明の二次元偏光解析法は、第3の形態では、本発明の前記誤差補正方法を用いた二次元偏光解析法であって、
反射モードでの標準試料の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程(なお、標準試料のN、C、及びSは既知である)と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、下記数式(3)〜(6)を求め、これらの差分である下記数式(7)〜(10)を求める工程と、
前記標準試料での前記数式(7)〜(10)と前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求める工程と、を含み、更に必要に応じてその他の工程を含む。
In the third embodiment, the two-dimensional ellipsometry of the present invention is a two-dimensional ellipsometry using the error correction method of the present invention,
According to the measurement of the standard sample in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is transmitted through the transmission axis direction θ P = 0, π / 2, π / 4, or The following mathematical formulas (3) to (6) are obtained by rotating each to −π / 4 and receiving the two-dimensional images of the eight standard samples at the respective rotational angles, and the following mathematical formula that is the difference between them. (7) to (10) steps for obtaining (note that N, C, and S of the standard sample are known);
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Alternatively, by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the following mathematical formulas (3) to (6) are obtained, and these are the differences. Obtaining the following mathematical formulas (7) to (10);
Using the mathematical formulas (7) to (10) in the standard sample and the mathematical formulas (7) to (10) in the measurement object, the manufacturing error ε δ , ε ′ δ of retardation of the phase shifter, An initial error ε Q of the main axis direction of the phase shifter, an initial error ε P of the transmission axis direction of the polarizer, and N, C, and S of the measurement object, and further, if necessary Including other processes.

前記第1〜第3の形態の二次元偏光解析法において、前記数式(3)〜前記数式(10)は、以下に示すとおりであり、これらは、本発明の誤差補正方法で説明した方法により導出することができる。   In the two-dimensional ellipsometry of the first to third embodiments, the mathematical formulas (3) to (10) are as follows, and these are the methods described in the error correction method of the present invention. Can be derived.

[数式(3)]
ただし、前記数式(3)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(3)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[Formula (3)]
However, in said Numerical formula (3), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (3), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.

[数式(4)]
ただし、前記数式(4)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(4)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
[Formula (4)]
However, in said Numerical formula (4), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (4), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.

[数式(5)]
ただし、前記数式(5)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(5)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[Formula (5)]
However, in the formula (5), a, b, ε Q , ε P , N, C, and S have the same meaning as the formula (1) and the formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said Equation (5), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.

[数式(6)]
ただし、前記数式(6)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(6)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
[Formula (6)]
However, in said Numerical formula (6), a, b, (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said equation (6), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.

[数式(7)]
ただし、前記数式(7)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[Formula (7)]
However, in said Numerical formula (7), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).

[数式(8)]
ただし、前記数式(8)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[Formula (8)]
However, in said Numerical formula (8), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).

[数式(9)]
ただし、前記数式(9)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
[Formula (9)]
However, in the formula (9), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).

[数式(10)]
ただし、前記数式(10)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
[Formula (10)]
However, in the formula (10), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).

本発明の第1〜第3の形態の二次元偏光解析法においては、得られた前記測定対象物のN、C、及びSを、下記数式(11)及び(12)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求める工程を含むことが好ましい。これにより、各形態で得られた測定対象物のN、C、及びSから、測定対象物のPSI(Ψ)とDEL(Δ)を求めることができる。   In the two-dimensional ellipsometry of the first to third aspects of the present invention, N, C, and S of the obtained measurement object are substituted into the following mathematical formulas (11) and (12), and It is preferable to include a step of obtaining Ψ and a phase difference Δ representing the amplitude ratio of the p and s components of the emitted light for each pixel of the two-dimensional image of the measurement object as an angle. Thereby, PSI (Ψ) and DEL (Δ) of the measurement object can be obtained from N, C, and S of the measurement object obtained in each form.

[数式(11)]
[Formula (11)]

[数式(12)]
[Formula (12)]

本発明の二次元偏光解析法は、第4の形態では、本発明の前記誤差補正方法、又は本発明の前記二次元偏光解析法により、得られた位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを、前記数式(7)〜(10)に代入して、下記数式(7’)〜(10’)を求める工程と、
前記数式(7’)〜(10’)から、下記数式(13)又は(13’)、数式(14)又は(14’)、及び数式(15)又は(15’)を導出し、測定対象物のaN、aC、及びaSを求める工程と、を含み、更に必要に応じてその他の工程を含む。
前記数式(13)〜(15)は、I(前記数式(7))、I(前記数式(8))、及びI(前記数式(10))から導いた数式である。
前記数式(13’)〜(15’)は、I(前記数式(7))、I(前記数式(9))、及びI(前記数式(10))から導いた数式である。
In the fourth embodiment, the two-dimensional ellipsometry of the present invention, in the fourth embodiment, is a manufacturing error ε δ , ε of retardation of the retardation obtained by the error correction method of the present invention or the two-dimensional ellipsometry of the present invention. ' δ , the initial error ε Q of the main axis direction of the phase shifter, and the initial error ε P of the transmission axis direction of the polarizer are substituted into the formulas (7) to (10), and the following formulas (7 ′) to ( 10 ′), and
The following mathematical formula (13) or (13 ′), mathematical formula (14) or (14 ′), and mathematical formula (15) or (15 ′) are derived from the mathematical formulas (7 ′) to (10 ′), and the measurement target Determining the aN, aC, and aS of the object, and further including other steps as necessary.
The formulas (13) to (15) are derived from I 1 (the formula (7)), I 2 (the formula (8)), and I 4 (the formula (10)).
The equations (13 ′) to (15 ′) are equations derived from I 1 (the equation (7)), I 3 (the equation (9)), and I 4 (the equation (10)).

このように、前記第4の形態の二次元偏光解析法によれば、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが既知の場合(例えば、2回目以降の測定時の場合)には、標準試料を用いることなく、簡便かつ迅速に前記εδ、ε’δ、前記εQ、及び前記εPから、aN、aC、及びaSを求めることができる。 As described above, according to the two-dimensional ellipsometry of the fourth embodiment, the retardation retardation manufacturing errors ε δ , ε ′ δ , the initial error ε Q of the principal axis direction of the retarder, and the transmission axis of the polarizer When the initial error ε P of the azimuth is known (for example, in the case of the second and subsequent measurements), the ε δ , ε ′ δ , the ε Q , and the From ε P , aN, aC, and aS can be obtained.

[数式(7’)]
ただし、前記数式(7’)中のe11〜e13は、以下のとおりである。
[Formula (7 ')]
However, e 11 to e 13 of the formula (7 ') in are as follows.

[数式(8’)]
ただし、前記数式(8’)中のe21〜e23は、以下のとおりである。
[Formula (8 ')]
However, e 21 to e 23 of the formula (8 ') in are as follows.

[数式(9’)]
ただし、前記数式(9’)中のe31〜e33は、以下のとおりである。
[Formula (9 ')]
However, e 31 to e 33 of the formula (9 ') in are as follows.

[数式(10’)]
ただし、前記数式(10’)中のe41〜e43は、以下のとおりである。
[Formula (10 ')]
However, e 41 to e 43 in said formula (10 ') are as follows.

[数式(13)]
[数式(13’)]
ただし、前記数式(13)及び(13’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[Formula (13)]
[Formula (13 ')]
However, e 11 to e 43 in the formulas (13) and (13 ′) have the same meaning as the formulas (7 ′) to (10 ′).

[数式(14)]
[数式(14’)]
ただし、前記数式(14)と(14’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[Formula (14)]
[Formula (14 ')]
However, e 11 to e 43 in the formulas (14) and (14 ′) have the same meaning as the formulas (7 ′) to (10 ′).

[数式(15)]
[数式(15’)]
ただし、前記数式(15)と(15’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[Formula (15)]
[Formula (15 ')]
However, e 11 to e 43 in the formulas (15) and (15 ′) represent the same meanings as the formulas (7 ′) to (10 ′).

前記第4の形態の二次元偏光解析法は、得られた前記測定対象物のaN、aC、及びaSを、下記数式(16)及び(17)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求める工程を含むことが好ましい。   In the four-dimensional ellipsometry of the fourth embodiment, the obtained aN, aC, and aS of the measurement object are substituted into the following mathematical formulas (16) and (17), and the two-dimensional analysis of the measurement object is performed. It is preferable to include a step of obtaining Ψ and a phase difference Δ that express the amplitude ratio of the p and s components of the emitted light for each pixel of the image as an angle.

[数式(16)]
[Formula (16)]

[数式(17)]
[Formula (17)]

ここで、第1から第5の実施形態の二次元偏光解析法について、図6〜図10に示すフローチャートを参照して詳細に説明する。   Here, the two-dimensional ellipsometry of the first to fifth embodiments will be described in detail with reference to the flowcharts shown in FIGS.

[第1の実施形態の二次元偏光解析法]
第1の実施形態の二次元偏光解析法では、図6に示すフローチャートにしたがって、測定対象物の偏光状態変化の測定を行うものである。
[Two-dimensional ellipsometry of the first embodiment]
In the two-dimensional ellipsometry of the first embodiment, the polarization state change of the measurement object is measured according to the flowchart shown in FIG.

まず、ステップS301では、図3に示すような透過型の二次元偏光解析装置101を用い、空気中での測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を受光手段により受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS302に移行する。なお、空気のN、C、及びSは、それぞれ0、1、及び0である。 First, in step S301, when the transmission type two-dimensional ellipsometer 101 as shown in FIG. 3 is used and the principal axis direction θ Q of the phase shifter is 0 and π / 4 by measurement in the air, the polarizer is moved. By rotating the polarizer to the transmission axis orientation θ P = 0, π / 2, π / 4, or −π / 4, and receiving eight two-dimensional images at the respective rotation angles by the light receiving means. When the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10) which are the differences between them are obtained, the process proceeds to step S302. Note that N, C, and S of air are 0, 1, and 0, respectively.

次に、ステップS302では、前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、位相子のリタデーションの製造誤差εδ=ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを求める。前記二次元画像の中心部以外の部分は前記二次元画像の中心部とεδ、ε’δは異なるがεQ、εPは同じである。そこで、前記二次元画像の中心部のピクセルの信号から得られたεQ、εPを前記数式(7)〜(10)に代入し、画像の中心部以外の部分の位相子のリタデーションの製造誤差εδ、ε’δを得る。以上により、前記数式(7)〜(10)中のεδ、ε’δ、εQ、及びεPを求めると、処理をステップS303に移行する。なお、ステップS301〜ステップS302は、図4のフローチャートに示す第1の実施形態の誤差補正方法と同じである。 Next, in step S302, using the mathematical formulas (7) to (10), from the signal of the pixel at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , An initial error ε Q of the main axis direction and an initial error ε P of the transmission axis direction of the polarizer are obtained. The portions other than the central portion of the two-dimensional image are different from the central portion of the two-dimensional image in ε δ and ε ′ δ, but ε Q and ε P are the same. Therefore, by substituting ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image into the equations (7) to (10), the retardation of the portion other than the center of the image is manufactured. Errors ε δ and ε ′ δ are obtained. As described above, when ε δ , ε ′ δ , ε Q , and ε P in the equations (7) to (10) are obtained, the process proceeds to step S303. Steps S301 to S302 are the same as the error correction method of the first embodiment shown in the flowchart of FIG.

次に、ステップS303では、図2に示すような反射型の二次元偏光解析装置100を用い、測定対象物について、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS304に移行する。 Next, in step S303, the reflection type two-dimensional ellipsometer 100 as shown in FIG. 2 is used. When the main axis orientation θ Q of the phase shifter is 0 and π / 4, Rotating the transmission axis direction of the polarizer θ P = 0, π / 2, π / 4, or −π / 4, respectively, and receiving two-dimensional images of the eight measurement objects at the respective rotation angles Thus, when the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10) that are the differences between them are obtained, the process proceeds to step S304.

次に、ステップ(S3−4)では、前記測定対象物での前記数式(7)〜(10)に、前記空気中での前記数式(7)〜(10)で求めた前記εδ、ε’δ、εQ、及びεPを代入して、前記測定対象物のN、C、及びSを求めると、処理をステップS305に移行する。 Next, in step (S3-4), the equations (7) to (10) for the measurement object are changed to the equations ε δ and ε determined by the equations (7) to (10) in the air. 'After substituting δ , ε Q , and ε P to determine N, C, and S of the measurement object, the process proceeds to step S305.

次に、ステップS305では、得られた測定対象物のN、C、及びSから、前記数式(11)及び(12)により、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を求めると、本処理を終了する。   Next, in step S305, from the obtained N, C, and S of the measurement object, p, of the emitted light for each pixel of the two-dimensional image of the measurement object, according to the equations (11) and (12). When the PSI (ψ) and the phase difference DEL (Δ), which represent the amplitude ratio of the s component as an angle, are obtained, this processing is terminated.

[第2の実施形態の二次元偏光解析法]
第2の実施形態の二次元偏光解析法では、図7に示すフローチャートにしたがって、測定対象物の偏光状態変化の測定を行うものである。この第2の実施形態では、透過型で計測しなくてすみ、標準試料を用いた簡便な反射型によって、点計測にも用いることができるので、有効な方法である。
[Two-dimensional ellipsometry of the second embodiment]
In the two-dimensional ellipsometry of the second embodiment, the change in the polarization state of the measurement object is measured according to the flowchart shown in FIG. This second embodiment is an effective method because it can be used for point measurement by a simple reflection type using a standard sample without having to perform measurement with a transmission type.

まず、ステップS401では、図2に示すような反射型の二次元偏光解析装置100を用い、標準試料について、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS402に移行する。なお、標準試料のN、C、及びSは既知である。 First, in step S401, the reflection type two-dimensional ellipsometer 100 as shown in FIG. 2 is used. When the main axis orientation θ Q of the phase shifter is 0 and π / 4 with respect to the standard sample, the polarizer is moved to the polarizer. The transmission axis direction θ P is rotated to 0, π / 2, π / 4, or −π / 4, respectively, and two-dimensional images of the eight standard samples at the respective rotation angles are received. When the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10), which are the differences between them, are obtained, the process proceeds to step S402. The standard samples N, C, and S are known.

次に、ステップS402では、前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、位相子のリタデーションの製造誤差εδ=ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを求める。前記二次元画像の中心部以外の部分は前記二次元画像の中心部とεδ、ε’δは異なるがεQ、εPは同じである。そこで、前記二次元画像の中心部のピクセルの信号から得られたεQ、εPを前記数式(7)〜(10)に代入して、二次元画像の中心部以外の部分のεδ、ε’δを求めると、処理をステップS403に移行する。
以上により、前記数式(7)〜(10)中のεδ、ε’δ、εQ、及びεPが求められる。なお、ステップS401〜ステップS402は、図5のフローチャートに示す第2の実施形態の誤差補正方法と同じである。
Next, in step S402, using the mathematical formulas (7) to (10), from the signal of the pixel at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , An initial error ε Q of the main axis direction and an initial error ε P of the transmission axis direction of the polarizer are obtained. The portions other than the central portion of the two-dimensional image are different from the central portion of the two-dimensional image in ε δ and ε ′ δ, but ε Q and ε P are the same. Therefore, by substituting ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image into the equations (7) to (10), ε δ of the portion other than the center of the two-dimensional image, When obtaining the epsilon '[delta], the flow goes to step S403.
As described above, ε δ , ε ′ δ , ε Q , and ε P in the equations (7) to (10) are obtained. Steps S401 to S402 are the same as the error correction method of the second embodiment shown in the flowchart of FIG.

次に、ステップS403では、図2に示す反射型の二次元偏光解析装置100を用い、測定対象物について、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS404に移行する。 Next, in step S403, when the reflection type two-dimensional ellipsometry apparatus 100 shown in FIG. 2 is used and the main axis direction θ Q of the phase shifter is 0 and π / 4 with respect to the measurement object, the polarizer is the polarizer. By rotating the transmission axis directions θ P = 0, π / 2, π / 4, or −π / 4, respectively, and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, When the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10) which are the differences between them are obtained, the process proceeds to step S404.

次に、ステップS404では、前記測定対象物から求めた前記数式(7)〜(10)に、前記空気中での前記数式(7)〜(10)で求めた前記εδ、ε’δ、εQ、及びεPを代入して、前記測定対象物のN、C、及びSを求めると、処理をステップS405に移行する。 Next, in step S404, the equations (7) to (10) obtained from the measurement object are replaced with the ε δ , ε ′ δ obtained by the equations (7) to (10) in the air, When ε Q and ε P are substituted to determine N, C, and S of the measurement object, the process proceeds to step S405.

次に、ステップS405では、得られた前記測定対象物のN、C、及びSから、前記二次元偏光解析法の第1の実施形態と同様にして、測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を求めると、本処理を終了する。   Next, in step S405, from the obtained N, C, and S of the measurement object, in the same manner as in the first embodiment of the two-dimensional ellipsometry, for each pixel of the two-dimensional image of the measurement object. When the PSI (Ψ) and the phase difference DEL (Δ) that express the amplitude ratio of the p and s components of the emitted light in terms of angle are obtained, this processing is terminated.

[第3の実施形態の二次元偏光解析法]
第3の実施形態の二次元偏光解析法では、図8に示すフローチャートにしたがって、測定対象物の偏光状態変化の測定を行うものである。
[Two-dimensional ellipsometry of the third embodiment]
In the two-dimensional ellipsometry of the third embodiment, the change in the polarization state of the measurement object is measured according to the flowchart shown in FIG.

まず、ステップS501では、図3に示すような透過型の二次元偏光解析装置101を用い、空気中で、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、8つの画像信号を受光し、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS502に移行する。なお、空気のN、C、及びSは、それぞれ0、1、及び0である。 First, in step S501, a transmission type two-dimensional ellipsometer 101 as shown in FIG. 3 is used. When the principal axis orientation θ Q of the phase shifter is 0 and π / 4 in the air, the polarizer is moved to the polarizer. The transmission axis direction θ P is rotated to 0, π / 2, π / 4, or −π / 4, respectively, and eight image signals are received, and the equations (3) to (6) are obtained. When the mathematical expressions (7) to (10) that are the differences are obtained, the process proceeds to step S502. Note that N, C, and S of air are 0, 1, and 0, respectively.

次に、ステップS502では、図2に示すような反射型の二次元偏光解析装置100を用い、測定対象物の8つの画像信号を前記空気中と同様にして、受光し、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS503に移行する。   Next, in step S502, the reflection type two-dimensional ellipsometer 100 as shown in FIG. 2 is used to receive eight image signals of the measurement object in the same manner as in the air, and the mathematical expression (3) After obtaining (6) and obtaining the mathematical expressions (7) to (10) which are the differences between them, the process proceeds to step S503.

次に、ステップS503では、前記空気中での前記数式(7)〜(10)と、前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求めると、処理をステップS504に移行する。なお、ステップS501〜ステップS503は、本発明の第3の実施形態の誤差補正方法とすることができる。 Next, in step S503, the retardation of the phase shifter is produced using the equations (7) to (10) in the air and the equations (7) to (10) in the measurement object. When ε δ , ε ′ δ , the initial error ε Q of the principal axis direction of the phase shifter, the initial error ε P of the transmission axis direction of the polarizer, and N, C, and S of the measurement object are determined, Goes to step S504. Steps S501 to S503 can be the error correction method according to the third embodiment of the present invention.

次に、ステップS504では、得られた測定対象物のN、C、及びSから、前記二次元偏光解析法の第1の実施形態と同様にして、前記数式(11)及び(12)により、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を求めると、本処理を終了する。   Next, in step S504, from the obtained measurement object N, C, and S, in the same manner as in the first embodiment of the two-dimensional ellipsometry, according to the equations (11) and (12), When the PSI (Ψ) and the phase difference DEL (Δ) that represent the amplitude ratio of the p and s components of the emitted light for each pixel of the two-dimensional image of the measurement object as an angle are obtained, this process ends.

[第4の実施形態の二次元偏光解析法]
第4の実施形態の二次元偏光解析法では、図9に示すフローチャートにしたがって、測定対象物の偏光状態変化の測定を行うものである。この第4の実施形態では、透過型で計測しなくてすみ、標準試料を用いた簡便な反射型であり、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εP、並びに測定対象物のN、C、及びSを一度に迅速に求めることができるので、極めて実用的なものである。
[Two-dimensional ellipsometry of the fourth embodiment]
In the two-dimensional ellipsometry of the fourth embodiment, the change in the polarization state of the measurement object is measured according to the flowchart shown in FIG. In the fourth embodiment, the transmission type does not need to be measured and is a simple reflection type using a standard sample. The retardation retardation manufacturing errors ε δ , ε ′ δ , and the initial axis orientation of the phase shifter Since the error ε Q , the initial error ε P of the transmission axis direction of the polarizer, and the N, C, and S of the measurement object can be quickly determined at once, it is extremely practical.

まず、ステップS601では、図2に示すような反射型の二次元偏光解析装置100を用い、標準試料について、位相子の主軸方位θQ=0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS602に移行する。なお、標準試料のN、C、及びSは既知である。 First, in step S601, a reflective two-dimensional ellipsometer 100 as shown in FIG. 2 is used, and with respect to a standard sample, when the main axis orientation of the phase shifter is θ Q = 0 and π / 4, the polarizer is the polarizer. The transmission axis direction θ P is rotated to 0, π / 2, π / 4, or −π / 4, respectively, and two-dimensional images of the eight standard samples at the respective rotation angles are received. When the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10), which are the differences between them, are obtained, the process proceeds to step S602. The standard samples N, C, and S are known.

次に、ステップS602では、図2に示すような反射型の二次元偏光解析装置100を用い、測定対象物について、位相子の主軸方位θQ=0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を得ると、処理をステップS603に移行する。 Next, in step S602, the reflection type two-dimensional ellipsometry apparatus 100 as shown in FIG. 2 is used, and when the measurement object is the main axis orientation of the phase shifter θ Q = 0 and π / 4, Rotating the transmission axis direction of the polarizer θ P = 0, π / 2, π / 4, or −π / 4, respectively, and receiving two-dimensional images of the eight measurement objects at the respective rotation angles Thus, when the mathematical formulas (3) to (6) are obtained and the mathematical formulas (7) to (10) which are the differences between them are obtained, the process proceeds to step S603.

次に、ステップS603では、前記標準試料での前記数式(7)〜(10)と、前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求めると、処理をステップS604に移行する。なお、ステップS601〜ステップS603は、本発明の誤差補正方法の第4の実施形態とすることができる。 Next, in step S603, using the mathematical formulas (7) to (10) in the standard sample and the mathematical formulas (7) to (10) in the measurement object, a manufacturing error of retardation of the phase shifter. When ε δ , ε ′ δ , the initial error ε Q of the principal axis direction of the phase shifter, the initial error ε P of the transmission axis direction of the polarizer, and N, C, and S of the measurement object are determined, Goes to step S604. Steps S601 to S603 can be the fourth embodiment of the error correction method of the present invention.

次に、ステップS604では、得られた測定対象物のN、C、及びSから、第1の実施形態と同様にして、前記数式(11)及び(12)により、測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を求めると、本処理を完了する。   Next, in step S604, the two-dimensional image of the measurement object is obtained from the obtained measurement object N, C, and S according to the mathematical expressions (11) and (12) in the same manner as in the first embodiment. When the PSI (Ψ) and the phase difference DEL (Δ) that express the amplitude ratio of the p and s components of the emitted light for each pixel in terms of angle are obtained, this processing is completed.

[第5の実施形態の二次元偏光解析法]
第5の実施形態の二次元偏光解析法では、図10に示すフローチャートにしたがって、測定対象物の偏光状態変化の測定を行うものである。この第5の実施形態では、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが、既知の場合(例えば、2回目以降の測定時)には、更に簡便に測定対象物のaN、aC、及びaSを求めることができる。
[Two-dimensional ellipsometry of the fifth embodiment]
In the two-dimensional ellipsometry of the fifth embodiment, the change in the polarization state of the measurement object is measured according to the flowchart shown in FIG. In this fifth embodiment, when the retardation retardation manufacturing errors ε δ , ε ′ δ , the phaser principal axis orientation initial error ε Q , and the polarizer transmission axis orientation initial error ε P are known. In (for example, the second and subsequent measurements), the aN, aC, and aS of the measurement object can be obtained more simply.

まず、ステップS701では、本発明の前記誤差補正方法、又は本発明の前記二次元偏光解析法により、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを得ると、処理をステップS702に移行する。
本発明の前記誤差補正方法としては、上述した第1の実施形態の誤差補正方法、又は第2の実施形態の誤差補正方法がある。
本発明の前記二次元偏光解析法としては、上述した第1〜第4の実施形態の二次元偏光解析法がある。
First, in step S701, the retardation error manufacturing error ε δ , ε ′ δ , and the initial error ε Q of the main axis direction of the phase shifter by the error correction method of the present invention or the two-dimensional ellipsometry of the present invention. When the initial error ε P of the transmission axis direction of the polarizer is obtained, the process proceeds to step S702.
The error correction method of the present invention includes the error correction method of the first embodiment described above or the error correction method of the second embodiment.
The two-dimensional ellipsometry of the present invention includes the two-dimensional ellipsometry of the first to fourth embodiments described above.

次に、ステップS702では、前記εδ、ε’δ、前記εQ、及び前記εP、を、前記数式(7)〜(10)に代入して、前記数式(7’)〜(10’)を求めると、処理をステップS703に移行する。 Next, in step S702, the ε δ , ε ′ δ , the ε Q , and the ε P are substituted into the equations (7) to (10), and the equations (7 ′) to (10 ′). ), The process proceeds to step S703.

次に、ステップS703では、前記数式(7’)〜(10’)から、下記数式(13)又は(13’)、数式(14)又は(14’)、及び数式(15)又は(15’)を導出し、測定対象物のaN、aC、及びaSを求めると、処理をステップS704に移行する。   Next, in step S703, the following formula (13) or (13 '), formula (14) or (14'), and formula (15) or (15 ') are calculated from the formulas (7') to (10 '). ) To obtain the aN, aC, and aS of the measurement object, the process proceeds to step S704.

次に、ステップS704では、得られた前記測定対象物のaN、aC、及びaSを、前記数式(16)及び(17)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を求めると、本処理を終了する。   Next, in step S704, the obtained aN, aC, and aS of the measurement object are substituted into the equations (16) and (17), and the output of each two-dimensional image of the measurement object is output for each pixel. When the PSI (ψ) and the phase difference DEL (Δ), which represent the amplitude ratio of the p and s components of the incident light as an angle, are obtained, this processing is terminated.

本発明の誤差補正方法及び二次元偏光解析法、並びに誤差補正装置及び二次元偏光解析装置は、一回の二次元計測により測定対象物の反射光の偏光状態の変化を迅速かつ高精度に測定することができ、例えば、測定対象物の表面や表面上の薄膜の膜厚や屈折率等の二次元情報を正確に測定することができる。また、成膜やエッチング等の製造過程におけるその場観察が可能となり、半導体素子やディスプレイデバイス等の電子機器や光学機器等の製造過程において、製造管理やリアルタイムでの測定データ収集に用いることができる。   The error correction method, the two-dimensional ellipsometry, the error correction device, and the two-dimensional ellipsometry of the present invention measure the change in the polarization state of the reflected light of the measurement object quickly and accurately by one-time two-dimensional measurement. For example, it is possible to accurately measure two-dimensional information such as the surface of the measurement object and the film thickness and refractive index of the thin film on the surface. In-situ observation in the manufacturing process such as film formation and etching is possible, and it can be used for manufacturing management and real-time measurement data collection in the manufacturing process of electronic equipment and optical equipment such as semiconductor elements and display devices. .

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1〜3)
−シミュレーション計測−
表1に示すように、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPが存在する場合、以下のシミュレーション条件に基づき、実施例1〜3のPSI(Ψ)とDEL(Δ)の誤差補正前後のシミュレーション結果を求めた。結果を表1に示した。
(Examples 1-3)
-Simulation measurement-
As shown in Table 1, in the case where there are a retardation retardation production error ε δ , ε ′ δ , an initial error ε Q of the main axis orientation of the phase retarder, and an initial error ε P of the transmission axis orientation of the polarizer, Based on the simulation conditions, the simulation results before and after the error correction of PSI (Ψ) and DEL (Δ) of Examples 1 to 3 were obtained. The results are shown in Table 1.

−シミュレーション条件−
測定対象物のPSI(Ψ)とDEL(Δ)の値が20°と170°に対し、aの値を1と仮定し、誤差εδ、ε’δ、εQ、及びεPがそれぞれ、表1の実施例1〜3で示す値である場合、前記数式(7)〜(10)にこれらの値を代入し、得られた信号から、前記数式(13)〜(15)又は前記数式(13’)〜(15’)用いて、誤差補正を行う前後の測定対象物のN、C、及びSを求め、前記数式(16)又は(17)を用いて、測定対象物のPSI(Ψ)とDEL(Δ)を得た。
なお、誤差補正を行う前の場合は、前記数式(13)〜(15)と前記数式(13’)〜(15’)を用いて計算する結果が異なる。表1の誤差補正前の分析結果において、括弧外の値は前記数式(13)〜(15)を用いて計算した結果であり、括弧内の値は前記数式(13’)〜(15’)を用いて計算した結果である。
誤差補正後の場合は、前記数式(13)〜(15)と前記数式(13’)〜(15’)を用いた計算結果が同じになる。
-Simulation conditions-
Assuming that the value of a is 1 for the values of PSI (Ψ) and DEL (Δ) of the measurement object of 20 ° and 170 °, the errors ε δ , ε ′ δ , ε Q , and ε P are respectively In the case of the values shown in Examples 1 to 3 in Table 1, these values are substituted into the formulas (7) to (10), and the formulas (13) to (15) or the formulas are obtained from the obtained signals. Using (13 ′) to (15 ′), N, C, and S of the measurement object before and after performing error correction are obtained, and the PSI of the measurement object (16) or (17) is used. Ψ) and DEL (Δ) were obtained.
In addition, in the case before performing error correction, the results calculated using the equations (13) to (15) and the equations (13 ′) to (15 ′) are different. In the analysis results before error correction in Table 1, the values outside the parentheses are the results calculated using the equations (13) to (15), and the values in parentheses are the equations (13 ′) to (15 ′). It is the result calculated using.
In the case of error correction, the calculation results using the equations (13) to (15) and the equations (13 ′) to (15 ′) are the same.

表1の結果から、測定対象物が同じで誤差が異なる場合でも、誤差補正を行うことにより、誤差補正前に比べて、理論値に近い正確なPSI(Ψ)とDEL(Δ)が得られることがわかった。 From the results shown in Table 1, even when the measurement object is the same and the error is different, by performing error correction, accurate PSI (Ψ) and DEL (Δ) closer to the theoretical values can be obtained than before error correction. I understood it.

(実施例4)
−実測−
図2に示す二次元偏光解析装置100を用いて、下記装置内容及び測定方法に基づき、測定対象物No.1(熱酸化膜付きシリコンウェハ、フィルテック社製)の誤差補正前後のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を測定した。測定対象物No.1の誤差補正前後のPSI(Ψ)と位相差DEL(Δ)の結果を図11に示した。
Example 4
-Actual measurement-
Using the two-dimensional ellipsometer 100 shown in FIG. Measurement of PSI (Ψ) and phase difference DEL (Δ), which expresses the amplitude ratio of p and s components of each pixel before and after error correction of 1 (silicon wafer with thermal oxide film, manufactured by Filtech) as an angle. did. Measurement object No. The results of PSI (Ψ) and phase difference DEL (Δ) before and after error correction of 1 are shown in FIG.

−装置内容−
・装置名:イメージングエリプソメーター(自作)
・光源:LED(波長532nm)
・偏光子:Edmund Optics社製
・位相子:Edmund Optics社製
・検光子:Edmund Optics社製
・受光手段:CMOS(Edmund Optics社製)
測定面積:6.4×4.8(X×Y)mm
-Device contents-
・ Device name: Imaging ellipsometer (self-made)
-Light source: LED (wavelength 532 nm)
-Polarizer: manufactured by Edmund Optics-Phaser: manufactured by Edmund Optics-Analyzer: manufactured by Edmund Optics-Light receiving means: CMOS (manufactured by Edmund Optics)
Measurement area: 6.4 × 4.8 (X × Y) mm 2

−測定方法−
波長532nmにおける標準試料(シリコン基板)と測定対象物No.1(熱酸化膜付きシリコンウェハ、フィルテック社製)の画像を、前記CMOSを用いて8枚ずつ撮像し、これらの画像から、第4の実施形態の二次元偏光解析法を用いて測定対象物のN、C、及びSを求めた(誤差補正前)。
-Measurement method-
Standard sample (silicon substrate) and measurement object No. 1 (a silicon wafer with a thermal oxide film, manufactured by Filtech Co., Ltd.) 8 images are captured using the CMOS, and the measurement target is measured from these images using the two-dimensional ellipsometry of the fourth embodiment. N, C, and S of the object were obtained (before error correction).

次に、図9のフローチャート(第4の実施形態の二次元偏光解析法)と同様にして、誤差補正後の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を測定した。
即ち、図2に示す反射型の二次元偏光解析装置100を用い、位相子の主軸方位θQが0とp/4のとき、偏光子を該偏光子の透過軸方位θPが0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの標準試料と8つの測定対象物No.1の二次元画像を受光することにより、前記標準試料と前記測定対象物No.1の前記数式(3)〜(6)を求め、これらの差分である前記標準試料と前記測定対象物No.1の前記数式(7)〜(10)を得た。
標準試料としては、シリコン基板を用いた。この標準試料のN、C、及びSは0.653、−0.757、及び0.037であった。
Next, in the same manner as in the flowchart of FIG. 9 (two-dimensional ellipsometry of the fourth embodiment), PSI (Ψ) and the level representing the amplitude ratio of the p and s components of the output light after error correction in angle. The phase difference DEL (Δ) was measured.
That is, when the reflection type two-dimensional ellipsometer 100 shown in FIG. 2 is used and the main axis direction θ Q of the phase shifter is 0 and p / 4, the polarizer is set to have a transmission axis direction θ P of 0, π / 2, π / 4, or −π / 4, respectively, and eight standard samples and eight measurement objects No. 1 to receive the two-dimensional image, the standard sample and the measurement object No. 1 is obtained, and the standard sample and the measurement object No. The above-mentioned mathematical formulas (7) to (10) of 1 were obtained.
A silicon substrate was used as a standard sample. N, C, and S of this standard sample were 0.653, −0.757, and 0.037.

次に、前記標準試料での前記数式(7)〜(10)と前記測定対象物No.1での前記数式(7)〜(10)を用いて、位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εP、並びに測定対象物No.1のN、C、及びSを求めた(誤差補正後)。
得られた測定対象物No.1のN、C、及びSから、前記数式(11)及び(12)により、測定対象物No.1の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を求めた。
誤差補正後のPSI(Ψ)とDEL(Δ)の値は、それぞれ67°と175°付近であり、市販の点計測用エリプソメーター(RC2 ellipsometer, J.A.Woollam,Co.(USA))で測定した値に近かった。
Next, the mathematical formulas (7) to (10) in the standard sample and the measurement object No. Using the mathematical formulas (7) to (10) in FIG. 1, retardation retardation manufacturing errors ε δ , ε ′ δ , phaser principal axis orientation initial error ε Q , and polarizer transmission axis orientation initial The error ε P and the measurement object No. N, C, and S of 1 were obtained (after error correction).
The obtained measurement object No. 1 of N, C, and S, the measurement object No. The PSI (Ψ) and the phase difference DEL (Δ) in which the amplitude ratio of the p and s components of the emitted light for each pixel of one two-dimensional image is expressed as an angle.
The values of PSI (Ψ) and DEL (Δ) after error correction are around 67 ° and 175 °, respectively, and a commercially available point measurement ellipsometer (RC2 ellipsometer, JA Woollam, Co. (USA)). It was close to the value measured in.

(実施例5)
−実測−
実施例4において、測定対象物No.1を、測定対象物No.2(シリコン基板)に代え、実施例4で求めたεδ、ε’δ、εQ、及びεPと前記数式(13)〜(15)を用いてピクセル毎の測定対象物No.2の出射光のp、s成分の振幅比を角度で表したPSI(Ψ)と位相差DEL(Δ)を測定した。測定対象物No.2の誤差補正前後のPSI(Ψ)と位相差DEL(Δ)の結果を図12に示した。
誤差補正後のPSI(Ψ)とDEL(Δ)の値は、それぞれ24°と177°付近であり、実施例4と同じ市販の点計測用エリプソメーターで測定した値に近かった。
(Example 5)
-Actual measurement-
In Example 4, the measurement object No. 1 to the measurement object No. 2 (silicon substrate), the measurement object No. for each pixel is obtained using ε δ , ε ′ δ , ε Q , and ε P obtained in Example 4 and the equations (13) to (15). The PSI (Ψ) and the phase difference DEL (Δ), in which the amplitude ratio of the p and s components of the emitted light 2 was expressed as an angle, were measured. Measurement object No. The results of PSI (Ψ) and phase difference DEL (Δ) before and after error correction of 2 are shown in FIG.
The values of PSI (Ψ) and DEL (Δ) after error correction were around 24 ° and 177 °, respectively, and were close to the values measured with the same commercially available point measuring ellipsometer as in Example 4.

本発明の態様は、例えば、以下のとおりである。
<1> 偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める光強度測定工程と、
前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める誤差算出工程と、
を含むことを特徴とする誤差補正方法である。
<2> 偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、下記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める光強度測定工程と、
前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び前記εPにより、前記数式(1)を下記数式(2)に補正し、前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出工程と、
を含む前記<1>に記載の誤差補正方法である。
[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[数式(2)]
ただし、前記数式(2)中、a、b、δ、θQ、θP、N、C、及びSは、前記数式(1)と同じ意味を表す。εδは、位相子のリタデーションの製造誤差を表す。εQは、位相子の主軸方位の初期誤差を表す。εPは、偏光子の透過軸方位の初期誤差を表す。
<3> 前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出工程において、
前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させ、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、前記数式(2)から、下記数式(3)〜(6)を求める前記<2>に記載の誤差補正方法である。
[数式(3)]
ただし、前記数式(3)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(3)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[数式(4)]
ただし、前記数式(4)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(4)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
[数式(5)]
ただし、前記数式(5)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(5)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[数式(6)]
ただし、前記数式(6)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(6)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
<4> 前記数式(3)及び(5)において、前記偏光子の透過軸方位θPが0とπ/2のときの差分をとり、下記数式(7)及び(9)を導出し、
前記数式(4)及び(6)において、前記偏光子の透過軸方位θPがπ/4と−π/4のときの差分を取ることにより、下記数式(8)及び(10)を導出する前記<3>に記載の誤差補正方法である。
[数式(7)]
ただし、前記数式(7)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[数式(8)]
ただし、前記数式(8)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[数式(9)]
ただし、前記数式(9)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
[数式(10)]
ただし、前記数式(10)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
<5> 前記数式(7)〜(10)から、前記εδ、ε’δ、前記εQ、及び前記εPを求める処理であって、
透過モードでの空気中の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める処理と、
前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、前記位相子のリタデーションの製造誤差εδ=ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを求め、前記二次元画像の中心部のピクセルの信号から得られた前記εQ、及びεPを、前記数式(7)〜(10)に代入して、前記二次元画像の中心部以外の部分のεδ、ε’δを求め、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及びεPを得る処理と、
を含む前記<4>に記載の誤差補正方法である。
<6> 前記数式(7)〜(10)から、前記εδ、ε’δ、前記εQ、及び前記εPを求める処理であって、
反射モードでの標準試料の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める処理と、
前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、前記位相子のリタデーションの製造誤差εδ=ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを求め、前記二次元画像の中心部のピクセルの信号から得られた前記εQ、及びεPを前記数式(7)〜(10)に代入して、前記二次元画像の中心部以外の部分のεδ、ε’δを求め、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及びεPを得る処理と、
を含む前記<4>に記載の誤差補正方法である。
<7> 前記<1>から<6>のいずれかに記載の誤差補正方法を用いることを特徴とする二次元偏光解析法である。
<8> 前記<5>から<6>のいずれかに記載の誤差補正方法を用いた二次元偏光解析法であって、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
前記測定対象物から求めた前記数式(7)〜(10)に、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを代入し、前記測定対象物のN、C、及びSを求める工程と、
を含む前記<7>に記載の二次元偏光解析法である。
<9> 前記<4>に記載の誤差補正方法を用いた二次元偏光解析法であって、
透過モードでの空気中の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
前記空気中での前記数式(7)〜(10)と前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求める工程と、
を含む前記<7>に記載の二次元偏光解析法である。
<10> 前記<4>に記載の誤差補正方法を用いた二次元偏光解析法であって、
反射モードでの標準試料の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
前記標準試料での前記数式(7)〜(10)と前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求める工程と、
を含む前記<7>に記載の二次元偏光解析法である。
<11> 得られた前記測定対象物のN、C、及びSを、下記数式(11)及び(12)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求める工程を含む前記<8>から<10>のいずれかに記載の二次元偏光解析法である。
[数式(11)]
[数式(12)]
<12> 前記<5>から<6>のいずれかに記載の誤差補正方法、又は前記<8>から<10>のいずれかに記載の二次元偏光解析法により、得られた位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを、前記数式(7)〜(10)に代入して、下記数式(7’)〜(10’)を求める工程と、
前記数式(7’)〜(10’)から、下記数式(13)又は(13’)、数式(14)又は(14’)、及び数式(15)又は(15’)を導出し、測定対象物のaN、aC、及びaSを求める工程と、
を含むことを特徴とする二次元偏光解析法である。
[数式(7’)]
ただし、前記数式(7’)中のe11〜e13は、以下のとおりである。
[数式(8’)]
ただし、前記数式(8’)中のe21〜e23は、以下のとおりである。
[数式(9’)]
ただし、前記数式(9’)中のe31〜e33は、以下のとおりである。
[数式(10’)]
ただし、前記数式(10’)中のe41〜e43は、以下のとおりである。
[数式(13)]
[数式(13’)]
ただし、前記数式(13)及び(13’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[数式(14)]
[数式(14’)]
ただし、前記数式(14)と(14’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[数式(15)]
[数式(15’)]
ただし、前記数式(15)と(15’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
<13> 得られた前記測定対象物のaN、aC、及びaSを、下記数式(16)及び(17)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求める工程を含む前記<12>に記載の二次元偏光解析法である。
[数式(16)]
[数式(17)]
<14> 偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める光強度測定手段と、
前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める誤差算出手段と、
を有することを特徴とする誤差補正装置である。
<15> 偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、下記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める光強度測定手段と、
前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び前記εPにより、前記数式(1)を下記数式(2)に補正し、前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出手段と、
を有する前記<14>に記載の誤差補正装置である。
[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[数式(2)]
ただし、前記数式(2)中、a、b、δ、θQ、θP、N、C、及びSは、前記数式(1)と同じ意味を表す。εδは、位相子のリタデーションの製造誤差を表す。εQは、位相子の主軸方位の初期誤差を表す。εPは、偏光子の透過軸方位の初期誤差を表す。
<16> 前記<14>から<15>のいずれかに記載の誤差補正装置を有することを特徴とする二次元偏光解析装置である。
Aspects of the present invention are as follows, for example.
<1> Light that is light-modulated by changing the conditions of the polarizer and the phase shifter is applied to the measurement object, and a two-dimensional image of the light reflected from the measurement object and passed through the analyzer is received by the light receiving means. A light intensity measuring step for obtaining a light intensity for each pixel of the two-dimensional image;
When there is a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, each pixel of the two-dimensional image is corrected with these errors. An error calculation step for obtaining a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, from the results of these light intensities,
It is an error correction method characterized by including this.
<2> Light that is light-modulated by changing the conditions of the polarizer and the phase shifter is applied to the object to be measured, and a two-dimensional image of the light reflected from the object to be measured and passed through the analyzer is received by the light receiving means. A light intensity measuring step for obtaining a light intensity I for each pixel of the two-dimensional image represented by the following formula (1):
When there is a manufacturing error ε δ of retardation of the phaser, an initial error ε Q of the main axis direction of the phaser, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ , the ε Q , and by the epsilon P, equation (1) is corrected by the following equation (2), an error calculation step of obtaining the epsilon [delta], the epsilon Q, and the epsilon P from the equation (2),
The error correction method according to <1>, including:
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).
[Formula (2)]
However, in said Numerical formula (2), a, b, (delta), (theta) Q , (theta) P , N, C, and S represent the same meaning as the said Numerical formula (1). epsilon [delta] represents a manufacturing error of retardation of retarder. ε Q represents the initial error of the principal axis orientation of the phaser. ε P represents the initial error of the transmission axis orientation of the polarizer.
<3> In an error calculation step of obtaining the ε δ , the ε Q , and the ε P from the mathematical formula (2),
When the main axis azimuth θ Q of the retarder is 0 and π / 4, the polarizer is rotated to the transmission axis azimuth θ P = 0, π / 2, π / 4, or −π / 4 of the polarizer, respectively. The error correction method according to <2>, in which the following two equations (3) to (6) are obtained from the equation (2) by receiving eight two-dimensional images at respective rotation angles with the light receiving unit. It is.
[Formula (3)]
However, in said Numerical formula (3), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (3), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.
[Formula (4)]
However, in said Numerical formula (4), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (4), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.
[Formula (5)]
However, in the formula (5), a, b, ε Q , ε P , N, C, and S have the same meaning as the formula (1) and the formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said Equation (5), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.
[Formula (6)]
However, in said Numerical formula (6), a, b, (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said equation (6), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.
<4> In the equations (3) and (5), the difference between the transmission axis azimuth θ P of the polarizer being 0 and π / 2 is taken, and the following equations (7) and (9) are derived,
In the equations (4) and (6), the following equations (8) and (10) are derived by taking the difference when the transmission axis direction θ P of the polarizer is π / 4 and −π / 4. The error correction method according to <3>.
[Formula (7)]
However, in said Numerical formula (7), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).
[Formula (8)]
However, in said Numerical formula (8), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).
[Formula (9)]
However, in the formula (9), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).
[Formula (10)]
However, in the formula (10), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).
<5> A process for obtaining ε δ , ε ′ δ , ε Q , and ε P from the equations (7) to (10),
According to the measurement in air in the transmission mode, when the main axis orientation θ Q of the phase shifter is 0 and π / 4, the polarizer is set to the transmission axis orientation θ P = 0, π / 2, π / 4 of the polarizer. , Or −π / 4, and the two light images at the respective rotation angles are received by the light receiving means to obtain the equations (3) to (6), which are the differences between them. Processing for obtaining the mathematical formulas (7) to (10);
Using the equations (7) to (10), from the pixel signal at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , the initial error of the principal axis orientation of the phaser ε Q and an initial error ε P of the transmission axis direction of the polarizer are obtained, and the ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image are expressed by the equations (7) to (7) 10) to obtain ε δ and ε ′ δ of the portion other than the central portion of the two-dimensional image, and the ε δ , ε ′ δ , ε Q , And obtaining ε P ;
The error correction method according to <4>, including:
<6> A process for obtaining the ε δ , ε ′ δ , the ε Q , and the ε P from the mathematical formulas (7) to (10),
When the main axis azimuth θ Q of the phase shifter is 0 and π / 4 by measurement of a standard sample in the reflection mode, the polarizer is transmitted through the transmission axis azimuth θ P = 0, π / 2, π / 4 of the polarizer. Or π / 4, respectively, and receiving the two-dimensional images of the eight standard samples at the respective rotation angles to obtain the equations (3) to (6), which are the differences between them. Processing for obtaining the mathematical formulas (7) to (10);
Using the equations (7) to (10), from the pixel signal at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , the initial error of the principal axis orientation of the phaser ε Q and an initial error ε P of the transmission axis direction of the polarizer are obtained, and the ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image are expressed by the equations (7) to (10). ) To obtain ε δ , ε ′ δ of the portion other than the center portion of the two-dimensional image, and the ε δ , ε ′ δ , ε Q , and processing to obtain ε P ;
The error correction method according to <4>, including:
<7> A two-dimensional ellipsometry method using the error correction method according to any one of <1> to <6>.
<8> A two-dimensional ellipsometry using the error correction method according to any one of <5> to <6>,
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Or by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the equations (3) to (6) are obtained, and these are the differences. Obtaining the mathematical formulas (7) to (10);
The mathematical expressions (7) to (10) obtained from the measurement object include the retardation error ε δ and ε ′ δ of the retardation of the phase shifter, the initial error ε Q of the principal axis direction of the phase shifter, and the polarizer Substituting an initial error ε P of the transmission axis direction to determine N, C, and S of the measurement object;
It is the two-dimensional ellipsometry as described in said <7> containing.
<9> A two-dimensional ellipsometry using the error correction method according to <4>,
According to the measurement in air in the transmission mode, when the main axis orientation θ Q of the phase shifter is 0 and π / 4, the polarizer is set to the transmission axis orientation θ P = 0, π / 2, π / 4 of the polarizer. , Or −π / 4, and the two light images at the respective rotation angles are received by the light receiving means to obtain the equations (3) to (6), which are the differences between them. Obtaining the mathematical formulas (7) to (10);
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Or by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the equations (3) to (6) are obtained, and these are the differences. Obtaining the mathematical formulas (7) to (10);
Using the mathematical formulas (7) to (10) in the air and the mathematical formulas (7) to (10) in the measurement object, the retardation production error ε δ , ε ′ δ , Obtaining an initial error ε Q of the main axis orientation of the phaser, an initial error ε P of the transmission axis orientation of the polarizer, and N, C, and S of the measurement object;
It is the two-dimensional ellipsometry as described in said <7> containing.
<10> A two-dimensional ellipsometry using the error correction method according to <4>,
According to the measurement of the standard sample in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is transmitted through the transmission axis direction θ P = 0, π / 2, π / 4, or The formulas (3) to (6) are obtained by rotating each to −π / 4 and receiving the two-dimensional images of the eight standard samples at the respective rotation angles. Obtaining (7) to (10);
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Or by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the equations (3) to (6) are obtained, and these are the differences. Obtaining the mathematical formulas (7) to (10);
Using the mathematical formulas (7) to (10) in the standard sample and the mathematical formulas (7) to (10) in the measurement object, the manufacturing error ε δ , ε ′ δ of retardation of the phase shifter, Obtaining an initial error ε Q of the main axis orientation of the phaser, an initial error ε P of the transmission axis orientation of the polarizer, and N, C, and S of the measurement object;
It is the two-dimensional ellipsometry as described in said <7> containing.
<11> Substituting N, C, and S of the obtained measurement object into the following mathematical formulas (11) and (12), p of the emitted light for each pixel of the two-dimensional image of the measurement object, The two-dimensional ellipsometry method according to any one of <8> to <10>, including a step of obtaining Ψ and a phase difference Δ in which the amplitude ratio of the s component is expressed by an angle.
[Formula (11)]
[Formula (12)]
<12> Retardation of the retardation obtained by the error correction method according to any one of <5> to <6> or the two-dimensional ellipsometry according to any one of <8> to <10> Substituting the production errors ε δ , ε ′ δ , the initial error ε Q of the principal axis direction of the phase shifter, and the initial error ε P of the transmission axis direction of the polarizer into the formulas (7) to (10), Obtaining formulas (7 ′) to (10 ′);
The following mathematical formula (13) or (13 ′), mathematical formula (14) or (14 ′), and mathematical formula (15) or (15 ′) are derived from the mathematical formulas (7 ′) to (10 ′), and the measurement target Determining aN, aC, and aS of the object;
It is a two-dimensional ellipsometry characterized by including.
[Formula (7 ')]
However, e 11 to e 13 of the formula (7 ') in are as follows.
[Formula (8 ')]
However, e 21 to e 23 of the formula (8 ') in are as follows.
[Formula (9 ')]
However, e 31 to e 33 of the formula (9 ') in are as follows.
[Formula (10 ')]
However, e 41 to e 43 in said formula (10 ') are as follows.
[Formula (13)]
[Formula (13 ')]
However, e 11 to e 43 in the formulas (13) and (13 ′) have the same meaning as the formulas (7 ′) to (10 ′).
[Formula (14)]
[Formula (14 ')]
However, e 11 to e 43 in the formulas (14) and (14 ′) have the same meaning as the formulas (7 ′) to (10 ′).
[Formula (15)]
[Formula (15 ')]
However, e 11 to e 43 in the formulas (15) and (15 ′) represent the same meanings as the formulas (7 ′) to (10 ′).
<13> Substituting the obtained aN, aC, and aS of the measurement object into the following mathematical formulas (16) and (17), p of the emitted light for each pixel of the two-dimensional image of the measurement object, The two-dimensional ellipsometry method according to <12>, including a step of obtaining Ψ and a phase difference Δ in which the amplitude ratio of the s component is expressed as an angle.
[Formula (16)]
[Formula (17)]
<14> Light that is light-modulated by changing the conditions of the polarizer and the phase shifter is applied to the measurement object, and a two-dimensional image of the light reflected from the measurement object and passed through the analyzer is received by the light receiving means. A light intensity measuring means for obtaining a light intensity for each pixel of the two-dimensional image;
When there is a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, each pixel of the two-dimensional image is corrected with these errors. An error calculating means for obtaining a retardation error of the phase shifter, an initial error of the main axis direction of the phase shifter, and an initial error of the transmission axis direction of the polarizer from the results of the light intensity;
It is an error correction apparatus characterized by having.
<15> Light that is light-modulated by changing the conditions of the polarizer and the phase shifter is applied to the measurement object, and a two-dimensional image of the light reflected from the measurement object and passed through the analyzer is received by the light receiving means. A light intensity measuring means for obtaining a light intensity I for each pixel of the two-dimensional image represented by the following formula (1):
When there is a manufacturing error ε δ of retardation of the phaser, an initial error ε Q of the main axis direction of the phaser, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ , the ε Q , and by the epsilon P, equation (1) is corrected by the following equation (2), an error calculation means for obtaining the epsilon [delta], the epsilon Q, and the epsilon P from said equation (2),
It is an error correction apparatus as described in said <14> which has.
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).
[Formula (2)]
However, in said Numerical formula (2), a, b, (delta), (theta) Q , (theta) P , N, C, and S represent the same meaning as the said Numerical formula (1). epsilon [delta] represents a manufacturing error of retardation of retarder. ε Q represents the initial error of the principal axis orientation of the phaser. ε P represents the initial error of the transmission axis orientation of the polarizer.
<16> A two-dimensional ellipsometer comprising the error correction device according to any one of <14> to <15>.

前記<1>から<6>のいずれかに記載の誤差補正方法、前記<7>から<13>のいずれかに記載の二次元偏光解析法、前記<14>から<15>のいずれかに記載の誤差補正装置、及び前記<16>に記載の二次元偏光解析装置によると、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。   The error correction method according to any one of <1> to <6>, the two-dimensional ellipsometry method according to any one of <7> to <13>, and any one of <14> to <15>. According to the error correction apparatus described in the above and the two-dimensional ellipsometric analysis apparatus described in <16>, it is possible to solve the conventional problems and achieve the object of the present invention.

1 測定対象物
2 光源
3 偏光子
4 位相子
5 検光子
6 受光手段
100 反射型の二次元偏光解析装置
101 透過型の二次元偏光解析装置
in 入射光
out 出射光

DESCRIPTION OF SYMBOLS 1 Measurement object 2 Light source 3 Polarizer 4 Phaser 5 Analyzer 6 Light-receiving means 100 Reflective type two-dimensional ellipsometer 101 Transmission type two-dimensional ellipsometer L in incident light L out outgoing light

Claims (16)

偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める光強度測定工程と、
前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める誤差算出工程と、
を含むことを特徴とする誤差補正方法。
Irradiating the object to be measured with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and receiving a two-dimensional image of the light reflected from the object to be measured and passed through the analyzer by the light receiving means, A light intensity measurement step for determining the light intensity for each pixel of the two-dimensional image;
When there is a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, each pixel of the two-dimensional image is corrected with these errors. An error calculation step for obtaining a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, from the results of these light intensities,
An error correction method comprising:
偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、下記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める光強度測定工程と、
前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び前記εPにより、前記数式(1)を下記数式(2)に補正し、前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出工程と、
を含む請求項1に記載の誤差補正方法。
[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[数式(2)]
ただし、前記数式(2)中、a、b、δ、θQ、θP、N、C、及びSは、前記数式(1)と同じ意味を表す。εδは、位相子のリタデーションの製造誤差を表す。εQは、位相子の主軸方位の初期誤差を表す。εPは、偏光子の透過軸方位の初期誤差を表す。
The measurement object is irradiated with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and a two-dimensional image of light reflected from the measurement object and passed through the analyzer is received by the light receiving means. A light intensity measurement step for obtaining a light intensity I for each pixel of the two-dimensional image represented by the mathematical formula (1);
When there is a manufacturing error ε δ of retardation of the phaser, an initial error ε Q of the main axis direction of the phaser, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ , the ε Q , and by the epsilon P, equation (1) is corrected by the following equation (2), an error calculation step of obtaining the epsilon [delta], the epsilon Q, and the epsilon P from the equation (2),
The error correction method according to claim 1, comprising:
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).
[Formula (2)]
However, in said Numerical formula (2), a, b, (delta), (theta) Q , (theta) P , N, C, and S represent the same meaning as the said Numerical formula (1). epsilon [delta] represents a manufacturing error of retardation of retarder. ε Q represents the initial error of the principal axis orientation of the phaser. ε P represents the initial error of the transmission axis orientation of the polarizer.
前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出工程において、
前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させ、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、前記数式(2)から、下記数式(3)〜(6)を求める請求項2に記載の誤差補正方法。
[数式(3)]
ただし、前記数式(3)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(3)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[数式(4)]
ただし、前記数式(4)中、a、b、εδ、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。前記数式(4)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
[数式(5)]
ただし、前記数式(5)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(5)中の±は、偏光子の透過軸方位θPが0のとき+符号、偏光子の透過軸方位θPがπ/2のとき−符号である。
[数式(6)]
ただし、前記数式(6)中、a、b、εQ、εP、N、C、及びSは、前記数式(1)及び前記数式(2)と同じ意味を表す。ε’δは、位相子の主軸方位θQをπ/4回転させたときの位相子のリタデーションの製造誤差を表す。前記数式(6)中の±は、偏光子の透過軸方位θPがπ/4のとき+符号、偏光子の透過軸方位θPが−π/4のとき−符号である。
In the error calculation step of obtaining the ε δ , the ε Q , and the ε P from the formula (2),
When the main axis azimuth θ Q of the retarder is 0 and π / 4, the polarizer is rotated to the transmission axis azimuth θ P = 0, π / 2, π / 4, or −π / 4 of the polarizer, respectively. The error correction method according to claim 2, wherein the following mathematical formulas (3) to (6) are obtained from the mathematical formula (2) by receiving eight two-dimensional images at respective rotation angles with the light receiving means.
[Formula (3)]
However, in said Numerical formula (3), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (3), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.
[Formula (4)]
However, in said Numerical formula (4), a, b, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ± of the equation (4), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.
[Formula (5)]
However, in the formula (5), a, b, ε Q , ε P , N, C, and S have the same meaning as the formula (1) and the formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said Equation (5), when the transmission axis azimuth theta P of the polarizer is 0 + code, transmission axes theta P of the polarizer when the [pi / 2 - a code.
[Formula (6)]
However, in said Numerical formula (6), a, b, (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2). ε ′ δ represents a manufacturing error of retardation of the retarder when the main axis direction θ Q of the retarder is rotated by π / 4. ± in said equation (6), when the transmission axis azimuth theta P of the polarizer is [pi / 4 + code, when the transmission axis azimuth theta P of the polarizer is - [pi] / 4 - a code.
前記数式(3)及び(5)において、前記偏光子の透過軸方位θPが0とπ/2のときの差分をとり、下記数式(7)及び(9)を導出し、
前記数式(4)及び(6)において、前記偏光子の透過軸方位θPがπ/4と−π/4のときの差分を取ることにより、下記数式(8)及び(10)を導出する請求項3に記載の誤差補正方法。
[数式(7)]
ただし、前記数式(7)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[数式(8)]
ただし、前記数式(8)中、a、εδ、εQ、εP、N、C、及びSは、前記数式(1)、及び前記数式(2)と同じ意味を表す。
[数式(9)]
ただし、前記数式(9)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
[数式(10)]
ただし、前記数式(10)中、a、ε’δ、εQ、εP、N、C、及びSは、前記数式(1)、前記数式(2)、前記数式(5)、及び前記数式(6)と同じ意味を表す。
In the equations (3) and (5), the difference when the transmission axis direction θ P of the polarizer is 0 and π / 2 is taken, and the following equations (7) and (9) are derived,
In the equations (4) and (6), the following equations (8) and (10) are derived by taking the difference when the transmission axis direction θ P of the polarizer is π / 4 and −π / 4. The error correction method according to claim 3.
[Formula (7)]
However, in said Numerical formula (7), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).
[Formula (8)]
However, in said Numerical formula (8), a, (epsilon) delta , (epsilon) Q , (epsilon) P , N, C, and S represent the same meaning as the said Numerical formula (1) and the said Numerical formula (2).
[Formula (9)]
However, in the formula (9), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).
[Formula (10)]
However, in the formula (10), a, ε ′ δ , ε Q , ε P , N, C, and S are the formula (1), the formula (2), the formula (5), and the formula. It represents the same meaning as (6).
前記数式(7)〜(10)から、前記εδ、ε’δ、前記εQ、及び前記εPを求める処理であって、
透過モードでの空気中の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める処理と、
前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、前記位相子のリタデーションの製造誤差εδ=ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを求め、前記二次元画像の中心部のピクセルの信号から得られた前記εQ、及びεPを、前記数式(7)〜(10)に代入して、前記二次元画像の中心部以外の部分のεδ、ε’δを求め、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及びεPを得る処理と、
を含む請求項4に記載の誤差補正方法。
From the equations (7) to (10), a process for obtaining the ε δ , ε ′ δ , the ε Q , and the ε P ,
According to the measurement in air in the transmission mode, when the main axis orientation θ Q of the phase shifter is 0 and π / 4, the polarizer is set to the transmission axis orientation θ P = 0, π / 2, π / 4 of the polarizer. , Or −π / 4, and the two light images at the respective rotation angles are received by the light receiving means to obtain the equations (3) to (6), which are the differences between them. Processing for obtaining the mathematical formulas (7) to (10);
Using the equations (7) to (10), from the pixel signal at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , the initial error of the principal axis orientation of the phaser ε Q and an initial error ε P of the transmission axis direction of the polarizer are obtained, and the ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image are expressed by the equations (7) to (7) 10) to obtain ε δ and ε ′ δ of the portion other than the central portion of the two-dimensional image, and the ε δ , ε ′ δ , ε Q , And obtaining ε P ;
The error correction method according to claim 4, comprising:
前記数式(7)〜(10)から、前記εδ、ε’δ、前記εQ、及び前記εPを求める処理であって、
反射モードでの標準試料の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める処理と、
前記数式(7)〜(10)を用いて、前記二次元画像の中心部のピクセルの信号から、前記位相子のリタデーションの製造誤差εδ=ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを求め、前記二次元画像の中心部のピクセルの信号から得られた前記εQ、及びεPを前記数式(7)〜(10)に代入して、前記二次元画像の中心部以外の部分のεδ、ε’δを求め、前記数式(7)〜(10)中の前記εδ、ε’δ、前記εQ、及びεPを得る処理と、
を含む請求項4に記載の誤差補正方法。
From the equations (7) to (10), a process for obtaining the ε δ , ε ′ δ , the ε Q , and the ε P ,
When the main axis azimuth θ Q of the phase shifter is 0 and π / 4 by measurement of a standard sample in the reflection mode, the polarizer is transmitted through the transmission axis azimuth θ P = 0, π / 2, π / 4 of the polarizer. Or π / 4, respectively, and receiving the two-dimensional images of the eight standard samples at the respective rotation angles to obtain the equations (3) to (6), which are the differences between them. Processing for obtaining the mathematical formulas (7) to (10);
Using the equations (7) to (10), from the pixel signal at the center of the two-dimensional image, the retardation production error ε δ = ε ′ δ , the initial error of the principal axis orientation of the phaser ε Q and an initial error ε P of the transmission axis direction of the polarizer are obtained, and the ε Q and ε P obtained from the signal of the pixel at the center of the two-dimensional image are expressed by the equations (7) to (10). ) To obtain ε δ , ε ′ δ of the portion other than the center portion of the two-dimensional image, and the ε δ , ε ′ δ , ε Q , and processing to obtain ε P ;
The error correction method according to claim 4, comprising:
請求項1から6のいずれかに記載の誤差補正方法を用いることを特徴とする二次元偏光解析法。   A two-dimensional ellipsometry using the error correction method according to claim 1. 請求項5から6のいずれかに記載の誤差補正方法を用いた二次元偏光解析法であって、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
前記測定対象物から求めた前記数式(7)〜(10)に、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPを代入し、前記測定対象物のN、C、及びSを求める工程と、
を含む請求項7に記載の二次元偏光解析法。
A two-dimensional ellipsometry using the error correction method according to any one of claims 5 to 6,
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Or by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the equations (3) to (6) are obtained, and these are the differences. Obtaining the mathematical formulas (7) to (10);
The mathematical expressions (7) to (10) obtained from the measurement object include the retardation error ε δ and ε ′ δ of the retardation of the phase shifter, the initial error ε Q of the principal axis direction of the phase shifter, and the polarizer Substituting an initial error ε P of the transmission axis direction to determine N, C, and S of the measurement object;
The two-dimensional ellipsometry method according to claim 7 including:
請求項4に記載の誤差補正方法を用いた二次元偏光解析法であって、
透過モードでの空気中の測定により、前記位相子の主軸方位θQが0とπ/4のとき、前記偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの二次元画像を前記受光手段で受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
前記空気中での前記数式(7)〜(10)と前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求める工程と、
を含む請求項7に記載の二次元偏光解析法。
A two-dimensional ellipsometry using the error correction method according to claim 4,
According to the measurement in air in the transmission mode, when the main axis orientation θ Q of the phase shifter is 0 and π / 4, the polarizer is set to the transmission axis orientation θ P = 0, π / 2, π / 4 of the polarizer. , Or −π / 4, and the two light images at the respective rotation angles are received by the light receiving means to obtain the equations (3) to (6), which are the differences between them. Obtaining the mathematical formulas (7) to (10);
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Or by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the equations (3) to (6) are obtained, and these are the differences. Obtaining the mathematical formulas (7) to (10);
Using the mathematical formulas (7) to (10) in the air and the mathematical formulas (7) to (10) in the measurement object, the retardation production error ε δ , ε ′ δ , Obtaining an initial error ε Q of the main axis orientation of the phaser, an initial error ε P of the transmission axis orientation of the polarizer, and N, C, and S of the measurement object;
The two-dimensional ellipsometry method according to claim 7 including:
請求項4に記載の誤差補正方法を用いた二次元偏光解析法であって、
反射モードでの標準試料の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記標準試料の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
反射モードでの測定対象物の測定により、位相子の主軸方位θQが0とπ/4のとき、偏光子を該偏光子の透過軸方位θP=0、π/2、π/4、又は−π/4にそれぞれ回転させて、それぞれの回転角度での8つの前記測定対象物の二次元画像を受光することにより、前記数式(3)〜(6)を求め、これらの差分である前記数式(7)〜(10)を求める工程と、
前記標準試料での前記数式(7)〜(10)と前記測定対象物での前記数式(7)〜(10)を用いて、前記位相子のリタデーションの製造誤差εδ、ε’δ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εP、並びに前記測定対象物のN、C、及びSを求める工程と、
を含む請求項7に記載の二次元偏光解析法。
A two-dimensional ellipsometry using the error correction method according to claim 4,
According to the measurement of the standard sample in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is transmitted through the transmission axis direction θ P = 0, π / 2, π / 4, or The formulas (3) to (6) are obtained by rotating each to −π / 4 and receiving the two-dimensional images of the eight standard samples at the respective rotation angles. Obtaining (7) to (10);
By measuring the measurement object in the reflection mode, when the main axis direction θ Q of the phase shifter is 0 and π / 4, the polarizer is moved to the transmission axis direction θ P = 0, π / 2, π / 4, Or by rotating each to −π / 4 and receiving the two-dimensional images of the eight measurement objects at the respective rotation angles, the equations (3) to (6) are obtained, and these are the differences. Obtaining the mathematical formulas (7) to (10);
Using the mathematical formulas (7) to (10) in the standard sample and the mathematical formulas (7) to (10) in the measurement object, the manufacturing error ε δ , ε ′ δ of retardation of the phase shifter, Obtaining an initial error ε Q of the main axis orientation of the phaser, an initial error ε P of the transmission axis orientation of the polarizer, and N, C, and S of the measurement object;
The two-dimensional ellipsometry method according to claim 7 including:
得られた前記測定対象物のN、C、及びSを、下記数式(11)及び(12)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求める工程を含む請求項8から10のいずれかに記載の二次元偏光解析法。
[数式(11)]
[数式(12)]
By substituting N, C, and S of the obtained measurement object into the following formulas (11) and (12), the p and s components of the emitted light for each pixel of the two-dimensional image of the measurement object The two-dimensional ellipsometry according to any one of claims 8 to 10, further comprising a step of obtaining Ψ and a phase difference Δ in which the amplitude ratio is expressed by an angle.
[Formula (11)]
[Formula (12)]
請求項5から6のいずれかに記載の誤差補正方法、又は請求項8から10のいずれかに記載の二次元偏光解析法により、得られた位相子のリタデーションの製造誤差εδ、ε’δ、位相子の主軸方位の初期誤差εQ、及び偏光子の透過軸方位の初期誤差εPを、前記数式(7)〜(10)に代入して、下記数式(7’)〜(10’)を求める工程と、
前記数式(7’)〜(10’)から、下記数式(13)又は(13’)、数式(14)又は(14’)、及び数式(15)又は(15’)を導出し、測定対象物のaN、aC、及びaSを求める工程と、
を含むことを特徴とする二次元偏光解析法。
[数式(7’)]
ただし、前記数式(7’)中のe11〜e13は、以下のとおりである。
[数式(8’)]
ただし、前記数式(8’)中のe21〜e23は、以下のとおりである。
[数式(9’)]
ただし、前記数式(9’)中のe31〜e33は、以下のとおりである。
[数式(10’)]
ただし、前記数式(10’)中のe41〜e43は、以下のとおりである。
[数式(13)]
[数式(13’)]
ただし、前記数式(13)及び(13’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[数式(14)]
[数式(14’)]
ただし、前記数式(14)と(14’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
[数式(15)]
[数式(15’)]
ただし、前記数式(15)と(15’)中、e11〜e43は、前記数式(7’)〜(10’)と同じ意味を表す。
Manufacturing errors ε δ , ε ′ δ of retardation of the obtained phase shifter by the error correction method according to claim 5 or the two-dimensional ellipsometry according to claim 8. Substituting the initial error ε Q of the main axis direction of the phase shifter and the initial error ε P of the transmission axis direction of the polarizer into the formulas (7) to (10), the following formulas (7 ′) to (10 ′ )
The following mathematical formula (13) or (13 ′), mathematical formula (14) or (14 ′), and mathematical formula (15) or (15 ′) are derived from the mathematical formulas (7 ′) to (10 ′), and the measurement target Determining aN, aC, and aS of the object;
A two-dimensional ellipsometric method characterized by comprising:
[Formula (7 ')]
However, e 11 to e 13 of the formula (7 ') in are as follows.
[Formula (8 ')]
However, e 21 to e 23 of the formula (8 ') in are as follows.
[Formula (9 ')]
However, e 31 to e 33 of the formula (9 ') in are as follows.
[Formula (10 ')]
However, e 41 to e 43 in said formula (10 ') are as follows.
[Formula (13)]
[Formula (13 ')]
However, e 11 to e 43 in the formulas (13) and (13 ′) have the same meaning as the formulas (7 ′) to (10 ′).
[Formula (14)]
[Formula (14 ')]
However, e 11 to e 43 in the formulas (14) and (14 ′) have the same meaning as the formulas (7 ′) to (10 ′).
[Formula (15)]
[Formula (15 ')]
However, e 11 to e 43 in the formulas (15) and (15 ′) represent the same meanings as the formulas (7 ′) to (10 ′).
得られた前記測定対象物のaN、aC、及びaSを、下記数式(16)及び(17)に代入して、前記測定対象物の二次元画像のピクセル毎の出射光のp、s成分の振幅比を角度で表したΨと位相差Δを求める工程を含む請求項12に記載の二次元偏光解析法。
[数式(16)]
[数式(17)]
The obtained aN, aC, and aS of the measurement object are substituted into the following mathematical formulas (16) and (17), and the p and s components of the emitted light for each pixel of the two-dimensional image of the measurement object are calculated. The two-dimensional ellipsometric method according to claim 12, further comprising a step of obtaining Ψ and a phase difference Δ representing an amplitude ratio in angle.
[Formula (16)]
[Formula (17)]
偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、前記二次元画像のピクセル毎の光強度を求める光強度測定手段と、
前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差があるときに、これらの誤差で補正した状態で前記二次元画像のピクセル毎の光強度を求め、これらの光強度の結果から前記位相子のリタデーションの製造誤差、前記位相子の主軸方位の初期誤差、及び前記偏光子の透過軸方位の初期誤差を求める誤差算出手段と、
を有することを特徴とする誤差補正装置。
Irradiates the measurement object with light that has been light-modulated by changing the conditions of the polarizer and the phase shifter, receives a two-dimensional image of the light reflected from the measurement object and passed through the analyzer by a light receiving means, A light intensity measuring means for obtaining a light intensity for each pixel of the two-dimensional image;
When there is a manufacturing error of retardation of the phaser, an initial error of the main axis direction of the phaser, and an initial error of the transmission axis direction of the polarizer, each pixel of the two-dimensional image is corrected with these errors. An error calculating means for obtaining a retardation error of the phase shifter, an initial error of the main axis direction of the phase shifter, and an initial error of the transmission axis direction of the polarizer from the results of the light intensity;
An error correction apparatus comprising:
偏光子及び位相子をそれぞれの条件を変えて光変調した光を測定対象物に照射し、前記測定対象物から反射し検光子を通過した光の二次元画像を受光手段により受光して、下記数式(1)で表される前記二次元画像のピクセル毎の光強度Iを求める光強度測定手段と、
前記位相子のリタデーションの製造誤差εδ、前記位相子の主軸方位の初期誤差εQ、及び前記偏光子の透過軸方位の初期誤差εPがあるときに、前記εδ、前記εQ、及び前記εPにより、前記数式(1)を下記数式(2)に補正し、前記数式(2)から前記εδ、前記εQ、及び前記εPを求める誤差算出手段と、
を有する請求項14に記載の誤差補正装置。
[数式(1)]
ただし、前記数式(1)中、aは、入射光強度や受光手段の量子効果等と関連する量である。bは、受光手段の暗電流の影響を示す量である。δは、位相子のリタデーションである。θQは、位相子の主軸方位である。θPは、偏光子の透過軸方位である。N=cos2Ψ、C=sin2ΨcosΔ、S=sin2ΨsinΔ(ただし、Ψは、s偏光とp偏光の反射振幅比角、Δは、s偏光とp偏光の位相差を表す)である。
[数式(2)]
ただし、前記数式(2)中、a、b、δ、θQ、θP、N、C、及びSは、前記数式(1)と同じ意味を表す。εδは、位相子のリタデーションの製造誤差を表す。εQは、位相子の主軸方位の初期誤差を表す。εPは、偏光子の透過軸方位の初期誤差を表す。
The measurement object is irradiated with light that is light-modulated by changing the conditions of the polarizer and the phase shifter, and a two-dimensional image of light reflected from the measurement object and passed through the analyzer is received by the light receiving means. A light intensity measuring means for obtaining a light intensity I for each pixel of the two-dimensional image represented by the mathematical formula (1);
When there is a manufacturing error ε δ of retardation of the phaser, an initial error ε Q of the main axis direction of the phaser, and an initial error ε P of the transmission axis direction of the polarizer, the ε δ , the ε Q , and by the epsilon P, equation (1) is corrected by the following equation (2), an error calculation means for obtaining the epsilon [delta], the epsilon Q, and the epsilon P from said equation (2),
The error correction device according to claim 14, comprising:
[Formula (1)]
In Equation (1), a is an amount related to the incident light intensity, the quantum effect of the light receiving means, and the like. b is an amount indicating the influence of the dark current of the light receiving means. δ is the retardation of the retarder. θ Q is the principal axis orientation of the phaser. θ P is the transmission axis direction of the polarizer. N = cos2Ψ, C = sin2ΨcosΔ, S = sin2ΨsinΔ (where Ψ is a reflection amplitude ratio angle between s-polarized light and p-polarized light, and Δ is a phase difference between s-polarized light and p-polarized light).
[Formula (2)]
However, in said Numerical formula (2), a, b, (delta), (theta) Q , (theta) P , N, C, and S represent the same meaning as the said Numerical formula (1). epsilon [delta] represents a manufacturing error of retardation of retarder. ε Q represents the initial error of the principal axis orientation of the phaser. ε P represents the initial error of the transmission axis orientation of the polarizer.
請求項14から15のいずれかに記載の誤差補正装置を有することを特徴とする二次元偏光解析装置。   A two-dimensional ellipsometer comprising the error correction device according to claim 14.
JP2017027524A 2017-02-17 2017-02-17 Error correction method and two-dimensional ellipsometry, as well as error correction device and two-dimensional ellipsometry device Active JP6805469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027524A JP6805469B2 (en) 2017-02-17 2017-02-17 Error correction method and two-dimensional ellipsometry, as well as error correction device and two-dimensional ellipsometry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027524A JP6805469B2 (en) 2017-02-17 2017-02-17 Error correction method and two-dimensional ellipsometry, as well as error correction device and two-dimensional ellipsometry device

Publications (2)

Publication Number Publication Date
JP2018132467A true JP2018132467A (en) 2018-08-23
JP6805469B2 JP6805469B2 (en) 2020-12-23

Family

ID=63248343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027524A Active JP6805469B2 (en) 2017-02-17 2017-02-17 Error correction method and two-dimensional ellipsometry, as well as error correction device and two-dimensional ellipsometry device

Country Status (1)

Country Link
JP (1) JP6805469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630156A (en) * 2020-02-18 2021-04-09 合肥工业大学 Preparation method of high-precision amplitude-division simultaneous polarization imaging system
TWI802988B (en) * 2020-10-27 2023-05-21 日商Ckd股份有限公司 Three-dimensional measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038694A (en) * 1996-07-23 1998-02-13 Nikon Corp Ellipsometer
JP2007139751A (en) * 2005-10-18 2007-06-07 National Institute Of Advanced Industrial & Technology Polarization modulation type imaging ellipsometer
JP2009008423A (en) * 2007-06-26 2009-01-15 Omron Corp Spectropolarimeter
JP2011014660A (en) * 2009-06-30 2011-01-20 Canon Inc Polarization state measurement apparatus, exposure apparatus, and method of fabricating device
JP2015143618A (en) * 2014-01-31 2015-08-06 国立大学法人山梨大学 Optical characteristics measuring method and optical characteristics measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038694A (en) * 1996-07-23 1998-02-13 Nikon Corp Ellipsometer
JP2007139751A (en) * 2005-10-18 2007-06-07 National Institute Of Advanced Industrial & Technology Polarization modulation type imaging ellipsometer
JP2009008423A (en) * 2007-06-26 2009-01-15 Omron Corp Spectropolarimeter
JP2011014660A (en) * 2009-06-30 2011-01-20 Canon Inc Polarization state measurement apparatus, exposure apparatus, and method of fabricating device
JP2015143618A (en) * 2014-01-31 2015-08-06 国立大学法人山梨大学 Optical characteristics measuring method and optical characteristics measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATKINS,LR.: "Spectroscopic ellipsometer based on direct measurement of polarization ellipticity", APPLIED OPTICS, vol. 50, no. 18, JPN6020028362, 20 June 2011 (2011-06-20), pages 2973 - 2978, XP001563793, ISSN: 0004320598, DOI: 10.1364/AO.50.002973 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630156A (en) * 2020-02-18 2021-04-09 合肥工业大学 Preparation method of high-precision amplitude-division simultaneous polarization imaging system
TWI802988B (en) * 2020-10-27 2023-05-21 日商Ckd股份有限公司 Three-dimensional measuring device

Also Published As

Publication number Publication date
JP6805469B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
TWI331672B (en) Focused-beam ellipsometer
KR20150025745A (en) Rotating-Element Ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
Jan et al. Integrating fault tolerance algorithm and circularly polarized ellipsometer for point-of-care applications
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
Terrier et al. Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders
CN112469987A (en) Orthogonal incidence ellipsometer and method for measuring optical properties of sample using the same
Duwe et al. Thin-film metrology of tilted and curved surfaces by imaging Mueller-matrix ellipsometry
Negara et al. Simplified Stokes polarimeter based on division-of-amplitude
JP6805469B2 (en) Error correction method and two-dimensional ellipsometry, as well as error correction device and two-dimensional ellipsometry device
US20130242303A1 (en) Dual angles of incidence and azimuth angles optical metrology
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
Tan et al. Development of a tomographic Mueller-matrix scatterometer for nanostructure metrology
Postava et al. Null ellipsometer with phase modulation
Dignam et al. Azimuthal misalignment and surface anisotropy as sources of error in ellipsometry
JP2014035254A (en) Back focal plane microscopic ellipsometer
Yu et al. Paired circularly polarized heterodyne ellipsometer
KR102109540B1 (en) Data Analysis Method Of Ellipsometer
KR102176199B1 (en) Ellipsometer
Watkins et al. White-light ellipsometer with geometric phase shifter
Taya et al. Rotating polarizer analyzer ellipsometer with a fixed compensator
Srisuwan et al. Validiation of photometric ellipsometry for refractive index and thickness measurements
Tsai et al. Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry
El‐Agez et al. Design of a spectroscopic ellipsometer by synchronous rotation of the polarizer and analyzer in opposite directions
TW200928348A (en) Device for synchronous measurement of optical rotation angle and phase delay and method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6805469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250