JP2015141986A - Method of manufacturing structure - Google Patents

Method of manufacturing structure Download PDF

Info

Publication number
JP2015141986A
JP2015141986A JP2014013590A JP2014013590A JP2015141986A JP 2015141986 A JP2015141986 A JP 2015141986A JP 2014013590 A JP2014013590 A JP 2014013590A JP 2014013590 A JP2014013590 A JP 2014013590A JP 2015141986 A JP2015141986 A JP 2015141986A
Authority
JP
Japan
Prior art keywords
coating film
solvent
mold
coating
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014013590A
Other languages
Japanese (ja)
Other versions
JP6427885B2 (en
Inventor
祐樹 有塚
Yuki Aritsuka
祐樹 有塚
尚子 中田
Naoko Nakada
尚子 中田
伊藤 公夫
Kimio Ito
公夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014013590A priority Critical patent/JP6427885B2/en
Publication of JP2015141986A publication Critical patent/JP2015141986A/en
Application granted granted Critical
Publication of JP6427885B2 publication Critical patent/JP6427885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for reducing a solvent contained in a coating film in the room temperature imprint.SOLUTION: A method of manufacturing a structure includes the steps of: forming a coating film by coating a coating agent containing an inorganic material and a solvent on a base material; bringing the coating film into contact with a mold in which the side opposite to at least the coating film has solvent absorbency; and reducing the solvent to cure the coating film while interposing the coating film between the base material and the mold under reduced pressure.

Description

本発明は、構造体の製造方法に関する。   The present invention relates to a method for manufacturing a structure.

微細パターン形成技術として注目されている、室温ナノインプリントリソグラフィー技術については、特許文献1に開示されている。SOG(Spin-On-Glass)等の材料と溶剤を含む塗布剤を基板表面に塗布して塗布膜を形成した後、溶剤が揮発し硬化が完了する前に塗布膜にモールドでインプリントし、その後、モールドを塗布膜から離間することでナノ精度のSiO微細パターンを形成することができる。 A room temperature nanoimprint lithography technique that is attracting attention as a fine pattern formation technique is disclosed in Patent Document 1. After applying a coating agent containing a material such as SOG (Spin-On-Glass) and a solvent to the substrate surface to form a coating film, the solvent is volatilized and imprinted on the coating film with a mold before curing is completed. Thereafter, a nano-accurate SiO 2 fine pattern can be formed by separating the mold from the coating film.

また、溶剤吸収性を有するポリジメチルシロキサン(以下、「PDMS」と称する。)製のモールドを用いてSOG材料にインプリントを行い、モールド側に塗布膜に含まれる溶剤を吸収させて、パターンを形成する技術も、非特許文献1に開示されている。   In addition, the SOG material is imprinted using a mold made of polydimethylsiloxane having solvent absorbability (hereinafter referred to as “PDMS”), and the solvent contained in the coating film is absorbed on the mold side to form a pattern. The forming technique is also disclosed in Non-Patent Document 1.

特開2003−100609号公報Japanese Patent Laid-Open No. 2003-100609

“Room-Temperature Nanoimpringing Using Liquid-Phase Hydrogen Silsesquioxane with Hard Poly (dimethylsiloxane) Mold, Jpn. J. Appl. Phys. 49 (2010) 06GL 13 (5 pages).“Room-Temperature Nanoimpringing Using Liquid-Phase Hydrogen Silsesquioxane with Hard Poly (dimethylsiloxane) Mold, Jpn. J. Appl. Phys. 49 (2010) 06GL 13 (5 pages).

しかしながら、溶剤をモールド側に吸収させるには時間がかかるという問題があった。   However, there is a problem that it takes time to absorb the solvent on the mold side.

本発明は、室温インプリントにおいて、塗布膜に含まれる溶剤を減少させる時間を短縮することを目的とする。   An object of the present invention is to shorten the time for reducing the solvent contained in a coating film in room temperature imprinting.

本発明の一実施の形態は、基材に、無機材料と溶剤とを含有する塗布剤を塗布することにより塗布膜を形成する工程と、前記塗布膜と、少なくとも前記塗布膜に対向する側が溶剤吸収性を有するモールドとを接触させる工程と、減圧下で前記塗布膜を前記基材と前記モールドとの間に介在させた状態とし、前記溶剤を減少させて前記塗布膜を硬化させる工程と、を有することを特徴とする構造体の製造方法である。   In one embodiment of the present invention, a step of forming a coating film by applying a coating agent containing an inorganic material and a solvent to a substrate, the coating film, and at least the side facing the coating film is a solvent A step of contacting an absorptive mold, a state in which the coating film is interposed between the base material and the mold under reduced pressure, and a step of curing the coating film by reducing the solvent; It is a manufacturing method of the structure characterized by having.

本発明の一実施の形態の別の態様として、前記基材が溶剤吸収性を有していてもよい。   As another aspect of one embodiment of this invention, the said base material may have solvent absorptivity.

本発明の一実施の形態の別の態様として、前記無機材料は、シロキサンポリマーであっても良い。   As another aspect of an embodiment of the present invention, the inorganic material may be a siloxane polymer.

本発明の一実施の形態の別の態様として、前記モールドは、ポーラス構造を有する樹脂であることが好ましい。   As another aspect of an embodiment of the present invention, the mold is preferably a resin having a porous structure.

本発明によれば、室温インプリントにおいて、塗布膜に含まれる溶剤を減少させる時間を短縮することができる。   ADVANTAGE OF THE INVENTION According to this invention, the time which reduces the solvent contained in a coating film can be shortened in room temperature imprint.

本発明の一実施の形態による構造体の製造工程を示す図である。It is a figure which shows the manufacturing process of the structure by one embodiment of this invention.

以下、本発明の一実施の形態による構造体の製造方法について、図面を参照しながら詳細に説明する。以下では、無機材料と溶剤を含む塗布剤を塗布膜として基板に塗布し、溶剤吸収性のあるモールドを用いて塗布膜を成形する工程を例にして説明する。   Hereinafter, a structure manufacturing method according to an embodiment of the present invention will be described in detail with reference to the drawings. In the following, a process of applying a coating agent containing an inorganic material and a solvent as a coating film to a substrate and forming the coating film using a solvent-absorbing mold will be described as an example.

図1は、本実施の形態による構造体の製造方法の要部工程を示す工程図である。
図1(a)に示すように、基材1上に無機材料と溶剤を含む塗布剤を塗布することにより、塗布膜3を形成する(塗布膜形成工程)。塗布膜3の形成は、公知の塗布法により行うことができ、典型的にはスピンコート法を用いることができる。スピンコート法により塗布膜3を形成する場合には、塗布剤の溶剤量を多くし、塗布剤の粘度を低下させておくことで均一な薄膜が形成可能となる。塗布膜3の厚みは、特に制限はないが、例えば、0.01μm〜0.5μmの範囲で形成することができる。
FIG. 1 is a process diagram showing a main process of the structure manufacturing method according to the present embodiment.
As shown to Fig.1 (a), the coating film 3 is formed by apply | coating the coating agent containing an inorganic material and a solvent on the base material 1 (coating film formation process). The coating film 3 can be formed by a known coating method, and typically a spin coating method can be used. When the coating film 3 is formed by spin coating, a uniform thin film can be formed by increasing the solvent amount of the coating agent and decreasing the viscosity of the coating agent. Although there is no restriction | limiting in particular in the thickness of the coating film 3, For example, it can form in 0.01 micrometer-0.5 micrometer.

基材1は、特に制限はないが、例えば、シリコン、金属、石英ガラス、ソーダガラス、蛍石、フッ化カルシウム、フッ化マグネシウム、アクリルガラス、ホウケイ酸ガラス等のガラス材料、ポリカーボネート、ポリプロピレン、ポリエチレン、その他ポリオレフィン類等の樹脂材料のほか、低膨張セラミックス等のセラミックス材料等が挙げられる。また、基材1に溶剤吸収性を持たせてもよく、この場合、例えば、多孔質シリコン、多孔質シリカ、セラミックス、PDMS等のポーラス構造を有する材料、紙や繊維等の溶剤を含浸可能な3次元網目構造を有する材料などを用いることができる。   The substrate 1 is not particularly limited. For example, glass materials such as silicon, metal, quartz glass, soda glass, fluorite, calcium fluoride, magnesium fluoride, acrylic glass, borosilicate glass, polycarbonate, polypropylene, polyethylene In addition to resin materials such as polyolefins, ceramic materials such as low expansion ceramics can be used. In addition, the substrate 1 may be provided with solvent absorbability. In this case, for example, a porous structure such as porous silicon, porous silica, ceramics, PDMS, or a solvent such as paper or fiber can be impregnated. A material having a three-dimensional network structure can be used.

塗布剤に含まれる無機材料としては、共存する溶剤が減少したときに硬質無機膜が得られる材料であればよく、例えば、シリコン等の半導体、チタン、ニッケル、コバルト、金、銀、銅、パラジウム、白金、スズ、ロジウム、インジウム、 ルテニウム、亜鉛、アルミニウム、モリブデン、クロム等の金属に代表される材料、及び、それらの酸化物、窒化物を有する無機コロイドや無機ポリマーあるいは、これらのコロイド物を挙げることができる。なかでも、シリコン含有の無機ポリマーである、シロキサンポリマーを用いることが好ましい。さらに、シロキサンポリマーのうち、水素化シルセスキオキサンポリマー(HSQ)を用いることが好ましい。   The inorganic material contained in the coating agent may be any material that can provide a hard inorganic film when the coexisting solvent decreases. For example, semiconductors such as silicon, titanium, nickel, cobalt, gold, silver, copper, palladium Materials such as platinum, tin, rhodium, indium, ruthenium, zinc, aluminum, molybdenum, chromium, etc., as well as inorganic colloids and polymers containing these oxides and nitrides, or colloids of these. Can be mentioned. Among these, it is preferable to use a siloxane polymer which is a silicon-containing inorganic polymer. Furthermore, it is preferable to use a hydrogenated silsesquioxane polymer (HSQ) among siloxane polymers.

塗布剤に含まれる溶剤としては、上記無機材料に応じて適宜選択することができるが、例えば、メタノール、エタノール、キシレン、トルエン、酢酸ブチル、シクロヘキサン、エチルベンゼン、イソプロピルアルコール、1−プロパノール、2−プロパノール、メトキシプロピルアセテート、プロピレングリコールモノエチルエーテルアセチレート等を挙げることができる。   The solvent contained in the coating agent can be appropriately selected according to the inorganic material. For example, methanol, ethanol, xylene, toluene, butyl acetate, cyclohexane, ethylbenzene, isopropyl alcohol, 1-propanol, 2-propanol , Methoxypropyl acetate, propylene glycol monoethyl ether acetylate and the like.

次いで、図1(b)に示すように、例えば室温で大気圧P下においてモールド5の凹凸のパターンが形成された表面を塗布膜3aに接触させる(接触工程)。これにより、モールド5の基板1の表面側のパターンが、基板1上の塗布膜3aの表面に転写される。モールド5は、少なくとも塗布膜3aに対向する側が溶剤吸収性を有する。なお、モールド5全体が溶剤吸収性を有していてもよい。溶剤吸収性のあるモールド5としては、例えば、ポーラス構造を有する材料を用いることができ、ポーラス構造を有する樹脂が好ましく、具体的にはより具体的にはPDMSを利用するとよい。モールド5の厚みは、特に制限はないが、可撓性を有するように100μm〜3000μmの範囲で設定すると良い。可撓性を有すると、剥離の際の応力を低減できたり、基材側の形状に対する追従性が向上できたりするからである。薄い場合は乾燥速度が上がり5000um以下が好ましい。機械的な強度が必要なため100um以上が好ましい。なお、モールド5のみならず、基材1又は基材1とモールド5の両方を溶剤吸収性のある材料とし、塗布膜3に含まれる溶剤の減少速度を速めてもよい。塗布膜3に含まれる溶剤が基材1にも吸収されることにより、塗布膜3の硬化が進む。 Next, as shown in FIG. 1B, for example, the surface of the mold 5 on which the concave / convex pattern is formed is brought into contact with the coating film 3a at room temperature and under atmospheric pressure P 0 (contact process). Thereby, the pattern on the surface side of the substrate 1 of the mold 5 is transferred to the surface of the coating film 3 a on the substrate 1. The mold 5 has solvent absorbability at least on the side facing the coating film 3a. In addition, the whole mold 5 may have a solvent absorptivity. As the mold 5 having a solvent absorbability, for example, a material having a porous structure can be used, and a resin having a porous structure is preferable, and more specifically, PDMS may be used more specifically. Although there is no restriction | limiting in particular in the thickness of the mold 5, It is good to set it in the range of 100 micrometers-3000 micrometers so that it may have flexibility. This is because, when having flexibility, the stress at the time of peeling can be reduced, and the followability to the shape on the substrate side can be improved. When it is thin, the drying speed is increased, and it is preferably 5000 μm or less. Since mechanical strength is required, 100 um or more is preferable. Note that not only the mold 5 but also the base material 1 or both the base material 1 and the mold 5 may be made of a solvent-absorbing material, and the reduction rate of the solvent contained in the coating film 3 may be increased. The solvent contained in the coating film 3 is also absorbed by the substrate 1, whereby the coating film 3 is cured.

次いで、図1(c)に示すように、室温で大気圧Pから、Pよりも低いPに減圧する。減圧下で、モールド5と基材1との間に塗布膜3aを介在させた状態を保持する(硬化工程)。これにより、モールド5の溶剤吸収性の部位を通じて塗布膜3が減圧下に置かれることから、溶剤の揮発が促進され、溶剤量の減少速度を上げることができる。塗布膜に含まれる溶剤の種類にもよるが、例えば、Pを0.2(気圧)〜0.5(気圧)とすることにより、溶剤の揮発を効果的に促進することができる。1気圧と減圧を繰り返してもよい。減圧乾燥は細管内部まで強制的に減圧されるためPDMS内部まで乾燥が可能となる。つまり多孔質性の溶剤吸収性のある材料の表面にある塗布膜の溶剤を高速に乾燥できる。なお、減圧状態は、塗布膜3とモールド5との接触前から開始されていてもよい。 Then, as shown in FIG. 1 (c), from the atmospheric pressure P 0 at room temperature, under reduced pressure to a lower P 1 than P 0. Under the reduced pressure, the state where the coating film 3a is interposed between the mold 5 and the substrate 1 is maintained (curing step). Thereby, since the coating film 3 is placed under reduced pressure through the solvent-absorbing part of the mold 5, the volatilization of the solvent is promoted, and the reduction rate of the solvent amount can be increased. Depending on the type of solvent contained in the coating film, for example, by the P 1 and 0.2 (pressure) 0.5 (pressure), it is possible to effectively promote the volatilization of the solvent. You may repeat 1 atmosphere and pressure reduction. In the vacuum drying, the pressure is forcibly reduced to the inside of the narrow tube, so that the inside of the PDMS can be dried. That is, the solvent of the coating film on the surface of the porous solvent-absorbing material can be dried at high speed. The reduced pressure state may be started before contact between the coating film 3 and the mold 5.

次いで、図1(d)に示すように、基材1上の硬化した塗布膜3aからモールド5を離間することにより、モールド5のパターンが塗布膜3a側に転写され、例えば、開口部O1が形成された塗布膜パターン3bを形成することができる。   Next, as shown in FIG. 1D, by separating the mold 5 from the cured coating film 3a on the substrate 1, the pattern of the mold 5 is transferred to the coating film 3a side. The formed coating film pattern 3b can be formed.

通常、インプリント時に基材1とモールド5とは所定の間隔をもって配置されることから、開口部内の塗布膜は一部が残膜として残存する。   Usually, since the substrate 1 and the mold 5 are arranged at a predetermined interval during imprinting, a part of the coating film in the opening remains as a remaining film.

さらに、この残膜3bを除去したい場合には、図1(e)に示すように、残膜除去のためのリアクティブイオンエッチング等によりエッチバックを行い、残膜を完全に除去することができる。さらに必要に応じて、図1(f)に示すように、例えば、CF、CHFなどを用いたリアクティブイオンエッチング法などにより、基材1である例えばSi基板を、塗布膜パターン3bをマスクとして加工することで、基材1の微細加工を行うことができる。 Further, when it is desired to remove the residual film 3b, as shown in FIG. 1E, etch back is performed by reactive ion etching or the like for removing the residual film, and the residual film can be completely removed. . If necessary, as shown in FIG. 1F, for example, a reactive ion etching method using CF 4 , CHF 3 or the like, for example, a Si substrate as a base material 1 and a coating film pattern 3b are formed. By processing as a mask, the substrate 1 can be finely processed.

以上のように、本実施形態によれば、室温インプリントにおいて、塗布膜に含まれる溶剤を減少させる時間を短縮させることができる。   As described above, according to the present embodiment, it is possible to shorten the time for reducing the solvent contained in the coating film in the room temperature imprint.

上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In the above-described embodiment, the configuration and the like illustrated in the accompanying drawings are not limited to these, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。   Each component of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention.

1…基材、3…塗布膜、5…モールド。 DESCRIPTION OF SYMBOLS 1 ... Base material, 3 ... Coating film, 5 ... Mold.

Claims (4)

基材に、無機材料と溶剤とを含有する塗布剤を塗布することにより塗布膜を形成する工程と、
前記塗布膜と、少なくとも前記塗布膜に対向する側が溶剤吸収性を有するモールドとを接触させる工程と、
減圧下で前記塗布膜を前記基材と前記モールドとの間に介在させた状態とし、前記溶剤を減少させて前記塗布膜を硬化させる工程と、を有することを特徴とする構造体の製造方法。
Forming a coating film by applying a coating agent containing an inorganic material and a solvent to the substrate;
Contacting the coating film with a mold having at least a solvent-absorbing side facing the coating film;
And a step of setting the coating film in a state of being interposed between the base material and the mold under reduced pressure, and curing the coating film by reducing the solvent. .
前記基材が溶剤吸収性を有することを特徴とする請求項1記載の構造体の製造方法。   The method for producing a structure according to claim 1, wherein the base material has solvent absorbability. 前記無機材料は、シロキサンポリマーであることを特徴とする請求項1または2に記載の構造体の製造方法。   The method for manufacturing a structure according to claim 1, wherein the inorganic material is a siloxane polymer. 前記モールドは、ポーラス構造を有する樹脂であることを特徴とする請求項1から3までのいずれか1項に記載の構造体の製造方法。   The method of manufacturing a structure according to any one of claims 1 to 3, wherein the mold is a resin having a porous structure.
JP2014013590A 2014-01-28 2014-01-28 Manufacturing method of structure Expired - Fee Related JP6427885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013590A JP6427885B2 (en) 2014-01-28 2014-01-28 Manufacturing method of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013590A JP6427885B2 (en) 2014-01-28 2014-01-28 Manufacturing method of structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018203429A Division JP6575666B2 (en) 2018-10-30 2018-10-30 Manufacturing method of structure

Publications (2)

Publication Number Publication Date
JP2015141986A true JP2015141986A (en) 2015-08-03
JP6427885B2 JP6427885B2 (en) 2018-11-28

Family

ID=53772172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013590A Expired - Fee Related JP6427885B2 (en) 2014-01-28 2014-01-28 Manufacturing method of structure

Country Status (1)

Country Link
JP (1) JP6427885B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072442A (en) * 1999-07-07 2001-03-21 Nippon Sheet Glass Co Ltd Method for producing article having uneven surface and article produced by the method
JP2003100609A (en) * 2001-09-26 2003-04-04 Japan Science & Technology Corp Nano in-print lithography used under room temperature using sog
JP2005178236A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Method for molding article having minute shape and molding machine
JP2007083499A (en) * 2005-09-21 2007-04-05 Fujifilm Corp Pattern sheet and its manufacturing method
JP2007169335A (en) * 2005-12-19 2007-07-05 Bridgestone Corp Photocurable transfer sheet, method for producing optical information-recording medium by using the same and optical information-recording medium
WO2007116469A1 (en) * 2006-03-31 2007-10-18 Fujitsu Limited Method of transferring pattern and apparatus for transferring pattern
JP2008068611A (en) * 2006-06-30 2008-03-27 Asml Netherlands Bv Imprint lithography
JP2009080434A (en) * 2007-09-27 2009-04-16 Ricoh Opt Ind Co Ltd Method of manufacturing optical element and optical element
WO2009048012A1 (en) * 2007-10-11 2009-04-16 Konica Minolta Holdings, Inc. Process for producing substrate with concave and convex pattern, and substrate with concave and convex pattern
JP2011505270A (en) * 2007-11-21 2011-02-24 モレキュラー・インプリンツ・インコーポレーテッド Porous templates and imprint stacks for nanoimprint lithography
JP2012243809A (en) * 2011-05-16 2012-12-10 Toshiba Corp Pattern transfer method
WO2014123093A1 (en) * 2013-02-08 2014-08-14 Jx日鉱日石エネルギー株式会社 Roller device using suction roller, and production method for member having uneven structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072442A (en) * 1999-07-07 2001-03-21 Nippon Sheet Glass Co Ltd Method for producing article having uneven surface and article produced by the method
JP2003100609A (en) * 2001-09-26 2003-04-04 Japan Science & Technology Corp Nano in-print lithography used under room temperature using sog
JP2005178236A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Method for molding article having minute shape and molding machine
JP2007083499A (en) * 2005-09-21 2007-04-05 Fujifilm Corp Pattern sheet and its manufacturing method
JP2007169335A (en) * 2005-12-19 2007-07-05 Bridgestone Corp Photocurable transfer sheet, method for producing optical information-recording medium by using the same and optical information-recording medium
WO2007116469A1 (en) * 2006-03-31 2007-10-18 Fujitsu Limited Method of transferring pattern and apparatus for transferring pattern
JP2008068611A (en) * 2006-06-30 2008-03-27 Asml Netherlands Bv Imprint lithography
JP2009080434A (en) * 2007-09-27 2009-04-16 Ricoh Opt Ind Co Ltd Method of manufacturing optical element and optical element
WO2009048012A1 (en) * 2007-10-11 2009-04-16 Konica Minolta Holdings, Inc. Process for producing substrate with concave and convex pattern, and substrate with concave and convex pattern
JP2011505270A (en) * 2007-11-21 2011-02-24 モレキュラー・インプリンツ・インコーポレーテッド Porous templates and imprint stacks for nanoimprint lithography
JP2012243809A (en) * 2011-05-16 2012-12-10 Toshiba Corp Pattern transfer method
WO2014123093A1 (en) * 2013-02-08 2014-08-14 Jx日鉱日石エネルギー株式会社 Roller device using suction roller, and production method for member having uneven structure

Also Published As

Publication number Publication date
JP6427885B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
Jeong et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching
CN102216851B (en) Imprint lithography apparatus and method
JP6398010B2 (en) Patterned stamp manufacturing method, patterned stamp and imprint method
KR101632504B1 (en) method for the fabrication of nanostructures based on adhesion control using solvent vapor and nanotransfer printing using the same
KR101922572B1 (en) Methods for forming fine ion-gel patterning
JP5282510B2 (en) Manufacturing method of stamp for micro contact printing (μCP)
TW201220974A (en) Stencils for high-throughput micron-scale etching of substrates and processes of making and using the same
JP2011134856A (en) Pattern forming method
Schift et al. Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography
JP2017032806A (en) Method for manufacturing antireflection fine protrusion
JP2014170802A (en) Pattern forming method
JP6575666B2 (en) Manufacturing method of structure
JP2005313647A (en) Mold for nano-printing, method of manufacturing and applying such mold
JP2015139936A (en) Structure production method
JP6427885B2 (en) Manufacturing method of structure
JP2008001077A (en) Carbon mold and its manufacturing method
KR102279239B1 (en) Method of transferring reverse pattern using imprint process
JP6354176B2 (en) Manufacturing method of structure
Szilasi et al. Selective etching of PDMS: Etching as a negative tone resist
JP2018161894A (en) Structure
US20220026799A1 (en) Nanoimprint lithography process using low surface energy mask
KR101273618B1 (en) High Resolution Patterning Method by Using Solvent-Mediated Nano Transfer Direct Printing
JP5185312B2 (en) Pattern formation method
KR101618436B1 (en) Method for manufacturing nano electrode layer
KR101547533B1 (en) Method of a forming structure with fine patterns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6427885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees