JP2015140473A - Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor - Google Patents
Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor Download PDFInfo
- Publication number
- JP2015140473A JP2015140473A JP2014015545A JP2014015545A JP2015140473A JP 2015140473 A JP2015140473 A JP 2015140473A JP 2014015545 A JP2014015545 A JP 2014015545A JP 2014015545 A JP2014015545 A JP 2014015545A JP 2015140473 A JP2015140473 A JP 2015140473A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- raw material
- cao
- sio
- phosphate fertilizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title abstract description 130
- 229910000147 aluminium phosphate Inorganic materials 0.000 title abstract description 65
- 239000003337 fertilizer Substances 0.000 title abstract description 51
- 239000002893 slag Substances 0.000 claims abstract description 170
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 63
- 239000011574 phosphorus Substances 0.000 claims abstract description 59
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000009628 steelmaking Methods 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 40
- 238000007670 refining Methods 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 63
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 59
- 239000002686 phosphate fertilizer Substances 0.000 claims description 59
- 229910052742 iron Inorganic materials 0.000 claims description 29
- 239000013078 crystal Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 32
- 239000003795 chemical substances by application Substances 0.000 abstract description 22
- 238000007664 blowing Methods 0.000 abstract description 15
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 8
- 239000011707 mineral Substances 0.000 abstract description 8
- 229910000805 Pig iron Inorganic materials 0.000 abstract 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 118
- 239000000292 calcium oxide Substances 0.000 description 59
- 235000012255 calcium oxide Nutrition 0.000 description 59
- 229910052751 metal Inorganic materials 0.000 description 55
- 239000002184 metal Substances 0.000 description 55
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 34
- 235000012239 silicon dioxide Nutrition 0.000 description 16
- 239000000377 silicon dioxide Substances 0.000 description 16
- 229910052681 coesite Inorganic materials 0.000 description 15
- 229910052906 cristobalite Inorganic materials 0.000 description 15
- 229910052682 stishovite Inorganic materials 0.000 description 15
- 229910052905 tridymite Inorganic materials 0.000 description 15
- 239000011575 calcium Substances 0.000 description 14
- 229910019142 PO4 Inorganic materials 0.000 description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 13
- 239000010452 phosphate Substances 0.000 description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 235000010755 mineral Nutrition 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910004283 SiO 4 Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- YXVFQADLFFNVDS-UHFFFAOYSA-N diammonium citrate Chemical compound [NH4+].[NH4+].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O YXVFQADLFFNVDS-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 1
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-N calcium;phosphoric acid Chemical compound [Ca+2].OP(O)(O)=O.OP(O)(O)=O YYRMJZQKEFZXMX-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002426 superphosphate Substances 0.000 description 1
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Fertilizers (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、製鋼工程において発生する製鋼スラグの有効再利用に係り、とくに製鋼スラグから燐を回収・濃化して、燐酸質肥料として安定して活用可能な高いレベルの燐酸質肥料原料とする、燐酸質肥料として活用可能な燐酸質肥料原料およびその製造方法に関する。 The present invention relates to the effective reuse of steelmaking slag generated in the steelmaking process, in particular, recovering and concentrating phosphorus from steelmaking slag, and making it a high-level phosphate fertilizer raw material that can be stably used as phosphate fertilizer, The present invention relates to a phosphate fertilizer raw material that can be used as a phosphate fertilizer and a method for producing the same.
近年、燐鉱石の枯渇や、中国、米国などによる燐鉱石の囲い込みのため、燐資源が高騰している。そのため、鉄鋼プロセスにおいて発生する鉄鋼スラグ(以下、製鋼スラグともいう)中の燐が貴重な燐資源として見直されている。
しかし、高炉から出銑される溶銑中の燐濃度は0.1質量%程度であるため、従来の一般的な溶銑の予備脱燐処理や溶銑の脱炭精錬で生成される製鋼スラグ中の燐酸(P2O5)濃度は、高々5質量%程度と低く留まっている。なお、ここでいう「予備脱燐処理」とは、溶銑を転炉などで脱炭精錬する前に、予め溶銑中の燐を除去する処理をいう。このままでは、製鋼スラグを燐酸資源、例えば燐酸質肥料原料として利用できる見込みはほとんどない。そのため、これらの製鋼スラグは、路盤材などの土木用材料として使用されているのが現状であり、スラグ中の燐は有効に利用されていない。
In recent years, phosphorus resources have soared due to the depletion of phosphate ore and the inclusion of phosphate ore by China and the United States. Therefore, phosphorus in steel slag (hereinafter also referred to as steelmaking slag) generated in the steel process has been reviewed as a valuable phosphorus resource.
However, since the phosphorus concentration in the hot metal discharged from the blast furnace is about 0.1% by mass, phosphoric acid (P in the steelmaking slag produced by conventional general hot metal preliminary dephosphorization treatment and hot metal decarburization refining) 2 O 5 ) Concentration remains as low as 5% by mass at most. Here, the “preliminary dephosphorization process” refers to a process for removing phosphorus in the hot metal in advance before decarburizing and refining the hot metal in a converter or the like. As it is, there is little prospect that steelmaking slag can be used as a phosphate resource, for example, a phosphate fertilizer raw material. Therefore, these steelmaking slags are currently used as civil engineering materials such as roadbed materials, and phosphorus in the slag is not effectively used.
また、最近では、環境対策や省資源という観点から、製鋼スラグをリサイクルして使用することを含めて、製鋼スラグの発生量を削減することが急務となっている。例えば、製鋼スラグをリサイクルして、造滓剤用の石灰源として鉄鉱石の焼結工程で使用するという試みがある。しかし、この方法では、製鋼スラグ中の燐が高炉で還元されて、高炉から出銑される溶銑の燐濃度が増加するという問題がある。 Recently, from the viewpoint of environmental measures and resource saving, it is an urgent task to reduce the amount of steelmaking slag, including recycling and using steelmaking slag. For example, there is an attempt to recycle steelmaking slag and use it in the iron ore sintering process as a lime source for a slagging agent. However, this method has a problem that phosphorus in the steelmaking slag is reduced in the blast furnace and the phosphorus concentration in the hot metal discharged from the blast furnace increases.
従来から、製鋼スラグを原料とする燐酸質肥料として、トーマス燐肥が広く知られている。このトーマス燐肥は、高燐鉄鉱石を原料として製造されるトーマス溶銑(通常、[P]:1.8〜2.0質量%程度)をトーマス転炉を用いて精錬し、この際に生成するスラグを原料とするものであり、燐酸濃度は16〜22質量%と高いことが特徴である。しかし、この技術は、トーマス転炉を用いる必要があることや、高燐鉄鉱石を原料とする必要があることなどの制約や、脱燐後の溶銑のP濃度が高いこと、生成するスラグ量が多いこと等の問題があり、現在はほとんど実施されていない。 Conventionally, Thomas phosphate fertilizer is widely known as a phosphate fertilizer made from steelmaking slag. This Thomas Phosphorus fertilizer is a slag produced by refining Thomas hot metal (usually [P]: about 1.8-2.0% by mass) produced from high phosphate iron ore using a Thomas converter. The phosphoric acid concentration is as high as 16 to 22% by mass. However, this technology has limitations such as the need to use a Thomas converter, the need to use high phosphate iron ore, the high P concentration of hot metal after dephosphorization, and the amount of slag produced. There are many problems, such as many, and it is hardly implemented at present.
このような問題に対し、例えば特許文献1には、清浄鋼の精錬方法が記載されている。特許文献1に記載された技術は、高炉精錬工程と転炉精錬工程の間に2段階にわたる溶銑の炉外予備脱燐工程を設け、1回目の炉外予備脱燐工程ではP含有量が0.17〜0.50重量%の高含燐溶銑を予備脱燐しP含有量の高い有用スラグを生成してこれを排出し、この時得られる脱燐銑を2回目の炉外予備脱燐工程で再度脱燐して低燐銑とし、得られた低燐銑を転炉精錬して低燐鋼となす、清浄鋼の精錬方法である。
For example,
特許文献1に記載された技術では、2回目の炉外予備脱燐工程で発生した含燐スラグを高炉装入原料の一部として高炉に装入し、高炉から出銑される溶銑中のP含有量を0.17〜0.50重量%に維持するとしている。また、1回目の炉外予備脱燐工程で排出されたP含有量の高いスラグは、燐酸資源として回収し、燐酸、肥料の原料に利用できるとしている。また、特許文献1に記載された技術によれば、製鋼プロセスで排出されるスラグの量を大幅に低減できるとしている。
In the technique described in
また、特許文献2には、製銑製鋼方法が記載されている。特許文献2に記載された技術では、高炉精錬工程と転炉精錬工程の間に溶銑の炉外予備脱燐工程を設け、この炉外予備脱燐工程でP含有量が0.17〜0.50重量%の高含燐溶銑を予備脱燐しP含有量の高い有用スラグを生成してこれを排出し、この時得られた予備脱燐銑を転炉精錬して低燐鋼となしたのち、該転炉精錬で生成した含燐スラグを高炉装入原料の一部として高炉に装入し、高炉から出銑される溶銑中のP含有量を0.17〜0.50重量%に維持するとともに、廃棄スラグ量の低減を可能とする製銑製鋼方法である。特許文献2に記載された技術によれば、溶銑の炉外予備脱燐工程で排出されたP含有量の高いスラグは、燐酸資源として回収し、燐酸、肥料の原料に利用できるとしている。また、特許文献2に記載された技術によれば、製鋼プロセスで排出されるスラグの量を大幅に低減できるとしている。
また、特許文献3には、高Pスラグの製造方法が記載されている。特許文献3に記載された技術は、P濃度が0.15質量%以下の溶銑を脱燐して得られた燐含有スラグを溶銑浴に投入し、炭素材および酸化鉄または/および酸素を供給してスラグ中のPを溶銑浴中に還元抽出して、P濃度が0.5〜3質量%の溶銑を生成する第1工程と、第1工程で生成したスラグを排滓した後、溶銑に処理後のスラグ塩基度が2〜8になるようにフラックスを添加し、さらに酸化鉄源の添加および/または酸素ガスの吹き込みを行って溶銑中に含まれる炭素濃度を1%以下まで低下させる第2工程を施し、処理後の燐酸濃度が10〜35%である高Pスラグを得る方法である。この方法で得られたスラグは、高濃度の燐酸を含み、直接、肥料として使用できるとしている。
また、特許文献4には、製鋼スラグの資源化方法が記載されている。特許文献4に記載された技術は、転炉での溶銑の脱炭精錬において発生した脱炭精錬スラグと、溶銑の予備処理において発生した予備脱燐スラグとを、混合した後の塩基度(質量%CaO/質量%SiO2)が1.5〜2.8になるように混合し、該混合物に対して、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて前記スラグ中の鉄酸化物を還元するための還元処理を行い、該還元処理によって得られた金属鉄を鉄源として利用し、還元処理後のスラグを燐酸肥料用原料として利用する製鋼スラグの資源化方法である。
しかし、特許文献1、2に記載された技術では、溶銑の炉外予備脱燐工程という特別な工程を設ける必要があり、脱燐処理コストやスラグ回収コストが高くなるという問題がある。例えば、特許文献1に記載された技術では、溶銑の炉外予備脱燐工程を2回に分けて行うため、脱燐処理装置を2基設ける必要があり、脱燐処理コストが高騰する。また、1基では脱燐処理量が半分となり、生産性が低下する。
However, in the techniques described in
また、特許文献1〜3に記載された技術によれば、高濃度の燐酸を含むスラグを得ることができる。しかし、特許文献1〜3には、ク溶性燐酸、可溶性燐酸についての言及がなく、得られたスラグが燐酸肥料として有効な肥料効果を保持しているかは不明である。なお、ここでいう「ク溶性燐酸」とは、2%クエン酸(pH2.0)に溶解する燐酸をいい、「可溶性燐酸」とは、クエン酸二アンモニウム溶液(pH7)に溶解する燐酸をいう。この「ク溶性燐酸」濃度あるいは「可溶性燐酸」濃度が高いほど、肥料として有効であるといわれており、得られたスラグが燐酸肥料として効果を発揮するためには、ク溶性燐酸あるいは可溶性燐酸が多く含まれる必要がある。しかし、特許文献1〜3に記載された発明では、スラグ中の「ク溶性燐酸」濃度や「可溶性燐酸」を高めるための方策についてなんの配慮もされておらず、高いレベルの肥料効果を有するスラグが得られているとは必ずしも言い難い。
Moreover, according to the technique described in patent documents 1-3, the slag containing a high concentration phosphoric acid can be obtained. However,
また、特許文献4には、スラグ中の「ク溶性燐酸」含有量についての記載があるが、「可溶性燐酸」についての記載はなく、特許文献4に記載された技術では、高いレベルの肥料効果を有するスラグが得られているとは必ずしも言い難い。なお、肥料効果は、燐酸の溶解性(燐酸溶解性)を示す「ク溶性燐酸」あるいは「可溶性燐酸」で評価されることが多いが、「可溶性燐酸」で評価するほうが、「ク溶性燐酸」で評価するよりも、作物生育促進との相関が強いと言われている。
Further,
本発明は、かかる従来技術の問題を有利に解決し、製鋼プロセスで発生する製鋼スラグを回収し、燐酸含有量が高く、かつ肥料効果が高い成分を含むスラグとし、燐酸質肥料として活用可能な燐酸質肥料原料とする、燐酸質肥料原料の安定した製造方法を提供することを目的とする。 The present invention advantageously solves such problems of the prior art, collects steelmaking slag generated in the steelmaking process, makes a slag containing a component having a high phosphoric acid content and a high fertilizer effect, and can be used as a phosphate fertilizer An object of the present invention is to provide a stable method for producing a phosphate fertilizer raw material, which is a phosphate fertilizer raw material.
本発明者らは、上記した目的を達成するため、回収した製鋼スラグを素材として、燐酸質肥料として有効な組成を有するスラグとすることができる方策について、鋭意研究した。その結果、まず、回収した燐含有製鋼スラグを還元処理することにより、得られる溶銑は、0.5質量%以上の燐を含む高燐溶銑であることを確認した。そこで、その高燐溶銑を出発素材として、脱燐処理を施せば、溶銑は低燐化し、生成するスラグに燐が濃縮し高燐含有スラグ(脱燐スラグともいう)となり、このスラグを燐酸質肥料原料として利用することが可能になることに思い至った。しかし、従来から、生成されるスラグが燐酸質肥料原料として利用されるためには、スラグが肥料効果を有する燐酸を多量に含むことが必要であるとされてきた。 In order to achieve the above-described object, the present inventors have earnestly studied about a policy that can make a recovered steelmaking slag as a raw material into a slag having an effective composition as a phosphate fertilizer. As a result, first, it was confirmed that the hot metal obtained by reducing the recovered phosphorus-containing steelmaking slag was a high-phosphorus hot metal containing 0.5% by mass or more of phosphorus. Therefore, if dephosphorization treatment is performed using the high-phosphorus hot metal as a starting material, the hot metal becomes low-phosphorus, and phosphorus is concentrated in the slag to be produced to form high-phosphorus-containing slag (also referred to as dephosphorized slag). I came to think that it would be possible to use it as a fertilizer raw material. However, conventionally, in order to use the produced slag as a phosphate fertilizer raw material, it has been required that the slag contains a large amount of phosphoric acid having a fertilizer effect.
そこで、生成するスラグ中の燐酸濃度を高める方策についてさらに鋭意検討した。その結果、高燐溶銑に脱燐処理を施す際に、生成するスラグ(脱燐スラグ)が塩基度((質量%CaO)/(質量%SiO2)):1.5以上となるように、酸素ガスと共に投射するCaO源の量を調整することに思い至った。脱燐スラグの塩基度が1.5以上となるように調整することにより、図1に示すように、スラグ中の燐酸含有量が、スラグ全量に対する質量%で15%以上と安定して高くすることができることを知見した。スラグの塩基度が1.5未満の低塩基度では、脱燐能力が不足することに起因して、所望のスラグ中の燐酸含有量を確保できない。なお、燐酸含有量はP2O5含有量として示す。 Therefore, further studies were conducted on measures for increasing the phosphoric acid concentration in the slag to be produced. As a result, oxygen gas is applied so that the slag (dephosphorization slag) to be generated when the dephosphorization treatment is performed on the high phosphorus hot metal has a basicity ((mass% CaO) / (mass% SiO 2 )): 1.5 or more. I came to think of adjusting the amount of CaO source to be projected. By adjusting the basicity of the dephosphorized slag to be 1.5 or more, as shown in FIG. 1, the phosphoric acid content in the slag can be stably increased to 15% or more by mass% with respect to the total amount of slag. I found out that I can do it. When the basicity of the slag is less than 1.5, the desired phosphoric acid content in the slag cannot be ensured due to insufficient dephosphorization ability. Incidentally, phosphoric acid content expressed as P 2 O 5 content.
しかし、種々の燐酸濃度(P2O5含有量)のスラグを、燐酸質肥料として、チンゲン菜、水稲等に施肥し、栽培試験(生育試験ともいう)を行い、肥料効果を確認したところ、燐酸濃度が高くても、必ずしも十分な肥料効果を示さない場合があることを知見した。これは、燐酸濃度が15質量%以上と高い場合でも、CaO、P2O5およびSiO2の合計量がスラグ全量に対する質量%で50%未満である場合には、FeO、MnO、MgO等の成分が多すぎることにより肥料効果が不十分となったことによると考えられる。 However, slag with various phosphoric acid concentrations (P 2 O 5 content) was fertilized as a phosphate fertilizer on pak choi, paddy rice, etc., and a cultivation test (also called a growth test) was conducted to confirm the fertilizer effect. It has been found that even if the phosphoric acid concentration is high, a sufficient fertilizer effect is not always exhibited. Even if the phosphoric acid concentration is as high as 15% by mass or more, when the total amount of CaO, P 2 O 5 and SiO 2 is less than 50% by mass with respect to the total amount of slag, FeO, MnO, MgO, etc. It is thought that the fertilizer effect became insufficient due to too much component.
一方、燐酸P2O5が、スラグ全量に対する質量%で15%以上と高く、かつCaO、SiO2、P2O5の合計量がスラグ全量に対する質量%で50%以上と高い場合でも、燐酸質肥料として十分な肥料効果を発揮しない場合があることを知見した。
そこでさらに、燐酸質肥料として種々のスラグについて、スラグ組成と肥料効果との関係を、チンゲンサイを用いた栽培試験で評価した。
On the other hand, even when phosphoric acid P 2 O 5 is as high as 15% or more by mass% with respect to the total amount of slag, and even when the total amount of CaO, SiO 2 and P 2 O 5 is as high as 50% or more by mass% with respect to the total amount of slag It was found that the fertilizer effect may not be sufficient as a quality fertilizer.
Therefore, the relationship between the slag composition and the fertilizer effect was evaluated for various slags as phosphate fertilizers in a cultivation test using chingensai.
栽培試験はつぎのとおりとした。
炭酸カルシウムと酸化マグネシウムでpH(H20)6.5に矯正した多腐植質黒ボク土1kgと、燐酸質肥料原料としてのスラグ0.5gを装入した1/5000aワグネルポットに、チンゲンサイを植え、ガラス温室内で所定期間(60日間)栽培し、生育状況を観察した。なお、すべてのポットには、窒素(N)として0.5g/ポット、カリウム(K20)として0.5g/ポットとなるように、硝酸カリウムと塩化カリウムを施用した。チンゲンサイの生育状況は、燐酸質肥料として対照肥料である過燐酸石灰を施用したポットでの生育状況と比較し、同等もしくは優れている場合を「○」とし、それ以外の場合を「×」として評価した。得られた結果を表1に示す。
The cultivation test was as follows.
Chingensai was planted in a glass greenhouse in 1 / 5000a Wagner pot charged with 1kg of polyhumic black soil corrected to pH (H20) 6.5 with calcium carbonate and magnesium oxide and 0.5g of slag as a phosphate fertilizer raw material. And cultivated for a predetermined period (60 days) and observed the growth. Note that potassium nitrate and potassium chloride were applied to all the pots so that the nitrogen (N) was 0.5 g / pot and the potassium (K20) was 0.5 g / pot. As for the growth situation of Chingensai, compared with the growth situation in the pot where the superphosphate lime, which is a control fertilizer, is applied as a phosphate fertilizer, if it is equal or superior, it is marked with `` ○ '', otherwise it is marked with `` X '' evaluated. The obtained results are shown in Table 1.
なお、表1には、使用した燐酸質肥料原料(スラグ)について、肥料公定規格に定められているクエン酸二アンモニウム溶液(pH:7.0)に溶解する燐酸(可溶性燐酸)量を求め、燐酸質肥料原料(スラグ)中の全燐酸量に対する可溶性燐酸量の割合、燐酸可溶率(%)を算出した結果も併せて示す。またさらに表1には、燐酸質肥料原料(スラグ)に含まれる鉱物相を、X線回折により同定した結果も併記して示す。同定された鉱物相を○印で示した。 Table 1 shows the amount of phosphoric acid (soluble phosphoric acid) dissolved in the diammonium citrate solution (pH: 7.0) defined in the official fertilizer standard for the used phosphate fertilizer raw material (slag). The ratio of the amount of soluble phosphoric acid to the total amount of phosphoric acid in the fertilizer raw material (slag) and the result of calculating the phosphoric acid solubility (%) are also shown. Table 1 also shows the results of identifying the mineral phase contained in the phosphate fertilizer raw material (slag) by X-ray diffraction. The identified mineral phase is indicated by a circle.
栽培試験での生育状況が「○」と評価された燐酸質肥料原料(スラグ)はいずれも、スラグ全量に対する質量%で、CaO、SiO2、P2O5の合計量が50%以上、燐酸(P2O5)が15%以上で、かつCaO、SiO2、P2O5の三元系での質量%で、SiO2を10%以上含むスラグである。
このことから、燐酸質肥料原料中の燐酸含有量に加えて、SiO2量が肥料効果に大きく影響していることを突き止め、肥料効果が高い燐酸質肥料原料(スラグ)となるためには、スラグの組成を、スラグ全量に対する質量%で、CaO、SiO2、P2O5の合計量が50%以上、P2O5が15%以上で、かつCaO、SiO2、P2O5の三元系での質量%で、SiO2が10%以上含有する組成のスラグとする必要があることを見出した。
Phosphoric fertilizer raw materials (slag) that have been evaluated as “○” in the cultivation test are all mass% of the total amount of slag, and the total amount of CaO, SiO 2 , P 2 O 5 is 50% or more, phosphoric acid (P 2 O 5 ) is a slag containing 15% or more and 10% or more of SiO 2 by mass% in a ternary system of CaO, SiO 2 and P 2 O 5 .
From this, in order to find out that the amount of SiO 2 greatly affects the fertilizer effect in addition to the phosphoric acid content in the phosphate fertilizer raw material, to become a phosphate fertilizer raw material (slag) with a high fertilizer effect, The composition of slag is the mass% of the total amount of slag, the total amount of CaO, SiO 2 , P 2 O 5 is 50% or more, P 2 O 5 is 15% or more, and CaO, SiO 2 , P 2 O 5 It has been found that it is necessary to obtain a slag having a composition containing 10% or more of SiO 2 by mass% in the ternary system.
そして、上記したCaO、SiO2、P2O5の三元系での質量%で、SiO2を10%以上含む組成のスラグは、鉱物相(CaO−P2O5系結晶)として、可溶性燐酸量が高く燐酸可溶率が高い、高い肥料効果を示すシリコカーノタイト(Ca5(PO4)2SiO4)の結晶構造を有する鉱物相を含むことを知見した。ここで、シリコカーノタイト(Ca5(PO4)2SiO4)は、Ca3(PO4)2−Ca2SiO4固溶体であり、通常、Ca5(PO4)2SiO4で表記される。 The slag having a composition containing 10% or more of SiO 2 by mass% in the ternary system of CaO, SiO 2 and P 2 O 5 described above is soluble as a mineral phase (CaO—P 2 O 5 system crystal). It has been found that it contains a mineral phase having a crystalline structure of silicocarnotite (Ca 5 (PO 4 ) 2 SiO 4 ), which has a high phosphoric acid content and a high phosphoric acid solubility and exhibits a high fertilizer effect. Here, silicocarnotite (Ca 5 (PO 4 ) 2 SiO 4 ) is a Ca 3 (PO 4 ) 2 —Ca 2 SiO 4 solid solution, and is usually expressed as Ca 5 (PO 4 ) 2 SiO 4. .
このことは、試薬として精製された各鉱物相について測定した、燐酸可溶率の比較からも明らかである。すなわち、Ca5(PO4)2SiO2の燐酸可溶率が85%であるのに対し、β-Ca3(PO4)2では39%、Ca19Mn2(PO4)14では56%、Ca9Fe(PO4)7では15%と低く、シリコカーノタイト(Ca5(PO4)2SiO2)の存在が、肥料効果を大きく向上させていると考えられる。 This is also evident from a comparison of the phosphate solubility measured for each mineral phase purified as a reagent. That is, phosphoric acid solubility of Ca 5 (PO 4 ) 2 SiO 2 is 85%, whereas 39% for β-Ca 3 (PO 4 ) 2 and 56% for Ca 19 Mn 2 (PO 4 ) 14. Ca 9 Fe (PO 4 ) 7 is as low as 15%, and the presence of silicocarnotite (Ca 5 (PO 4 ) 2 SiO 2 ) is considered to greatly improve the fertilizer effect.
また、本発明者らは、脱燐スラグ中のCaO、SiO2、P2O5の三元系での質量%で、SiO2含有量を10%以上とするには、脱燐処理中の吹錬中期から末期に、脱燐剤とともに珪素源を供給、とくに珪素源を火点に供給することにより、より達成しやすいことも見出している。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)製鋼精錬プロセスで発生した燐を含有する製鋼スラグに還元処理を施して得られる燐含有溶銑に、さらに脱燐処理を施し、得られる脱燐スラグを燐酸質肥料原料とするに当たり、前記脱燐処理を、得られる前記脱燐スラグがCaO含有量とSiO2含有量の比、[質量%CaO]/[質量%SiO2]で定義される塩基度が1.5以上、かつCaO、SiO2、P2O5の三元系での質量%で、SiO2が10%以上となる組成を有するように、酸素ガスと共に投射するCaO源の量を調整するとともに、さらに珪素源を供給する処理とすることを特徴とする燐酸質肥料原料の製造方法。
(2)(1)において、前記還元処理が、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて行う処理であることを特徴とする燐酸質肥料原料の製造方法。
(3)(1)または(2)において、前記CaO源が、粒径が1mmアンダーの粉末であることを特徴とする燐酸質肥料原料の製造方法。
(4)(1)ないし(3)のいずれかにおいて、前記珪素源の供給を、火点に対して行うことを特徴とする燐酸質肥料原料の製造方法。
(5)(1)ないし(4)のいずれかにおいて、前記得られる脱燐スラグが、スラグ全量に対する質量%で、P2O5が15%以上となる組成を有することを特徴とする燐酸質肥料原料の製造方法。
(6)(1)ないし(5)のいずれかにおいて、前記得られる脱燐スラグが、スラグ全量に対する質量%で、CaO、P2O5およびSiO2の合計含有量が50%以上となる組成を有することを特徴とする燐酸質肥料原料の製造方法。
(7)一部または全部が、(1)ないし(6)のいずれかに記載の製造方法で製造された燐酸質肥料原料からなることを特徴とする燐酸質肥料。
(8)(7)において、前記燐酸質肥料が、シリコカーノタイトの結晶構造を有するCaO−P2O5系結晶を含むことを特徴とする燐酸質肥料。
(9)製鋼スラグを処理して得られる脱燐スラグを原料とし、少なくともCaO、P2O5およびSiO2を含み、質量%で、CaO、P2O5およびSiO2の合計含有量が50%以上、P2O5が15%以上で、かつCaO、P2O5、SiO2の三元系での質量%で、SiO2:10%以上を含む組成を有することを特徴とする燐酸質肥料原料。
(10)(9)において、前記燐酸質原料が、シリコカーノタイトの結晶構造を有するCaO−P2O5系結晶を含むことを特徴とする燐酸質肥料原料。
(11)(9)または(10)に記載の燐酸質肥料原料からなることを特徴とする燐酸質肥料。
In addition, the inventors of the present invention have made it possible to achieve a SiO 2 content of 10% or more in the ternary system of CaO, SiO 2 , and P 2 O 5 in the dephosphorization slag. It has also been found that it is easier to achieve by supplying a silicon source together with a dephosphorizing agent from the middle to the last stage of blowing, especially by supplying a silicon source to a fire point.
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) The phosphorus-containing molten iron obtained by subjecting the steel-making slag containing phosphorus generated in the steel refining process to reduction treatment is further subjected to dephosphorization treatment, and the resulting dephosphorization slag is used as a phosphate fertilizer raw material. In the dephosphorization treatment, the dephosphorization slag obtained has a basicity defined by the ratio of CaO content and SiO 2 content, [mass% CaO] / [mass% SiO 2 ] of 1.5 or more, and CaO, SiO 2 In addition, the amount of CaO source projected with oxygen gas is adjusted so that it has a composition in which SiO 2 is 10% or more by mass% in the ternary system of P 2 O 5 and further a silicon source is supplied. A method for producing a phosphate fertilizer raw material.
(2) The method for producing a phosphate fertilizer raw material according to (1), wherein the reduction treatment is a treatment performed using a reducing agent containing one or more of carbon, silicon, and aluminum.
(3) The method for producing a phosphate fertilizer raw material according to (1) or (2), wherein the CaO source is a powder having a particle diameter of 1 mm or less.
(4) The method for producing a phosphate fertilizer raw material according to any one of (1) to (3), wherein the silicon source is supplied to a fire point.
(5) The phosphoric acid according to any one of (1) to (4), wherein the obtained dephosphorized slag has a composition in which P 2 O 5 is 15% or more by mass% with respect to the total amount of slag. Manufacturing method of fertilizer raw material.
(6) In any one of (1) to (5), the dephosphorized slag obtained is a composition in which the total content of CaO, P 2 O 5 and SiO 2 is 50% or more by mass% with respect to the total amount of slag. A process for producing a phosphate fertilizer raw material characterized by comprising:
(7) A phosphate fertilizer, part or all of which comprises a phosphate fertilizer raw material produced by the production method according to any one of (1) to (6).
(8) The phosphate fertilizer according to (7), wherein the phosphate fertilizer includes a CaO—P 2 O 5 crystal having a silicocarnotite crystal structure.
(9) Dephosphorization slag obtained by treating steelmaking slag is used as a raw material, and contains at least CaO, P 2 O 5 and SiO 2 , and the total content of CaO, P 2 O 5 and SiO 2 is 50% by mass. Phosphoric acid characterized by having a composition containing SiO 2 : 10% or more by mass% in a ternary system of CaO, P 2 O 5 and SiO 2 with P 2 O 5 of 15% or more Fertilizer raw material.
(10) The phosphate fertilizer material according to (9), wherein the phosphate material includes a CaO—P 2 O 5 crystal having a silicocarnotite crystal structure.
(11) A phosphate fertilizer comprising the phosphate fertilizer raw material according to (9) or (10).
本発明によれば、従来、再利用できていない製鋼スラグから、肥料効果が安定して高い燐酸質肥料原料となる脱燐スラグを製造でき、産業上格段の効果を奏する。また、本発明によれば、製鋼スラグを有効活用できるようになり、製鉄所より外部に排出されるスラグ量を削減できるという効果もある。 ADVANTAGE OF THE INVENTION According to this invention, the dephosphorization slag used as the phosphate fertilizer raw material with the fertilizer effect stably stabilized from the steel-making slag which cannot be reused conventionally can be manufactured, and there is a remarkable industrial effect. Moreover, according to the present invention, steelmaking slag can be used effectively, and there is an effect that the amount of slag discharged from the steelworks can be reduced.
本発明では、溶銑の予備脱燐処理時に発生するスラグ、転炉での溶銑の脱炭精錬で生成するスラグなどの、製鋼精錬プロセスで発生した燐を含有する製鋼スラグ(以下、「燐含有製鋼スラグ」ともいう)に、まず還元処理を施す。
燐含有製鋼スラグには、CaO、SiO2を主成分とし、燐がP2O5なる酸化物として含まれ、また鉄がFeOやFe2O3等の形態で酸化物として含有されている。このような燐含有製鋼スラグに、還元剤を使用して還元処理を施す。なお、使用する還元剤は、炭素、珪素、アルミニウムのうちの1種以上とすることが好ましい。
In the present invention, steelmaking slag containing phosphorus generated in a steelmaking refining process (hereinafter referred to as “phosphorus-containing steelmaking”) such as slag generated during preliminary dephosphorization of hot metal and slag generated by decarburization refining of hot metal in a converter. First, a reduction process is performed on the slag.
Phosphorus-containing steelmaking slag contains CaO and SiO 2 as main components, phosphorus is contained as an oxide of P 2 O 5 , and iron is contained as an oxide in the form of FeO, Fe 2 O 3 or the like. Such phosphorus-containing steel slag is subjected to a reduction treatment using a reducing agent. The reducing agent used is preferably one or more of carbon, silicon, and aluminum.
燐、鉄はCaやSiに比較して酸素との親和力が弱く、スラグ中のP2O5や鉄酸化物は容易に還元される。還元処理は、バーナー等の加熱手段を備えたロータリーキルン、アーク炉等の設備を利用して行うことができるが、還元により生成した鉄が溶融状態となるように、好ましくは1000℃以上の高温に加熱して行うことが好ましい。これにより、還元され生成した鉄(溶融鉄)が、容易にスラグから分離でき、さらに、この溶融鉄に、還元により生成した燐が溶解し、高燐含有溶融鉄となる。 Phosphorus and iron have a weaker affinity for oxygen than Ca and Si, and P 2 O 5 and iron oxide in slag are easily reduced. The reduction treatment can be performed using equipment such as a rotary kiln equipped with a heating means such as a burner, an arc furnace, etc., but preferably at a high temperature of 1000 ° C. or higher so that the iron produced by the reduction is in a molten state. It is preferable to carry out by heating. Thereby, the iron produced by reduction (molten iron) can be easily separated from the slag, and further, the phosphorus produced by the reduction is dissolved in the molten iron to form high phosphorus-containing molten iron.
なお、生成した溶融鉄の融点が低いほど、溶融鉄とスラグとの分離が促進されるため、生成した溶融鉄に、炭素を溶解させ、溶銑とすることが好ましい。溶融鉄に炭素を溶解させるには、還元剤として炭素を使用することが好ましい。また、還元剤として珪素やアルミニウムを使用する場合には、炭素と製鋼スラグと共存させることにより、還元より生成した溶融鉄に浸炭させ、高燐含有溶銑とすることが好ましい。 The lower the melting point of the produced molten iron, the more the separation of the molten iron and slag is promoted. Therefore, it is preferable to dissolve the carbon in the produced molten iron to form molten iron. In order to dissolve carbon in molten iron, it is preferable to use carbon as a reducing agent. In addition, when silicon or aluminum is used as the reducing agent, it is preferable that the molten iron produced by the reduction is carburized to coexist with carbon and steelmaking slag to obtain a high phosphorus content hot metal.
また、還元処理後のスラグは、燐酸含有量も低く、製銑工程や製鋼工程の精錬剤として利用できる。還元処理後のスラグを精錬剤(石灰)の代替品として利用しても、溶銑中の燐含有量の増加は認められず、再利用が可能である。
ついで、本発明では、得られた高燐含有溶銑に、脱燐処理を施す。なお、得られた高燐含有溶銑に、高炉から出銑された溶銑を混合して、適正な燐濃度に調整してもよい。
In addition, the slag after the reduction treatment has a low phosphoric acid content and can be used as a refining agent in the iron making process or the steel making process. Even if the slag after the reduction treatment is used as a substitute for the refining agent (lime), the phosphorus content in the hot metal is not increased and can be reused.
Next, in the present invention, the obtained high phosphorus-containing hot metal is subjected to a dephosphorization treatment. Note that the obtained high phosphorus-containing hot metal may be mixed with the hot metal discharged from the blast furnace to adjust to an appropriate phosphorus concentration.
本発明の溶銑の脱燐処理には、通常の脱燐処理設備がいずれも利用可能である。
脱燐処理設備としては、例えば図3に示すような、反応容器(転炉型)1に、上吹きランス2、インジェクションランス3、ホッパー11、貯蔵タンク5,6等を備えた設備が例示できる。
脱燐処理では、得られた高燐含有溶銑を反応容器1に装入し、上吹きランス2から酸素ガスを吹付けると同時に、この酸素ガスを搬送ガスとして、貯蔵タンク6に貯蔵されたCaO源4を吹付ける。CaO源としては、生石灰が例示でき、フッ素化合物が混入していないCaO系精錬剤(脱燐剤)とすることが好ましい。なお、反応の促進という観点から、CaO系精錬剤は、粉末状とし、粒径1mmアンダー(1mm未満)の粉末とすることが好ましい。なお、上吹きランス2からCaO系精錬剤などの粉体を溶銑に吹付けることを「投射」ともいう。また、インジェクションランス3を利用して、窒素ガスを搬送ガスとして貯蔵タンク5に貯蔵されたCaO系精錬剤(脱燐剤)を溶銑中に吹き込んでも良い。
Any ordinary dephosphorization processing equipment can be used for the dephosphorization processing of the hot metal of the present invention.
As the dephosphorization processing equipment, for example, as shown in FIG. 3, equipment provided with a reaction vessel (converter type) 1 with an
In the dephosphorization treatment, the obtained high phosphorus content hot metal is charged into the
なお、本発明では、脱燐処理において、得られる脱燐スラグが、CaO含有量とSiO2含有量の比、[質量%CaO]/[質量%SiO2]で定義される塩基度が1.5以上となる組成を有するように、投射するCaO源の量を調整する。これにより、得られる脱燐スラグの燐酸(P2O5)含有量を安定して、所望値以上に高めることができる、
得られるスラグの塩基度が1.5未満では、図1に示すように、燐酸含有量を、安定して所望値以上とすることができない。ここでいう「所望値」とは、スラグ全量に対する質量%で、P2O5:15%以上である。スラグ中のP2O5含有量が15%以上確保できれば、燐酸質肥料として所望の肥料効果を期待できる。
In the present invention, in the dephosphorization treatment, the dephosphorization slag obtained has a basicity defined by the ratio of CaO content to SiO 2 content, [mass% CaO] / [mass% SiO 2 ] of 1.5 or more. The amount of CaO source to be projected is adjusted so as to have a composition to be Thereby, the phosphoric acid (P 2 O 5 ) content of the dephosphorized slag obtained can be stably increased to a desired value or more.
When the basicity of the obtained slag is less than 1.5, as shown in FIG. 1, the phosphoric acid content cannot be stably increased to a desired value or more. The “desired value” here is mass% with respect to the total amount of slag, and is P 2 O 5 : 15% or more. If the content of P 2 O 5 in the slag can be secured at 15% or more, a desired fertilizer effect can be expected as a phosphate fertilizer.
さらに、本発明の脱燐処理においては、得られるスラグ(脱燐スラグ)がさらに高い肥料効果を保有するために、吹錬中期から吹錬末期に、上記したCaO系精錬剤(脱燐剤)の投射に加えて、珪素源を供給する処理とする。
脱燐処理で、スラグへの燐濃化のために溶銑にCaO系精錬剤(脱燐剤)を投入するとともに、珪素源を供給することにより、さらに高い肥料効果を有する組成のスラグとする。
Furthermore, in the dephosphorization treatment of the present invention, since the obtained slag (dephosphorization slag) has a higher fertilizer effect, the above-described CaO-based refining agent (dephosphorization agent) is used from the middle stage of blowing to the end stage of blowing. In addition to the projection, the silicon source is supplied.
In the dephosphorization process, a CaO-based refining agent (dephosphorizing agent) is added to the molten iron for phosphorus concentration in the slag, and a silicon source is supplied to obtain a slag having a higher fertilizer effect.
この珪素源の供給は、珪素源をホッパーから上添加して行うことが好ましい。なお、珪素源の供給は、火点に対して行うことが好ましい。これにより、吹錬末期に投入した添加物も溶け残ることなくスラグ中に取り込むことができる。珪素源としては、SiCや珪石などが例示できる。また、ここでいう「火点」とは、鉄浴と酸素供給源とが干渉する高温領域である。 The supply of the silicon source is preferably performed by adding the silicon source from a hopper. Note that it is preferable to supply the silicon source to a fire point. Thereby, the additive thrown in at the last stage of blowing can be taken in in slag without remaining undissolved. Examples of the silicon source include SiC and silica stone. Further, the “fire point” here is a high temperature region where the iron bath and the oxygen supply source interfere with each other.
ここでいう「さらに高い肥料効果を有する組成」とは、得られる脱燐スラグ全量に対する質量%で、CaO、P2O5およびSiO2の合計量が50%以上で、P2O5を15%以上、CaOを1.5(SiO2)%以上含み、さらに、CaO、P2O5、SiO2の三元系での質量%で、SiO2を10%以上含有する組成をいう。なお、好ましくは、CaO、P2O5、SiO2の三元系での質量%で、P2O5が30%以上、CaOが40%以上である。 Here, “a composition having a higher fertilizer effect” means mass% with respect to the total amount of dephosphorized slag obtained, and the total amount of CaO, P 2 O 5 and SiO 2 is 50% or more, and P 2 O 5 is 15%. % Or more, CaO 1.5% (SiO 2 )% or more, and also a composition containing 10% or more of SiO 2 in terms of mass% in the ternary system of CaO, P 2 O 5 and SiO 2 . Preferably, the mass% in the ternary system of CaO, P 2 O 5 and SiO 2 is 30% or more for P 2 O 5 and 40% or more for CaO.
脱燐スラグの組成を、上記した組成とすることにより、燐酸可溶率が高く、高い肥料効果を示すシリコカーノタイト(Ca5(PO4)2SiO4)の結晶構造を有する鉱物相が生成するようになり、脱燐スラグの可溶性燐酸量、燐酸可溶率が高くなり、肥料効果の優れた燐酸質肥料原料とすることができる。なお、肥料効果の観点からは、脱燐スラグの可溶性燐酸量を、スラグ全量に対し15質量%以上とすることが好ましい。 By making the dephosphorization slag composition as described above, a mineral phase with a crystalline structure of silicocarnotite (Ca 5 (PO 4 ) 2 SiO 4 ) that has a high phosphate solubility and a high fertilizer effect is formed. As a result, the amount of phosphoric acid and the phosphoric acid solubility of the dephosphorized slag are increased, and a phosphate fertilizer raw material having an excellent fertilizer effect can be obtained. From the viewpoint of fertilizer effect, the amount of soluble phosphoric acid in the dephosphorized slag is preferably 15% by mass or more based on the total amount of slag.
なお、スラグへの燐濃化を目的とした、CaO源(CaO系精錬剤(脱燐剤))の投入は、スラグの流動性を低下させる。これは、溶銑中のSiは、Pに優先して酸化されるため、初期に形成された燐酸濃化スラグにSiO2が偏在し、吹錬末期に形成される燐酸濃化スラグ中のSiO2濃度が低下するためである。このようなスラグの流動性低下を防止するため、本発明では、好ましくは吹錬の中期〜末期にかけて、脱燐剤とともに、珪素源を供給、好ましくは火点に供給し、スラグ中の成分偏在を低減し、燐酸質肥料の品質向上をも図る。 Note that the introduction of a CaO source (CaO-based refining agent (dephosphorization agent)) for the purpose of phosphorus concentration in the slag decreases the fluidity of the slag. This, Si in the molten iron, because they are oxidized in preference to P, SiO 2 is unevenly distributed in the early formed phosphate enriched slag, SiO 2 phosphate concentrated in the slag formed in the blow end This is because the concentration decreases. In order to prevent such fluidity deterioration of slag, in the present invention, preferably from the middle to the end of blowing, a silicon source is supplied together with a dephosphorizing agent, preferably supplied to a hot spot, and the components in the slag are unevenly distributed. To improve the quality of phosphate fertilizer.
珪素源の投入時期は、溶鉄中のSi濃度[%Si]が、次(1)式
[%Si] ≦ 1/2[%Si]input ‥‥(1)
[%Si]input:装入Si濃度(質量%)
を満足する、溶銑中のSi濃度が、装入時のSi濃度[%Si]inputの半分以下に低下した時点とすることが好ましい。なお、吹錬開始からt秒後の溶銑中のSi濃度は、次式
[%Si]=[%Si]input exp(−kSi・Input O2) ‥‥(1a)
[%Si]input:装入Si濃度(質量%)、kSi:処理設備で決まる定数、
Input O2:吹錬開始からt秒後までに供給される酸素量(Nm3/t)、
で算出できる。また、その際の珪素源の投入量QSiO2(ton)は、次(2)式
QSiO2 ≦ (0.6/0.85)×(WCaO+WP205+(WSiO2)input)‥‥(2)
を満足するように調整することが好ましい。
When the silicon source is introduced, the Si concentration [% Si] in the molten iron is expressed by the following formula (1) [% Si] ≤ 1/2 [% Si] input (1)
[% Si] input : Charged Si concentration (mass%)
It is preferable that the Si concentration in the hot metal satisfying the above is the time when the Si concentration [% Si] at the time of charging is reduced to half or less of the input . The concentration of Si in the hot metal t seconds after the start of blowing is expressed by the following formula: [% Si] = [% Si] input exp (−k Si · Input O 2 ) (1a)
[% Si] input : charged Si concentration (mass%), k Si : constant determined by processing equipment,
Input O 2 : Amount of oxygen (Nm 3 / t) supplied from the start of blowing to t seconds later
It can be calculated by In addition, the amount Q SiO2 (ton) of the silicon source at that time is expressed by the following formula (2): Q SiO2 ≦ (0.6 / 0.85) × (W CaO + W P205 + (W SiO2 ) input ) (2)
It is preferable to adjust so as to satisfy the above.
ここで、WCaOは、脱燐処理時のCaO投入量(ton)、WP205、(WSiO2)inputは、スラグ中の装入溶銑起因のP2O5量(ton)、SiO2量(ton)である。なお、WP205、(WSiO2)inputは、それぞれ次(3)式、次(4)式で定義される。
WP205 =([%P]input−[%P]output )/100×(MP205/MP)×Wm ‥‥(3)
(WSiO2)input =([%Si]input−[%Si]output )/100×(MSiO2/MSi)×Wm ‥‥(4)
ここで、[%P]inputは装入溶銑中のP濃度(質量%)、[%P]output は脱燐処理終了時(終点時)の溶銑中のP濃度(質量%)、[%Si]inputは装入溶銑中のSi濃度(質量%)、[%Si]outputは脱燐処理終了時(終点時)の溶銑中のSi濃度(質量%)であり、Wmは、装入溶銑量(ton)である。また、MP205、MSiO2は各化合物の分子量であり、MP、MSiは、各元素の原子量である。
Here, W CaO is the amount of CaO input at the time of dephosphorization (ton), W P205 , (W SiO2 ) input is the amount of P 2 O 5 (ton) and SiO 2 due to the molten iron in the slag ( ton). Note that W P205 and (W SiO2 ) input are defined by the following equations (3) and (4), respectively.
W P205 = ([% P] input - [% P] output) / 100 × (M P205 / M P) × W m ‥‥ (3)
(W SiO2 ) input = ([% Si] input − [% Si] output ) / 100 × (M SiO2 / M Si ) × W m (4)
Here, [% P] input is the P concentration (mass%) in the molten iron, [% P] output is the P concentration (mass%) in the molten iron at the end of dephosphorization (at the end point), [% Si ] input the Si concentration in the loading hot metal (mass%), a [% Si] output is Si concentration in the hot metal dephosphorization treatment end (at the end point) (wt%), W m is charged hot metal It is a quantity (ton). M P205 and M SiO2 are the molecular weights of the respective compounds, and M P and M Si are the atomic weights of the respective elements.
なお、WSiO2 は、スラグ中に含まれるSiO2量であり、Wtotalは、スラグ中に含まれるCaO量、P2O5量、SiO2量の合計量で、次式で定義できる。
WSiO2 =(WSiO2)input +QSiO2 ‥‥(5)
Wtotal = WCaO + WP205 + WSiO2 ‥‥(6)
そして、上記した(3)〜(6)式と、スラグ塩基度:1.5以上、燐酸含有量:15質量%以上という、得られるスラグ(脱燐スラグ)の条件
WCaO/WSiO2 ≧ 1.5 ‥‥(7)
WP205/Wtotal ≧ 0.15 ‥‥(8)
とから、上記した(2)式を導くことができる。
W SiO2 is the amount of SiO 2 contained in the slag, and W total is the total amount of CaO, P 2 O 5 and SiO 2 contained in the slag, and can be defined by the following equation.
W SiO2 = (W SiO2 ) input + Q SiO2 (5)
W total = W CaO + W P205 + W SiO2 (6)
And the conditions of the obtained slag (dephosphorization slag) that the above-mentioned formulas (3) to (6), slag basicity: 1.5 or more, and phosphoric acid content: 15 mass% or more W CaO / W SiO2 ≧ 1.5 (7)
W P205 / W total ≧ 0.15 (8)
From the above, the above equation (2) can be derived.
本発明では、上記した(2)式を満足するように、珪酸源の投入量QSiO2を調整して、スラグ中SiO2が不足する部分に投入することが好ましい。これにより、スラグの流動性がよくなり、しかも所望の組成を有する均質なスラグ(脱燐スラグ)を安定して製造でき、肥料効果の高い珪酸質肥料原料とすることができる。 In the present invention, it is preferable that the amount of silicic acid source Q SiO2 is adjusted so as to satisfy the above-described formula (2), and the slag is charged into a portion where SiO 2 is insufficient. Thereby, the fluidity | liquidity of slag improves, Moreover, the homogeneous slag (dephosphorization slag) which has a desired composition can be manufactured stably, and it can be set as the siliceous fertilizer raw material with a high fertilizer effect.
製鋼工程で発生した燐含有製鋼スラグ50tonを、還元剤である炭素とともに、ロータリーキルン炉に装入した。そして、ロータリーキルン炉付設の加熱バーナーにより、装入した製鋼スラグを還元剤とともに1000℃以上に加熱する還元処理を施し、高燐還元鉄10tonを得た。なお、この還元処理時に生成したスラグは、燐酸濃度が低く、製銑工程、製鋼工程の石灰の代替品(精錬剤)として利用可能であることを確認した。 50 tons of phosphorus-containing steelmaking slag generated in the steelmaking process was charged into a rotary kiln furnace together with carbon as a reducing agent. And the reduction process which heats the steel-making slag with which it charged with a reducing agent to 1000 degreeC or more with the heating burner attached to the rotary kiln furnace was performed, and high phosphorus reduced iron 10ton was obtained. In addition, it confirmed that the slag produced | generated at the time of this reduction process has low phosphoric acid concentration, and can be used as a substitute (refining agent) of the lime of a ironmaking process and a steelmaking process.
上記した還元処理により得られた高燐還元鉄の燐含有量は1.0〜4.0質量%であった。そこで、得られた高燐還元鉄を、高炉から出銑された溶銑中に投入し、燐含有量を0.5〜3.0質量%の範囲内の値に調整し、それぞれ高燐溶銑200tonとした。脱燐処理前の溶銑成分を表2に示す。
ついで、これら高燐溶銑200tonを転炉型反応容器に装入し、脱燐処理を実施した。
The phosphorus content of the high phosphorus reduced iron obtained by the above reduction treatment was 1.0 to 4.0% by mass. Therefore, the obtained high phosphorus reduced iron was put into the hot metal discharged from the blast furnace, and the phosphorus content was adjusted to a value within the range of 0.5 to 3.0% by mass, respectively, so that the high phosphorus hot metal was 200 tons. Table 2 shows the hot metal components before dephosphorization.
Next, 200 tons of these high phosphorus hot metal was charged into a converter reactor and subjected to dephosphorization treatment.
脱燐処理は、上吹きランスから酸素ガスを吹き付けるとともに、CaO源として粉状CaO系脱燐剤(フラックス)を吹き込む処理とした。CaO系脱燐剤は、粒径:1mmアンダーの粉状生石灰(CaO純分:95質量%程度)のみとし、蛍石等のフッ素化合物を含有しないものとした。なお、投入するCaO系脱燐剤の原単位を調整して、スラグの塩基度([CaO]/[SiO2])を変化させた。なお、一部では、火点に対し、表2に示す原単位で珪素源をホッパーから上添加した。珪素源の投入時期は、上記した(1a)式で定義される溶銑中のSi濃度[%Si]が、装入Si濃度[%Si]inputの1/2以下となった時点とした。また、珪素源の投入量は、上記した(2)式を満足するように決定した。なお、珪素源を、高温の火点に投入することで、吹錬末期に投入した添加物も、溶け残ること無く、スラグ中に取り込むことができた。 In the dephosphorization treatment, oxygen gas was blown from the top blowing lance and a powdered CaO-based dephosphorization agent (flux) was blown as a CaO source. The CaO-based dephosphorizing agent was only powdered quicklime having a particle size of 1 mm or less (CaO pure content: about 95% by mass) and did not contain a fluorine compound such as fluorite. The basic unit of the slag ([CaO] / [SiO 2 ]) was changed by adjusting the basic unit of the CaO-based dephosphorizing agent to be added. In some cases, the silicon source was added from the hopper at the basic unit shown in Table 2 with respect to the fire point. The silicon source was introduced when the Si concentration [% Si] in the hot metal defined by the above formula (1a) became 1/2 or less of the charged Si concentration [% Si] input . Further, the amount of silicon source input was determined so as to satisfy the above-described equation (2). In addition, by adding the silicon source to a high-temperature fire point, the additive added at the end of the blowing process could be taken into the slag without remaining undissolved.
脱燐処理後に、得られた溶銑の組成を測定し、表2に示す。なお、脱燐処理後、溶銑は、反応容器外に排出し、スラグは反応容器内で放冷した。
また、吹錬末期に生成したスラグを採取し、ガラスビード分析法を用いて組成を分析した。また、スラグ中に含まれる鉱物相について、X線回折を用いて測定した。さらに、肥料公定規格に準拠して、クエン酸二アンモニウム溶液(pH7)に溶解する燐酸(可溶性燐酸)量を測定した。得られた値から、スラグ中に含まれる全燐酸に対する可溶性燐酸の割合(燐酸可溶率)を算出した。
After dephosphorization treatment, the composition of the obtained hot metal was measured and shown in Table 2. After the dephosphorization treatment, the hot metal was discharged out of the reaction vessel, and the slag was allowed to cool in the reaction vessel.
Moreover, the slag produced | generated in the last stage of blowing was extract | collected, and the composition was analyzed using the glass bead analysis method. Moreover, it measured using the X-ray diffraction about the mineral phase contained in slag. Further, the amount of phosphoric acid (soluble phosphoric acid) dissolved in the diammonium citrate solution (pH 7) was measured in accordance with the official fertilizer standard. From the obtained value, the ratio of the soluble phosphoric acid to the total phosphoric acid contained in the slag (phosphoric acid solubility) was calculated.
ついで、得られた放冷後のスラグを燐酸質肥料原料として、ヒロシマナを用いて栽培試験を実施した。栽培試験はつぎのとおりとした。
炭酸カルシウムと酸化マグネシウムでpH(H20)6.5に矯正した多腐植質黒ボク土1kgと、燐酸質肥料原料としてのスラグ0.5gを装入した1/5000aワグネルポットに、ヒロシマナを植え、ガラス温室内で所定期間(60日間)栽培し、生育状況を観察した。なお、すべてのポットには、窒素(N)として0.5g/ポット、カリウム(K20)として0.5g/ポットとなるように、硝酸カリウムと塩化カリウムを施用した。ヒロシマナの生育状況は、燐酸質肥料として対照肥料である過燐酸石灰を施用したポットでの生育状況と比較し、同等もしくは優れている場合を「○」とし、それ以外の場合を「×」として評価した。
Subsequently, the obtained slag after cooling was used as a phosphate fertilizer raw material, and a cultivation test was conducted using Hiroshima. The cultivation test was as follows.
Hiromana was planted in a glass greenhouse with 1 / 5000a Wagner pot charged with 1kg of polyhumic black soil, adjusted to pH (H20) 6.5 with calcium carbonate and magnesium oxide, and 0.5g of slag as phosphate fertilizer. And cultivated for a predetermined period (60 days) and observed the growth. Note that potassium nitrate and potassium chloride were applied to all the pots so that the nitrogen (N) was 0.5 g / pot and the potassium (K20) was 0.5 g / pot. The growth situation of Hiroshima is compared with the growth situation in the pot applied with phosphoperphosphate as a control fertilizer as a phosphate fertilizer, `` ○ '' if it is equal or superior, `` X '' otherwise evaluated.
得られた結果を表2に示す。なお、表2に示すスラグ組成を、図2の三元系図中にプロットして示した。 The obtained results are shown in Table 2. In addition, the slag composition shown in Table 2 was plotted in the ternary diagram of FIG.
本発明例はいずれも、スラグ全量に対する質量%で、CaO、SiO2、P2O5の合計量が50質量%以上、P2O5量が15質量%以上であり、CaO、SiO2、P2O5の三元系での質量%で、SiO2含有量が10質量%以上を満足し、Ca5(PO4)SiO2が検出され、肥料効果が優れている。一方、本発明の範囲を外れる比較例は、CaO、SiO2、P2O5の三元系でSiO2含有量が10質量%未満となり、Ca5(PO4) 2SiO2が検出されず、肥料効果も低くなっている。 In all of the examples of the present invention, the total amount of CaO, SiO 2 , and P 2 O 5 is 50% by mass or more, the amount of P 2 O 5 is 15% by mass or more, and CaO, SiO 2 , The SiO 2 content satisfies 10% by mass or more in mass% of P 2 O 5 ternary system, Ca 5 (PO 4 ) SiO 2 is detected, and the fertilizer effect is excellent. On the other hand, a comparative example out of the scope of the present invention is a ternary system of CaO, SiO 2 and P 2 O 5 , the SiO 2 content is less than 10% by mass, and Ca 5 (PO 4 ) 2 SiO 2 is not detected. The fertilizer effect is also low.
なお、本発明で脱燐処理を行って得られた溶銑は、いずれも燐濃度が0.10質量%以下まで低下しており、この程度の低燐濃度であれば、高炉溶銑と何ら遜色なく、製鋼用の鉄源として使用可能である。 Note that the hot metal obtained by performing the dephosphorization treatment in the present invention has a phosphorus concentration that is reduced to 0.10% by mass or less, and at this low phosphorus concentration, steelmaking is no different from blast furnace hot metal. It can be used as an iron source.
1 反応容器
2 上吹きランス
3 インジェクションランス
4 CaO源
5 貯蔵タンク
6 貯蔵タンク
7 溶銑
11 ホッパー
12 生成スラグ
1
11 Hopper
12 Generated slag
Claims (11)
前記脱燐処理を、得られる前記脱燐スラグがCaO含有量とSiO2含有量の比、[質量%CaO]/[質量%SiO2]で定義される塩基度が1.5以上、かつCaO、P2O5、SiO2の三元系での質量%でSiO2が10%以上となる組成を有するように、酸素ガスと共に投射するCaO源の量を調整するとともに、さらに珪素源を供給する処理とすることを特徴とする燐酸質肥料原料の製造方法。 When the phosphorus-containing molten iron obtained by subjecting steelmaking slag containing phosphorus generated in the steelmaking refining process to reduction treatment is further subjected to dephosphorization treatment, and the resulting dephosphorized slag is used as a phosphate fertilizer raw material,
In the dephosphorization treatment, the dephosphorization slag obtained has a basicity defined by a ratio of CaO content to SiO 2 content of [mass% CaO] / [mass% SiO 2 ] of 1.5 or more, and CaO, P A process of adjusting the amount of CaO source projected with oxygen gas and further supplying a silicon source so that the composition is such that SiO 2 is 10% or more by mass% in the ternary system of 2 O 5 and SiO 2 A method for producing a phosphate fertilizer raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014015545A JP6011556B2 (en) | 2014-01-30 | 2014-01-30 | Method for producing phosphate fertilizer raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014015545A JP6011556B2 (en) | 2014-01-30 | 2014-01-30 | Method for producing phosphate fertilizer raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015140473A true JP2015140473A (en) | 2015-08-03 |
JP6011556B2 JP6011556B2 (en) | 2016-10-19 |
Family
ID=53771038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014015545A Active JP6011556B2 (en) | 2014-01-30 | 2014-01-30 | Method for producing phosphate fertilizer raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6011556B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017128747A (en) * | 2016-01-18 | 2017-07-27 | 新日鐵住金株式会社 | Manufacturing method of phosphate fertilizer and manufacturing device of phosphate fertilizer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158526A (en) * | 1997-11-28 | 1999-06-15 | Sumitomo Metal Ind Ltd | Production of high p slag |
JP2004137136A (en) * | 2001-10-31 | 2004-05-13 | Jfe Steel Kk | Raw material for silicate phosphate fertilizer, and its manufacturing method |
JP2004345940A (en) * | 2003-04-28 | 2004-12-09 | Jfe Steel Kk | Raw material for silicate phosphate fertilizer and method for manufacturing the same |
JP2009132544A (en) * | 2007-11-28 | 2009-06-18 | Nippon Steel Corp | Method for producing slag |
JP2010168641A (en) * | 2008-12-26 | 2010-08-05 | Jfe Steel Corp | Method for reclaiming iron and phosphorous from steelmaking slag |
JP2012072018A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | Method for separating phosphorus |
-
2014
- 2014-01-30 JP JP2014015545A patent/JP6011556B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158526A (en) * | 1997-11-28 | 1999-06-15 | Sumitomo Metal Ind Ltd | Production of high p slag |
JP2004137136A (en) * | 2001-10-31 | 2004-05-13 | Jfe Steel Kk | Raw material for silicate phosphate fertilizer, and its manufacturing method |
JP2004345940A (en) * | 2003-04-28 | 2004-12-09 | Jfe Steel Kk | Raw material for silicate phosphate fertilizer and method for manufacturing the same |
JP2009132544A (en) * | 2007-11-28 | 2009-06-18 | Nippon Steel Corp | Method for producing slag |
JP2010168641A (en) * | 2008-12-26 | 2010-08-05 | Jfe Steel Corp | Method for reclaiming iron and phosphorous from steelmaking slag |
JP2012072018A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | Method for separating phosphorus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017128747A (en) * | 2016-01-18 | 2017-07-27 | 新日鐵住金株式会社 | Manufacturing method of phosphate fertilizer and manufacturing device of phosphate fertilizer |
Also Published As
Publication number | Publication date |
---|---|
JP6011556B2 (en) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5332651B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP5569174B2 (en) | Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material | |
JP5560947B2 (en) | Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material | |
JP6631265B2 (en) | Method for producing derinsed slag | |
JP5935770B2 (en) | Method for producing phosphate resource raw material and phosphate fertilizer | |
JP6003911B2 (en) | Phosphate fertilizer raw material, phosphate fertilizer and production method thereof | |
JP2012007190A (en) | Method for resource recovery from steelmaking slag, and raw material for phosphate fertilizer | |
JP5320680B2 (en) | Method for producing high phosphorus slag | |
JP5594183B2 (en) | Method for recovering iron and phosphorus from steelmaking slag and raw material for phosphate fertilizer | |
JP6984731B2 (en) | How to remove phosphorus from hot metal | |
JP6969476B2 (en) | Manufacturing method of high phosphorus content slag and slag fertilizer and phosphoric acid fertilizer | |
JP5268019B2 (en) | How to remove hot metal | |
JP6992604B2 (en) | Phosphate slag fertilizer manufacturing method | |
JP6011556B2 (en) | Method for producing phosphate fertilizer raw material | |
JP6988580B2 (en) | Manufacturing method of phosphoric acid fertilizer raw material | |
JP6930473B2 (en) | Phosphate fertilizer manufacturing method and phosphoric acid fertilizer | |
JP6773131B2 (en) | Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel | |
JP5915711B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP5829788B2 (en) | Method for producing phosphoric acid resource raw material | |
TW201812025A (en) | Molten steel production method | |
JP2001049320A (en) | Production of iron and steel using high phosphorus ore as raw material | |
JPH09143529A (en) | Method for dephosphorizing molten iron | |
JP5141327B2 (en) | Hot metal pretreatment method | |
JP2005314760A (en) | Refining method having high reaction efficiency | |
JP2021095608A (en) | Dephosphorization method of molten iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6011556 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |