JP2015140270A - silicon wafer - Google Patents

silicon wafer Download PDF

Info

Publication number
JP2015140270A
JP2015140270A JP2014013092A JP2014013092A JP2015140270A JP 2015140270 A JP2015140270 A JP 2015140270A JP 2014013092 A JP2014013092 A JP 2014013092A JP 2014013092 A JP2014013092 A JP 2014013092A JP 2015140270 A JP2015140270 A JP 2015140270A
Authority
JP
Japan
Prior art keywords
wafer
back surface
silicon wafer
intersection
projection length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014013092A
Other languages
Japanese (ja)
Inventor
剛士 仙田
Takeshi Senda
剛士 仙田
泉妻 宏治
Koji Sensai
宏治 泉妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2014013092A priority Critical patent/JP2015140270A/en
Priority to CN201810193893.4A priority patent/CN108461384B/en
Priority to PCT/JP2014/083275 priority patent/WO2015114974A1/en
Priority to CN201480066934.3A priority patent/CN105814245B/en
Priority to TW104102915A priority patent/TWI570260B/en
Publication of JP2015140270A publication Critical patent/JP2015140270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Abstract

PROBLEM TO BE SOLVED: To suppress a silicon wafer from cracking or having more dislocation to warp large when a nitride semiconductor layer is epitaxially grown on the silicon wafer.SOLUTION: A first projection length in a direction along a top surface 3 between the intersection of an end face 5 and a first inclined plane 6 and the intersection of the top surface 3 and the first inclined plane 6 is denoted as a1 μm, and a second projection length in a direction along a reverse surface 4 between the intersection of the end face 5 and a second inclined plane 7 and the intersection of the reverse surface 4 and the second inclined plane 7 is denoted as a2 μm; and the first angle of inclination of the first inclined plane 6 from the top surface 3 is denoted as θ1, the second angle of inclination of the second inclined plane 7 from the reverse surface 4 is denoted as θ2, and the surface interval between the top surface 3 and reverse surface 4 is denoted as T μm. Then the shape value of a bevel defined by a1 tanθ1-a2 tanθ2 is calculated from values of the respective parameters, and the shape of the bevel is defined so that the shape value is within a predetermined range.

Description

この発明は、シリコンウェーハに関し、特に窒化物半導体(例えば、窒化ガリウム系半導体)のエピタキシャル成長用の基板として適したものに関する。   The present invention relates to a silicon wafer, and more particularly, to a silicon wafer suitable as a substrate for epitaxial growth of a nitride semiconductor (for example, a gallium nitride based semiconductor).

窒化ガリウム(GaN)系半導体材料は、シリコン(Si)の約3倍の大きなバンドギャップ、Siの約10倍の高い絶縁破壊電界、さらに大きな飽和電子速度等の優れた特性を持つところから、無線通信分野における高周波・高出力デバイス用材料として活発に研究開発が進められており、携帯電話基地局用デバイスでは既に実用化の段階に入っている。また最近は、従来のSiパワーデバイスでは困難な高耐圧化と低損失化、つまり低オン抵抗化との両立が期待できるため、電力用パワーデバイスへの応用についても着目されている。オン抵抗の理論値は絶縁破壊電界の3乗に反比例することから、GaNを用いたパワーデバイスではSiの約1/1000の超低オン抵抗化の可能性がある。   Gallium nitride (GaN) -based semiconductor materials have excellent characteristics such as a band gap that is about three times that of silicon (Si), a breakdown electric field that is about ten times that of Si, and a large saturation electron velocity. Research and development has been actively conducted as a material for high-frequency and high-power devices in the communication field, and mobile phone base station devices have already entered the stage of practical use. Recently, it is expected to achieve both high breakdown voltage and low loss, that is, low on-resistance, which is difficult with conventional Si power devices, and therefore, attention is focused on application to power devices for electric power. Since the theoretical value of the on-resistance is inversely proportional to the cube of the dielectric breakdown electric field, a power device using GaN may have an ultra-low on-resistance of about 1/1000 of Si.

LED等の光デバイスやトランジスタ等の電子デバイスに用いられるGaN系半導体材料は、一般的にサファイアやシリコンカーバイド(SiC)などの異種基板上にエピタキシャル成長(以下、エピ成長という。)により形成されている。しかし、近年では、基板の大口径化、基板品質自体の向上、およびコストの面から、従来広く使用されてきたSiが、GaNエピ成長用基板として広く使用されている。   A GaN-based semiconductor material used for an optical device such as an LED or an electronic device such as a transistor is generally formed by epitaxial growth (hereinafter referred to as epi growth) on a heterogeneous substrate such as sapphire or silicon carbide (SiC). . However, in recent years, Si, which has been widely used in the past, has been widely used as a substrate for GaN epi growth from the viewpoint of increasing the substrate diameter, improving the substrate quality itself, and cost.

しかしながら、Siウェーハ(以下、適宜ウェーハという。)上の窒化物半導体層の結晶成長に関しては、Siに対する窒化物系半導体の結晶構造の相違、格子不整合、熱膨張係数差が存在するため、クラック、ウェーハ反り、及び転位が発生するという問題がある。これらは、ウェーハハンドリングエラーや接合リークなどの製造上の問題を発生させる。例えば、エピ成長の基板として用いるSiの格子定数は5.43オングストロームであるのに対し、窒化物半導体の一つであるGaNの格子定数は3.189オングストロームである。また、Siの熱膨張係数は3.59×10−6/Kであるのに対し、GaNの熱膨張係数は5.59×10−6/Kである。このように、両者の格子定数及び熱膨張係数は大きく異なるため、Si上にそのままGaNをエピ成長すると、大きな歪みやクラック等が発生する問題が生じる。 However, regarding the crystal growth of a nitride semiconductor layer on a Si wafer (hereinafter referred to as a wafer as appropriate), there are differences in the crystal structure of the nitride semiconductor with respect to Si, lattice mismatch, and thermal expansion coefficient differences, so , Wafer warpage and dislocation occur. These cause manufacturing problems such as wafer handling errors and junction leaks. For example, the lattice constant of Si used as an epitaxial growth substrate is 5.43 angstroms, whereas the lattice constant of GaN, which is one of nitride semiconductors, is 3.189 angstroms. Further, the thermal expansion coefficient of Si is 3.59 × 10 −6 / K, whereas the thermal expansion coefficient of GaN is 5.59 × 10 −6 / K. Thus, since the lattice constant and the thermal expansion coefficient of the two are greatly different, when GaN is epitaxially grown as it is on Si, there arises a problem that large strains, cracks and the like are generated.

そこで、この問題を解決すべく、例えば特許文献1においては、Si上に、窒化アルミニウム(AlN)、及び窒化ガリウムアルミニウム(AlGaN)(本文献の段落0025〜0026参照)をエピ成長した後に、さらにGaN層(本文献の段落0021参照)をエピ成長する技術が開示されている。AlNやAlGaNをバッファ層として作用させることで、各層間の格子不整合率が減少し、歪みが徐々に緩和するため、ウェーハの反りや転位の減少が期待できるためである。   In order to solve this problem, for example, in Patent Document 1, after epitaxially growing aluminum nitride (AlN) and gallium aluminum nitride (AlGaN) (see paragraphs 0025 to 0026 of this document) on Si, A technique for epi-growing a GaN layer (see paragraph 0021 of this document) is disclosed. This is because by causing AlN or AlGaN to act as a buffer layer, the lattice mismatch ratio between the respective layers is reduced and the strain is gradually relaxed, so that it is possible to expect a reduction in wafer warpage and dislocation.

特開2012−79952号公報JP 2012-79952 A

この特許文献1の構成においては、数μmの厚さのエピ層を形成するために1000〜1200℃程度の高温の熱処理を長時間(通常は数時間以上)に亘って行う必要があり、本構成のようにバッファ層を形成していたとしても、スリップ(転位)が10/cmと高密度に発生したり、ウェーハが割れたりする問題が依然として生じているのが現状である。これは、バッファ層を形成することによって歪みはある程度緩和できるものの、ウェーハ端面のベベルが周囲の治具に接触して、スリップや割れの原因となる欠陥が新たに導入されたり、熱処理中に負荷される応力によって、ウェーハに元々存在する欠陥(研磨時の破砕痕やスクラッチ等)からスリップ等が伸展したりするためと推測される。 In the configuration of Patent Document 1, it is necessary to perform high-temperature heat treatment at about 1000 to 1200 ° C. for a long time (usually several hours or more) in order to form an epi layer having a thickness of several μm. Even if the buffer layer is formed as in the configuration, there are still problems that slip (dislocation) occurs at a high density of 10 9 / cm 2 and the wafer is cracked. Although the strain can be alleviated to some extent by forming a buffer layer, the bevel on the wafer end surface comes into contact with the surrounding jig, and new defects that cause slipping or cracking are introduced, or during the heat treatment It is presumed that slips and the like extend from defects (such as crushing marks and scratches at the time of polishing) originally existing in the wafer due to the stress applied.

そこで、この発明は、窒化物半導体層をシリコンウェーハ上にエピタキシャル成長させた際に、ウェーハが割れたり、転位が伸展して大きな反りが発生したりするのを抑制することを課題とする。   Therefore, an object of the present invention is to suppress the occurrence of a large warp due to cracking of a wafer or dislocation extension when a nitride semiconductor layer is epitaxially grown on a silicon wafer.

上記の課題を解決するために、この発明においては、窒化物半導体層をエピタキシャル成長させるための(111)面方位の円板状のシリコンウェーハであって、前記窒化物半導体層を形成する表面と、前記表面と平行な裏面と、前記表面の面法線と垂直の面法線を有し、ウェーハ外周部を構成する端面と、前記表面及び前記端面と連続し、前記表面と傾斜をなす第一傾斜面と、前記裏面及び前記端面と連続し、前記裏面と傾斜をなす第二傾斜面と、を備え、前記端面及び前記第一傾斜面の交点と、前記表面及び前記第一傾斜面の交点との間の前記表面に沿う方向の第一投影長をa1μm、前記端面及び前記第二傾斜面の交点と、前記裏面及び前記第二傾斜面の交点との間の前記裏面に沿う方向の第二投影長をa2μm、前記第一傾斜面の前記表面からの第一傾斜角をθ1、前記第二傾斜面の前記裏面からの第二傾斜角をθ2、前記表面と前記裏面の面間隔をTμm、としたときにエピタキシャル成長の前後において次式−0.048T≦a1・tanθ1−a2・tanθ2≦0.048Tを満たすことを特徴とするシリコンウェーハを構成した。   In order to solve the above problems, in the present invention, a (111) plane disk-shaped silicon wafer for epitaxially growing a nitride semiconductor layer, the surface on which the nitride semiconductor layer is formed, A first surface that has a back surface parallel to the surface, a surface normal perpendicular to the surface normal of the surface, an end surface constituting a wafer outer peripheral portion, the surface and the end surface, and an inclination with the surface. An inclined surface, and a second inclined surface that is continuous with the back surface and the end surface and is inclined with the back surface, and an intersection of the end surface and the first inclined surface, and an intersection of the surface and the first inclined surface The first projection length in the direction along the front surface is a1 μm, the first projection length in the direction along the back surface between the intersection of the end surface and the second inclined surface, and the intersection of the back surface and the second inclined surface. Two projection lengths a2 μm, the first inclined surface When the first inclination angle from the front surface is θ1, the second inclination angle from the back surface of the second inclined surface is θ2, and the surface interval between the front surface and the back surface is T μm, the following equation −0 before and after epitaxial growth: 0.048T ≦ a1 · tan θ1−a2 · tan θ2 ≦ 0.048T was satisfied, thereby forming a silicon wafer.

あるいは、窒化物半導体層をエピタキシャル成長させるための(111)面方位の円板のシリコンウェーハであって、前記窒化物半導体層を形成する表面と、前記表面と平行な裏面と、表面の面法線に対して連続的に変化する面法線を有し、ウェーハ外周部を構成する曲端面と、前記表面及び前記曲端面と連続し、前記表面と傾斜をなす第一傾斜面と、前記裏面及び前記曲端面と連続し、前記裏面と傾斜をなす第二傾斜面と、を備え、前記曲端面の最外端と、前記表面及び前記第一傾斜面の交点との間の前記表面に沿う方向の第一投影長をa1μm、前記曲端面の最外端と、前記裏面及び前記第二傾斜面の交点との間の前記裏面に沿う方向の第二投影長をa2μm、前記第一傾斜面の前記表面からの第一傾斜角をθ1、前記第二傾斜面の前記裏面からの第二傾斜角をθ2、前記表面と前記裏面の面間隔Tμm、としたときにエピタキシャル成長の前後において次式−0.064T≦a1・tanθ1−a2・tanθ2≦0.064Tを満たすことを特徴とするシリコンウェーハを構成した。   Alternatively, a silicon wafer having a (111) orientation disk for epitaxial growth of a nitride semiconductor layer, the surface on which the nitride semiconductor layer is formed, the back surface parallel to the surface, and the surface normal of the surface A curved end surface having a surface normal that continuously changes with respect to the surface, a curved end surface constituting a wafer outer peripheral portion, a first inclined surface that is continuous with the surface and the curved end surface, and is inclined with respect to the surface, the back surface, and A second inclined surface that is continuous with the curved end surface and is inclined with respect to the back surface, and a direction along the surface between the outermost end of the curved end surface and the intersection of the surface and the first inclined surface The first projection length is a1 μm, the second projection length in the direction along the back surface between the outermost end of the curved end surface and the intersection of the back surface and the second inclined surface is a2 μm, The first inclination angle from the surface is θ1, and the back side of the second inclined surface When the second inclination angle from θ is θ2, and the surface interval between the front surface and the back surface is Tμm, the following expression −0.064T ≦ a1 · tan θ1−a2 · tan θ2 ≦ 0.064T is satisfied before and after epitaxial growth. A silicon wafer was constructed.

ウェーハの端面形状から上式を用いて算出される値(以下、形状値という。)を上式の左辺と右辺の範囲内に収めることにより、窒化物半導体層を形成する前後のベベルのウェーハ厚さ方向の縦断面がほぼ対称形状に維持される。このため、エピ成長のためにウェーハをエピ成長装置のサセプタに載置し、ウェーハの端面とサセプタが当接した際に、この端面にウェーハの割れ等を引き起こす原因となるクラック等の欠陥が新たに導入されるのを極力防止することができる。   The wafer thickness of the bevel before and after forming the nitride semiconductor layer by keeping the value calculated from the end face shape of the wafer using the above formula (hereinafter referred to as the shape value) within the range of the left side and the right side of the above formula. The longitudinal cross section is maintained in a substantially symmetrical shape. For this reason, when the wafer is placed on the susceptor of the epi-growth apparatus for epi-growth, when the wafer end surface and the susceptor come into contact with each other, defects such as cracks that cause the wafer to crack are newly added to this end surface. Can be prevented as much as possible.

このエピ成長の際に、ウェーハ表面はエピ成長装置内を流動する原料ガスに自由に接している一方で、ウェーハ裏面はサセプタに面しているため原料ガスにほとんど接していない。その結果、ウェーハ表面側においてのみエピ成長に伴う形状変化が生じる。そこで、エピ前後におけるウェーハ表面側の形状変化を考慮して、エピ厚に相当する分だけ、上式の右辺の数値の絶対値を左辺の数値の絶対値よりも小さくすることもできる。   During this epi growth, the wafer surface is in free contact with the source gas flowing in the epi growth apparatus, while the back surface of the wafer faces the susceptor and therefore hardly contacts the source gas. As a result, a shape change accompanying epi growth occurs only on the wafer surface side. Therefore, considering the shape change on the wafer surface side before and after the epi, the absolute value of the numerical value on the right side of the above equation can be made smaller than the absolute value of the numerical value on the left side by the amount corresponding to the epi thickness.

前記各構成においては、前記第一投影長及び前記第二投影長が、いずれも50μm以上1000μm以下であり、かつ、前記第一投影長と第二投影長の差の絶対値が50μm以下とするのが好ましい。   In each of the configurations, the first projection length and the second projection length are both 50 μm or more and 1000 μm or less, and the absolute value of the difference between the first projection length and the second projection length is 50 μm or less. Is preferred.

第一投影長及び第二投影長を50μm以下とすると、ベベルが角張ってしまい、サセプタ等の治具との接触によってクラック等の欠陥が導入されやすいためである。また、第一投影長及び第二投影長を1000μm以上とすると、デバイスの製造に利用できるウェーハの表面積が実質的に小さくなってしまい、1枚のウェーハから製造できるデバイスの数が減少して製造歩留まりが低下するためである。また、第一投影長と第二投影長の差の絶対値が50μmを超えると、ベベルの形状のウェーハ表面側と裏面側の形状の非対称性が顕著となって、上記と同様に、サセプタ等との接触によってクラック等の欠陥が導入されやすいためである。   This is because if the first projection length and the second projection length are 50 μm or less, the bevel becomes angular and defects such as cracks are easily introduced by contact with a jig such as a susceptor. In addition, if the first projection length and the second projection length are 1000 μm or more, the surface area of the wafer that can be used for manufacturing the device is substantially reduced, and the number of devices that can be manufactured from one wafer is reduced. This is because the yield decreases. In addition, when the absolute value of the difference between the first projection length and the second projection length exceeds 50 μm, the asymmetry of the bevel-shaped wafer surface side and the back surface side becomes conspicuous. This is because defects such as cracks are likely to be introduced by contact with.

前記第一投影長及び前記第二投影長は、50μm以上250μm以下の範囲内とするのがより好ましい。このようにすると、ベベルにおける欠陥の発生をさらに抑制するとともに、デバイスの製造歩留まりをさらに高め得るためである。   The first projection length and the second projection length are more preferably in the range of 50 μm to 250 μm. This is because the occurrence of defects in the bevel can be further suppressed and the device manufacturing yield can be further increased.

また、上記の課題を解決するために、窒化物半導体層をエピタキシャル成長させるための(111)面方位の円板のシリコンウェーハであって、基板裏面の中心から半径の30%以内の領域内に存在する1μm以上の大きさの欠陥の個数が5個以下であることを特徴とするシリコンウェーハを構成した。   Further, in order to solve the above-mentioned problem, a silicon wafer having a (111) plane orientation for epitaxial growth of a nitride semiconductor layer, which is present in a region within 30% of the radius from the center of the back surface of the substrate A silicon wafer characterized in that the number of defects having a size of 1 μm or more is 5 or less.

上述したように、エピ成長用のウェーハとして用いるSiの格子定数と比較して、窒化物半導体(例えば、GaN)の格子定数は大幅に小さいため、窒化物半導体をSiの表面(上面)にエピ成長すると、このウェーハが下凸状に反る。このとき、ウェーハ面内の応力分布計算によると、ウェーハの中心付近、特に中心から半径の30%以内に当たる領域内で、特に大きな応力(ウェーハ裏面側における引張応力)が発生することが分かる。この引張応力は、クラック等の欠陥を拡開するように作用するため、この欠陥に起因する転位の伸展に起因する反りや、ウェーハの割れを誘発する原因となる。そこで、この領域内における欠陥の大きさ及び個数を所定値以下に制御することによって、ウェーハの反り等を大幅に低減することができる。   As described above, since the lattice constant of a nitride semiconductor (for example, GaN) is significantly smaller than that of Si used as a wafer for epi growth, the nitride semiconductor is epitaxially formed on the Si surface (upper surface). When grown, the wafer warps in a downward convex shape. At this time, according to the stress distribution calculation in the wafer surface, it can be seen that particularly large stress (tensile stress on the back side of the wafer) is generated in the vicinity of the center of the wafer, particularly in a region within 30% of the radius from the center. Since this tensile stress acts to expand defects such as cracks, it causes warpage due to dislocation extension due to the defects and cracking of the wafer. Therefore, by controlling the size and number of defects in this region to be equal to or less than a predetermined value, it is possible to significantly reduce wafer warpage and the like.

欠陥の大きさと、この欠陥に起因する反り等の発生のしやすさとの間には相関関係があり、欠陥の大きさが1μmよりも小さければ、この欠陥に応力が負荷された場合でも反り等の起因となる恐れは低い。また、欠陥の個数が多くなるほど反り量が大きくなる等の傾向が見られるが、その個数が5個以下であれば、その反り量等を十分低い状態に保つことができる。この欠陥の大きさの評価には、走査電子顕微鏡や光学顕微鏡等のように、欠陥の大きさを精度よく実測できる装置が通常用いられる。   There is a correlation between the size of the defect and the ease of occurrence of warpage or the like due to the defect. If the size of the defect is smaller than 1 μm, the warp or the like even when stress is applied to the defect. The risk of causing this is low. Further, as the number of defects increases, the amount of warpage tends to increase, but when the number is 5 or less, the amount of warpage can be kept sufficiently low. For the evaluation of the size of the defect, an apparatus that can accurately measure the size of the defect, such as a scanning electron microscope or an optical microscope, is usually used.

また、結晶方位上、欠陥に起因する割れやスリップ等の問題が生じやすいオリエンテーションフラットやオリエンテーションノッチの形成位置における欠陥の大きさ及び個数を所定値以下(例えば、1μm以上の大きさの欠陥を5個以下)に制御することによって、上記と同様に、この欠陥に起因する転位の伸展に起因する反りや、ウェーハの割れの誘発を防止することができる。この欠陥の大きさも、上記と同様に、走査電子顕微鏡や光学顕微鏡等のように、欠陥の大きさを精度よく実測できる装置が通常用いられる。   In addition, the size and number of defects at the position where the orientation flat or orientation notch is likely to cause problems such as cracks and slips due to defects due to the crystal orientation are less than a predetermined value (for example, 5 defects having a size of 1 μm or more). In the same manner as described above, warpage due to dislocation extension due to this defect and induction of wafer cracking can be prevented. Similarly to the above, an apparatus that can accurately measure the size of the defect, such as a scanning electron microscope or an optical microscope, is usually used.

直径が12インチのウェーハは表裏面とも鏡面仕上げが施されるのが一般的であるが、直径がそれよりも小径(例えば6インチ、8インチ)のウェーハは、表面に鏡面仕上げが施される一方で、裏面はエッチング仕上げの状態であったり、バックサイドダメージが施されていたりすることが多い。このエッチング仕上げやバックサイドダメージが施されている面は、鏡面仕上げが施されている面と比較して、耐割れ性等の強度面において不利となりやすい。そこで、この小径のウェーハ、特に6インチ、8インチのウェーハに対して、表裏面とも鏡面仕上げを施すとともに、上記の欠陥の大きさ、個数、及び領域の基準を適用することにより、ウェーハの反りや割れ等を大幅に低減することができる。また、端面に鏡面仕上げを施すことによっても、上記と同様に、ウェーハの反りや割れ等を大幅に低減することができる。   A wafer having a diameter of 12 inches is generally mirror-finished on both the front and back surfaces, but a wafer having a smaller diameter (for example, 6 inches or 8 inches) has a mirror-finished surface. On the other hand, the back surface is often in an etching finish state or subjected to backside damage. The surface subjected to the etching finish or the backside damage tends to be disadvantageous in terms of strength such as crack resistance as compared with the surface subjected to the mirror finish. Therefore, this small diameter wafer, especially 6 inch and 8 inch wafers, are mirror-finished on both the front and back surfaces, and by applying the above-mentioned defect size, number and area criteria, And cracks can be greatly reduced. Further, by applying a mirror finish to the end face, it is possible to greatly reduce the warpage and cracking of the wafer as described above.

この発明では、シリコンウェーハのベベルにおける第一傾斜面の表面に沿う第一投影長、第二傾斜面の裏面に沿う第二投影長、第一傾斜面の前記表面からの第一傾斜角、及び第二傾斜面の前記裏面からの第二傾斜角を所定の関係式の範囲内となるようにシリコンウェーハを構成した。この関係式を満たしたウェーハを用いることにより、エピ成長工程の全体に亘って、ウェーハの割れや反り、クラック等の欠陥に起因するスリップの発生を抑制することができ、高い製造歩留まりを確保することができる。   In this invention, the first projection length along the surface of the first inclined surface in the bevel of the silicon wafer, the second projection length along the back surface of the second inclined surface, the first inclination angle from the surface of the first inclined surface, and The silicon wafer was configured such that the second inclination angle of the second inclined surface from the back surface was within the range of a predetermined relational expression. By using a wafer that satisfies this relational expression, it is possible to suppress the occurrence of slips caused by defects such as cracking, warping, and cracking of the wafer throughout the entire epi-growth process, thereby ensuring a high manufacturing yield. be able to.

あるいは、この発明では、所定領域(ウェーハの中心近傍領域)における欠陥の大きさ及び個数を所定値以下に制御したウェーハを構成した。このように構成したウェーハを用いることにより、上記と同様に、エピ成長工程の全体に亘って、ウェーハの反りや割れ、クラック等の欠陥に起因するスリップの発生を抑制することができ、高い製造歩留まりを確保することができる。   Alternatively, in the present invention, a wafer is configured in which the size and number of defects in a predetermined region (region near the center of the wafer) are controlled to a predetermined value or less. By using the wafer configured as described above, the occurrence of slips due to defects such as warpage, cracking, and cracking of the wafer can be suppressed throughout the entire epitaxial growth process, as described above, and high manufacturing is possible. Yield can be secured.

この発明に係るウェーハの端部の縦断面図を示し、(a)はテーパ加工を施した場合、(b)はラウンド加工を施した場合The longitudinal cross-sectional view of the edge part of the wafer which concerns on this invention is shown, (a) when a taper process is given, (b) when a round process is given 図1に示すウェーハに窒化ガリウム半導体層を形成した際のベベル形状値と割れ率との関係を示す図The figure which shows the relationship between the bevel shape value at the time of forming a gallium nitride semiconductor layer in the wafer shown in FIG. 1, and a crack rate ウェーハの裏面に存在する欠陥の数と、エピ後の反り量との関係を示す図Diagram showing the relationship between the number of defects on the backside of the wafer and the amount of warpage after epi 欠陥からのスリップの伸展を示す断面図であって、(a)はエピ前、(b)はエピ成膜中、(c)はエピ後It is sectional drawing which shows extension of the slip from a defect, (a) before epi, (b) during epi film formation, (c) after epi 結晶方位、滑り方向及び応力方向の関係を示す斜視図Perspective view showing the relationship between crystal orientation, sliding direction and stress direction ノッチの形成位置とエピ後の反り量との関係を示す図Diagram showing the relationship between notch formation position and warpage after epi

(1)ベベル形状の影響について
ベベル形状を変更したウェーハの実施形態を図面を用いて説明する。
(1) About influence of bevel shape Embodiment of the wafer which changed the bevel shape is described using drawing.

図1(a)(b)にチョクラルスキー法(CZ法)で結晶育成されたウェーハの端部(ベベル1)の縦断面図を示す。図1(a)のベベル1aは、連続する複数の平面から構成されるテーパ形状のものであり、図1(b)のベベル1bは、その端部に曲面を有するラウンド形状のものである。   FIGS. 1A and 1B are longitudinal sectional views of an end portion (bevel 1) of a wafer grown by Czochralski method (CZ method). The bevel 1a in FIG. 1 (a) has a tapered shape composed of a plurality of continuous planes, and the bevel 1b in FIG. 1 (b) has a round shape having a curved surface at its end.

図1(a)に示すテーパ形状のベベル1aは、GaN等の窒化物半導体層2(以下、適宜エピ層という。)を形成する表面3と、この表面3と平行な裏面4と、表面3の面法線と垂直の面法線を有し、ウェーハ外周部を構成する端面5と、表面3及び端面5と連続し、表面3と傾斜をなす第一傾斜面6と、裏面4及び端面5と連続し、裏面4と傾斜をなす第二傾斜面7と、から構成される。端面5及び第一傾斜面6の交点と、表面3及び第一傾斜面6の交点との間の表面3に沿う方向の第一投影長をa1μm、端面5及び第二傾斜面7の交点と、裏面4及び第二傾斜面7の交点との間の裏面4に沿う方向の第二投影長をa2μm、第一傾斜面6の表面3からの第一傾斜角をθ1、第二傾斜面7の裏面4からの第二傾斜角をθ2、表面3と裏面4の面間隔(以下、ウェーハ厚さという。)をTμmとし、各パラメータの値から、式a1・tanθ1−a2・tanθ2によって定義されるベベルの形状値を算出する。   A tapered bevel 1a shown in FIG. 1A includes a surface 3 on which a nitride semiconductor layer 2 such as GaN (hereinafter referred to as an epi layer as appropriate) is formed, a back surface 4 parallel to the surface 3, and a surface 3 The first inclined surface 6, the rear surface 4 and the end surface which have a surface normal perpendicular to the surface normal and which are continuous with the end surface 5 constituting the outer peripheral portion of the wafer, the front surface 3 and the end surface 5, and are inclined with the front surface 3. 5 and a second inclined surface 7 that is inclined with respect to the back surface 4. The first projection length in the direction along the surface 3 between the intersection of the end surface 5 and the first inclined surface 6 and the intersection of the surface 3 and the first inclined surface 6 is a1 μm, and the intersection of the end surface 5 and the second inclined surface 7 , The second projection length in the direction along the back surface 4 between the intersection of the back surface 4 and the second inclined surface 7 is a2 μm, the first inclination angle from the surface 3 of the first inclined surface 6 is θ1, and the second inclined surface 7 The second inclination angle from the back surface 4 is θ2, the surface interval between the front surface 3 and the back surface 4 (hereinafter referred to as wafer thickness) is T μm, and is defined by the equation a1 · tan θ1−a2 · tan θ2 from the values of each parameter. The shape value of the bevel is calculated.

図1(b)に示すラウンド形状のベベル1bは、GaN等の窒化物半導体層2を形成する表面3と、この表面3と平行な裏面4と、表面3の面法線に対して連続的に変化する面法線を有し、ウェーハ外周部を構成する曲端面8と、表面3及び曲端面8と連続し、表面3と傾斜をなす第一傾斜面6と、裏面4及び曲端面8と連続し、裏面4と傾斜をなす第二傾斜面7と、から構成される。曲端面8の最外端と、表面3及び第一傾斜面6の交点との間の表面3に沿う方向の第一投影長をa1μm、曲端面8の最外端と、裏面4及び第二傾斜面7の交点との間の裏面4に沿う方向の第二投影長をa2μm、第一傾斜面6の表面からの第一傾斜角をθ1、第二傾斜面7の裏面4からの第二傾斜角をθ2、ウェーハ厚さをTμmとし、各パラメータの値から、式a1・tanθ1−a2・tanθ2によって定義されるベベルの形状値を算出する。   A round bevel 1b shown in FIG. 1B is continuous with a surface 3 on which a nitride semiconductor layer 2 such as GaN is formed, a back surface 4 parallel to the surface 3, and a surface normal of the surface 3. The first inclined surface 6, the rear surface 4, and the curved end surface 8 are continuous with the curved end surface 8, the surface 3 and the curved end surface 8. And a back surface 4 and a second inclined surface 7 that is inclined. The first projection length in the direction along the surface 3 between the outermost end of the curved end surface 8 and the intersection of the surface 3 and the first inclined surface 6 is a1 μm, the outermost end of the curved end surface 8, the rear surface 4 and the second The second projection length in the direction along the back surface 4 with the intersection of the inclined surface 7 is a2 μm, the first inclination angle from the surface of the first inclined surface 6 is θ1, and the second projection surface from the back surface 4 of the second inclined surface 7 is second. The inclination angle is θ2, the wafer thickness is T μm, and the shape value of the bevel defined by the equation a1 · tan θ1−a2 · tan θ2 is calculated from the values of the parameters.

ここで算出した形状値は、ベベル1(1a、1b)の縦断面における対称性の指標となる。すなわち、ベベル1(1a、1b)の縦断面において、表裏面3、4側の形状が完全に対称であれば形状値は0となり、表裏面3、4側の形状の非対称性が大きくなるほど形状値の絶対値は大きくなる。   The shape value calculated here is an index of symmetry in the longitudinal section of the bevel 1 (1a, 1b). That is, in the longitudinal section of the bevel 1 (1a, 1b), if the shape on the front and back surfaces 3 and 4 side is completely symmetrical, the shape value becomes 0, and the shape increases as the asymmetry of the shape on the front and back surfaces 3 and 4 increases. The absolute value of the value increases.

なお、図1(a)(b)においては、ウェーハの表面3側に形成したエピ層2を見やすくするため、このエピ層2の厚みを誇張して描いているが、実際のエピ層2の厚さは数μmから数十μm程度であって、ウェーハ厚さT(600〜800μm程度)と比較して十分小さい。このため、エピ層2の形成前後において、第一投影長a1及び第一傾斜角θ1は、ほとんど変化しないとして取り扱うことにする。   In FIGS. 1A and 1B, the thickness of the epi layer 2 is exaggerated in order to make the epi layer 2 formed on the surface 3 side of the wafer easier to see. The thickness is about several μm to several tens of μm, which is sufficiently smaller than the wafer thickness T (about 600 to 800 μm). For this reason, before and after the formation of the epi layer 2, the first projection length a1 and the first inclination angle θ1 are treated as hardly changing.

ウェーハは、裏面4を下向きとした状態でMOCVD(Metal Organic Chemical Vapor Deposition)装置のサセプタ(図示せず)に載置される。このウェーハの表面3及び裏面4の両面には鏡面仕上げが施されている。サセプタには座繰りが形成されていて、この座繰りにウェーハがちょうど嵌り込むようになっている。ウェーハをサセプタに載置した状態で、装置内に原料ガスを導入して、ウェーハを1000〜1200℃に加熱しつつエピ層2を成長させる。この際、図1(a)(b)に示すように、十分に原料ガスが供給される表面3側ではエピ層2が成長する一方で、サセプタに接していて原料ガスが回り込みにくい裏面4側では、エピ層2はほとんど成長しない。   The wafer is placed on a susceptor (not shown) of a MOCVD (Metal Organic Chemical Deposition) apparatus with the back surface 4 facing downward. Both the front surface 3 and the back surface 4 of this wafer are mirror-finished. A counterbore is formed in the susceptor, and the wafer just fits into the counterbore. With the wafer placed on the susceptor, a source gas is introduced into the apparatus, and the epi layer 2 is grown while heating the wafer to 1000 to 1200 ° C. At this time, as shown in FIGS. 1 (a) and 1 (b), the epitaxial layer 2 grows on the front surface 3 side where the source gas is sufficiently supplied, while the back surface 4 side is in contact with the susceptor and the source gas is difficult to flow around. Then, the epi layer 2 hardly grows.

図1(a)(b)に示すベベル1a、1bを形成した直径6インチ(約150mm)、厚さ625μmの(111)面方位を有するシリコンウェーハに、窒化ガリウム半導体(GaN)からなるエピ層2を5μm形成した際のウェーハの割れ発生状況を評価した。その評価結果を図2に示す。横軸はGaN成膜前のベベル形状から算出した形状値(a1・tanθ1−a2・tanθ2)(μm)、縦軸はGaN成膜後のウェーハ割れ率(%)を示す。ベベル形状がテーパ形状及びラウンド形状のいずれの場合においても、形状値を小さくする、すなわちベベル1a、1bの縦断面形状を表裏面3、4側で対称に近付けることによって、低い割れ率(0.1%以下)を達成することができた。その一方で、テーパ形状の場合は形状値が30を超えると、ラウンド形状の場合は形状値が40を超えると、割れ率は急上昇することが明らかとなった。これは、形状値が0に近付くほど、ベベル1a、1bに作用するサセプタとの接触応力が、ベベル1a、1bの表裏面3、4側に均等に分散してその応力を緩和し得るのに対し、形状値の絶対値が大きくなるほど、その接触応力がベベル1a、1bの表面3側又は裏面4側のいずれか一方に集中しやすくなることに起因する可能性がある。   An epitaxial layer made of a gallium nitride semiconductor (GaN) on a silicon wafer having a (111) plane orientation of 6 inches (about 150 mm) in diameter and 625 μm in thickness formed with the bevels 1a and 1b shown in FIGS. The occurrence of cracks in the wafer when 2 was formed to 5 μm was evaluated. The evaluation results are shown in FIG. The horizontal axis represents the shape value (a1 · tan θ1−a2 · tan θ2) (μm) calculated from the bevel shape before GaN film formation, and the vertical axis represents the wafer cracking rate (%) after GaN film formation. Regardless of whether the bevel shape is a taper shape or a round shape, by reducing the shape value, that is, by bringing the longitudinal cross-sectional shapes of the bevels 1a and 1b closer to the front and back surfaces 3 and 4 symmetrically, a low crack rate (0. 1% or less). On the other hand, when the shape value exceeds 30 in the case of the taper shape, and the shape value exceeds 40 in the case of the round shape, the cracking rate is clearly increased. This is because, as the shape value approaches 0, the contact stress with the susceptor acting on the bevels 1a and 1b is evenly distributed on the front and back surfaces 3 and 4 of the bevels 1a and 1b, and the stress can be relaxed. On the other hand, as the absolute value of the shape value increases, the contact stress is likely to be concentrated on either the front surface 3 side or the back surface 4 side of the bevels 1a and 1b.

図2に示す結果から、製造ラインにおける割れ率管理値を例えば0.1%以下とする場合、ベベル1a、1bがテーパ形状の場合は形状値を30以下、ラウンド形状の場合は形状値を40以下とする必要があるといえる。割れに対するウェーハ強度は、その厚さに比例するため、厚さ625μmのウェーハを用いて得られた形状値の閾値(テーパ形状の場合30、ラウンド形状の場合40)を任意のウェーハ厚さTに拡張することができる。すなわち、上記の割れ率管理値(0.1%以下)を達成するための形状値の閾値は、テーパ形状の場合30/625×T=0.048T、ラウンド形状の場合40/625×T=0.064Tとなる。これより、直径8インチ、厚さ725μmの(111)面方位を有するウェーハの形状値の閾値を算出すると、テーパ形状の場合34.8、ラウンド形状の場合46.4となる。この割れ率管理値が変更されれば、ベベル1a、1bの形状値の閾値も図2に示す結果に従って変化する。なお、ウェーハの直径を同一としつつウェーハ厚さTをさらに増加させることにより、前記閾値を高めて、ウェーハの耐割れ性をさらに向上することもできる。   From the results shown in FIG. 2, when the crack rate management value in the production line is 0.1% or less, for example, the shape value is 30 or less when the bevels 1a and 1b are tapered, and the shape value is 40 when the bevel is round. It can be said that it is necessary to: Since the wafer strength against cracking is proportional to its thickness, the shape value threshold (30 for the taper shape, 40 for the round shape) obtained using a 625 μm thick wafer is set to an arbitrary wafer thickness T. Can be extended. That is, the threshold value of the shape value for achieving the above crack rate management value (0.1% or less) is 30/625 × T = 0.048T in the case of the taper shape, and 40/625 × T = in the case of the round shape. 0.064T. From this, the threshold value of the shape value of a wafer having a (111) plane orientation with a diameter of 8 inches and a thickness of 725 μm is calculated to be 34.8 for the taper shape and 46.4 for the round shape. If the crack rate management value is changed, the threshold values of the shape values of the bevels 1a and 1b also change according to the result shown in FIG. In addition, by further increasing the wafer thickness T while keeping the wafer diameter the same, the threshold value can be increased and the crack resistance of the wafer can be further improved.

第一及び第二投影長a1、a2、第一及び第二傾斜角θ1、θ2を変えたときのベベル形状値(エピ前、エピ後)、及びこれらのウェーハにGaNをエピ成長させた際の実際の割れ率を表1(テーパ形状、直径6インチ)、表2(ラウンド形状、直径6インチ)、表3(テーパ形状、直径8インチ(約200mm))、及び表4(ラウンド形状、直径8インチ)にそれぞれまとめる。なお、エピ前のベベル形状値は、上記の式a1・tanθ1−a2・tanθ2を用いて、エピ後のベベル形状値は、式(a1・tanθ1+t)−a2・tanθ2(tはエピ厚)を用いてそれぞれ計算される。   Bevel shape values (before and after epi) when the first and second projection lengths a1 and a2, the first and second tilt angles θ1 and θ2 are changed, and when GaN is epitaxially grown on these wafers Table 1 (Taper shape, diameter 6 inches), Table 2 (Round shape, diameter 6 inches), Table 3 (Taper shape, diameter 8 inches (about 200 mm)), and Table 4 (Round shape, diameter) 8 inches). The bevel shape value before epi is calculated using the above formula a1 · tan θ1−a2 · tan θ2, and the bevel shape value after epi is expressed using the equation (a1 · tan θ1 + t) −a2 · tan θ2 (t is epi thickness). Respectively.

Figure 2015140270
Figure 2015140270

Figure 2015140270
Figure 2015140270

Figure 2015140270
Figure 2015140270

Figure 2015140270
Figure 2015140270

このように、任意の第一及び第二投影長、第一及び第二傾斜角、ウェーハ直径、エピ厚を有するウェーハについて、ベベル形状値と上記の閾値とを比較することによって、割れの発生を予測できることが分かる。また、表1〜4の比較例に示すように、ベベル形状値が閾値以下であっても、第一及び第二投影長a1、a2が、50μm以上1000μm以下の範囲内にないときは、割れ率が割れ率管理値の0.1%を超えてしまうことが分かる。   Thus, for a wafer having an arbitrary first and second projection length, first and second tilt angles, wafer diameter, and epi thickness, by comparing the bevel shape value with the above threshold, the occurrence of cracks It can be predicted. Moreover, as shown in the comparative examples of Tables 1 to 4, if the first and second projection lengths a1 and a2 are not within the range of 50 μm or more and 1000 μm or less even if the bevel shape value is less than or equal to the threshold value, cracking occurs. It can be seen that the rate exceeds 0.1% of the crack rate management value.

エピ後の使用目的(製造するデバイスの種類)が明らかであって、おおよそのエピ厚tが既知の場合には、上記式の右辺側からそのエピ厚tに相当する閾値分を予め引いて、上記式の左辺と右辺の絶対値が異なるようにしておくこともできる。例えば、成膜するエピ層の最大厚さが10μmであって、ベベルがテーパ形状の場合、上記の式の右辺(形状値の最大値)は0.048T×(10/30)より0.032Tとなり、ベベルがラウンド形状の場合、上記の式の右辺は0.064T×(10/40)より0.048Tとなる。このように右辺を決めておけば、エピ層の成膜後に、形状値が閾値を超えてしまうのを防いで、エピ層の成膜後にウェーハが割れる問題を確実に防止することができる。   When the purpose of use after the epi (type of device to be manufactured) is clear and the approximate epi thickness t is known, the threshold corresponding to the epi thickness t is subtracted in advance from the right side of the above formula, The absolute value of the left side and the right side of the above formula may be different. For example, when the maximum thickness of the epitaxial layer to be formed is 10 μm and the bevel is tapered, the right side (maximum value of the shape value) of the above equation is 0.032T from 0.048T × (10/30). When the bevel is round, the right side of the above equation is 0.048T from 0.064T × (10/40). By determining the right side in this way, it is possible to prevent the shape value from exceeding the threshold value after the formation of the epi layer, and to reliably prevent the problem that the wafer breaks after the formation of the epi layer.

(2)ウェーハ裏面の欠陥の大きさ、個数、及び欠陥位置の影響について
ウェーハ裏面の欠陥の大きさ、個数、及び欠陥位置が異なるウェーハの表面にGaN層を成膜し、成膜後のウェーハの反り量を評価した。GaN層の成膜条件は、上記項目(1)において説明したのと同じである。
(2) Influence of the size, number, and defect position of defects on the backside of the wafer A GaN layer is formed on the surface of a wafer having a different size, number, and position of defects on the backside of the wafer. The amount of warpage was evaluated. The conditions for forming the GaN layer are the same as those described in item (1) above.

このGaN層の成膜に先立って、ウェーハ裏面側の欠陥評価を行った。欠陥評価には、Surfscan SP1、又はSurfscan SP2(いずれもKLA−Tencor社製)(以下、それぞれSP1、SP2という。)と、走査電子顕微鏡(Scanning Electron Microscope)(以下、SEMという。)又は光学顕微鏡を使用した。SP1又はSP2でウェーハ面内における欠陥の位置を特定し、その特定した位置をSEM又は光学顕微鏡で観察して、その欠陥の大きさを測定した。なお、この欠陥の大きさは数μm〜数十μm程度と非常に小さく、しかもその数がウェーハ面内に数個〜数十個程度と少ないため、SP1等で欠陥の位置を特定せずにSEM等で直接観察することはほぼ不可能であり、直接観察に先立って、SP1又はSP2で事前に欠陥の位置を特定しておくことが必須である。   Prior to the formation of the GaN layer, defects on the back side of the wafer were evaluated. For defect evaluation, Surfscan SP1 or Surfscan SP2 (both manufactured by KLA-Tencor) (hereinafter referred to as SP1 and SP2, respectively), a scanning electron microscope (hereinafter referred to as SEM) or an optical microscope. It was used. The position of the defect in the wafer surface was specified by SP1 or SP2, and the specified position was observed with an SEM or an optical microscope, and the size of the defect was measured. The size of this defect is very small, about several μm to several tens of μm, and the number is as small as several to several tens on the wafer surface. Therefore, SP1 or the like does not specify the position of the defect. Direct observation with an SEM or the like is almost impossible, and it is essential to specify the position of a defect in advance with SP1 or SP2 prior to direct observation.

SP1、SP2は、レーザをウェーハに対して垂直入射又は斜め入射する2系統の入射光学系と、ウェーハの表面に存在する欠陥によって乱反射された入射光の散乱光のうち、ウェーハの面法線に近い散乱光(ナローチャンネル側)と、前記ナローチャンネル側よりも広角側の散乱光(ワイドチャンネル側)をそれぞれ集光する2系統の集光光学系とを備えている。SP1は直径が6インチ及び8インチのウェーハの測定に、SP2は直径が8インチ及び12インチのウェーハの測定にそれぞれ用いられる。   SP1 and SP2 are the normal surface of the wafer out of the two incident optical systems in which the laser is perpendicularly incident or obliquely incident on the wafer and the scattered light of the incident light irregularly reflected by the defects present on the surface of the wafer. There are provided two types of condensing optical systems for condensing near scattered light (narrow channel side) and scattered light on a wider angle side (wide channel side) than the narrow channel side. SP1 is used to measure 6 inch and 8 inch diameter wafers, and SP2 is used to measure 8 inch and 12 inch diameter wafers.

SP1とSP2は、使用するレーザの波長の点で相違するが、その測定原理は同じであり、ウェーハ面内における欠陥の位置を特定するとともに、検知された散乱光の強度から、欠陥の大きさを評価することができる。この欠陥の大きさは、欠陥の実際の大きさではなく、直径の異なるPSL(Polystyrene Latex)の標準粒子を用いて、散乱光強度と標準粒子の直径との間の検量線を予め作成しておき、この検量線からPSL標準粒子の直径へと換算することによって導出した見掛け上の大きさである。ウェーハを回転しつつその面内で移動してレーザをスキャンすることにより、欠陥位置及び大きさのウェーハ面内マッピングを行うことができる。   SP1 and SP2 differ in terms of the wavelength of the laser to be used, but the measurement principle is the same. The position of the defect in the wafer surface is specified, and the magnitude of the defect is determined from the intensity of the detected scattered light. Can be evaluated. The size of this defect is not the actual size of the defect, but a standard curve of PSL (Polystyrene Latex) with a different diameter is used to create a calibration curve between the scattered light intensity and the diameter of the standard particle in advance. It is the apparent size derived by converting the calibration curve into the diameter of the PSL standard particles. By moving the wafer in the plane while rotating the wafer and scanning the laser, it is possible to perform in-wafer mapping of the defect position and size.

ワイドチャンネルでは相対的に小さい欠陥を、ナローチャンネルでは相対的に大きい欠陥を主に検出する。今回の欠陥評価では、表5(SP1用)及び表6(SP2用)に示すように、ワイドチャンネルのレンジを0.1−1.0μm、ナローチャンネルのレンジを0.295−50μmに設定した。また、2系統ある入射光学系のうち、ウェーハに対して垂直入射する入射光学系を選択した。なお、表5及び表6に示すSP1、SP2の測定条件はあくまでも一例であって、ウェーハの表面状態、測定対象となる欠陥の大きさ等の種々の要因を考慮して、適宜変更することができる。また、垂直入射する入射光学系の代わりに、斜め入射する入射光学系を採用することもできる。   A relatively small defect is mainly detected in the wide channel, and a relatively large defect is mainly detected in the narrow channel. In this defect evaluation, as shown in Table 5 (for SP1) and Table 6 (for SP2), the wide channel range was set to 0.1-1.0 μm and the narrow channel range was set to 0.295-50 μm. . Of the two incident optical systems, the incident optical system perpendicularly incident on the wafer was selected. Note that the measurement conditions of SP1 and SP2 shown in Tables 5 and 6 are merely examples, and may be appropriately changed in consideration of various factors such as the surface state of the wafer and the size of the defect to be measured. it can. Further, an incident optical system that is obliquely incident can be employed instead of the incident optical system that is vertically incident.

Figure 2015140270
Figure 2015140270

Figure 2015140270
Figure 2015140270

ウェーハの表面には、クラックや破砕層痕等の凹状の欠陥だけでなく、パーティクル等の凸状の付着物も存在する。この欠陥と付着物は、その大きさや形状(凹状又は凸状)に違いがあることから、SP1又はSP2の測定において明確に区別することができる。   On the surface of the wafer, not only concave defects such as cracks and crushing layer traces but also convex deposits such as particles are present. Since the defect and the deposit are different in size and shape (concave or convex), they can be clearly distinguished in the measurement of SP1 or SP2.

例えば、表7に示すように、ウェーハの割れの直接的原因となるウェーハ表面の欠陥は、付着物と比較して相対的に大きめに検知されることが多く、ナローチャンネル側及びワイドチャンネル側の両方で検知され、しかも、相対的に小さい欠陥を検知するワイドチャンネル側で、その大きさがレンジ上限の1.0μmを超えたと判断される飽和状態(Saturated)となりやすい。このとき、欠陥番号1、3に示すように、ワイドチャンネル側で飽和状態となる一方で、ナローチャンネル側で1.0μmよりも小さいと判断される場合がある。これは、この欠陥の実態である破砕層痕が凹状をしており、広角側のワイドチャンネルと比較して、ナローチャンネルで散乱光が検知されにくいことに起因する可能性がある。   For example, as shown in Table 7, defects on the wafer surface that directly cause wafer cracking are often detected relatively large compared to the deposits. On both sides of the wide channel where a relatively small defect is detected, a saturation state (Saturated) where the size is determined to have exceeded the upper limit of 1.0 μm is likely to occur. At this time, as indicated by defect numbers 1 and 3, while being saturated on the wide channel side, it may be determined to be smaller than 1.0 μm on the narrow channel side. This may be due to the fact that the crushing layer mark, which is the actual state of this defect, has a concave shape, and it is difficult to detect scattered light in the narrow channel as compared to the wide channel on the wide angle side.

これに対し、表8に示すように、割れの直接的原因となりにくいウェーハ表面の付着物は、クラック等の欠陥と比較して相対的に小さめに検知されることが多く、ワイドチャンネル側でのみ検知され、ナローチャンネル側で検知されない(ND)ことが多い。この付着物の大きさがある程度大きくなると、欠陥番号5、6に示すように、ナローチャンネル側及びワイドチャンネル側の両方で検知される。この場合、ワイドチャンネル側の大きさよりも、ナローチャンネル側の大きさの方が大きめに検出される傾向がある。これは、この欠陥の実態であるパーティクルが凸状をしており、凹状の欠陥とは逆に、広角側のワイドチャンネルと比較して、ナローチャンネルで散乱光が検知されやすいことに起因する可能性がある。欠陥番号4に示すように、複数の測定エリアに跨るような特大付着物の場合は、ワイドチャンネル側で欠陥の集合体(Clustering)、ナローチャンネル側で飽和状態とそれぞれ判断される場合もある。   On the other hand, as shown in Table 8, wafer surface deposits that are not likely to cause direct cracking are often detected relatively small compared to defects such as cracks, and only on the wide channel side. It is often detected and not detected (ND) on the narrow channel side. When the size of this deposit increases to some extent, as shown in defect numbers 5 and 6, it is detected on both the narrow channel side and the wide channel side. In this case, the size on the narrow channel side tends to be detected larger than the size on the wide channel side. This can be attributed to the fact that the actual particle of this defect has a convex shape, and contrary to the concave defect, it is easier to detect scattered light in the narrow channel than in the wide channel on the wide angle side. There is sex. As shown in the defect number 4, in the case of an extra large deposit that extends over a plurality of measurement areas, it may be determined that the defect channel is clustered on the wide channel side and saturated on the narrow channel side.

このように、SP1及びSP2の測定において、凹状の欠陥と凸状の付着物との間で、ナローチャンネルとワイドチャンネルで検出される大きさに相違があることから、両者を区別して検出することができる。ただし、SP1又はSP2で測定された欠陥の大きさは、凹状の欠陥又は凸状の付着物の区別のために用いられるに留まり、ウェーハの反りや割れとの関係を評価する際には、SEMや光学顕微鏡を用いた実測値を用いることとする。   Thus, in the measurement of SP1 and SP2, there is a difference in the size detected by the narrow channel and the wide channel between the concave defect and the convex deposit, so that both are detected separately. Can do. However, the size of the defect measured by SP1 or SP2 is only used for distinguishing the concave defect or the convex deposit, and when evaluating the relationship with the warp or crack of the wafer, the SEM Or measured values using an optical microscope.

Figure 2015140270
Figure 2015140270

Figure 2015140270
Figure 2015140270

ウェーハ裏面に欠陥が存在するウェーハにGaNを成膜したときのウェーハの反り量の測定結果を図3に示す。以下において示す欠陥の大きさは、SEM又は光学顕微鏡で測定した実測値である。この測定で使用したウェーハの直径は6インチ、厚さは625μmであり、その表面及び裏面の両面ともに鏡面仕上げとなっている。横軸はウェーハ裏面側の中心から22.5mm(ウェーハ半径の30%)の領域内における1μm以上の大きさの欠陥の数、縦軸はエピ後のウェーハの反り量を示す。SEM又は光学顕微鏡での測定に先立って行ったSP1の測定条件は、表5に示す通りである。SEM又は光学顕微鏡で測定された欠陥は、2μmから30μmの大きさ範囲内に分布していた。   FIG. 3 shows the measurement results of the amount of warpage of the wafer when GaN is formed on the wafer having defects on the back surface of the wafer. The size of the defect shown below is an actual measurement value measured with an SEM or an optical microscope. The diameter of the wafer used in this measurement is 6 inches, the thickness is 625 μm, and both the front and back surfaces are mirror-finished. The horizontal axis represents the number of defects having a size of 1 μm or more in an area 22.5 mm (30% of the wafer radius) from the center on the back side of the wafer, and the vertical axis represents the amount of warpage of the wafer after epitaxy. The measurement conditions of SP1 performed prior to the measurement with the SEM or the optical microscope are as shown in Table 5. Defects measured by SEM or optical microscope were distributed within a size range of 2 μm to 30 μm.

この測定結果から、欠陥の数が多いほど反り量が大きくなることが分かる。これは、図4(a)−(c)に示すように、ウェーハの裏面に存在する欠陥9(本図(a)参照)に対し、エピ層の形成中に引張応力が作用すると、この欠陥9からスリップが伸展し(本図(b)参照)、このスリップがウェーハの表面側に抜ける(本図(c)参照)ことによって大きな反りが引き起こされるためであると考えられる。例えば、反り量の管理値を20μm以下とした場合、欠陥数を5個以下とすることにより、エピ後の反り量をその管理値範囲内とすることができることが分かる。   From this measurement result, it can be seen that the amount of warpage increases as the number of defects increases. As shown in FIGS. 4A to 4C, when a tensile stress acts during the formation of the epi layer on the defect 9 (see FIG. 4A) existing on the back surface of the wafer, this defect It is considered that this is because a slip is extended from 9 (see this figure (b)), and this slip is pulled out to the surface side of the wafer (see this figure (c)) to cause a large warp. For example, when the management value of the warp amount is 20 μm or less, it can be seen that the warp amount after epi can be within the control value range by setting the number of defects to 5 or less.

本図中には表示されていないが、中心から22.5mmの範囲外に1μm以上の欠陥が存在しても、ウェーハの反り量にはほとんど影響しないことも確認できた。これは、ウェーハの中心から22.5mmの範囲内で大きな引張応力が作用する一方で、その範囲外ではその引張応力が相対的に小さくなり、仮に欠陥が存在してもスリップ源とならないためである。また、中心から22.5mmの範囲内に1μmよりも小さい欠陥が存在しても、ウェーハの反り量にはほとんど影響しないことも確認できた。これは、応力が負荷された際にスリップ源となり得るための欠陥の大きさの最小閾値があるためと推定される。   Although not shown in the figure, it was confirmed that even if a defect of 1 μm or more exists outside the range of 22.5 mm from the center, the amount of warpage of the wafer is hardly affected. This is because a large tensile stress acts within a range of 22.5 mm from the center of the wafer, but the tensile stress becomes relatively small outside the range, and even if a defect exists, it does not become a slip source. is there. It was also confirmed that even if a defect smaller than 1 μm exists within a range of 22.5 mm from the center, the amount of warpage of the wafer was hardly affected. This is presumed to be because there is a minimum threshold of defect size that can become a slip source when stress is applied.

このように欠陥の大きさを管理することによって、ウェーハの割れの抑制も図ることができる。割れは欠陥の大きさが大きいほど(目安として30μm以上)発生しやすいことが分かっており、上記の欠陥の大きさ(1μm)であれば、上記目安を十分下回っているからである。   Thus, by controlling the size of the defect, it is possible to suppress the cracking of the wafer. This is because it has been found that cracks are more likely to occur as the size of the defect is larger (30 μm or more as a guideline), and the above-mentioned guideline is well below the above-mentioned guideline if the size of the defect is 1 μm.

また、本図中には表示されていないが、ウェーハ面内にほぼ同数の欠陥が存在する場合、その欠陥の大きさが大きいほど、反り量は大きくなることも確認できた。   Further, although not shown in the figure, it was also confirmed that when there are almost the same number of defects in the wafer surface, the amount of warpage increases as the size of the defects increases.

図3は直径が6インチのウェーハの結果について示したが、直径が8インチ及び12インチのウェーハについても、中心から30mm(8インチの場合)、又は中心から45mm(12インチの場合)の領域内において、1μm以上の大きさの欠陥の個数を5個以下とすることにより、エピ後の反り量をその管理値範囲内とすることができた。この反り量の管理値が変更されれば、中心から30%の領域内に存在が許容される欠陥の数も図3に示す結果に従って変化する。   FIG. 3 shows the results for wafers with a diameter of 6 inches, but for wafers with diameters of 8 inches and 12 inches, an area of 30 mm from the center (for 8 inches) or 45 mm from the center (for 12 inches) In this, the number of defects having a size of 1 μm or more was set to 5 or less, so that the amount of warpage after epi was within the control value range. If the management value of the warpage amount is changed, the number of defects that are allowed to exist within an area of 30% from the center also changes according to the result shown in FIG.

また、上記においては、欠陥の大きさの基準を1μm以上としたが、光学顕微鏡を用いる場合において、その解像度が1μmに達しない場合、欠陥の大きさの基準を2μm以上、3μm以上、5μm以上、10μm以上等と変更するとともに、中心から30%の領域内に存在が許容される欠陥の数を変更することも許容される。なお、上記のように欠陥の大きさと数を制御するとともに、ウェーハの直径を同一としつつウェーハ厚さをさらに増加させることにより、反り量をさらに低減することもできる。   In the above description, the defect size reference is set to 1 μm or more. However, when the optical microscope is used and the resolution does not reach 1 μm, the defect size reference is set to 2 μm or more, 3 μm or more, 5 μm or more. While changing to 10 μm or more, etc., it is also allowed to change the number of defects allowed to exist within 30% of the center. The amount of warpage can be further reduced by controlling the size and number of defects as described above and further increasing the wafer thickness while maintaining the same wafer diameter.

(3)格子間酸素及び添加物の濃度の影響について
ウェーハ中には、結晶育成時に石英坩堝から導入される格子間酸素、p型半導体のドーパントであるボロン、ウェーハ中のSi酸化物の析出促進を図るための窒素、カーボン等の添加元素が含まれている。これらの添加元素は、結晶欠陥の一種である転位の近傍に凝集して転位の移動を阻止したり、Si酸化物が移動する転位と作用して、その移動を阻止したりすることにより、転位の移動によって生じるスリップの発生やウェーハの割れを抑制する作用を奏する。
(3) Effect of interstitial oxygen and additive concentration In the wafer, interstitial oxygen introduced from the quartz crucible during crystal growth, boron as a dopant of p-type semiconductor, and Si oxide precipitation promotion in the wafer In order to achieve this, additional elements such as nitrogen and carbon are included. These additive elements aggregate in the vicinity of dislocations, which are a kind of crystal defects, to prevent the movement of dislocations, or by acting on the dislocations that the Si oxide moves to prevent the movement of dislocations. It has the effect of suppressing the occurrence of slips caused by the movement of the wafer and the cracking of the wafer.

転位の移動阻止作用は、基本的に添加元素の濃度が高いほど有効に作用するが、格子間酸素は1−12×1017/cm、ボロンは1−100×1018/cm、窒素は1−10×1014/cm、カーボンは1−10×1016/cmの範囲内とするのが好ましい。各添加元素の濃度範囲の下限は、添加濃度がこれ以下だと、転位の移動阻止作用が十分に発揮されないためである。格子間酸素の濃度範囲の上限は、これ以上の濃度だと、Si酸化物が過剰に析出及び成長して、このSi酸化物自体から転位が発生して、強度低下の原因となり得るためである。ボロンの濃度範囲の上限は、これ以上の添加濃度とすると、ウェーハに通常要求される所定の抵抗率の範囲外となってしまうためである。窒素及びカーボンの濃度範囲の上限は、これ以上の添加濃度とすると、Si酸化物の析出が過剰に促進されて、デバイス特性に悪影響を及ぼす原因となり得るためである。 The dislocation migration inhibiting action basically works more effectively as the concentration of the added element is higher, but interstitial oxygen is 1-12 × 10 17 / cm 3 , boron is 1-100 × 10 18 / cm 3 , nitrogen Is preferably in the range of 1-10 × 10 14 / cm 3 , and carbon is preferably in the range of 1-10 × 10 16 / cm 3 . The lower limit of the concentration range of each additive element is that when the additive concentration is lower than this, the dislocation migration inhibiting action is not sufficiently exhibited. The upper limit of the interstitial oxygen concentration range is that if the concentration is higher than this, the Si oxide is excessively precipitated and grows, and dislocations are generated from the Si oxide itself, which may cause a decrease in strength. . This is because the upper limit of the boron concentration range is outside the predetermined resistivity range normally required for a wafer if the additive concentration is higher than this. The upper limit of the concentration range of nitrogen and carbon is that if the concentration is higher than this, precipitation of Si oxide is promoted excessively, which may cause adverse effects on device characteristics.

必要とされるウェーハ特性を考慮して、上記の濃度範囲内において各添加元素の濃度を適宜決定することができるが、特に、格子間酸素を10×1017/cm、ボロンを10×1018/cm、カーボンを0.8×1016/cm、窒素を5×1014/cmとするのが好ましい。ウェーハの強度向上の観点からは、ウェーハ全体に亘って各添加元素を上記の濃度(濃度範囲内)とすることが好ましいが、上記項目(2)で説明したようにウェーハ裏面中心近傍で高い引張応力が生じることから、少なくとも基板裏面のうち中心から半径の30%以内の領域内において、上記の濃度範囲内となっていることが特に好ましい。 In consideration of the required wafer characteristics, the concentration of each additive element can be appropriately determined within the above concentration range. In particular, interstitial oxygen is 10 × 10 17 / cm 3 , and boron is 10 × 10 6. It is preferable that 18 / cm 3 , carbon be 0.8 × 10 16 / cm 3 , and nitrogen be 5 × 10 14 / cm 3 . From the viewpoint of improving the strength of the wafer, it is preferable that each additive element has the above concentration (within the concentration range) over the entire wafer. However, as described in the above item (2), the tensile strength is high near the center of the wafer back surface. Since stress occurs, it is particularly preferable that the concentration is within the above-described concentration range at least in a region within 30% of the radius from the center of the back surface of the substrate.

(4)端面を鏡面仕上げとすることの影響について
ウェーハの裏面を鏡面仕上げとするとともに、端面も鏡面仕上げとしてこの端面の欠陥を除去することにより、ウェーハの割れや反り量のさらなる低減を図ることができる。この一連の鏡面仕上げに係る工程の一例を説明する。まず、インゴットをスライスして得られたウェーハを粗研磨(ラッピング)し、ウェーハ表面の機械ダメージを取り除く。この粗研磨の工程の前後いずれかに、端面(ベベル)の面取り加工を行う。次に、ウェーハの表裏面の鏡面研磨(Double Side Polish:DSP)を行い、引き続いて端面研磨(Polishing Corner Rounding:PCR)を行い、この端面を鏡面とする。最後に、仕上げとしてウェーハ表面の鏡面研磨を枚葉式の研磨装置で行い、洗浄・検査を経て一連の工程を完了する。
(4) Effect of mirror finish on the end face The back face of the wafer is mirror finished, and the end face is also mirror finished to remove defects on the end face, thereby further reducing the amount of wafer cracking and warping. Can do. An example of a process related to this series of mirror finish will be described. First, a wafer obtained by slicing an ingot is roughly polished (lapped) to remove mechanical damage on the wafer surface. The end face (bevel) is chamfered either before or after the rough polishing step. Next, mirror polishing (Double Side Polish: DSP) of the front and back surfaces of the wafer is performed, followed by end surface polishing (Polishing Corner Rounding: PCR), and this end surface is used as a mirror surface. Finally, mirror polishing of the wafer surface is performed with a single-wafer polishing machine as a finish, and a series of processes is completed through cleaning and inspection.

(5)ノッチ作成位置の影響について
ウェーハのエッジには結晶方位を示すためのノッチが形成されているが、このノッチはウェーハ中心方向に向かう凹状をしているため、プロセス中に応力集中が生じてスリップの起点となることがある。そして、このスリップが伸展することにより、エピ後のウェーハの反りが引き起こされる。スリップの起点のなりやすさは、図5に示すように、ウェーハに作用する応力Fの方向とSi結晶の滑り面((111)面)の方向nとのなす角をθ、応力Fと滑り方向(<110>方向)bとのなす角をΦとしたときに、cosθ・cosΦで定義されるシュミット因子Sの大小によって決まり、このシュミット因子Sが大きいほど滑り面での転位の滑りが生じやすい(スリップが生じやすい)と判断される。
(5) Effect of notch creation position A notch is formed on the edge of the wafer to indicate the crystal orientation, but this notch is concave toward the center of the wafer, causing stress concentration during the process. May become the starting point of slip. The extension of the slip causes warping of the wafer after epitaxy. As shown in FIG. 5, the slip starting point is likely to have an angle formed between the direction of the stress F acting on the wafer and the direction n of the sliding surface ((111) plane) of the Si crystal, θ, and the stress F and the sliding. When the angle formed by the direction (<110> direction) b is Φ, it is determined by the size of the Schmid factor S defined by cos θ · cos Φ, and the larger the Schmit factor S, the more slippage of dislocation occurs on the sliding surface. It is judged that it is easy (slip is likely to occur).

このシュミット因子Sは、ノッチを<110>方向に形成したときに最も小さく、この<110>方向からずれるほど大きくなる。図6に、ノッチの形成位置を<110>方向からウェーハの外周周りに変位させたウェーハにGaNを上記項目(1)と同じ成膜条件で形成したときのエピ後のウェーハの反り量を示す。ベベルがラウンド形状及びテーパ形状のいずれの場合も、ノッチの形成位置が<110>方向からずれるのに伴って反り量は増大した。例えば、反り量の管理値を20μmとすると、ラウンド形状の場合<110>方向から20度以内に、テーパ形状の場合ほぼジャスト<110>方向にノッチを形成する必要があることが分かる。   The Schmitt factor S is the smallest when the notch is formed in the <110> direction, and increases as it deviates from the <110> direction. FIG. 6 shows the amount of warpage of the wafer after epitaxy when GaN is formed under the same film formation conditions as in the above item (1) on a wafer in which the notch formation position is displaced from the <110> direction around the outer periphery of the wafer. . In both cases where the bevel is round or tapered, the amount of warpage increased as the notch formation position shifted from the <110> direction. For example, when the management value of the warp amount is 20 μm, it is understood that a notch needs to be formed within 20 degrees from the <110> direction in the round shape and almost in the just <110> direction in the taper shape.

上記の各実施例はあくまでも一例であって、本願発明の窒化物半導体層をシリコンウェーハ上にエピタキシャル成長させた際に、ウェーハが割れたり、転位が伸展して大きな反りが発生したりするのを抑制する、という課題を解決し得る限りにおいて、その構成を適宜変更することは許容される。   Each of the above-described embodiments is merely an example, and when the nitride semiconductor layer of the present invention is epitaxially grown on a silicon wafer, it is possible to prevent the wafer from cracking or dislocations from extending and causing large warpage. As long as the problem of “Yes” can be solved, it is allowed to change the configuration as appropriate.

1(1a、1b) ベベル
2 窒化物半導体層(エピ層)
3 表面
4 裏面
5 端面
6 第一傾斜面
7 第二傾斜面
8 曲端面
9 欠陥
1 (1a, 1b) Bevel 2 Nitride semiconductor layer (epi layer)
3 Front surface 4 Back surface 5 End surface 6 First inclined surface 7 Second inclined surface 8 Curved end surface 9 Defect

Claims (6)

窒化物半導体層をエピタキシャル成長させるための(111)面方位の円板状のシリコンウェーハであって、
前記窒化物半導体層(2)を形成する表面(3)と、前記表面(3)と平行な裏面(4)と、前記表面(3)の面法線と垂直の面法線を有し、ウェーハ外周部を構成する端面(5)と、前記表面(3)及び前記端面(5)と連続し、前記表面(3)と傾斜をなす第一傾斜面(6)と、前記裏面(4)及び前記端面(5)と連続し、前記裏面(4)と傾斜をなす第二傾斜面(7)と、を備え、
前記端面(5)及び前記第一傾斜面(6)の交点と、前記表面(3)及び前記第一傾斜面(6)の交点との間の前記表面(3)に沿う方向の第一投影長をa1μm、
前記端面(5)及び前記第二傾斜面(7)の交点と、前記裏面(4)及び前記第二傾斜面(7)の交点との間の前記裏面(4)に沿う方向の第二投影長をa2μm、
前記第一傾斜面(6)の前記表面(3)からの第一傾斜角をθ1、
前記第二傾斜面(7)の前記裏面(4)からの第二傾斜角をθ2、
前記表面(3)と前記裏面(4)の面間隔をTμm、
としたときにエピタキシャル成長の前後において次式
−0.048T≦a1・tanθ1−a2・tanθ2≦0.048T
を満たすことを特徴とするシリコンウェーハ。
A (111) plane disk-shaped silicon wafer for epitaxially growing a nitride semiconductor layer,
A surface (3) forming the nitride semiconductor layer (2), a back surface (4) parallel to the surface (3), and a surface normal perpendicular to the surface normal of the surface (3); A first inclined surface (6) that is continuous with the end surface (5) constituting the outer peripheral portion of the wafer, the front surface (3), and the end surface (5) and is inclined with respect to the front surface (3), and the back surface (4). And a second inclined surface (7) that is continuous with the end surface (5) and is inclined with respect to the back surface (4),
First projection in a direction along the surface (3) between the intersection of the end surface (5) and the first inclined surface (6) and the intersection of the surface (3) and the first inclined surface (6). The length is a1μm,
Second projection in a direction along the back surface (4) between the intersection of the end surface (5) and the second inclined surface (7) and the intersection of the back surface (4) and the second inclined surface (7). The length is a2μm,
A first inclination angle of the first inclined surface (6) from the surface (3) is θ1,
The second inclined angle from the back surface (4) of the second inclined surface (7) is θ2,
The surface interval between the front surface (3) and the back surface (4) is Tμm,
The following formula −0.048T ≦ a1 · tan θ1−a2 · tan θ2 ≦ 0.048T before and after epitaxial growth.
A silicon wafer characterized by satisfying
窒化物半導体層をエピタキシャル成長させるための(111)面方位の円板のシリコンウェーハであって、
前記窒化物半導体層(2)を形成する表面(3)と、前記表面(3)と平行な裏面(4)と、表面(3)の面法線に対して連続的に変化する面法線を有し、ウェーハ外周部を構成する曲端面(8)と、前記表面(3)及び前記曲端面(8)と連続し、前記表面(3)と傾斜をなす第一傾斜面(6)と、前記裏面(4)及び前記曲端面(8)と連続し、前記裏面(4)と傾斜をなす第二傾斜面(7)と、を備え、
前記曲端面(8)の最外端と、前記表面(3)及び前記第一傾斜面(6)の交点との間の前記表面(3)に沿う方向の第一投影長をa1μm、
前記曲端面(8)の最外端と、前記裏面(4)及び前記第二傾斜面(7)の交点との間の前記裏面(4)に沿う方向の第二投影長をa2μm、
前記第一傾斜面(6)の前記表面(3)からの第一傾斜角をθ1、
前記第二傾斜面(7)の前記裏面(4)からの第二傾斜角をθ2、
前記表面(3)と前記裏面(4)の面間隔をTμm、
としたときにエピタキシャル成長の前後において次式
−0.064T≦a1・tanθ1−a2・tanθ2≦0.064T
を満たすことを特徴とするシリコンウェーハ。
A (111) plane disk silicon wafer for epitaxially growing a nitride semiconductor layer,
The surface (3) forming the nitride semiconductor layer (2), the back surface (4) parallel to the surface (3), and the surface normal changing continuously with respect to the surface normal of the surface (3) A curved end surface (8) that constitutes the outer periphery of the wafer, a first inclined surface (6) that is continuous with the surface (3) and the curved end surface (8) and is inclined with respect to the surface (3); A second inclined surface (7) that is continuous with the back surface (4) and the curved end surface (8) and is inclined with the back surface (4),
The first projection length in the direction along the surface (3) between the outermost end of the curved end surface (8) and the intersection of the surface (3) and the first inclined surface (6) is a1 μm,
The second projection length in the direction along the back surface (4) between the outermost end of the curved end surface (8) and the intersection of the back surface (4) and the second inclined surface (7) is a2 μm,
A first inclination angle of the first inclined surface (6) from the surface (3) is θ1,
The second inclined angle from the back surface (4) of the second inclined surface (7) is θ2,
The surface interval between the front surface (3) and the back surface (4) is Tμm,
The following formula −0.064T ≦ a1 · tan θ1−a2 · tan θ2 ≦ 0.064T before and after epitaxial growth.
A silicon wafer characterized by satisfying
前記第一投影長及び前記第二投影長が、いずれも50μm以上1000μm以下であり、かつ、前記第一投影長と第二投影長の差の絶対値が50μm以下であることを特徴とする請求項1又は2に記載のシリコンウェーハ。   The first projection length and the second projection length are both 50 μm or more and 1000 μm or less, and the absolute value of the difference between the first projection length and the second projection length is 50 μm or less. Item 3. The silicon wafer according to Item 1 or 2. 窒化物半導体層をエピタキシャル成長させるための(111)面方位の円板のシリコンウェーハであって、
基板の裏面(4)の中心から半径の30%以内の領域内に存在する1μm以上の大きさの欠陥(9)の個数が5個以下であることを特徴とするシリコンウェーハ。
A (111) plane disk silicon wafer for epitaxially growing a nitride semiconductor layer,
A silicon wafer, wherein the number of defects (9) having a size of 1 μm or more existing in a region within 30% of the radius from the center of the back surface (4) of the substrate is 5 or less.
前記表面(3)及び前記裏面(4)の両面に鏡面仕上げを施した、直径が6インチ又は8インチであることを特徴とする請求項4に記載のシリコンウェーハ。   5. The silicon wafer according to claim 4, wherein the front surface (3) and the back surface (4) are mirror-finished and have a diameter of 6 inches or 8 inches. 端面に鏡面仕上げを施した請求項4又は5に記載のシリコンウェーハ。   The silicon wafer according to claim 4 or 5, wherein the end surface is mirror-finished.
JP2014013092A 2014-01-28 2014-01-28 silicon wafer Pending JP2015140270A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014013092A JP2015140270A (en) 2014-01-28 2014-01-28 silicon wafer
CN201810193893.4A CN108461384B (en) 2014-01-28 2014-12-16 Silicon wafer
PCT/JP2014/083275 WO2015114974A1 (en) 2014-01-28 2014-12-16 Silicon wafer
CN201480066934.3A CN105814245B (en) 2014-01-28 2014-12-16 Silicon wafer
TW104102915A TWI570260B (en) 2014-01-28 2015-01-28 Silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013092A JP2015140270A (en) 2014-01-28 2014-01-28 silicon wafer

Publications (1)

Publication Number Publication Date
JP2015140270A true JP2015140270A (en) 2015-08-03

Family

ID=53756568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013092A Pending JP2015140270A (en) 2014-01-28 2014-01-28 silicon wafer

Country Status (4)

Country Link
JP (1) JP2015140270A (en)
CN (2) CN108461384B (en)
TW (1) TWI570260B (en)
WO (1) WO2015114974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163083A1 (en) * 2018-02-23 2019-08-29 住友電気工業株式会社 Gallium nitride crystal substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199216B2 (en) * 2015-12-24 2019-02-05 Infineon Technologies Austria Ag Semiconductor wafer and method
CN107731978B (en) 2017-09-30 2019-03-08 厦门乾照光电股份有限公司 A kind of epitaxial structure of LED and preparation method thereof
EP3567139B1 (en) 2018-05-11 2021-04-07 SiCrystal GmbH Chamfered silicon carbide substrate and method of chamfering
EP3567138B1 (en) 2018-05-11 2020-03-25 SiCrystal GmbH Chamfered silicon carbide substrate and method of chamfering
CN111463111A (en) * 2020-05-06 2020-07-28 哈尔滨科友半导体产业装备与技术研究院有限公司 Nondestructive single chip with edge convenient to identify, marking method thereof and special grinding wheel
DE102022000424A1 (en) * 2022-02-03 2023-08-03 Azur Space Solar Power Gmbh Manufacturing process for a semiconductor wafer with silicon and with a III-N layer
DE102022000425A1 (en) * 2022-02-03 2023-08-03 Azur Space Solar Power Gmbh III-N silicon semiconductor wafer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980934A (en) * 1983-09-16 1984-05-10 Nec Corp Manufacture for semiconductor device
JPH0496247A (en) * 1990-08-03 1992-03-27 Shin Etsu Handotai Co Ltd Measurement of semiconductor wafer and particles thereof
JP2004006615A (en) * 2002-04-26 2004-01-08 Sumitomo Mitsubishi Silicon Corp High resistance silicon wafer and its manufacturing method
WO2004008521A1 (en) * 2002-07-17 2004-01-22 Sumitomo Mitsubishi Silicon Corporation High-resistance silicon wafer and process for producing the same
JP2006128269A (en) * 2004-10-27 2006-05-18 Shin Etsu Handotai Co Ltd Semiconductor wafer and method for manufacturing the same
JP2006237055A (en) * 2005-02-22 2006-09-07 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer and method of specularly chamfering semiconductor wafer
JP2007326191A (en) * 2006-06-08 2007-12-20 Shin Etsu Handotai Co Ltd Wafer manufacturing method
JP2011044606A (en) * 2009-08-21 2011-03-03 Sumco Corp Method for manufacturing epitaxial silicon wafer
JP2011091387A (en) * 2009-09-25 2011-05-06 Sumco Corp Method of manufacturing epitaxial silicon wafer
JP2011107882A (en) * 2009-11-16 2011-06-02 Sumco Corp System, method and program for making process plan for silicon wafer
WO2011161975A1 (en) * 2010-06-25 2011-12-29 Dowaエレクトロニクス株式会社 Epitaxial growth substrate, semiconductor device, and epitaxial growth method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390007B2 (en) * 2008-04-07 2009-12-24 住友電気工業株式会社 Group III nitride semiconductor device and epitaxial wafer
JP2013038116A (en) * 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd Manufacturing method of group iii nitride crystal substrate
JP5621791B2 (en) * 2012-01-11 2014-11-12 信越半導体株式会社 Manufacturing method of silicon single crystal wafer and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980934A (en) * 1983-09-16 1984-05-10 Nec Corp Manufacture for semiconductor device
JPH0496247A (en) * 1990-08-03 1992-03-27 Shin Etsu Handotai Co Ltd Measurement of semiconductor wafer and particles thereof
JP2004006615A (en) * 2002-04-26 2004-01-08 Sumitomo Mitsubishi Silicon Corp High resistance silicon wafer and its manufacturing method
WO2004008521A1 (en) * 2002-07-17 2004-01-22 Sumitomo Mitsubishi Silicon Corporation High-resistance silicon wafer and process for producing the same
JP2006128269A (en) * 2004-10-27 2006-05-18 Shin Etsu Handotai Co Ltd Semiconductor wafer and method for manufacturing the same
JP2006237055A (en) * 2005-02-22 2006-09-07 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer and method of specularly chamfering semiconductor wafer
JP2007326191A (en) * 2006-06-08 2007-12-20 Shin Etsu Handotai Co Ltd Wafer manufacturing method
JP2011044606A (en) * 2009-08-21 2011-03-03 Sumco Corp Method for manufacturing epitaxial silicon wafer
JP2011091387A (en) * 2009-09-25 2011-05-06 Sumco Corp Method of manufacturing epitaxial silicon wafer
JP2011107882A (en) * 2009-11-16 2011-06-02 Sumco Corp System, method and program for making process plan for silicon wafer
WO2011161975A1 (en) * 2010-06-25 2011-12-29 Dowaエレクトロニクス株式会社 Epitaxial growth substrate, semiconductor device, and epitaxial growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163083A1 (en) * 2018-02-23 2019-08-29 住友電気工業株式会社 Gallium nitride crystal substrate
US11421344B2 (en) 2018-02-23 2022-08-23 Sumitomo Electric Industries, Ltd. Gallium nitride crystal substrate
TWI778220B (en) * 2018-02-23 2022-09-21 日商住友電氣工業股份有限公司 GaN crystal substrate

Also Published As

Publication number Publication date
TWI570260B (en) 2017-02-11
TW201542853A (en) 2015-11-16
WO2015114974A1 (en) 2015-08-06
CN105814245B (en) 2018-09-04
CN105814245A (en) 2016-07-27
CN108461384A (en) 2018-08-28
CN108461384B (en) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2015114974A1 (en) Silicon wafer
TWI657171B (en) SiC EPITAXIAL WAFER, METHOD FOR PRODUCING THEREOF, METHOD FOR DETECTING LARGE-PIT DEFECTS, AND METHOD FOR IDENTIFYING DEFECTS
CN109642342B (en) SiC epitaxial wafer, method for producing same, and defect detection method
US9896781B2 (en) Silicon carbide single-crystal substrate, silicon carbide epitaxial substrate and method of manufacturing them
US9988738B2 (en) Method for manufacturing SiC epitaxial wafer
JP2015002207A (en) SiC EPITAXIAL WAFER AND MANUFACTURING METHOD THEREOF
KR20130133043A (en) Epitaxial silicon carbide single-crystal substrate and process for producing same
JP6120742B2 (en) Method for manufacturing single crystal ingot, method for manufacturing single crystal substrate, and method for manufacturing semiconductor device
US10837124B2 (en) Gallium nitride substrate
US9378946B2 (en) Silicon substrates with compressive stress and methods for production of the same
Nakamura et al. TaC-coated graphite prepared via a wet ceramic process: Application to CVD susceptors for epitaxial growth of wide-bandgap semiconductors
KR102071161B1 (en) Method for manufacturing SiC epitaxial wafer
JP4583060B2 (en) Method for manufacturing single crystal sapphire substrate and method for manufacturing nitride semiconductor light emitting device
JP5439675B2 (en) Nitride semiconductor substrate and nitride semiconductor
JP5381581B2 (en) Gallium nitride substrate
US9633843B2 (en) Silicon substrates with compressive stress and methods for production of the same
JP6556664B2 (en) Nitride semiconductor substrate
KR102508213B1 (en) Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
KR102508209B1 (en) Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
Sakharov et al. AlGaN HEMT Structures Grown on Miscut Si (111) Wafers. Materials 2023, 16, 4265
JP2012151402A (en) Semiconductor substrate and method for manufacturing the same
TW201937731A (en) Gallium nitride crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605