JP2015137436A - Fabric product - Google Patents

Fabric product Download PDF

Info

Publication number
JP2015137436A
JP2015137436A JP2014010141A JP2014010141A JP2015137436A JP 2015137436 A JP2015137436 A JP 2015137436A JP 2014010141 A JP2014010141 A JP 2014010141A JP 2014010141 A JP2014010141 A JP 2014010141A JP 2015137436 A JP2015137436 A JP 2015137436A
Authority
JP
Japan
Prior art keywords
fabric
woven fabric
dyeing
textile product
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010141A
Other languages
Japanese (ja)
Other versions
JP6358803B2 (en
Inventor
俊成 名倉
Toshinari Nagura
俊成 名倉
洋輔 石川
Yosuke Ishikawa
洋輔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Textile Inc
Original Assignee
Nisshinbo Textile Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Textile Inc filed Critical Nisshinbo Textile Inc
Priority to JP2014010141A priority Critical patent/JP6358803B2/en
Publication of JP2015137436A publication Critical patent/JP2015137436A/en
Application granted granted Critical
Publication of JP6358803B2 publication Critical patent/JP6358803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)
  • Coloring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fabric product containing weave manufactured by using cellulosic fiber, having practically efficient W&W property and exhibiting excellent coloring property when subject to a coloring treatment.SOLUTION: There is provided a fabric product containing plain weave having a warp density of 100 to 200/inch and a weft density of 50 to 150/inch, manufactured by using cellulosic fiber containing cellulose fiber of 60 mass% or more and having an English cotton yarn number of 30 to 80 where the cellulose fiber is crosslinked by a crosslinking agent, tensile hardness in a weft direction of the weave is 0.82 to 0.97 and elongation in the weft direction is 3 to 12%.

Description

本発明は、防しわ性と染色性とに優れた織物製品に関する。   The present invention relates to a textile product excellent in wrinkle resistance and dyeability.

セルロース繊維を含む織地は、一般に、洗濯によって生じたしわが残りやすく、ウォッシュアンドウェアー性(W&W性)が低い。よって、従来、W&W性を改善するために、セルロース架橋剤を用いてセルロース分子相互を化学架橋する方法が用いられてきた。   A woven fabric containing cellulose fibers generally tends to retain wrinkles generated by washing and has a low wash and wear property (W & W property). Therefore, conventionally, in order to improve the W & W property, a method of chemically cross-linking cellulose molecules using a cellulose cross-linking agent has been used.

一方、セルロース繊維を含む織地にW&W性と色模様との両方を付与する場合において、織地を化学架橋した後に染色すると、発色しなかったり、色相が不均一になる等の問題がある。そのため、先染糸を用いて製織した織地を化学架橋する方法や織地を染色した後に化学架橋する方法が用いられている。しかしながら、これらの方法には、化学架橋によって色相が変化する、織地の寸法変化に伴って模様が変形する等の問題がある。さらに、小ロット毎(例えば1枚毎)に好みの模様を取り入れるには経済的に高価である。   On the other hand, when both the W & W property and the color pattern are imparted to the woven fabric containing cellulose fibers, there is a problem that if the woven fabric is dyed after being chemically cross-linked, no color is developed or the hue becomes uneven. Therefore, a method of chemically cross-linking a woven fabric using pre-dyed yarn or a method of chemically cross-linking after dyeing the woven fabric is used. However, these methods have a problem that the hue changes due to chemical cross-linking, and the pattern is deformed along with the dimensional change of the fabric. Furthermore, it is economically expensive to incorporate a favorite pattern for each small lot (for example, for each sheet).

これに対し、化学架橋を伴わない形態安定方法によって後工程での染色性を高める方法(特許文献1)や化学架橋してW&W性が改善された絹織物にインクジェット捺染する方法(特許文献2)が提案されている。しかしながら、特許文献1に記載の方法では、W&W性の付与が不十分である。また、特許文献2の方法は、絹織物に対しては有効であるが、セルロース繊維を含む織地に適用してもW&W性と染色性とを両立できない。   On the other hand, a method for enhancing dyeability in a subsequent process by a form stabilizing method without chemical crosslinking (Patent Document 1) and a method for ink-jet printing on a silk fabric having improved W & W properties by chemical crosslinking (Patent Document 2) Has been proposed. However, the method described in Patent Document 1 is insufficient in imparting W & W properties. Moreover, although the method of patent document 2 is effective with respect to a silk fabric, even if it applies to the woven fabric containing a cellulose fiber, it cannot make W & W property and dyeability compatible.

特開平11−131370号公報JP-A-11-131370 特開2002−348781号公報JP 2002-348781 A

本発明は上記問題を解決するためになされたものであり、その目的は、セルロース系繊維を用いて製織された織地を含む織物製品であって、実用上十分なW&W性を有し、かつ、染色処理に供された場合に優れた染色性を示す織物製品を提供することにある。   The present invention has been made in order to solve the above problems, and the object thereof is a woven product including a woven fabric woven using cellulosic fibers, and has a practically sufficient W & W property, and An object of the present invention is to provide a textile product that exhibits excellent dyeability when subjected to a dyeing treatment.

本発明者らは、セルロース繊維を含む織地においては、セルロース繊維相互の架橋構造(架橋密度、架橋点間距離等)と織地の力学物性とが関連性を有していることを見出し、さらに、該架橋構造を織地の力学物性が所定の範囲になるように調節することによって、W&W性が改善された織地であって、その後に染色において優れた染色性を示す織地が得られることを見出し、本発明を完成するに至った。   The present inventors have found that in a woven fabric containing cellulose fibers, the cross-linked structure between cellulose fibers (cross-linking density, distance between cross-linking points, etc.) and the mechanical properties of the woven fabric are related, It is found that by adjusting the cross-linked structure so that the mechanical properties of the woven fabric are within a predetermined range, the woven fabric has improved W & W properties, and after that, a woven fabric exhibiting excellent dyeability in dyeing can be obtained. The present invention has been completed.

すなわち、本発明の1つの実施形態によれば、セルロース繊維を60質量%以上含み、英式綿番手が30〜80番手であるセルロース系繊維を用いて製織された、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチである平織の織地を含む織物製品であって、該織地中、該セルロース繊維が、架橋剤によって架橋されており、該織地の緯方向の引張硬さが0.82〜0.97であり、緯方向の伸びが3〜12%である、織物製品が提供される。
本発明の別の実施形態によれば、セルロース繊維を60質量%以上含み、英式綿番手が40〜100番手であるセルロース系繊維を用いて製織された、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチである平織以外の織地を含む織物製品であって、該織地中、該セルロース繊維が、架橋剤によって架橋されており、該織地の緯方向の引張硬さが0.54〜0.78であり、緯方向の伸びが4〜17%であり、緯方向の引張回復性が45〜75%である、織物製品が提供される。
好ましい実施形態において、上記織地の保水率が、15〜30%である。
好ましい実施形態において、上記架橋剤が、エポキシ化合物および環状尿素化合物から選択される少なくとも1種を含む。
本発明の別の局面によれば、染色織物製品が得られる。該染色織物製品は、上記織物製品を染色して得られる。
好ましい実施形態において、上記染色織物製品は、上記平織の織地を含む織物製品を染色して得られ、染色後の該織地の緯方向の引張硬さが0.75〜0.90である。
好ましい実施形態において、上記染色織物製品は、上記平織以外の織地を含む織物製品を染色して得られ、染色後の該織地の緯方向の引張硬さが0.53〜0.75である。
好ましい実施形態において、上記染色織物製品は、上記平織以外の織地を含む織物製品を染色して得られ、染色後の該織地の緯方向の引張回復性が45〜75%である。
本発明のさらに別の局面によれば、セルロース繊維を60質量%以上含み、英式綿番手が30〜80番手であるセルロース系繊維を用いて製織された平織の織地を、架橋剤を含む架橋液を用いて架橋処理して、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチであり、緯方向の引張硬さが0.82〜0.97であり、緯方向の伸びが3〜12%である織地を得る工程(Ia)、および工程(Ia)で得られた織地を染色する工程(工程IIa)、を含む、染色織物製品の製造方法が提供される。
本発明のさらに別の局面によれば、セルロース繊維を60質量%以上含み、英式綿番手が40〜100番手であるセルロース系繊維を用いて製織された平織以外の織地を、架橋剤を含む架橋液を用いて架橋処理して、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチであり、緯方向の引張硬さが0.54〜0.78であり、緯方向の伸びが4〜17%であり、緯方向の引張回復性が45〜75%である織地を得る工程(Ib)、および工程(Ib)で得られた織地を染色する工程(工程IIb)、を含む、染色織物製品の製造方法が提供される。
That is, according to one embodiment of the present invention, the warp density is 100 to 200 woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and having an English cotton count of 30 to 80. A textile product comprising a plain weave fabric having a weft density of 50 to 150 yarns / inch, wherein the cellulose fibers are cross-linked by a cross-linking agent in the weft direction of the fabric. A textile product is provided having a tensile hardness of 0.82 to 0.97 and an elongation in the weft direction of 3 to 12%.
According to another embodiment of the present invention, the warp density is 120 to 240 yarns / inch, which is woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and having an English cotton count of 40 to 100. A woven product including a woven fabric other than plain weave having a weft density of 60 to 170 yarns / inch, wherein the cellulose fibers are crosslinked by a crosslinking agent in the woven fabric, and the weft tension of the woven fabric is A textile product is provided having a hardness of 0.54 to 0.78, an elongation in the weft direction of 4 to 17%, and a tensile recovery in the weft direction of 45 to 75%.
In a preferred embodiment, the water retention rate of the woven fabric is 15 to 30%.
In a preferred embodiment, the cross-linking agent includes at least one selected from an epoxy compound and a cyclic urea compound.
According to another aspect of the invention, a dyed textile product is obtained. The dyed textile product is obtained by dyeing the textile product.
In a preferred embodiment, the dyed textile product is obtained by dyeing a textile product including the plain weave fabric, and the weft tensile strength of the fabric after dyeing is 0.75 to 0.90.
In a preferred embodiment, the dyed fabric product is obtained by dyeing a fabric product containing a woven fabric other than the plain weave, and the weft tensile strength of the woven fabric after dyeing is 0.53 to 0.75.
In a preferred embodiment, the dyed fabric product is obtained by dyeing a fabric product containing a woven fabric other than the plain weave, and the tensile recovery in the weft direction of the woven fabric after dyeing is 45 to 75%.
According to yet another aspect of the present invention, a plain woven fabric woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and having an English cotton count of 30 to 80 is crosslinked with a crosslinking agent. Cross-linking treatment using a liquid, the warp density is 100 to 200 / inch, the weft density is 50 to 150 / inch, and the tensile hardness in the weft direction is 0.82 to 0.97. There is provided a method for producing a dyed textile product, comprising a step (Ia) of obtaining a woven fabric having an elongation in the weft direction of 3 to 12%, and a step of dyeing the woven fabric obtained in step (Ia) (step IIa). The
According to still another aspect of the present invention, a woven fabric other than a plain weave containing cellulosic fibers having a cellulose fiber content of 60% by mass or more and an English cotton count of 40 to 100 is included. The warp density is 120 to 240 yarns / inch, the weft density is 60 to 170 yarns / inch, and the tensile hardness in the weft direction is 0.54 to 0.78. Step (Ib) for obtaining a woven fabric having an elongation in the weft direction of 4 to 17% and a tensile recovery in the weft direction of 45 to 75%, and a step of dyeing the woven fabric obtained in step (Ib) (step IIb), a process for producing a dyed textile product is provided.

本発明によれば、セルロース系繊維を用いて製織された織地を含む織物製品であって、実用上十分なW&W性を有し、かつ、染色処理に供された場合に優れた染色性を示す織物製品が提供される。   According to the present invention, it is a textile product including a woven fabric woven using cellulosic fibers, has a practically sufficient W & W property, and exhibits excellent dyeability when subjected to a dyeing treatment. A textile product is provided.

織地の力学物性の評価方法を説明する概略図である。It is the schematic explaining the evaluation method of the mechanical physical property of a fabric.

[A.織物製品]
本発明の第1の実施形態における織物製品は、セルロース繊維を60質量%以上含み、英式綿番手が30〜80番手であるセルロース系繊維を用いて製織された、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチである平織の織地を含む織物製品であって、該織地中、該セルロース繊維が、架橋剤によって架橋されており、該織地の緯方向の引張硬さが0.82〜0.97であり、緯方向の伸びが3〜12%である。
[A. Textile products]
The textile product according to the first embodiment of the present invention has a warp density of 100 to 200 woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and an English cotton count of 30 to 80. A textile product comprising a plain weave fabric having a weft density of 50 to 150 / inch, wherein the cellulose fibers are crosslinked by a cross-linking agent in the weft direction of the fabric. The tensile hardness is 0.82 to 0.97, and the elongation in the weft direction is 3 to 12%.

本発明の第2の実施形態における織物製品は、セルロース繊維を60質量%以上含み、英式綿番手が40〜100番手であるセルロース系繊維を用いて製織された、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチである平織以外の織地を含む織物製品であって、該織地中、該セルロース繊維が、架橋剤によって架橋されており、該織地の緯方向の引張硬さが0.54〜0.78であり、緯方向の伸びが4〜17%であり、緯方向の引張回復性が45〜75%である。   The textile product in the second embodiment of the present invention contains 60% by mass or more of cellulose fibers, and is woven using cellulosic fibers having an English cotton count of 40 to 100. The warp density is 120 to 240. / Inch, a woven product including a woven fabric other than plain weave having a weft density of 60 to 170 yarns / inch, wherein the cellulose fibers are crosslinked by a crosslinking agent in the woven fabric, and the weft direction of the woven fabric The tensile hardness is 0.54 to 0.78, the elongation in the weft direction is 4 to 17%, and the tensile recovery in the weft direction is 45 to 75%.

本発明の第1および第2の実施形態の織物製品は、実用上十分なW&W性を有しており、かつ、染色工程に供した際に発色性や色相の不均一性等の問題を生じることなく、良好に染色することができる。このような効果が得られる理由は定かではないが、以下のように推測される。すなわち、力学物性が所定の範囲となるように織地に架橋処理を施すことにより、セルロース繊維間に染料の繊維の内部への浸透を可能とする架橋構造が形成されると推測される。   The textile products of the first and second embodiments of the present invention have practically sufficient W & W properties, and cause problems such as color developability and hue non-uniformity when subjected to a dyeing process. And can be dyed satisfactorily. The reason why such an effect is obtained is not clear, but is presumed as follows. That is, it is presumed that a crosslinked structure that allows the dye to penetrate into the inside of the fiber is formed between the cellulose fibers by performing a crosslinking treatment on the woven fabric so that the mechanical properties are within a predetermined range.

以下、第1の実施形態および第2の実施形態に関して詳述する。   Hereinafter, the first embodiment and the second embodiment will be described in detail.

[A−1.第1の実施形態]
上記セルロース系繊維におけるセルロース繊維の含有量の下限は、60質量%である。該含有量が60質量%以上であれば、吸水性および風合いに優れた織物製品が得られ得る。該含有量は、好ましくは70質量%〜100質量%、より好ましくは80質量%〜100質量%、さらに好ましくは90質量%〜100質量%である。このような含有量であれば、吸水性および風合いに極めて優れ、さらに、架橋処理による防しわ効果が好適に得られ得る。当該セルロース繊維の含有量は、JIS L 1030−2に準拠して求められる値である。
[A-1. First Embodiment]
The minimum of content of the cellulose fiber in the said cellulose fiber is 60 mass%. When the content is 60% by mass or more, a textile product excellent in water absorption and texture can be obtained. The content is preferably 70% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, and still more preferably 90% by mass to 100% by mass. If it is such content, it is excellent in water absorption and a texture, and also the wrinkle prevention effect by a crosslinking process can be obtained suitably. Content of the said cellulose fiber is a value calculated | required based on JISL1030-2.

上記セルロース系繊維に含有されるセルロース繊維としては、用途等に応じて任意の適切なセルロース繊維が用いられ得る。セルロース繊維の具体例としては、綿(例えば、短繊維綿、中繊維綿、長繊維綿、超長綿、超・超長綿)、麻、竹、こうぞ、みつまた、バナナ、被嚢類等の植物性および動物性の天然セルロース繊維;レーヨン繊維(例えば、ビスコースレーヨン、銅アンモニアレーヨン)等の再生セルロース繊維;アセテート繊維(例えば、ビスアセテート、トリアセテート)等の半再生セルロース繊維;等が挙げられる。なかでも、吸水性、風合い、および物性に優れた織物製品が得られ得ることから、綿、麻、およびレーヨンが好ましく用いられ得る。セルロース繊維は、単独で、または2種以上を組み合わせて用いてもよい。   Any appropriate cellulose fiber may be used as the cellulose fiber contained in the cellulosic fiber depending on the application. Specific examples of cellulose fibers include cotton (for example, short fiber cotton, medium fiber cotton, long fiber cotton, super long cotton, super long cotton, super long cotton), hemp, bamboo, ridges, honey, bananas, encapsulates, etc. Plant and animal natural cellulose fibers; regenerated cellulose fibers such as rayon fibers (eg, viscose rayon, copper ammonia rayon); semi-regenerated cellulose fibers such as acetate fibers (eg, bisacetate, triacetate); It is done. Among these, cotton, hemp, and rayon can be preferably used because a textile product excellent in water absorption, texture, and physical properties can be obtained. Cellulose fibers may be used alone or in combination of two or more.

上記セルロース系繊維において、上記セルロース繊維と組み合わせて用いられ得る他の繊維としては、用途等に応じて任意の適切な繊維が用いられ得る。具体例としては、ポリエステル繊維、ポリアミド繊維、ポリウレタン繊維、ポリエチレン繊維、ポリオレフィン繊維、ポリイミド繊維、ポリ乳酸繊維等が挙げられる。ポリエステル繊維を上記セルロース繊維と組み合わせて用いることにより、W&W性の向上効果が得られ得る。ポリアミド繊維、ポリウレタン繊維等を上記セルロース繊維と組み合わせて用いることにより、織地の緯方向の引張硬さ(LT)や緯方向の引張回復性(RT)を好ましい範囲に調整し得る。当該他の繊維は、単独で、または2種以上を組み合わせて用いてもよい。   In the said cellulosic fiber, as another fiber which can be used in combination with the said cellulose fiber, arbitrary appropriate fibers may be used according to a use etc. Specific examples include polyester fiber, polyamide fiber, polyurethane fiber, polyethylene fiber, polyolefin fiber, polyimide fiber, and polylactic acid fiber. By using the polyester fiber in combination with the cellulose fiber, the effect of improving the W & W property can be obtained. By using a polyamide fiber, a polyurethane fiber, or the like in combination with the cellulose fiber, the tensile strength (LT) in the weft direction of the fabric and the tensile recovery property (RT) in the weft direction can be adjusted to a preferable range. The other fibers may be used alone or in combination of two or more.

上記セルロース系繊維は、目的に応じて任意の適切な形態であり得る。具体的には、原糸(未加工糸)、仮撚糸、染色糸等の形態が挙げられる。また、単糸、合撚糸、カバリングヤーン等の形態が挙げられる。また、当該セルロース系繊維が2種以上の繊維を含む場合、当該2種以上の繊維は、例えば、混紡糸、混撚糸等の形態であり得る。これらの形態は、単独でまたは2種以上組み合わせて採用され得る。   The cellulosic fiber may be in any suitable form depending on the purpose. Specific examples include raw yarn (unprocessed yarn), false twisted yarn, and dyed yarn. Moreover, forms, such as a single yarn, a twisted yarn, and a covering yarn, are mentioned. Moreover, when the said cellulosic fiber contains 2 or more types of fiber, the said 2 or more types of fiber may be forms, such as a blended yarn and a mixed twisted yarn, for example. These forms may be adopted alone or in combination of two or more.

上記セルロース系繊維の繊度は、英式綿番手で30〜80番手である。繊度が30番手未満であると、繊維が太いために織地が硬くなるという問題がある。一方、繊度が80番手を超えると、繊維が細いために織地の引張強力、引裂強力等が低くなる、製造コストが高くなる等の問題がある。例えば、本発明の織物製品を婦人用ハンカチとして用いる場合の繊度は、好ましくは60〜80番手である。また、ブラウスとして用いる場合の繊度は、好ましくは40〜80番手である。なお、繊度が40番手である糸としては、40番手の単糸、80番手の単糸からなる双糸等を用いることができる。   The fineness of the cellulosic fibers is 30 to 80 in English cotton count. If the fineness is less than 30th, there is a problem that the fabric becomes hard because the fibers are thick. On the other hand, when the fineness exceeds 80, there are problems such as the tensile strength and tear strength of the woven fabric are lowered because the fibers are thin, and the production cost is increased. For example, the fineness when the textile product of the present invention is used as a female handkerchief is preferably 60 to 80. The fineness when used as a blouse is preferably 40 to 80. As the yarn having a fineness of 40, a 40th single yarn, an 80th single yarn, or the like can be used.

上記織地は、必要に応じて、上記セルロース系繊維に加えて他の繊維を経糸および/または緯糸として用いて製織(いわゆる、交織り)されてもよい。該他の繊維としては、上記セルロース系繊維においてセルロース繊維と混紡され得る他の繊維と同様の繊維が挙げられる。該他の繊維の繊度は、上記セルロース系繊維と同様である。他の繊維を用いて交織りする場合、織地全体におけるセルロース繊維の含有量は、好ましくは60質量%以上であり、より好ましくは70質量%〜100質量%、さらに好ましくは80質量%〜100質量%、さらにより好ましくは90質量%〜100質量%である。   The woven fabric may be woven (so-called cross-weaving) using other fibers as warps and / or wefts in addition to the cellulosic fibers as necessary. Examples of the other fibers include the same fibers as the other fibers that can be blended with the cellulose fibers in the cellulosic fibers. The fineness of the other fibers is the same as that of the cellulosic fiber. When cross-weaving using other fibers, the cellulose fiber content in the entire woven fabric is preferably 60% by mass or more, more preferably 70% by mass to 100% by mass, and even more preferably 80% by mass to 100% by mass. %, Still more preferably 90% by mass to 100% by mass.

上記織地の織組織は、平織である。なかでも、ブロード、ローン、ガーゼ等の平織組織が好ましい。例えば、ブロードは、地合いが密で光沢を持つ点で好ましい。また、ローンは、ソフトな手触りでありながら麻のような感触を持つ点で好ましい。   The woven structure of the woven fabric is a plain weave. Of these, plain weave structures such as broad, lawn and gauze are preferred. For example, broad is preferable because the texture is dense and glossy. A loan is preferable in that it has a soft touch and feels like hemp.

上記織地の織密度は、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチである。織密度が当該範囲より粗いと、糸同士の隙間の多い織地となるので、織地の強度が小さい場合がある。また、例えばハンカチとして用いた場合に、吸水性等が劣る場合がある。一方、織密度が当該範囲より密であると、糸同士の隙間が少なくなるので、風合いが硬くなる、張りが強くなる、織地が重たくなる等の場合がある。所望の用途に応じた性能(例えば、吸水性、速乾性、柔らかさ)、織地の強度、厚さおよび重さ等の観点から、好ましい経糸密度は110〜150本/インチである。同様の観点から、好ましい緯糸密度は60〜80本/インチである。経糸密度と緯糸密度とは、互いに同じであっても、異なっていてもよい。なお、上記織地の織密度は、後述する架橋処理を経て得られる織物製品における織地の織密度である。よって、上記織地の織密度は、製織時の織密度とは異なる場合がある。   The woven fabric has a warp density of 100 to 200 yarns / inch and a weft density of 50 to 150 yarns / inch. When the woven density is coarser than the above range, the woven fabric has many gaps between yarns, and the strength of the woven fabric may be small. In addition, for example, when used as a handkerchief, water absorption and the like may be inferior. On the other hand, if the woven density is denser than the above range, the gap between the yarns decreases, so that the texture becomes hard, the tension becomes strong, and the woven fabric becomes heavy. From the viewpoints of performance (for example, water absorption, quick drying, softness) according to a desired application, strength, thickness and weight of the fabric, the preferred warp density is 110 to 150 yarns / inch. From the same viewpoint, the preferred weft density is 60 to 80 / inch. The warp density and the weft density may be the same as or different from each other. In addition, the woven density of the said woven fabric is a woven density of the woven fabric in the textile product obtained through the crosslinking process mentioned later. Therefore, the woven density of the woven fabric may be different from the woven density at the time of weaving.

上記織地には、セルロース架橋剤を用いた架橋処理が施されている。その結果、セルロース繊維が架橋されて、織地に後述する所定の力学物性が付与される。なお、架橋処理についてはB項において詳述する。   The woven fabric is subjected to a crosslinking treatment using a cellulose crosslinking agent. As a result, the cellulose fibers are cross-linked, and predetermined mechanical properties described later are imparted to the fabric. The crosslinking treatment will be described in detail in Section B.

上記織地の緯方向の引張硬さ(LT)は、0.82〜0.97であり、好ましくは0.83〜0.96、より好ましくは0.84〜0.96である。引張硬さが0.82未満であると、W&W性が低下したり、染色時ににじみが激しくなる、表面染色性が低下する等によりインクジェット捺染のような精巧な染色が難しくなる場合がある。一方、引張硬さが0.97を超えると、W&W性は向上し得るが、染色性が低下する、織地の風合いが硬くなる、物性が低下する場合等がある。   The tensile strength (LT) in the weft direction of the woven fabric is 0.82 to 0.97, preferably 0.83 to 0.96, and more preferably 0.84 to 0.96. If the tensile hardness is less than 0.82, fine dyeing such as ink jet printing may be difficult due to a decrease in W & W property, an increase in bleeding at the time of dyeing, and a decrease in surface dyeing property. On the other hand, when the tensile hardness exceeds 0.97, the W & W property can be improved, but the dyeability may be lowered, the texture of the fabric may be hardened, and the physical properties may be lowered.

上記織地の緯方向の伸び(EMT)は、3〜12%であり、好ましくは3〜11%、より好ましくは3〜10%である。伸びが3%未満であると、染色性が低下する、織地の風合いが硬くなる、物性が低下する場合等がある。一方、伸びが12%を超えると、W&W性が低下したり、染色時ににじみが激しくなる、表面染色性が低下する等によりインクジェット捺染のような精巧な染色が難しくなる場合がある。   The weft extension (EMT) of the woven fabric is 3 to 12%, preferably 3 to 11%, more preferably 3 to 10%. If the elongation is less than 3%, the dyeability may decrease, the texture of the fabric may become hard, or the physical properties may decrease. On the other hand, if the elongation exceeds 12%, fine dyeing such as ink jet printing may become difficult due to a decrease in W & W property, a strong blur at the time of dyeing, and a decrease in surface dyeing property.

上記織地の緯方向の引張回復性(RT)は、好ましくは45〜75%、より好ましくは50〜73%、さらに好ましくは50〜70%である。引張回復性が45%未満であると、W&W性が低下したり、染色時ににじみが激しくなる、表面染色性が低下する等によりインクジェット捺染のような精巧な染色が難しくなる場合がある。一方、引張回復性が75%を超えると、W&W性は向上し得るが、染色性が低下する、織地の物性が低下する場合等がある。   The tensile recovery property (RT) in the weft direction of the woven fabric is preferably 45 to 75%, more preferably 50 to 73%, and still more preferably 50 to 70%. If the tensile recovery property is less than 45%, fine dyeing such as ink jet printing may be difficult due to a decrease in W & W property, an increase in bleeding at the time of dyeing, and a decrease in surface dyeing property. On the other hand, when the tensile recovery property exceeds 75%, the W & W property may be improved, but the dyeability may be decreased, and the physical properties of the fabric may be decreased.

上記所定の力学物性を有する織地は、実用上十分なW&W性を有し、かつ、染色処理に供した場合に優れた染色性を示す。なお、上記引張硬さ(LT)、伸び(EMT)および引張回復性(RT)は、繊維製品の風合い測定に使用されるKES測定で定義される力学物性値である。これらの物性値は、架橋処理条件を適切に設定することによって所望の範囲内に調整することができる。具体的には、架橋剤の使用量を好適な範囲で多くすることにより、引張硬さおよび引張回復性が増大され得、また、伸びが抑制され得る。   The woven fabric having the predetermined mechanical properties has practically sufficient W & W properties and exhibits excellent dyeability when subjected to a dyeing treatment. The tensile hardness (LT), elongation (EMT), and tensile recovery (RT) are mechanical properties defined by KES measurement used for measuring the texture of textile products. These physical property values can be adjusted within a desired range by appropriately setting the crosslinking treatment conditions. Specifically, by increasing the amount of the crosslinking agent used within a suitable range, the tensile hardness and the tensile recovery can be increased, and the elongation can be suppressed.

上記織地の見掛け比重は、例えば0.4〜0.9g/cmであり、好ましくは0.5〜0.8g/cmであり、より好ましくは0.5〜0.7g/cmである。このような見掛け比重であれば、W&W性が良好である。また、織物製品を染色処理に供した場合に均一で良好な発色性が得られ得る。見掛け比重は、織密度、繊度、架橋剤の付着量等を適切に設定することによって所望の範囲に調整され得る。 The apparent specific gravity of the woven fabric is, for example, 0.4 to 0.9 g / cm 3 , preferably 0.5 to 0.8 g / cm 3 , more preferably 0.5 to 0.7 g / cm 3 . is there. With such apparent specific gravity, the W & W property is good. Further, when the textile product is subjected to a dyeing treatment, uniform and good color developability can be obtained. The apparent specific gravity can be adjusted to a desired range by appropriately setting the weave density, fineness, adhesion amount of the crosslinking agent, and the like.

上記織地の保水率は、好ましくは15〜30%であり、より好ましくは19〜28%であり、さらに好ましくは20〜27%である。このような保水率であれば、W&W性が良好である。また、織物製品を染色処理に供した場合に均一で良好な発色性が得られ得る。   The water retention rate of the woven fabric is preferably 15 to 30%, more preferably 19 to 28%, and still more preferably 20 to 27%. With such a water retention rate, the W & W property is good. Further, when the textile product is subjected to a dyeing treatment, uniform and good color developability can be obtained.

上記織地の引裂強力は、例えば200cN以上であり、好ましくは500cNより高く、より好ましくは600cNより高い。引裂強力が200cN未満であると、使用時または洗濯時に織物製品に破れや裂けが発生し易くなる傾向にある。   The tear strength of the woven fabric is, for example, 200 cN or more, preferably higher than 500 cN, more preferably higher than 600 cN. If the tear strength is less than 200 cN, the textile product tends to be easily torn or torn during use or washing.

第1の実施形態における織物製品は、任意の繊維製品であり得る。具体例としては、ハンカチ、タオル、シーツ、カバー、カーテン、マット、衣服等が挙げられる。   The textile product in the first embodiment may be any fiber product. Specific examples include handkerchiefs, towels, sheets, covers, curtains, mats, clothes, and the like.

[A−2.第2の実施形態]
以下、本発明の第2の実施形態に関して、第1の実施形態と共通する点(セルロース系繊維の構成、架橋構造の有無、織地の保水率および引裂強力等)については説明を省略し、主として異なる点について説明する。
[A-2. Second Embodiment]
Hereinafter, with respect to the second embodiment of the present invention, description of points common to the first embodiment (cellulosic fiber configuration, presence or absence of cross-linked structure, water retention rate of fabric, tear strength, etc.) will be omitted. Different points will be described.

上記セルロース系繊維の繊度は、英式綿番手で40〜100番手である。繊度が40番手未満であると、繊維が太いために織地が硬くなるという問題がある。一方、繊度が100番手を超えると、繊維が細いために織地の引張強力、引裂強力等が低くなる、製造コストが高くなる等の問題がある。例えば、本発明の織物製品を婦人用ハンカチとして用いる場合の繊度は、好ましくは60〜100番手である。また、ブラウスとして用いる場合の繊度は、好ましくは40〜80番手である。なお、繊度が40番手である糸としては、40番手の単糸、80番手の単糸からなる双糸等を用いることができる。   The fineness of the cellulosic fibers is 40 to 100 in English cotton count. When the fineness is less than 40, there is a problem that the fabric becomes hard because the fibers are thick. On the other hand, when the fineness exceeds 100, there are problems such as the tensile strength and tearing strength of the woven fabric are lowered because the fibers are thin, and the production cost is increased. For example, the fineness when the textile product of the present invention is used as a female handkerchief is preferably 60 to 100. The fineness when used as a blouse is preferably 40 to 80. As the yarn having a fineness of 40, a 40th single yarn, an 80th single yarn, or the like can be used.

上記織地の織組織としては、平織以外の任意の適切な織組織が採用され得る。例えば、朱子織(サテン)、綾織、ドビー織等が挙げられる。これらの織組織によれば、多様なデザインを有する織物製品が得られ得る。例えば、朱子織は、光沢に富み、滑りの良い滑らかな感触を与える点で好ましく、織密度を粗くすることにより、軽量で柔らかく様々なデザインの織物製品が得られ得る。   Any appropriate woven structure other than plain weave may be adopted as the woven structure of the woven fabric. Examples include satin weave, twill weave, and dobby weave. According to these woven structures, textile products having various designs can be obtained. For example, satin weave is preferable in that it is rich in gloss and provides a smooth feel with good slippage, and by making the weave density coarse, it is possible to obtain lightweight and soft textile products of various designs.

上記織地の織密度は、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチである。織密度が当該範囲より粗いと、糸同士の隙間の多い織地となるので、織地の強度が小さい場合がある。また、例えばハンカチとして用いた場合に、吸水性等が劣る場合がある。一方、織密度が当該範囲より密であると、糸同士の隙間が少なくなるので、風合いが硬くなる、張りが強くなる、織地が重たくなる等の場合がある。所望の用途に応じた性能(例えば、吸水性、速乾性、柔らかさ)、織地の強度、厚さおよび重さ等の観点から、好ましい経糸密度は130〜170本/インチである。同様の観点から、好ましい緯糸密度は70〜100本/インチである。経糸密度と緯糸密度とは、互いに同じであっても、異なっていてもよい。なお、上記織地の織密度は、後述する架橋処理を経て得られる織物製品における織地の織密度である。よって、上記織地の織密度は、製織時の織密度とは異なる場合がある。   The woven fabric has a warp density of 120 to 240 yarns / inch and a weft density of 60 to 170 yarns / inch. When the woven density is coarser than the above range, the woven fabric has many gaps between yarns, and the strength of the woven fabric may be small. In addition, for example, when used as a handkerchief, water absorption and the like may be inferior. On the other hand, if the woven density is denser than the above range, the gap between the yarns decreases, so that the texture becomes hard, the tension becomes strong, and the woven fabric becomes heavy. From the viewpoints of performance (for example, water absorption, quick drying, softness) according to a desired application, strength, thickness and weight of the fabric, the preferred warp density is 130 to 170 yarns / inch. From the same viewpoint, the preferred weft density is 70 to 100 / inch. The warp density and the weft density may be the same as or different from each other. In addition, the woven density of the said woven fabric is a woven density of the woven fabric in the textile product obtained through the crosslinking process mentioned later. Therefore, the woven density of the woven fabric may be different from the woven density at the time of weaving.

上記織地の緯方向の引張硬さ(LT)は、0.54〜0.78であり、好ましくは0.55〜0.76、より好ましくは0.55〜0.75である。引張硬さが0.54未満であると、W&W性が低下したり、染色時ににじみが激しくなる、表面染色性が低下する等によりインクジェット捺染のような精巧な染色が難しくなる場合がある。一方、引張硬さが0.78を超えると、W&W性は向上し得るが、染色性が低下する、織地の風合いが硬くなる、物性が低下する場合等がある。   The tensile hardness (LT) in the weft direction of the woven fabric is 0.54 to 0.78, preferably 0.55 to 0.76, and more preferably 0.55 to 0.75. If the tensile hardness is less than 0.54, fine dyeing such as ink-jet printing may be difficult due to a decrease in the W & W property, an increase in bleeding at the time of dyeing, or a decrease in surface dyeing property. On the other hand, if the tensile hardness exceeds 0.78, the W & W property may be improved, but the dyeability may be decreased, the texture of the fabric may be hardened, and the physical properties may be decreased.

上記織地の緯方向の伸び(EMT)は、4〜17%であり、好ましくは4〜16%、より好ましくは4〜15%である。伸びが4%未満であると、染色性が低下する、織地の風合いが硬くなる、物性が低下する場合等がある。一方、伸びが17%を超えると、W&W性が低下したり、染色時ににじみが激しくなる、表面染色性が低下する等によりインクジェット捺染のような精巧な染色が難しくなる場合がある。   The weft stretch (EMT) of the fabric is 4 to 17%, preferably 4 to 16%, more preferably 4 to 15%. When the elongation is less than 4%, the dyeability may decrease, the texture of the fabric may become hard, or the physical properties may decrease. On the other hand, if the elongation exceeds 17%, fine dyeing such as ink jet printing may be difficult due to a decrease in W & W property, a strong blur at the time of dyeing, or a decrease in surface dyeing property.

上記織地の緯方向の引張回復性(RT)は、45〜75%、好ましくは45〜73%、より好ましくは45〜70%である。引張回復性が45%未満であると、W&W性が低下したり、染色時ににじみが激しくなる、表面染色性が低下する等によりインクジェット捺染のような精巧な染色が難しくなる場合がある。一方、引張回復性が75%を超えると、W&W性は向上し得るが、染色性が低下する、織地の物性が低下する場合等がある。   The tensile recovery (RT) in the weft direction of the fabric is 45 to 75%, preferably 45 to 73%, more preferably 45 to 70%. If the tensile recovery property is less than 45%, fine dyeing such as ink jet printing may be difficult due to a decrease in W & W property, an increase in bleeding at the time of dyeing, and a decrease in surface dyeing property. On the other hand, when the tensile recovery property exceeds 75%, the W & W property may be improved, but the dyeability may be decreased, and the physical properties of the fabric may be decreased.

上記織地の見掛け比重は、例えば0.2〜0.7g/cmであり、好ましくは0.3〜0.6g/cmであり、より好ましくは0.4〜0.5g/cmである。このような見掛け比重であれば、W&W性が良好である。また、織物製品を染色処理に供した場合に均一で良好な発色性が得られ得る。見掛け比重は、織密度、繊度、架橋剤の付着量等を適切に設定することによって所望の範囲に調整され得る。 The apparent specific gravity of the woven fabric is, for example, 0.2 to 0.7 g / cm 3 , preferably 0.3 to 0.6 g / cm 3 , more preferably 0.4 to 0.5 g / cm 3 . is there. With such apparent specific gravity, the W & W property is good. Further, when the textile product is subjected to a dyeing treatment, uniform and good color developability can be obtained. The apparent specific gravity can be adjusted to a desired range by appropriately setting the weave density, fineness, adhesion amount of the crosslinking agent, and the like.

[B.織物製品の製造方法]
本発明の第1の実施形態および第2の実施形態における織物製品の製造方法は、所定のセルロース系繊維を用いて製織された織地を架橋処理して、A項に記載の所定の力学物性を有する織地を得ること(架橋工程)を含む。該製造方法は、必要に応じて、他の工程(例えば、糊抜き、精錬、漂白、洗浄、柔軟化)をさらに含み得る。
[B. Manufacturing method of textile products]
In the first and second embodiments of the present invention, a method for producing a woven product includes subjecting a woven fabric woven using a predetermined cellulosic fiber to a cross-linking treatment to obtain a predetermined mechanical property described in the item A. Including obtaining a woven fabric (crosslinking step). The production method may further include other steps (for example, desizing, refining, bleaching, washing, softening) as necessary.

架橋処理に供される織地は、任意の適切な織機を用いて製織することによって得られ得る。製織の際に適用されるセルロース系繊維、織密度および織組織については、A項で説明したとおりである。   The fabric subjected to the crosslinking treatment can be obtained by weaving using any appropriate loom. Cellulosic fibers, woven density and woven structure applied during weaving are as described in Section A.

架橋処理は、代表的には、架橋剤等を含む架橋処理液を処理対象の織地に付着させ、次いで、熱処理することによって行われ得る。熱処理は上記所定の織密度になる範囲において織地に張力を付与しながら行ってもよい。ここで、架橋剤とは、セルロースの水酸基と反応し、セルロース系繊維間に架橋結合を形成させる化合物を意味する。本発明においては、セルロースの水酸基と反応し、セルロース系繊維間に架橋結合を生成するものであれば任意の適切な化合物を架橋剤として使用することができる。   The crosslinking treatment can be typically performed by attaching a crosslinking treatment liquid containing a crosslinking agent or the like to the fabric to be treated, and then performing a heat treatment. The heat treatment may be performed while applying tension to the woven fabric in a range where the predetermined woven density is obtained. Here, a crosslinking agent means the compound which reacts with the hydroxyl group of a cellulose and forms a crosslinked bond between cellulosic fibers. In the present invention, any appropriate compound can be used as a crosslinking agent as long as it reacts with a hydroxyl group of cellulose to form a crosslink between cellulose fibers.

上記架橋剤として使用可能な化合物としては、窒素原子、カルボキシル基、エポキシ基、オルガノオキシ基および水酸基のいずれかを含む化合物が挙げられる。具体的には、尿素・ホルムアルデヒド化合物(例えば、尿素・ホルムアルデヒド樹脂、尿素誘導体)、メラミン・ホルムアルデヒド化合物(例えば、メラミン・ホルムアルデヒド樹脂、メラミン誘導体)、環状尿素化合物(例えば、環状尿素型樹脂、エチレン尿素誘導体、ブチレン尿素誘導体)、アルキル・カーバメート化合物(例えば、アルキル・カーバメート樹脂)、アセタール化合物(例えば、アセタール樹脂)、エポキシ化合物(例えば、エポキシ樹脂)、オルガノオキシ基または水酸基含有シリコーン化合物(例えば、シリコーン樹脂、シリコーンゾル)、カルボン酸化合物、ポリカルボン酸、スルフォン化合物、第4級アンモニウム塩、1,3−ジクロロ−2−プロパノール誘導体、N−メチロールアクリルアミド等の化合物が挙げられる。これらのなかでも、尿素誘導体、メラミン誘導体、環状尿素化合物、エポキシ化合物、オルガノオキシ基または水酸基含有シリコーン化合物およびポリカルボン酸が、効果、物性、反応性、経済性等の点で好ましい。これらは、1種単独でまたは2種以上を混合して用いられ得る。   Examples of the compound that can be used as the crosslinking agent include compounds containing any of a nitrogen atom, a carboxyl group, an epoxy group, an organooxy group, and a hydroxyl group. Specifically, urea / formaldehyde compounds (for example, urea / formaldehyde resins, urea derivatives), melamine / formaldehyde compounds (for example, melamine / formaldehyde resins, melamine derivatives), cyclic urea compounds (for example, cyclic urea type resins, ethylene urea) Derivatives, butylene urea derivatives), alkyl carbamate compounds (eg, alkyl carbamate resins), acetal compounds (eg, acetal resins), epoxy compounds (eg, epoxy resins), organooxy groups or hydroxyl group-containing silicone compounds (eg, silicones) Resin, silicone sol), carboxylic acid compound, polycarboxylic acid, sulfone compound, quaternary ammonium salt, 1,3-dichloro-2-propanol derivative, N-methylolacrylamide, etc. It is below. Among these, urea derivatives, melamine derivatives, cyclic urea compounds, epoxy compounds, organooxy groups or hydroxyl group-containing silicone compounds and polycarboxylic acids are preferable in terms of effects, physical properties, reactivity, economy, and the like. These may be used alone or in combination of two or more.

上記尿素誘導体としては、尿素、モノメチロール尿素、ジメチロール尿素等の公知のものを使用することができる。   As said urea derivative, well-known things, such as urea, monomethylol urea, dimethylol urea, can be used.

上記メラミン誘導体としては、メチロール基、アルコキシメチル基、アルコキシエチル基等を含むものが好ましい。具体例としては、ジ−、トリ−、テトラ−、ペンタ−またはヘキサ−メチロールメラミン、ジ−、トリ−、テトラ−、ペンタ−またはヘキサ−メチル化メチロールメラミン、ジ−、トリ−、テトラ−、ペンタ−またはヘキサ−エチル化メチロールメラミン、ジ−、トリ−、テトラ−、ペンタ−またはヘキサ−メチル化エチロールメラミン等が挙げられる。これらの中で、ホルマリンの低減の為には、アルコキシメチル基、アルコキシエチル基を含むものやメラミンとジメトキシエタナールとの反応物等の使用が効果的である。   As said melamine derivative, what contains a methylol group, an alkoxymethyl group, an alkoxyethyl group, etc. is preferable. Specific examples include di-, tri-, tetra-, penta- or hexa-methylol melamine, di-, tri-, tetra-, penta- or hexa-methylated methylol melamine, di-, tri-, tetra-, Examples include penta- or hexa-ethylated methylol melamine, di-, tri-, tetra-, penta- or hexa-methylated ethylol melamine. Among these, in order to reduce formalin, it is effective to use an alkoxymethyl group, one containing an alkoxyethyl group, a reaction product of melamine and dimethoxyethanal, or the like.

上記環状尿素化合物としては、ジメチロールエチレン尿素、ジメチロールトリアゾン、ジメチロールウロン、ジメチロールグリオキザールモノウレイン、ジメチロールプロピレン尿素、これらのメチロール基の一部または全部をメトキシ化、エトキシ化したもの等が挙げられる。これらの中では、エチレン尿素タイプが反応性や価格の点で好ましく、ホルマリン低減の為には、メチロール基の一部または全部をメトキシ化、エトキシ化したもの、あるいは、低ホル型と呼ばれるジメチロールジヒドロキシエチレン尿素等の使用が有効である。   Examples of the cyclic urea compound include dimethylol ethylene urea, dimethylol triazone, dimethylol uron, dimethylol glyoxal monourene, dimethylol propylene urea, and methoxylated or ethoxylated part or all of these methylol groups. Etc. Among these, the ethylene urea type is preferable in terms of reactivity and price, and in order to reduce formalin, a part or all of the methylol group is methoxylated or ethoxylated, or dimethylol called a low form type. Use of dihydroxyethylene urea or the like is effective.

上記オルガノオキシ基または水酸基含有シリコーン化合物としては、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリプロポキシシラン、プロピルトリブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジブトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシラン、ジプロピルジブトキシシラン、ジフェニルジヒドロキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルプロポキシシラン、トリメチルブトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリエチルプロポキシシラン、トリエチルブトキシシラン、トリプロピルメトキシシラン、トリプロピルエトキシシラン、トリプロピルプロポキシシラン、トリプロピルブトキシシラン、トリフェニルヒドロキシシラン等およびこれらの(部分)加水分解縮合物が挙げられ、上記オルガノオキシシラン化合物を1種単独でまたは2種以上を併用して用いることができる。これらのなかでも特に架橋構造を形成する上でメチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等のトリオルガノキシシランおよびテトラオルガノキシシランが好ましく用いられるが、一官能性や二官能性のシラン化合物もセルロース系繊維と反応させることができるため、本発明においては一乃至四官能性のシラン化合物のいずれも使用することができる。   Examples of the organooxy group or hydroxyl group-containing silicone compound include methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyl Trimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltripropoxysilane, propyltributoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyl Tripropoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dimethyldibutoxy , Diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, diethyldibutoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipropoxysilane, dipropyldibutoxysilane, diphenyldihydroxysilane, trimethylmethoxy Silane, trimethylethoxysilane, trimethylpropoxysilane, trimethylbutoxysilane, triethylmethoxysilane, triethylethoxysilane, triethylpropoxysilane, triethylbutoxysilane, tripropylmethoxysilane, tripropylethoxysilane, tripropylpropoxysilane, tripropylbutoxysilane, And triphenylhydroxysilane and their (partial) hydrolysis condensates. The Ganoderma oxy silane compounds may be used in combination singly or two or more. Among these, triorganoxysilane and tetraorganoxysilane such as methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, and tetraethoxysilane are preferably used for forming a crosslinked structure. Since bifunctional silane compounds can also be reacted with cellulosic fibers, any mono- to tetrafunctional silane compound can be used in the present invention.

上記ポリカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、プロピルマロン酸、ブチルマロン酸、ヘプチルマロン酸、ジプロピルマロン酸、リンゴ酸、酒石酸、アスパラギン酸、グルタミン酸、イミノジ酢酸、チオジプロピオン酸、チオマレイン酸等の飽和脂肪族ジカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラコン酸、ヘキサジエン二酸(ムコン酸)、ドデカジエン二酸等の不飽和脂肪族ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、ホモフタル酸、ヘキサヒドロテレフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、メチルフタル酸、ヒドロキシイソフタル酸、ヒドリンデンジカルボン酸、ジフェニルエーテルジカルボン酸、ベンゾフェノンジカルボン酸、カルボキシメチル安息香酸、トリフルオロメチルフタル酸、アゾキシベンゼンジカルボン酸、ヒドラゾベンゼンジカルボン酸、スルホイソフタル酸、ジフェニルスルフォンジカルボン酸、ピリジンジカルボン酸、ケリダム酸、ピラジンジカルボン酸等の芳香族ジカルボン酸;ヘット酸、4−シクロヘキセン−1,2−ジカルボン酸、シクロプロパンジカルボン酸、シクロブタンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、ピペリジン−2,3−ジカルボン酸(ヘキサヒドロキノリン酸)、ピペリジン−2,6−ジカルボン酸(ヘキサヒドロジピコリン酸)、ピペリジン−3,4−ジカルボン酸(ヘキサヒドロシンコメロン酸)等の脂環式ジカルボン酸;トリカルバリル酸、アコニチン酸、メチルシクロヘキセントリカルボン酸、クエン酸、1,2,3−ブタントリカルボン酸等の脂肪族トリカルボン酸;ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、テトラヒドロフランテトラカルボン酸、メチルテトラヒドロフタル酸とマレイン酸のエン付加物、エチレンジアミン四酢酸、トランス−1,2−ジアミノシクロヘキサン四酢酸、グリコールエーテルジアミン四酢酸、ジフタル酸、エポキシ化コハク酸二量化物等の脂肪族テトラカルボン酸;ジエチレントリアミン五酢酸等の脂肪族ペンタカルボン酸;トリエチレンテトラミン六酢酸等の脂肪族ヘキサカルボン酸;トリメリット酸、ピロメリット酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ジフェニルスルホンテトラカルボン酸等の芳香族ポリカルボン酸;アクリル酸重合物、クロトン酸重合物、マレイン酸重合物、イタコン酸(または無水イタコン酸)重合物、アクリル酸・メタアクリル酸共重合物、アクリル酸・(無水)マレイン酸共重合物、メタアクリル酸・(無水)マレイン酸共重合物、アクリル酸・イタコン酸共重合物、アクリル酸・3−ブテン−1,2,3−トリカルボン酸共重合物、(無水)マレイン酸・α−メチルスチレン共重合物、(無水)マレイン酸・スチレン共重合物(スチレンと無水マレイン酸よりディールス・アルダー反応とエン反応によって生じたテトラカルボン酸を含む)、(無水)マレイン酸・アクリル酸アルキル共重合物、アクリル酸・3−ブテン−1,2,3−トリカルボン酸・アクリル酸アルキル共重合物、メタアクリル酸・(無水)マレイン酸・メタアクリル酸アルキル共重合物、(無水)マレイン酸・アクリル酸アルキル・メタアクリル酸アルキル共重合物、(無水)マレイン酸・アクリル酸アルキル・スチレン共重合物、アクリル酸・(無水)マレイン酸・アクリル酸アルキル・スチレン共重合物、メタアクリル酸・(無水)マレイン酸・アクリル酸2−エチルヘキシル・メタアクリル酸メチル・メタアクリル酸2−ヒドロキシエチル・スチレン共重合物等のカルボン酸ポリマーが挙げられる。なかでも、トリカルボン酸、テトラカルボン酸等の水溶性のポリカルボン酸が、均一に処理しやすく、作業もしやすいので、好ましく使用され得る。   Examples of the polycarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, propylmalonic acid. , Saturated aliphatic dicarboxylic acids such as butyl malonic acid, heptyl malonic acid, dipropyl malonic acid, malic acid, tartaric acid, aspartic acid, glutamic acid, iminodiacetic acid, thiodipropionic acid, thiomaleic acid; maleic acid, fumaric acid, itaconic acid , Citraconic acid, hexadiene diacid (muconic acid), dodecadiene diacid and other unsaturated aliphatic dicarboxylic acids; phthalic acid, isophthalic acid, terephthalic acid, homophthalic acid, hexahydroterephthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, methylphthalic acid Acid, hydroxyisophthalic acid Hydrindene dicarboxylic acid, diphenyl ether dicarboxylic acid, benzophenone dicarboxylic acid, carboxymethyl benzoic acid, trifluoromethyl phthalic acid, azoxybenzene dicarboxylic acid, hydrazobenzene dicarboxylic acid, sulfoisophthalic acid, diphenyl sulfonic dicarboxylic acid, pyridine dicarboxylic acid, queridam Acid, aromatic dicarboxylic acid such as pyrazinedicarboxylic acid; het acid, 4-cyclohexene-1,2-dicarboxylic acid, cyclopropanedicarboxylic acid, cyclobutanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, piperidine-2,3- Dicarboxylic acid (hexahydroquinolinic acid), piperidine-2,6-dicarboxylic acid (hexahydrodipicolinic acid), piperidine-3,4-dicarboxylic acid (hexahydrosidic acid) Cycloaliphatic dicarboxylic acids such as comemeronic acid; aliphatic tricarboxylic acids such as tricarballylic acid, aconitic acid, methylcyclohexeric acid, citric acid, 1,2,3-butanetricarboxylic acid; butanetetracarboxylic acid, cyclopentanetetra Carboxylic acid, tetrahydrofuran tetracarboxylic acid, ene adduct of methyltetrahydrophthalic acid and maleic acid, ethylenediaminetetraacetic acid, trans-1,2-diaminocyclohexanetetraacetic acid, glycol etherdiaminetetraacetic acid, diphthalic acid, epoxidized succinic acid dimerization Aliphatic tetracarboxylic acid such as diethylenetriaminepentaacetic acid; aliphatic hexacarboxylic acid such as triethylenetetraminehexaacetic acid; trimellitic acid, pyromellitic acid, biphenyltetracarboxylic acid, benzoic acid Aromatic polycarboxylic acids such as enonetetracarboxylic acid and diphenylsulfonetetracarboxylic acid; acrylic acid polymer, crotonic acid polymer, maleic acid polymer, itaconic acid (or itaconic anhydride) polymer, acrylic acid / methacrylic acid Acid copolymer, acrylic acid / (anhydrous) maleic acid copolymer, methacrylic acid / (anhydrous) maleic acid copolymer, acrylic acid / itaconic acid copolymer, acrylic acid / 3-butene-1,2, 3-tricarboxylic acid copolymer, (anhydrous) maleic acid / α-methylstyrene copolymer, (anhydrous) maleic acid / styrene copolymer (tetrazole formed by Diels-Alder reaction and ene reaction from styrene and maleic anhydride) (Including carboxylic acid), (anhydrous) maleic acid / alkyl acrylate copolymer, acrylic acid / 3-butene-1,2,3-to Carboxylic acid / alkyl acrylate copolymer, methacrylic acid / (anhydrous) maleic acid / alkyl methacrylate copolymer, (anhydrous) maleic acid / alkyl acrylate / alkyl methacrylate copolymer, (anhydrous) maleic Acid, alkyl acrylate, styrene copolymer, acrylic acid, (anhydrous) maleic acid, alkyl acrylate, styrene copolymer, methacrylic acid, (anhydrous) maleic acid, 2-ethylhexyl acrylate, methyl methacrylate, Examples thereof include carboxylic acid polymers such as 2-hydroxyethyl methacrylate / styrene copolymer. Among these, water-soluble polycarboxylic acids such as tricarboxylic acid and tetracarboxylic acid can be preferably used because they are easy to uniformly treat and work.

上記エポキシ化合物としては、分子中に2個以上の反応性官能基を有するものが好ましく、当該反応性官能基はグリシジルエーテル基またはクロルヒドリン基であることが好ましい。具体的には、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等のエチレングリコール系や、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等のプロピレングリコール系の分子中に2個の官能基を有するもの、グリセロールグリシジルエーテル等の3個以上の官能基を持つエポキシ系架橋剤等が挙げられる。また、エポキシ変性シリコーンとして、セルロースの水酸基と直接反応するエポキシ基を持つシリコーン誘導体も使用することができる。エポキシ基にはグリシジルタイプのものと脂環式タイプのものとがあるが、いずれのタイプでも構わない。これらは単独でも混合系で使用しても構わない。   As said epoxy compound, what has a 2 or more reactive functional group in a molecule | numerator is preferable, and it is preferable that the said reactive functional group is a glycidyl ether group or a chlorohydrin group. Specifically, for example, two functional groups in a propylene glycol-based molecule such as ethylene glycol diglycidyl ether or polyethylene glycol diglycidyl ether, or propylene glycol diglycidyl ether or polypropylene glycol diglycidyl ether. And an epoxy-based cross-linking agent having three or more functional groups such as glycerol glycidyl ether. Further, as the epoxy-modified silicone, a silicone derivative having an epoxy group that reacts directly with a hydroxyl group of cellulose can also be used. Epoxy groups include glycidyl type and alicyclic type, but any type may be used. These may be used alone or in a mixed system.

上記架橋剤のなかでも、エチレン尿素型の環状尿素化合物および分子の両末端にエポキシ基を有するエポキシ化合物が好ましく用いられ得、分子の両末端にエポキシ基を有するエポキシ化合物であって、エポキシ基間の分子量(架橋後における架橋点間分子量に相当)が40〜200であるエポキシ化合物がより好ましく用いられ得る。これらの環状尿素化合物およびエポキシ化合物によれば、染料がセルロースの染着座席まで到達可能な空間を有する架橋構造(例えば、架橋密度や架橋点間距離)が好適に形成され得るので、W&W性の付与後の染色性が向上され得る。特に、上記エポキシ化合物は、セルロースとの親和性がやや低いため、セルロース系繊維の内部ではなく表面近傍に架橋構造を形成し易く、その結果、織地が過度に疎水化されることなく、染料の運び手である水分が繊維内部まで浸透しやすくなると推測される。   Among the above crosslinking agents, an ethylene urea type cyclic urea compound and an epoxy compound having an epoxy group at both ends of the molecule can be preferably used, and an epoxy compound having an epoxy group at both ends of the molecule, An epoxy compound having a molecular weight of 40 to 200 (corresponding to the molecular weight between crosslinking points after crosslinking) can be used more preferably. According to these cyclic urea compounds and epoxy compounds, a crosslinked structure (for example, a crosslinking density and a distance between crosslinking points) having a space where the dye can reach the cellulose dyeing seat can be suitably formed. The dyeability after application can be improved. In particular, since the above epoxy compound has a slightly low affinity with cellulose, it is easy to form a crosslinked structure in the vicinity of the surface rather than inside the cellulosic fiber, and as a result, the fabric is not excessively hydrophobized, and the dye It is presumed that the moisture as a carrier easily penetrates into the fiber.

エチレン尿素型の環状尿素化合物としては、ジメチロールエチレン尿素、ジメチロールジヒドロキシエチレン尿素、ジメチルジヒドロキシエチレン尿素等が挙げられる。また、分子の両末端にエポキシ基を有するエポキシ化合物としては、ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル等が挙げられる。   Examples of the ethylene urea type cyclic urea compound include dimethylol ethylene urea, dimethylol dihydroxy ethylene urea, dimethyl dihydroxy ethylene urea and the like. Examples of the epoxy compound having an epoxy group at both ends of the molecule include diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, butane. Examples thereof include diol diglycidyl ether.

上記架橋処理においては、一般に、上記架橋剤は、水等に溶解または分散させた架橋処理液として用いられる。架橋処理液中の架橋剤の固形分濃度(2種以上の架橋剤を用いる場合はその合計濃度)は、架橋剤の種類等に応じて適切に設定され得る。架橋処理液の織地への付与率(織地中に含まれる架橋処理液重量/架橋処理液付与前の織地の重量×100)を70%と仮定した場合、架橋処理液中の架橋剤の固形分濃度は、例えば2〜33質量%であり得る。より具体的には、架橋剤として、エチレン尿素型の環状尿素化合物を用いる場合、織地に上記所定の力学物性を付与して、染色性を維持しつつW&W性が得られる架橋構造を形成する観点から、架橋処理液中の架橋剤の固形分濃度は、好ましくは2〜15質量%、より好ましくは2〜13質量%、さらに好ましくは2〜11質量%である。また、架橋剤として、分子の両末端にエポキシ基を有するエポキシ化合物を用いる場合、織地に上記所定の力学物性を付与して、染色性を維持しつつW&W性が得られる架橋構造を形成する観点から、架橋処理液中の架橋剤の固形分濃度は、好ましくは3〜33質量%、より好ましくは4〜30質量%、さらに好ましくは5〜30質量%である。なお、架橋処理液の織地への付与率が70%と異なる場合は、架橋処理液の織地への付与率の変化率に反比例させて、上述した架橋処理液中の架橋剤の固形分濃度を増減すればよい(例えば、該付与率が35%の場合、架橋処理液中の架橋剤の濃度は、4〜66質量%であり得る)。   In the crosslinking treatment, the crosslinking agent is generally used as a crosslinking treatment solution dissolved or dispersed in water or the like. The solid content concentration of the crosslinking agent in the crosslinking treatment liquid (the total concentration when two or more crosslinking agents are used) can be appropriately set according to the type of the crosslinking agent and the like. When it is assumed that the application rate of the crosslinking treatment liquid to the woven fabric (weight of the crosslinking treatment solution contained in the woven fabric / weight of the woven fabric before application of the crosslinking treatment solution × 100) is 70%, the solid content of the crosslinking agent in the crosslinking treatment solution The concentration can be, for example, 2 to 33% by weight. More specifically, when an ethylene urea type cyclic urea compound is used as a cross-linking agent, a viewpoint of forming a cross-linked structure that gives the above-mentioned predetermined mechanical properties to a woven fabric and can obtain W & W properties while maintaining dyeability. Therefore, the solid content concentration of the crosslinking agent in the crosslinking treatment liquid is preferably 2 to 15% by mass, more preferably 2 to 13% by mass, and further preferably 2 to 11% by mass. In addition, when an epoxy compound having an epoxy group at both ends of the molecule is used as a cross-linking agent, a viewpoint of forming a cross-linked structure capable of providing the above-mentioned predetermined mechanical properties to the fabric and obtaining W & W properties while maintaining dyeability. Therefore, the solid content concentration of the crosslinking agent in the crosslinking treatment liquid is preferably 3 to 33% by mass, more preferably 4 to 30% by mass, and still more preferably 5 to 30% by mass. When the application rate of the crosslinking treatment liquid to the woven fabric is different from 70%, the solid content concentration of the crosslinking agent in the crosslinking treatment liquid described above is set in inverse proportion to the change rate of the application rate of the crosslinking treatment liquid to the woven fabric. What is necessary is just to increase / decrease (for example, when this provision rate is 35%, the density | concentration of the crosslinking agent in a crosslinking process liquid may be 4-66 mass%).

上記架橋処理液には、上記架橋剤とセルロースとの反応性を高め、架橋処理を迅速に行うために触媒を添加することができる。当該触媒としては、通常、セルロース系繊維の樹脂加工に用いられる触媒であれば特に限定されず、ホウ弗化アンモニウム、ホウ弗化ナトリウム、ホウ弗化カリウム、ホウ弗化亜鉛等のホウ弗化化合物;塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム等の中性金属塩触媒;燐酸、塩酸、硫酸、亜硫酸、次亜硫酸、ホウ酸等の無機酸;テトラフルオロ硼酸亜鉛等が挙げられる。これらの触媒には、必要に応じて、助触媒としてクエン酸、酒石酸、林檎酸、マレイン酸等の有機酸等を併用することもできる。   A catalyst can be added to the crosslinking treatment liquid in order to increase the reactivity between the crosslinking agent and cellulose and to perform the crosslinking treatment quickly. The catalyst is not particularly limited as long as it is a catalyst usually used for resin processing of cellulosic fibers, and borofluorinated compounds such as ammonium borofluoride, sodium borofluoride, potassium borofluoride, zinc borofluoride and the like. Neutral metal salt catalysts such as magnesium chloride, magnesium sulfate and magnesium nitrate; inorganic acids such as phosphoric acid, hydrochloric acid, sulfuric acid, sulfurous acid, hyposulfite and boric acid; and zinc tetrafluoroborate. If necessary, these catalysts can be used in combination with an organic acid such as citric acid, tartaric acid, apple acid, maleic acid or the like as a cocatalyst.

上記触媒の使用量は、上記架橋剤に対して0.5〜10質量%が好ましく、より好ましくは1〜7質量%である。触媒の使用量が0.5質量%未満であると、反応収率が低下して架橋量が少なくなり、効果が不足する場合がある。一方、触媒の使用量が10質量%を超えると、セルロース系繊維の酸分解等により繊維の強度が低下したり、変色の原因になる場合がある。   The amount of the catalyst used is preferably 0.5 to 10% by mass, more preferably 1 to 7% by mass with respect to the crosslinking agent. When the amount of the catalyst used is less than 0.5% by mass, the reaction yield decreases, the amount of crosslinking decreases, and the effect may be insufficient. On the other hand, when the amount of the catalyst used exceeds 10% by mass, the strength of the fiber may be lowered due to acid decomposition of the cellulosic fiber, or it may cause discoloration.

上記架橋処理液には、必要に応じて、セルロースと架橋剤との反応を円滑に進めるための助剤を添加することができる。助剤は、架橋剤とセルロースの反応を促進させたり、架橋生成反応においても反応を均一に進めるといった反応溶媒としての作用、更にはセルロースを膨潤させる作用等を有するものである。当該助剤としては、例えば、グリセリン、エチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の多価アルコール類、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテルアルコール類、ジメチルホルムアミド、モルホリン、2−ピロリドン、ジメチルアセトアミド、N−メチルピロリドン等の含窒素溶媒類、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸アミル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、γ−ブチロラクトン等のエステル類等が挙げられる。これらは1種単独でまたは2種以上を混合して使用することができる。   If necessary, an auxiliary agent for smoothly advancing the reaction between the cellulose and the crosslinking agent can be added to the crosslinking treatment liquid. The auxiliary agent has an action as a reaction solvent that promotes the reaction between the crosslinking agent and cellulose, or promotes the reaction even in the crosslinking formation reaction, and further has an action of swelling the cellulose. Examples of the auxiliary agent include polyhydric alcohols such as glycerin, ethylene glycol, polyethylene glycol, and polypropylene glycol, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and diethylene glycol monobutyl ether. Nitrogen-containing solvents such as ether alcohols, dimethylformamide, morpholine, 2-pyrrolidone, dimethylacetamide, N-methylpyrrolidone, ethyl acetate, isopropyl acetate, butyl acetate, amyl acetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl acetate Examples thereof include esters such as ether and γ-butyrolactone. These can be used individually by 1 type or in mixture of 2 or more types.

上記助剤の使用量は、架橋剤に対して0.1〜10質量%が好ましく、より好ましくは1〜5質量%である。助剤の使用量が0.1質量%未満であると、反応を円滑にする効果が不十分となる場合がある。一方、助剤の使用量が10質量%を超えると、セルロースの脆化を招いたり、架橋処理後に生地から助剤を除去することが煩雑になる場合がある。   0.1-10 mass% is preferable with respect to a crosslinking agent, and, as for the usage-amount of the said adjuvant, More preferably, it is 1-5 mass%. When the usage-amount of auxiliary agent is less than 0.1 mass%, the effect which makes reaction smooth may become inadequate. On the other hand, when the usage-amount of an auxiliary agent exceeds 10 mass%, it may cause embrittlement of a cellulose or it may become complicated to remove an auxiliary agent from cloth after a crosslinking process.

上記架橋処理液には、上述の成分の他に、必要に応じて、風合い調整用の柔軟剤や、遊離ホルマリン濃度低減のためのホルマリンキャッチャー、浸透剤としての界面活性剤等を添加することもできる。例えば、メラミン誘導体や環状尿素型樹脂等のホルマリンを発生するおそれのあるものはホルマリンキャッチャー剤との併用が好ましい。また、架橋セルロースが硬くなることで引裂強力や引張強度が低下する場合は柔軟剤の併用が好ましい。また、架橋処理液の織地への浸透性が低い場合は浸透剤の併用が好ましい。なお、本発明の織物製品中の残留ホルマリンは、75ppm以下が好ましい。75ppmを超えると使用時に皮膚刺激を引き起こす恐れがある。   In addition to the above-described components, the crosslinking treatment liquid may contain a softening agent for adjusting the texture, a formalin catcher for reducing free formalin concentration, a surfactant as a penetrating agent, and the like. it can. For example, those that may generate formalin such as melamine derivatives and cyclic urea resins are preferably used in combination with a formalin catcher agent. Moreover, when a tear strength and tensile strength fall because bridge | crosslinking cellulose becomes hard, combined use of a softening agent is preferable. Moreover, when the permeability of the crosslinking treatment liquid to the fabric is low, it is preferable to use a penetrant in combination. The residual formalin in the textile product of the present invention is preferably 75 ppm or less. If it exceeds 75 ppm, skin irritation may occur during use.

上記架橋処理液のpHは、通常1〜10、好ましくは2〜9の範囲内に調整され得る。このような範囲内であれば、セルロースの加水分解による繊維強度の低下や変色を防止することができる。pHは、任意の適切なpH調整剤によって調整され得る。   The pH of the crosslinking treatment liquid can be adjusted within a range of usually 1 to 10, preferably 2 to 9. If it is in such a range, the fall of the fiber strength and discoloration by hydrolysis of a cellulose can be prevented. The pH can be adjusted by any suitable pH adjuster.

織地に架橋処理液を付着させる方法としては、通常のパッド・ドライ法、浸漬法、含浸法、印捺法、インクジェット印刷法、レーザープリンター印刷法、塗布法、噴霧法等の公知の方法を採用することができる。例えば、織地全体を処理する場合は、パッド・ドライ法が効率的で好ましい。製品全域を処理する場合は、浸漬法や噴霧法によって手軽に実施できる。   As a method for adhering the crosslinking treatment liquid to the woven fabric, a known method such as a normal pad / dry method, a dipping method, an impregnation method, a printing method, an ink jet printing method, a laser printer printing method, a coating method, or a spraying method is adopted. can do. For example, when processing the entire fabric, the pad dry method is efficient and preferable. When treating the entire product, it can be easily carried out by dipping or spraying.

本発明の織物製品(織地)における架橋剤の付着量は、織地の質量に対して、1.3〜23.1質量%が好ましい。付着量が1.3質量%未満であると、防しわ性およびW&W性が十分に得られない場合がある。また、付着量が23.1質量%を超えると、架橋セルロース繊維の破断強度および引裂強力が大きく低下する場合がある。ただし、セルロース系繊維の種類等を選択することにより物性(引張強度、引裂強力、破裂強力等)を高めることができる場合は、架橋剤の付着量を多くすることもできる。例えば、中繊維綿からなる綿糸に代えて、長繊維綿、超長綿または超・超長綿を含む綿糸を一部あるいは全部使用すると破裂強力、引張強度および引裂強力の向上に効果がある。より具体的には、架橋剤として、エチレン尿素型の環状尿素化合物を用いる場合、織地に上記所定の力学物性を付与して、染色性を維持しつつW&W性が得られる架橋構造を形成する観点から、平織地における架橋剤の付着量は、該織地の質量に対して、好ましくは1.3〜6.8質量%、より好ましくは1.3〜5.4質量%、さらに好ましくは1.3〜3.6質量%である。また、平織地を除く織地における架橋剤の付着量は、該織地の質量に対して、好ましくは1.3〜10.5質量%、より好ましくは1.3〜9.0質量%、さらに好ましくは1.3〜8.0質量%である。次に、架橋剤として、分子の両末端にエポキシ基を有するエポキシ化合物を用いる場合、織地に上記所定の力学物性を付与して、染色性を維持しつつW&W性が得られる架橋構造を形成する観点から、平織地における架橋剤の付着量は、該織地の質量に対して、好ましくは2.1〜17.5質量%、より好ましくは2.8〜16.1質量%、さらに好ましくは3.5〜14.0質量%である。また、平織地を除く織地における架橋剤の付着量は、該織地の質量に対して、好ましくは2.1〜23.1質量%、より好ましくは2.8〜21.0質量%、さらに好ましくは3.5〜21.0質量%である。   As for the adhesion amount of the crosslinking agent in the textile product (woven fabric) of this invention, 1.3-23.1 mass% is preferable with respect to the mass of a textile fabric. If the adhesion amount is less than 1.3% by mass, the wrinkle resistance and W & W property may not be sufficiently obtained. On the other hand, if the adhesion amount exceeds 23.1% by mass, the breaking strength and tear strength of the crosslinked cellulose fiber may be greatly reduced. However, if the physical properties (tensile strength, tear strength, burst strength, etc.) can be increased by selecting the type of cellulosic fiber, etc., the adhesion amount of the crosslinking agent can be increased. For example, if part or all of cotton yarn containing long fiber cotton, super long cotton, or super / super long cotton is used in place of the cotton yarn made of medium fiber cotton, it is effective in improving the burst strength, tensile strength and tear strength. More specifically, when an ethylene urea type cyclic urea compound is used as a cross-linking agent, a viewpoint of forming a cross-linked structure that gives the above-mentioned predetermined mechanical properties to a woven fabric and can obtain W & W properties while maintaining dyeability. Therefore, the adhesion amount of the crosslinking agent in the plain woven fabric is preferably 1.3 to 6.8% by mass, more preferably 1.3 to 5.4% by mass, and still more preferably 1. It is 3-3.6 mass%. Moreover, the adhesion amount of the crosslinking agent in the woven fabric excluding the plain woven fabric is preferably 1.3 to 10.5% by mass, more preferably 1.3 to 9.0% by mass, and still more preferably with respect to the mass of the woven fabric. Is 1.3-8.0 mass%. Next, when an epoxy compound having an epoxy group at both ends of the molecule is used as a cross-linking agent, the above-mentioned predetermined mechanical properties are imparted to the woven fabric to form a cross-linked structure capable of obtaining W & W properties while maintaining dyeability. From the viewpoint, the adhesion amount of the crosslinking agent in the plain woven fabric is preferably 2.1 to 17.5% by mass, more preferably 2.8 to 16.1% by mass, and further preferably 3 with respect to the mass of the woven fabric. 0.5 to 14.0% by mass. Moreover, the adhesion amount of the crosslinking agent in the woven fabric excluding the plain woven fabric is preferably 2.1 to 23.1% by mass, more preferably 2.8 to 21.0% by mass, and still more preferably based on the mass of the woven fabric. Is 3.5-21.0 mass%.

上記熱処理は、ピンテンター、スチームセッター、オーブン、ベーキング機等の加熱手段を用いて、好ましくは100〜180℃、より好ましくは130〜160℃で、好ましくは0.5〜8分間、より好ましくは1〜6分間の熱処理条件で行われ得る。このような条件であれば、セルロース繊維や架橋セルロース繊維を脆化させることなく、十分な架橋量が得られ得る。   The heat treatment is preferably performed at 100 to 180 ° C., more preferably 130 to 160 ° C., preferably 0.5 to 8 minutes, more preferably 1 using a heating means such as a pin tenter, steam setter, oven, baking machine or the like. It can be performed under heat treatment conditions of ˜6 minutes. Under such conditions, a sufficient amount of crosslinking can be obtained without embrittlement of the cellulose fiber or the crosslinked cellulose fiber.

[C.染色織物製品]
本発明の別の局面によれば、染色織物製品が提供され得る。染色織物製品は、A項に記載の織物製品を染色して得られる。上記織物製品は架橋処理が施されているが、架橋処理前の織地と同等の染色性を有し得る。また、染色処理後に架橋処理を施して得られる染色織物製品と比べて織地の寸法変化や色相変化が抑制され得る。そのため、上記織物製品を染色して得られる本発明の染色織物製品は、高品位な製品となる。
[C. Dyed textile products]
According to another aspect of the present invention, a dyed textile product may be provided. The dyed fabric product is obtained by dyeing the fabric product described in Section A. The textile product is subjected to a crosslinking treatment, but may have a dyeability equivalent to that of the fabric before the crosslinking treatment. Further, the dimensional change and hue change of the fabric can be suppressed as compared with the dyed fabric product obtained by performing the crosslinking treatment after the dyeing treatment. Therefore, the dyed fabric product of the present invention obtained by dyeing the fabric product is a high-quality product.

第1の実施形態の織物製品を染色して得られる染色織物製品の場合、染色後の上記平織の織地の緯方向の引張硬さ(LT)は、好ましくは0.75〜0.90、より好ましくは0.76〜0.89、さらに好ましくは0.77〜0.88である。また、染色後の上記平織の織地の緯方向の伸び(EMT)は、好ましくは3〜12%、より好ましくは3〜11%、さらに好ましくは3〜10%である。また、染色後の上記平織の織地の緯方向の引張回復性(RT)は、好ましくは45〜75%、より好ましくは50〜73%、さらに好ましくは50〜70%である。このような力学物性を有する染色織物製品は、実用上十分なW&W性と滲みの無い精巧な色模様とを備え得る。   In the case of the dyed textile product obtained by dyeing the textile product of the first embodiment, the tensile strength (LT) in the weft direction of the plain weave fabric after dyeing is preferably 0.75 to 0.90. Preferably it is 0.76-0.89, More preferably, it is 0.77-0.88. Moreover, the elongation (EMT) in the weft direction of the plain weave fabric after dyeing is preferably 3 to 12%, more preferably 3 to 11%, and further preferably 3 to 10%. Further, the tensile recovery (RT) in the weft direction of the plain weave fabric after dyeing is preferably 45 to 75%, more preferably 50 to 73%, and still more preferably 50 to 70%. A dyed fabric product having such mechanical properties can have practically sufficient W & W properties and an exquisite color pattern without bleeding.

第2の実施形態の織物製品を染色して得られる染色織物製品の場合、染色後の上記平織以外の織地の緯方向の引張硬さ(LT)は、好ましくは0.53〜0.75、より好ましくは0.55〜0.70、さらに好ましくは0.55〜0.68である。また、染色後の上記平織以外の織地の緯方向の伸び(EMT)は、4〜17%、より好ましくは4〜16%、さらに好ましくは4〜15%である。また、染色後の上記平織以外の織地の緯方向の引張回復性(RT)は、好ましくは45〜75%、より好ましくは45〜73%、さらに好ましくは45〜70%である。このような力学物性を有する染色織物製品は、実用上十分なW&W性と滲みの無い精巧な色模様とを備え得る。   In the case of a dyed fabric product obtained by dyeing the fabric product of the second embodiment, the tensile hardness (LT) in the weft direction of the woven fabric other than the plain weave after dyeing is preferably 0.53 to 0.75, More preferably, it is 0.55-0.70, More preferably, it is 0.55-0.68. Moreover, the elongation (EMT) of the wefts other than the plain weave after dyeing is 4 to 17%, more preferably 4 to 16%, and still more preferably 4 to 15%. Further, the tensile recovery (RT) in the weft direction of the woven fabric other than the plain weave after dyeing is preferably 45 to 75%, more preferably 45 to 73%, and further preferably 45 to 70%. A dyed fabric product having such mechanical properties can have practically sufficient W & W properties and an exquisite color pattern without bleeding.

[D.染色織物製品の製造方法]
上記第1の実施形態の織物製品を染色して得られる染色織物製品の製造方法は、セルロース繊維を60質量%以上含み、英式綿番手が30〜80番手であるセルロース系繊維を用いて製織された平織の織地を、架橋剤を含む架橋液を用いて架橋処理して、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチであり、緯方向の引張硬さが0.82〜0.97であり、緯方向の伸びが3〜12%である織地を得る工程(Ia)、および、工程(Ia)で得られた織地を染色する工程(工程IIa)を含む。
[D. Method for producing dyed fabric product]
The method for producing a dyed fabric product obtained by dyeing the fabric product of the first embodiment is woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and 30 to 80 English cotton counts. The resulting plain weave fabric is subjected to a crosslinking treatment using a crosslinking liquid containing a crosslinking agent, the warp density is 100 to 200 / inch, the weft density is 50 to 150 / inch, and the tensile hardness in the weft direction Is a step (Ia) of obtaining a woven fabric having a length of 0.82 to 0.97 and an elongation in the weft direction of 3 to 12%, and a step of dyeing the woven fabric obtained in the step (Ia) (step IIa). including.

上記第2の実施形態の織物製品を染色して得られる染色織物製品の製造方法は、セルロース繊維を60質量%以上含み、英式綿番手が40〜100番手であるセルロース系繊維を用いて製織された平織以外の織地を、架橋剤を含む架橋液を用いて架橋処理して、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチであり、緯方向の引張硬さが0.54〜0.78であり、緯方向の伸びが4〜17%であり、緯方向の引張回復性が45〜75%である織地を得る工程(Ib)、および、工程(Ib)で得られた織地を染色する工程(工程IIb)を含む。   The method for producing a dyed fabric product obtained by dyeing the fabric product of the second embodiment is woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and 40 to 100 English cotton counts. The woven fabric other than the plain weave is crosslinked using a crosslinking liquid containing a crosslinking agent, the warp density is 120 to 240 yarns / inch, the weft density is 60 to 170 yarns / inch, and the tensile in the weft direction A step (Ib) of obtaining a woven fabric having a hardness of 0.54 to 0.78, an elongation in the weft direction of 4 to 17%, and a tensile recovery in the weft direction of 45 to 75%, and a step ( A step of dyeing the fabric obtained in Ib) (step IIb).

上記染色織物製品の製造方法によれば、従来の製造方法における架橋処理に起因する色相の変化や模様の変形の問題を回避することができる。また、仕掛り在庫の減少に伴う生産性の向上効果が得られ得る。   According to the above method for producing a dyed fabric product, it is possible to avoid the problem of hue change and pattern deformation caused by the crosslinking treatment in the conventional production method. Moreover, the productivity improvement effect accompanying the reduction of the in-process inventory can be obtained.

工程(Ia)および工程(Ib)に関しては、B項に記載の架橋工程と同様の説明を適用することができる。   Regarding the step (Ia) and the step (Ib), the same explanation as the crosslinking step described in the item B can be applied.

工程(IIa)および工程(IIb)において、織地を染色する方法としては、任意の適切な染色方法が採用され得る。染色方法の具体例としては、浸染法、バッチ染色法、連続染色法、コールドバッチ法、捺染法、含浸法、印捺法、インクジェット印刷法、レーザープリンター印刷法、塗布法、噴霧法等が挙げられる。   In the step (IIa) and the step (IIb), any appropriate dyeing method can be adopted as a method for dyeing the fabric. Specific examples of the dyeing method include dip dyeing method, batch dyeing method, continuous dyeing method, cold batch method, printing method, impregnation method, printing method, ink jet printing method, laser printer printing method, coating method, spraying method and the like. It is done.

染色に用いる染料としては、直接染料、反応染料、建染染料、ナフトール染料、硫化染料等の任意の適切な染料を用いることができる。なかでも、染着性、染色堅牢性等の観点から、セルロースと化学反応して染着される反応染料を用いることが好ましい。   As a dye used for dyeing, any appropriate dye such as a direct dye, a reactive dye, a vat dye, a naphthol dye, and a sulfur dye can be used. Among these, from the viewpoint of dyeability, dyeing fastness, etc., it is preferable to use a reactive dye that is dyed by chemical reaction with cellulose.

工程(IIa)および工程(IIb)においては、染色方法としてインクジェット捺染法を適用することもできる。インクジェット捺染法としては、例えば特開2011−236548号公報に、反応染料で印刷した捺染紙と綿の織地を密着させ、加熱・加圧して綿の織地に捺染紙を貼り付け、次いで捺染紙を貼りつけたまま綿の織地をスチーム処理して、精細なデザインを堅牢、濃厚に織地に捺染する方法(ペーパー捺染法)が記載されている。従来、このようなインクジェット捺染法で染色された織地は、W&W性が付与されていないために、使用時にしわが生じやすかったり、洗濯により生じたしわを除去するにはアイロン掛けを要するものであった。また、デザインが一層精密になると滲み等が生じ、解像度に限界があった。これに対してA項に記載の所定の織地に対してペーパー捺染法を適用すると、隣接する染料の滲みが少なく、解像度の高い高品位の染色織物製品が得られ得る。さらに、得られた染色織物製品においては、使用時にしわが生じ難く、洗濯によるしわも乾燥時に除去され易いので、アイロン掛けが不要になり得る。   In the step (IIa) and the step (IIb), an ink jet printing method can be applied as a dyeing method. As an inkjet printing method, for example, in Japanese Patent Application Laid-Open No. 2011-236548, a printing paper printed with a reactive dye and a cotton fabric are brought into close contact with each other, heated and pressed to attach the printing paper to the cotton fabric, and then the printing paper is used. A method (paper printing method) is described in which a cotton fabric is subjected to a steam treatment while being pasted, and a fine design is firmly and densely printed on the fabric. Conventionally, fabrics dyed by such an ink-jet textile printing method have not been provided with W & W properties, and thus have been prone to wrinkles during use or require ironing to remove wrinkles caused by washing. It was. In addition, when the design becomes more precise, blurring occurs and the resolution is limited. On the other hand, when the paper printing method is applied to the predetermined woven fabric described in the section A, a high-quality dyed woven fabric product having a high resolution and less bleeding of adjacent dyes can be obtained. Furthermore, in the obtained dyed fabric product, wrinkles are unlikely to occur during use, and wrinkles due to washing are easily removed during drying, so ironing may be unnecessary.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例で用いられる測定方法および評価方法は以下の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The measurement methods and evaluation methods used in the examples are as follows.

[織地の力学物性(緯方向の引張硬さ(LT)、緯方向の伸び(EMT)、緯方向の伸長回復性(RT))]
織地の力学物性は、KES−FB1(カトーテック製)で測定(温度20℃、湿度65RH%)する。測定は20cm×20cmの試料を織地の緯方向が試料の引張方向となるように間隔5cmのチャックに把持し、4.00×10−3/secの歪み速度で最大荷重500gf/cmまで引っ張って行う。引張硬さ(LT)、緯方向の伸び(EMT)、緯方向の伸長回復性(RT)は図1のグラフより算出する。
LT=(a部分の面積+b部分の面積)/三角形ABCの面積
RT=(b部分の面積)/(a部分の面積+b部分の面積)×100
EMTは、最大荷重500gf/cm伸長した時の試料の伸び率である。
[Mechanical properties of the fabric (tensile hardness in the weft direction (LT), elongation in the weft direction (EMT), stretch recovery in the weft direction (RT))]
The mechanical properties of the fabric are measured by KES-FB1 (manufactured by Kato Tech) (temperature 20 ° C., humidity 65 RH%). The measurement is performed by holding a 20 cm × 20 cm sample on a chuck with a spacing of 5 cm so that the weft direction of the fabric is the tensile direction of the sample, and pulling up to a maximum load of 500 gf / cm at a strain rate of 4.00 × 10 −3 / sec. Do. Tensile hardness (LT), weft direction elongation (EMT), and weft direction stretch recovery (RT) are calculated from the graph of FIG.
LT = (area of part a + area of part b) / area of triangle ABC RT = (area of part b) / (area of part a + area of part b) × 100
EMT is the elongation percentage of the sample when the maximum load is 500 gf / cm.

[織地の引裂強力(cN)]
JIS L−1096 D法(ペンジュラム法)に準拠して測定した。具体的には、経10cm×緯6.3cmの試験片をそれぞれ3枚以上採取した。エレメンドルフ形引裂強さ試験機を用い、両つかみの中央で該試験片の長辺のほぼ中央に該辺と直角に鋭利な刃によって2cmの切れ目を入れ、残りの4.3cm分の経糸が引裂かれたときに示す荷重(cN)を測定した。平均値を生地の緯方向の引裂強力とした。
上記測定方法は緯方向の引裂強力の測定方法であるが、経方向の引裂強力は、試験片の長辺を緯方向とすること以外は同様にして測定できる。経方向および緯方向の引裂強力のうち、より低い値を当該試験片の引裂強力とした。
[Tear strength of fabric (cN)]
It measured based on JIS L-1096 D method (penjuram method). Specifically, three or more test pieces each having a length of 10 cm and a latitude of 6.3 cm were collected. Using an Elmendorf-type tear strength tester, a 2 cm cut was made with a sharp blade at a right angle to the center of the long side of the test piece at the center of both grips, and the remaining 4.3 cm of warp was The load (cN) indicated when torn was measured. The average value was defined as the tear strength in the weft direction of the fabric.
The above measuring method is a method of measuring the tear strength in the weft direction, but the tear strength in the warp direction can be measured in the same manner except that the long side of the test piece is in the weft direction. Of the tear strengths in the warp direction and the weft direction, the lower value was taken as the tear strength of the test piece.

[織地のW&W性評価試験]
JIS L−1096 洗濯後のしわ A法に準じて、洗濯を実施した。脱水後はタンブル乾燥を実施した。試験点数は1点とした。W&W性は、3名の判定者の平均値として、レプリカ(AATCC TEST METHOD 124にて規定)と比較して判定した。判定標準間は0.1級刻みで評価した。例えば、等級3.0から等級3.5の場合、3.1級と3.2級、3.3級、3.4級、3.5級とした。なお、一般に、W&W性が2.0級以上であれば、織物製品のしわが少なくなり、3.0級以上であればさらにしわが目立ちにくくなり、さらに3.5級以上とすると、アイロン掛けをしなくてもしわが目立ちにくいレベルである。
[W & W property evaluation test of fabric]
JIS L-1096 Wrinkles after washing Washing was performed according to the A method. After dehydration, tumble drying was performed. The number of test points was 1. The W & W property was judged as an average value of three judges as compared with a replica (specified in AATCC TEST METHOD 124). The evaluation standard was evaluated in increments of 0.1. For example, in the case of grades 3.0 to 3.5, the grades were 3.1, 3.2, 3.3, 3.4, and 3.5. In general, if the W & W property is 2.0 grade or higher, the wrinkle of the textile product is reduced, if it is 3.0 grade or higher, the wrinkle is less noticeable, and if it is 3.5 grade or higher, it is ironed. Even if you do not wrinkle, it is a level where wrinkles are not noticeable.

[織地の見掛け比重]
織地を10cm×10cmに切り取り、該質量を測定し、厚みは新潟精機製の生地厚さ計(DS−1211)を用いて測定し、見掛け比重を求めた。
[Apparent specific gravity of fabric]
The fabric was cut into 10 cm × 10 cm, the mass was measured, and the thickness was measured using a dough thickness meter (DS-1211) manufactured by Niigata Seiki, and the apparent specific gravity was determined.

[織地の染色性]
JIS Z 8729 色の表示方法−L*a*b*表色系に基づいて試験を実施した。L*a*b*表色系の場合、色差をΔE*ab(デルタ・イースター・エー・ビー)の数値で色差を表わすことができる。評価対象の織地と該織地と同じ織地であって架橋処理に供していない織地との色差(ΔE*ab)を求め、ΔE*abの値が3.2未満で最良、3.2〜6.5で良、6.5超で不良として染色性を評価した。なお、一般に、ΔE*abの値が3.2未満であれば同じ色と感じるレベルである。
[Dyeability of fabric]
The test was carried out based on the JIS Z 8729 color display method-L * a * b * color system. In the case of the L * a * b * color system, the color difference can be expressed by a numerical value of ΔE * ab (Delta Easter AB). The color difference (ΔE * ab) between the woven fabric to be evaluated and the same woven fabric that has not been subjected to the crosslinking treatment is obtained, and the ΔE * ab value of less than 3.2 is the best, and 3.2 to 6. The dyeability was evaluated as 5 for good and over 6.5 for poor. In general, if the value of ΔE * ab is less than 3.2, it is a level where the same color is perceived.

[織地の染色堅牢性]
各実施例・比較例で得られた染色織物製品の織地(検査対象の織地)および架橋処理をすることなく染色処理したこと以外は同じ織地(対照の織地)に対して、下記の(1)〜(5)の試験を行った。両者の染色堅牢性が同じ場合はゼロ点を、検査対象の織地が対照の織地に対して劣性の場合は−1点を、優勢の場合は+1点として、全5項目の合計点数で評価した。なお、染色堅牢度の強弱は数値にて等級で表示する(通常5級が最も強く、1級が最も弱い)。等級の判定は「グレースケール」というJISで定められた判定用スケールによって行う。しかし、耐光堅牢度(耐光試験)だけは、等級が8級まであり(8級が最も強い)、判定にはブルースケールを使用する。
(1)JIS L 0844 洗濯に対する染色堅ろう度試験方法 A−2法に準拠して試験を実施した。具体的には、ラウンダオメータという洗濯試験機を用いて、試験片を温度50℃、石鹸5g/L、液量100ml、試験瓶550±50ml、時間30分で処理した。その後、すすぎ、脱水、乾燥し、試験片の変退色と添付白布への汚染の程度をそれぞれ判定した。
(2)JIS L 0848 汗に対する染色堅ろう度試験方法に準拠して試験を実施した。具体的には、複合試験片を酸性及びアルカリ性の人工汗液に入れて常温で30分間浸漬した後、汗試験機に取付けて約12.5kPa(6cm×6cmの試験片の場合約45N)の荷重をかけた。汗試験機を37℃±2℃の乾燥機で4時間処理した後、汗試験機から複合試験片を取り離して乾燥し、試験片の変退色と添付白布の汚染の程度をそれぞれ判定した。
(3)JIS L 0842 紫外線カーボンアーク灯光に対する染色堅ろう度試験方法 第3露光法に準拠して試験を実施した。試験片を小窓の開いた厚紙に挟み、試料ホルダに取り付けた。紫外線カーボンアーク灯光を用いて、4級ブルースケールが標準退色するまで光を当てた。照射後、試験片を取り出し、光が当たった部分と当たらなかった部分の色の差を、標準退色したブルースケールと比較し、判定した。
(4)JIS L 0849 摩擦に対する染色堅ろう度試験方法に準拠して試験を実施した。具体的には、摩擦試験機II形を用い、乾燥試験と湿潤試験の二種類の試験を行った。II形の場合、摩擦子の先端に乾燥又は湿潤状態の白綿布を取り付け、試験片10cm間上を2Nの荷重で毎分30回往復の速度で100回往復摩擦し、白綿布への汚染の程度を判定した。
(5)色泣き試験方法は、大丸法に準拠して試験を実施した。試料の調整は、プリント柄や縞柄生地の場合は細長く切ったものを試験片とした。0.05%非イオン界面活性剤溶液の入ったビーカーに、試験片の片端を2cm浸漬した。2時間放置した後、ビーカーを取り除いて自然乾燥し、添付白布への汚染の程度を判定した。
[Dye fastness of fabric]
The following (1) for the same fabric (control fabric) except that the fabric of the dyed fabric product obtained in each of the Examples and Comparative Examples (the fabric to be inspected) and the dyed fabric was not subjected to the crosslinking treatment. The test of (5) was conducted. When both dyeing fastnesses are the same, a zero point is given, a -1 point is given when the fabric to be inspected is inferior to the control fabric, and a +1 point is given when the fabric is dominant. . In addition, the strength of dyeing fastness is indicated by a numerical value as a grade (usually grade 5 is the strongest and grade 1 is the weakest). The grade is judged by a judgment scale defined by JIS called “gray scale”. However, only the light fastness (light resistance test) has a grade up to grade 8 (grade 8 is the strongest), and the blue scale is used for judgment.
(1) JIS L 0844 Dye fastness test method for washing The test was carried out in accordance with the A-2 method. Specifically, the test piece was processed at a temperature of 50 ° C., a soap of 5 g / L, a liquid volume of 100 ml, a test bottle of 550 ± 50 ml, and a time of 30 minutes using a launderometer called a laundry tester. Thereafter, rinsing, dehydration, and drying were performed, and the degree of fading of the test piece and the degree of contamination of the attached white cloth were determined.
(2) The test was carried out in accordance with the JIS L 0848 sweat fastness test method. Specifically, the composite test piece is placed in an acidic and alkaline artificial sweat solution and immersed at room temperature for 30 minutes, and then attached to a sweat test machine and a load of about 12.5 kPa (about 45 N for a 6 cm × 6 cm test piece). I applied. After the sweat tester was treated with a dryer at 37 ° C. ± 2 ° C. for 4 hours, the composite test piece was removed from the sweat tester and dried, and the discoloration of the test piece and the degree of contamination of the attached white cloth were determined.
(3) JIS L 0842 Dye Fastness Test Method for Ultraviolet Carbon Arc Lamp Light A test was performed in accordance with the third exposure method. The test piece was sandwiched between cardboards with small windows and attached to the sample holder. Using an ultraviolet carbon arc lamp, light was applied until the quaternary blue scale faded standardly. After irradiation, the test piece was taken out and judged by comparing the color difference between the portion exposed to light and the portion not exposed to light with a standardly faded blue scale.
(4) The test was carried out in accordance with the dyeing fastness test method for JIS L 0849 friction. Specifically, two types of tests, a dry test and a wet test, were performed using a friction tester type II. In the case of type II, a dry or wet white cotton cloth is attached to the tip of the friction element, and the specimen is rubbed back and forth 100 times at a speed of 30 reciprocations per minute with a load of 2 N over 10 cm of the test piece. The degree was judged.
(5) The color crying test method was conducted according to the Daimaru method. For the preparation of the sample, in the case of a printed pattern or a striped pattern fabric, a long and cut piece was used as a test piece. One end of the test piece was immersed 2 cm in a beaker containing a 0.05% nonionic surfactant solution. After being left for 2 hours, the beaker was removed and air-dried, and the degree of contamination of the attached white cloth was determined.

[織地の表面染色性]
織地の表面染色性は、織地の裏面から見た織地の品位(目視で緯筋が目立つかどうか)で判定した。評価基準は、以下の通りである。判定者3名の評価の平均値を採用した。
5点…織地の緯筋が認められず、品位は満足いくものである
4点…織地の緯筋がやや認められる、品位良好である
3点…織地の緯筋があるが、購入可能である
2点…織地の緯筋が多く、商品性が低い
1点…織地の緯筋がかなり多く、商品性に乏しい
[Surface dyeability of fabric]
The surface dyeability of the woven fabric was determined by the quality of the woven fabric viewed from the back side of the woven fabric (whether the weirs are conspicuous visually). The evaluation criteria are as follows. The average value of the evaluation of three judges was adopted.
5 points: The weft of the woven fabric is not recognized, and the quality is satisfactory 4 points: The weft of the woven fabric is slightly recognized, 3 points are of good quality ... There is a weave of the woven fabric, but can be purchased 2 points: There are many weaves in the woven fabric, and the merchantability is low.

[織地の保水率]
絶乾質量既知の織地(質量Ag)をバイアス状に10cm×10cmの大きさに切り取り金属容器の中に入れ、3Lの蒸留水を加え、25℃の温度に保ちつつ1時間浸漬放置した。続いて、遠心分離機(トミー工業製、LC−100)に試験片をセットし、2000rpmで3分間脱水処理を行った後の重量(Bg)を求め、計算式[1]より保水率を算出した。なお、絶乾質量とは、バイアス状に10cm×10cmの大きさに切り取った織地を、熱風乾燥器(ヤマト科学製、DX400、設定温度105℃)に2時間放置した後、青色シリカゲルの入ったデシケータで2時間冷却し、次いで該織地の質量を測ることで得られる値である。
保水率(%)=(B−A)/A×100・・・[1]
[Water retention rate of fabric]
A fabric with a known dry mass (mass Ag) was cut to a size of 10 cm × 10 cm in a bias shape, placed in a metal container, added with 3 L of distilled water, and allowed to stand immersed for 1 hour while maintaining the temperature at 25 ° C. Subsequently, a test piece was set in a centrifuge (LC-100, manufactured by Tommy Kogyo Co., Ltd.), the weight (Bg) after dehydration treatment was performed at 2000 rpm for 3 minutes, and the water retention rate was calculated from the formula [1]. did. The absolutely dry mass means that the fabric cut into a size of 10 cm × 10 cm in a bias shape was left in a hot air dryer (Yamato Kagaku, DX400, set temperature 105 ° C.) for 2 hours, and then blue silica gel was added. It is a value obtained by cooling with a desiccator for 2 hours and then measuring the mass of the fabric.
Water retention rate (%) = (B−A) / A × 100 [1]

[織地の寸法変化率]
JIS L−1096 織物の寸法変化 G法に準拠して、織地の寸法変化率を測定した。具体的には、経方向及び緯方向に夫々3対の印を20cm間隔で設け測定区間として、処理前後の測定区間の長さを計測し、計算式[2]より、寸法変化率を求めた。
寸法変化率(%)=(処理後の測定長の平均値−処理前の測定長の平均値)/処理前の測定長の平均値)×100・・・[2]
[Dimensional change rate of fabric]
JIS L-1096 Dimensional change of woven fabric The dimensional change rate of the woven fabric was measured according to the G method. Specifically, three pairs of marks are provided at intervals of 20 cm in the warp direction and the weft direction, and the length of the measurement section before and after processing is measured as the measurement section, and the dimensional change rate is obtained from the calculation formula [2]. .
Dimensional change rate (%) = (average value of measurement length after treatment−average value of measurement length before treatment) / average value of measurement length before treatment) × 100 [2]

[実施例1]
英国式綿番手が50番手の綿糸(綿100%、単糸)を経糸とし、英国式綿番手が40番手の綿糸(綿100%、80番手の双糸)を緯糸として、経糸密度148本/インチおよび緯糸密度70本/インチの織密度で平織の織地を製織した。得られた織地を、糊抜き、精練(90℃×1分の湯洗いで糊抜きを行った後、1.5質量%の過硫酸ナトリウム、2重量%の水酸化ナトリウム水溶液に浸漬し、マングルで絞った後、庫内90℃の飽和蒸気の条件下で30分間滞留)、漂白(1.2質量%の亜塩素酸ナトリウム液に浸漬し、マングルで絞った後、庫内90℃の飽和蒸気の条件下で30分間滞留)、水洗(60℃の水で1分処理して残留薬剤を除去)の順で処理して乾燥した。
[Example 1]
The British cotton count uses 50th cotton yarn (100% cotton, single yarn) as warp, and the British cotton count uses 40th cotton yarn (100% cotton, 80th double yarn) as weft, and the warp density is 148 yarns / A plain weave fabric was woven at an inch and weft density of 70 yarns / inch. The resulting woven fabric was desizing and scouring (90 ° C. x 1 minute hot water washing, then dipped in 1.5% by weight sodium persulfate, 2% by weight sodium hydroxide aqueous solution, mangle After squeezing, it is kept for 30 minutes under the condition of 90 ° C saturated steam in the chamber, bleaching (immersion in 1.2% by mass sodium chlorite solution, squeezing with mangle, and then saturating at 90 ° C in the chamber The sample was treated in the order of residence for 30 minutes under steam conditions, and then washed with water (treated with water at 60 ° C. for 1 minute to remove the residual drug) and dried.

次いで、シルケット加工として、20質量%の水酸化ナトリウム水溶液に20℃で10秒浸漬し、マングルで絞った後に湯洗いし、酸による中和と水洗および乾燥を実施した。さらに、織地を液体アンモニアに約2秒間浸漬した後、水洗乾燥した。次いで、液体アンモニアに約2秒間浸漬した後、水洗乾燥した。次に、織地を、柔軟剤として製品名「ファインテックス PE−140−E」(DIC社製)3.0質量%および製品名「マーポンFL−75N」(松本油脂製薬社製)0.3質量%を含む処理液を付与したパッダーに浸漬し、マングルで付与率(パッドオン率:織地中に含まれる処理液重量/処理液付与前の織地の重量×100)70%として絞った後、水分を乾燥させた。   Next, as a mercerizing process, it was immersed in a 20% by mass aqueous sodium hydroxide solution at 20 ° C. for 10 seconds, squeezed with a mangle, washed with hot water, neutralized with acid, washed with water and dried. Further, the fabric was immersed in liquid ammonia for about 2 seconds, and then washed and dried. Subsequently, after being immersed in liquid ammonia for about 2 seconds, it was washed with water and dried. Next, the fabric is used as a softener with a product name of “Finetex PE-140-E” (manufactured by DIC) 3.0 mass% and a product name “Marpon FL-75N” (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) 0.3 mass. After being dipped in a padder to which a treatment liquid containing 1% is applied and squeezed with a mangle as the application rate (pad-on rate: weight of the treatment liquid contained in the fabric / weight of the fabric before application of the treatment liquid × 100) 70%, Dried.

続いて、織地を架橋処理液(架橋剤としてグリセリンジグリシジルエーテルを5.0質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を0.1質量%含有)を付与したパッダーに浸漬し、マングルで付与率(パッドオン率:織地中に含まれる架橋処理液重量/架橋処理液付与前の織地の重量×100)70%として絞った後、水分を乾燥させた。その後、ピンテンターを用いて、経糸155本/インチ、緯糸72本/インチの状態を保ちつつ150℃で2分間熱処理して、セルロース繊維と架橋剤とを反応させた。これにより、架橋処理された平織の織地からなる織物製品1を得た。織物製品1(織地)のW&W性は2.2級であり、見掛け比重は0.62g/cmであった。 Subsequently, the fabric was dipped in a padder provided with a crosslinking treatment liquid (containing 5.0% by mass of glycerin diglycidyl ether as a crosslinking agent and 0.1% by mass of 45% by mass zinc tetrafluoroborate aqueous solution as a catalyst), After squeezing with a mangle as 70% application rate (pad-on rate: weight of crosslinking treatment solution contained in woven fabric / weight of woven fabric before application of crosslinking treatment solution x 100), moisture was dried. Thereafter, using a pin tenter, heat treatment was performed at 150 ° C. for 2 minutes while maintaining the state of warp 155 / inch and weft 72 / inch to react the cellulose fiber and the crosslinking agent. As a result, a woven product 1 made of a plain woven fabric subjected to crosslinking treatment was obtained. The W & W property of the woven fabric product 1 (woven fabric) was 2.2, and the apparent specific gravity was 0.62 g / cm 3 .

織物製品1をタテ10cm、ヨコ10cmに切り取り、染色処理液に浸漬して染色した。具体的には、反応染料のC.I. Reactive Orange 35、C.I. Reactive Red 56およびC.I. Reactive Black 13をそれぞれ、0.04%o.w.f、0.03%o.w.fおよび0.004%o.w.fの濃度、助剤の硫酸ナトリウム10水和物を20g/lの濃度で含む染色処理液に浴比1:8で、90℃1時間浸漬して染色した。これにより、染色織物製品1を得た。   The textile product 1 was cut into 10 cm vertical and 10 cm wide and dipped in a dyeing solution to be dyed. Specifically, reactive dye C.I. I. Reactive Orange 35, C.I. I. Reactive Red 56 and C.I. I. Reactive Black 13 was 0.04% o. w. f, 0.03% o. w. f and 0.004% o. w. Dyeing was carried out by immersing in a dyeing solution containing a concentration of f and an auxiliary sodium sulfate decahydrate at a concentration of 20 g / l at a bath ratio of 1: 8 at 90 ° C. for 1 hour. Thereby, the dyed fabric product 1 was obtained.

[実施例2]
架橋剤としてエチレングリコールジグリシジルエーテルを20.0質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を2.7質量%含有する架橋処理液を用いたこと以外は実施例1と同様にして織物製品2を得た。織物製品2(織地)のW&W性は3.2級であり、見掛け比重は0.73g/cmであった。
[Example 2]
Example 1 was used except that a crosslinking treatment solution containing 20.0% by mass of ethylene glycol diglycidyl ether as a crosslinking agent and 2.7% by mass of a 45% by mass aqueous solution of zinc tetrafluoroborate as a catalyst was used. Textile product 2 was obtained. The W & W property of the woven product 2 (woven fabric) was 3.2, and the apparent specific gravity was 0.73 g / cm 3 .

また、織物製品2を実施例1と同様に染色して、染色織物製品2を得た。染色処理前後の寸法変化率を求めたところ、経方向が−1.6%、緯方向が−0.3%であった。   Further, the textile product 2 was dyed in the same manner as in Example 1 to obtain a dyed textile product 2. When the dimensional change rate before and after the dyeing treatment was determined, the warp direction was −1.6% and the weft direction was −0.3%.

[実施例3]
架橋剤としてジエチレングリコールジグリシジルエーテルおよび65質量%のジメチロールジヒドロキシエチレン尿素水溶液をそれぞれ10質量%および6質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を1.9質量%含有する架橋処理液を用いたこと以外は実施例1と同様にして織物製品3を得た。織物製品3(織地)のW&W性は3.0級であり、見掛け比重は0.69g/cmであった。
[Example 3]
A crosslinking treatment solution containing 10% by mass and 6% by mass of diethylene glycol diglycidyl ether and 65% by mass dimethylol dihydroxyethylene urea aqueous solution as a crosslinking agent, and 1.9% by mass of 45% by mass zinc tetrafluoroborate aqueous solution as a catalyst, respectively. A woven fabric product 3 was obtained in the same manner as in Example 1 except that was used. The W & W property of the woven product 3 (woven fabric) was 3.0 grade, and the apparent specific gravity was 0.69 g / cm 3 .

また、織物製品3を実施例1と同様に染色して、染色織物製品3を得た。   Further, the textile product 3 was dyed in the same manner as in Example 1 to obtain a dyed textile product 3.

[実施例4]
架橋剤として65質量%ジメチロールジヒドロキシエチレン尿素水溶液を10質量%、触媒として25質量%の塩化マグネシウム水溶液を2質量%含有する架橋処理液を用いたこと以外は実施例1と同様にして織物製品4を得た。織物製品4(織地)のW&W性は2.8級であり、見掛け比重は0.66g/cmであった。
[Example 4]
A textile product in the same manner as in Example 1 except that a crosslinking treatment solution containing 10% by mass of 65% by mass dimethylol dihydroxyethylene urea aqueous solution as a crosslinking agent and 2% by mass of 25% by mass magnesium chloride aqueous solution as a catalyst was used. 4 was obtained. The W & W property of the woven product 4 (woven fabric) was 2.8 grade, and the apparent specific gravity was 0.66 g / cm 3 .

また、織物製品4を実施例1と同様に染色して、染色織物製品4を得た。   The textile product 4 was dyed in the same manner as in Example 1 to obtain a dyed textile product 4.

[実施例5]
経糸として英国式綿番手が80番手の綿糸(綿100%、単糸)および緯糸として英国式綿番手80番単手の綿糸(綿100%、単糸)を用いて、経糸密度155本/インチおよび緯糸密度87本/インチの織密度で本繻子(サテン)織の織地を製織したこと、架橋剤としてエチレングリコールジグリシジルエーテルを30.0質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を4.0質量%含有する架橋処理液を用いたこと、および経糸165本/インチ、緯糸89本/インチの状態を保ちながら熱処理を行ったこと以外は実施例1と同様にして、織物製品5を得た。織物製品5(織地)のW&W性は3.5級であり、見掛け比重は0.69g/cmであった。
[Example 5]
British cotton count is 80th cotton (100% cotton, single yarn) as warp and British cotton 80th single cotton yarn (100% cotton, single yarn) is used as weft and warp density is 155 yarns / inch And weaving a satin woven fabric with a weft density of 87 yarns / inch, 30.0% by mass of ethylene glycol diglycidyl ether as a cross-linking agent, and 45% by mass of a tetrafluorozinc borate aqueous solution as a catalyst In the same manner as in Example 1, except that a crosslinking treatment solution containing 4.0% by mass of the material was used, and heat treatment was performed while maintaining warp 165 / inch and weft 89 / inch. 5 was obtained. The W & W property of the woven product 5 (woven fabric) was 3.5 grade, and the apparent specific gravity was 0.69 g / cm 3 .

また、織物製品5を実施例1と同様に染色して、染色織物製品5を得た。   The textile product 5 was dyed in the same manner as in Example 1 to obtain a dyed textile product 5.

[実施例6]
架橋剤としてエチレングリコールジグリシジルエーテルを10.0質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を1.3質量%含有する架橋処理液を用いたこと以外は実施例5と同様にして織物製品6を得た。織物製品6(織地)のW&W性は2.8級であり、見掛け比重は0.55g/cmであった。
[Example 6]
Except that a crosslinking treatment solution containing 10.0% by mass of ethylene glycol diglycidyl ether as a crosslinking agent and 1.3% by mass of a 45% by mass aqueous solution of zinc tetrafluoroborate as a catalyst was used in the same manner as in Example 5. A textile product 6 was obtained. The W & W property of the woven fabric product 6 (woven fabric) was 2.8 grade, and the apparent specific gravity was 0.55 g / cm 3 .

また、織物製品6を実施例1と同様に染色して、染色織物製品6を得た。   Further, the textile product 6 was dyed in the same manner as in Example 1 to obtain a dyed textile product 6.

[比較例1]
架橋剤としてエチレングリコールジグリシジルエーテルを25.5質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を3.4質量%含有する架橋処理液を用いたこと以外は実施例1と同様にして織物製品C1を得た。織物製品C1(織地)のW&W性は3.4級であり、見掛け比重は0.77g/cmであった。
[Comparative Example 1]
Except that a crosslinking treatment solution containing 25.5% by mass of ethylene glycol diglycidyl ether as a crosslinking agent and 3.4% by mass of a 45% by mass aqueous solution of zinc tetrafluoroborate as a catalyst was used in the same manner as in Example 1. A woven product C1 was obtained. The W & W property of the woven product C1 (woven fabric) was 3.4 grade, and the apparent specific gravity was 0.77 g / cm 3 .

また、織物製品C1を実施例1と同様に染色して、染色織物製品C1を得た。   Further, the textile product C1 was dyed in the same manner as in Example 1 to obtain a dyed textile product C1.

[比較例2]
架橋剤としてジエチレングリコールジグリシジルエーテルを2質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を0.3質量%含有する架橋処理液を用いたこと以外は実施例1と同様にして織物製品C2を得た。織物製品C2(織地)のW&W性は1.6級であり、見掛け比重は0.61g/cmであった。
[Comparative Example 2]
Textile product C2 in the same manner as in Example 1 except that a crosslinking treatment solution containing 2% by mass of diethylene glycol diglycidyl ether as a crosslinking agent and 0.3% by mass of a 45% by mass aqueous solution of zinc tetrafluoroborate as a catalyst was used. Got. The W & W property of the woven product C2 (woven fabric) was 1.6, and the apparent specific gravity was 0.61 g / cm 3 .

また、織物製品C2を実施例1と同様に染色して、染色織物製品C2を得た。   Further, the textile product C2 was dyed in the same manner as in Example 1 to obtain a dyed textile product C2.

[比較例3]
架橋剤として65質量%ジメチロールジヒドロキシエチレン尿素水溶液を30質量%、触媒として25質量%の塩化マグネシウム水溶液を6質量%含有する架橋処理液を用いたこと以外は実施例5と同様にして織物製品C3を得た。織物製品C3(織地)のW&W性は3.8級であり、見掛け比重は0.63g/cmであった。
[Comparative Example 3]
A textile product in the same manner as in Example 5 except that a crosslinking treatment solution containing 30% by mass of 65% by mass dimethylol dihydroxyethylene urea aqueous solution as a crosslinking agent and 6% by mass of 25% by mass magnesium chloride aqueous solution as a catalyst was used. C3 was obtained. The W & W property of the woven product C3 (woven fabric) was 3.8 grade, and the apparent specific gravity was 0.63 g / cm 3 .

また、織物製品C3を実施例1と同様に染色して、染色織物製品C3を得た。   Further, the textile product C3 was dyed in the same manner as in Example 1 to obtain a dyed textile product C3.

[比較例4]
架橋剤としてジエチレングリコールジグリシジルエーテルを1質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を0.1質量%含有する架橋処理液を用いたこと以外は実施例5と同様にして織物製品C4を得た。織物製品C4(織地)のW&W性は1.7級であり、見掛け比重は0.48g/cmであった。
[Comparative Example 4]
Textile product C4 in the same manner as in Example 5 except that a crosslinking treatment solution containing 1% by mass of diethylene glycol diglycidyl ether as a crosslinking agent and 0.1% by mass of a 45% by mass zinc tetrafluoroborate aqueous solution as a catalyst was used. Got. The W & W property of the woven product C4 (woven fabric) was 1.7 grade, and the apparent specific gravity was 0.48 g / cm 3 .

また、織物製品C4を実施例1と同様に染色して、染色織物製品C4を得た。   Further, the textile product C4 was dyed in the same manner as in Example 1 to obtain a dyed textile product C4.

[比較例5]
架橋処理しなかったこと以外は実施例1と同様にして織物製品C5を得た。織物製品C5(織地)のW&W性は1.5級であり、見掛け比重は0.59g/cmであった。
[Comparative Example 5]
Textile product C5 was obtained in the same manner as in Example 1 except that the crosslinking treatment was not performed. The W & W property of the woven product C5 (woven fabric) was 1.5 grade, and the apparent specific gravity was 0.59 g / cm 3 .

また、織物製品C5を実施例1と同様に染色して、染色織物製品C5を得た。   Further, the textile product C5 was dyed in the same manner as in Example 1 to obtain a dyed textile product C5.

次いで、架橋剤としてエチレングリコールジグリシジルエーテルを20.0質量%、触媒として45質量%のテトラフルオロ硼酸亜鉛水溶液を2.7質量%含有する架橋処理液(実施例2と同じの架橋処理液)を用いたこと以外は実施例1と同様にして、染色織物製品C5に対して、架橋処理を施した。架橋処理前後の寸法変化率を求めたところ、経方向が−4.4%、緯方向が−2.0%であった。また、架橋処理によって、織地が全体的にやや黄ばんだ。   Subsequently, a crosslinking treatment liquid containing 20.0% by mass of ethylene glycol diglycidyl ether as a crosslinking agent and 2.7% by mass of a 45% by mass zinc tetrafluoroborate aqueous solution as a catalyst (the same crosslinking treatment liquid as in Example 2). The dyed textile product C5 was subjected to a crosslinking treatment in the same manner as in Example 1 except that was used. When the dimensional change rate before and after the crosslinking treatment was determined, the warp direction was −4.4% and the weft direction was −2.0%. In addition, the entire fabric was slightly yellowed due to the crosslinking treatment.

上記実施例および比較例で得られた織物製品および染色織物製品の各種評価結果をそれぞれ表1および表2に示す。

Figure 2015137436
Figure 2015137436
Tables 1 and 2 show various evaluation results of the fabric products and dyed fabric products obtained in the above Examples and Comparative Examples, respectively.
Figure 2015137436
Figure 2015137436

表1および表2から明らかなように、架橋によって特定の力学物性を付与された実施例の織物製品は、実用上十分なW&W性を有している。さらに、実施例の織物製品を染色処理に供することにより、染色性、染色堅牢性および表面染色性に優れた高品位の染色織物製品が得られた。一方、比較例1および比較例3の織物製品は、優れたW&W性を有するものの、染色処理に供した場合の染色性が不十分である。また、比較例2、比較例4および比較例5の織物製品は、染色処理に供した場合に優れた染色性等を示すものの、W&W性が不十分である。これらの結果から、力学的物性が所定の範囲内になるように架橋処理を施すことにより、本来の(架橋前の)織地の染色性を維持しつつ、実用上十分なW&W性を付与できることが分かる。また、実施例の染色織物製品は、染色処理後に架橋処理を施して得られる染色織物製品に比べて、寸法変化および色相変化が抑制されていた。このことから、本発明の織物製品を染色して得られる染色織物製品は、色相の再現性や元柄の寸法保持性の点で優れており、精巧な色柄模様の付与の観点から有利であることがわかる。   As is apparent from Tables 1 and 2, the textile products of Examples given specific mechanical properties by cross-linking have practically sufficient W & W properties. Further, by subjecting the fabric products of the examples to a dyeing treatment, a high-quality dyed fabric product excellent in dyeability, dyeing fastness and surface dyeability was obtained. On the other hand, the textile products of Comparative Example 1 and Comparative Example 3 have excellent W & W properties, but have insufficient dyeability when subjected to a dyeing treatment. Moreover, although the textile products of the comparative example 2, the comparative example 4, and the comparative example 5 show the dyeability etc. which were excellent when it used for the dyeing | staining process, W & W property is inadequate. From these results, it is possible to impart practically sufficient W & W properties while maintaining the dyeability of the original (before crosslinking) by applying a crosslinking treatment so that the mechanical properties are within a predetermined range. I understand. In addition, in the dyed fabric product of the example, the dimensional change and the hue change were suppressed as compared with the dyed fabric product obtained by performing the crosslinking treatment after the dyeing treatment. From this, the dyed textile product obtained by dyeing the textile product of the present invention is excellent in terms of hue reproducibility and original pattern dimension retention, and is advantageous from the viewpoint of giving an elaborate color pattern. I know that there is.

本発明の織物製品は、ハンカチ等の種々の繊維製品に好適に用いられ得る。   The textile product of the present invention can be suitably used for various textile products such as handkerchiefs.

Claims (10)

セルロース繊維を60質量%以上含み、英式綿番手が30〜80番手であるセルロース系繊維を用いて製織された、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチである平織の織地を含む織物製品であって、
該織地中、該セルロース繊維が、架橋剤によって架橋されており、
該織地の緯方向の引張硬さが0.82〜0.97であり、緯方向の伸びが3〜12%である、織物製品。
Woven using cellulosic fibers containing 60% by mass or more of cellulose fiber and having an English cotton count of 30 to 80, the warp density is 100 to 200 / inch, and the weft density is 50 to 150 / A textile product comprising a plain weave fabric that is an inch,
In the woven fabric, the cellulose fiber is crosslinked by a crosslinking agent,
A textile product in which the weft of the fabric has a tensile hardness in the weft direction of 0.82 to 0.97 and an elongation in the weft direction of 3 to 12%.
セルロース繊維を60質量%以上含み、英式綿番手が40〜100番手であるセルロース系繊維を用いて製織された、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチである平織以外の織地を含む織物製品であって、
該織地中、該セルロース繊維が、架橋剤によって架橋されており、
該織地の緯方向の引張硬さが0.54〜0.78であり、緯方向の伸びが4〜17%であり、緯方向の引張回復性が45〜75%である、織物製品。
Woven using cellulosic fibers containing 60% by mass or more of cellulose fibers and having an English cotton count of 40-100, the warp density is 120-240 yarns / inch, and the weft density is 60-170 yarns / inch. A textile product containing a fabric other than a plain weave that is an inch,
In the woven fabric, the cellulose fiber is crosslinked by a crosslinking agent,
A textile product in which the weft of the woven fabric has a tensile strength in the weft direction of 0.54 to 0.78, an elongation in the weft direction of 4 to 17%, and a tensile recovery in the weft direction of 45 to 75%.
前記織地の保水率が、15〜30%である、請求項1または2に記載の織物製品。   The textile product according to claim 1 or 2, wherein the water retention rate of the woven fabric is 15 to 30%. 前記架橋剤が、エポキシ化合物および環状尿素化合物から選択される少なくとも1種を含む、請求項1から3のいずれかに記載の織物製品。   The textile product according to any one of claims 1 to 3, wherein the cross-linking agent includes at least one selected from an epoxy compound and a cyclic urea compound. 請求項1から4のいずれかに記載の織物製品を染色して得られる、染色織物製品。   A dyed textile product obtained by dyeing the textile product according to any one of claims 1 to 4. 請求項1に記載の平織の織地を含む織物製品を染色して得られ、染色後の該織地の緯方向の引張硬さが0.75〜0.90である、請求項5に記載の染色織物製品。   Dyeing according to claim 5, obtained by dyeing a textile product comprising a plain weave fabric according to claim 1, wherein the tensile strength in the weft direction of the fabric after dyeing is 0.75 to 0.90. Textile products. 請求項2に記載の平織以外の織地を含む織物製品を染色して得られ、染色後の該織地の緯方向の引張硬さが0.53〜0.75である、請求項5に記載の染色織物製品。   It is obtained by dyeing a textile product containing a woven fabric other than the plain weave according to claim 2, and the tensile hardness in the weft direction of the woven fabric after dyeing is 0.53 to 0.75. Dyed textile products. 請求項2に記載の平織以外の織地を含む織物製品を染色して得られ、染色後の該織地の緯方向の引張回復性が45〜75%である、請求項5に記載の染色織物製品。   The dyed textile product according to claim 5, which is obtained by dyeing a textile product containing a woven fabric other than the plain weave according to claim 2, wherein the tensile recovery in the weft direction of the woven fabric after dyeing is 45 to 75%. . セルロース繊維を60質量%以上含み、英式綿番手が30〜80番手であるセルロース系繊維を用いて製織された平織の織地を、架橋剤を含む架橋液を用いて架橋処理して、経糸密度が100〜200本/インチであり、緯糸密度が50〜150本/インチであり、緯方向の引張硬さが0.82〜0.97であり、緯方向の伸びが3〜12%である織地を得る工程(Ia)、および
工程(Ia)で得られた織地を染色する工程(工程IIa)、
を含む、染色織物製品の製造方法。
A plain weave fabric woven with cellulosic fibers containing 60% by mass or more of cellulose fibers and having an English cotton count of 30 to 80 is crosslinked using a crosslinking liquid containing a crosslinking agent, and warp density Is 100 to 200 yarns / inch, the weft density is 50 to 150 yarns / inch, the tensile hardness in the weft direction is 0.82 to 0.97, and the elongation in the weft direction is 3 to 12%. A step of obtaining a woven fabric (Ia), and a step of dyeing the woven fabric obtained in the step (Ia) (step IIa),
A method for producing a dyed textile product.
セルロース繊維を60質量%以上含み、英式綿番手が40〜100番手であるセルロース系繊維を用いて製織された平織以外の織地を、架橋剤を含む架橋液を用いて架橋処理して、経糸密度が120〜240本/インチであり、緯糸密度が60〜170本/インチであり、緯方向の引張硬さが0.54〜0.78であり、緯方向の伸びが4〜17%であり、緯方向の引張回復性が45〜75%である織地を得る工程(Ib)、および
工程(Ib)で得られた織地を染色する工程(工程IIb)、
を含む、染色織物製品の製造方法。
A woven fabric other than plain weave containing cellulose fibers containing 60% by mass or more and having an English cotton count of 40 to 100 is crosslinked using a crosslinking liquid containing a crosslinking agent, and warp The density is 120 to 240 yarns / inch, the weft density is 60 to 170 yarns / inch, the tensile strength in the weft direction is 0.54 to 0.78, and the elongation in the weft direction is 4 to 17%. A step of obtaining a woven fabric having a tensile recovery in the weft direction of 45 to 75% (Ib), and a step of dyeing the woven fabric obtained in the step (Ib) (step IIb),
A method for producing a dyed textile product.
JP2014010141A 2014-01-23 2014-01-23 Textile products Active JP6358803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010141A JP6358803B2 (en) 2014-01-23 2014-01-23 Textile products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010141A JP6358803B2 (en) 2014-01-23 2014-01-23 Textile products

Publications (2)

Publication Number Publication Date
JP2015137436A true JP2015137436A (en) 2015-07-30
JP6358803B2 JP6358803B2 (en) 2018-07-18

Family

ID=53768654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010141A Active JP6358803B2 (en) 2014-01-23 2014-01-23 Textile products

Country Status (1)

Country Link
JP (1) JP6358803B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012901A (en) * 2016-07-22 2018-01-25 日油株式会社 Fiber treatment agent
WO2018135139A1 (en) * 2017-01-23 2018-07-26 パナソニックIpマネジメント株式会社 Polymer and method for producing polymer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195765A (en) * 1996-12-26 1998-07-28 Unitika Ltd Method for processing cloth made of regenerated cellulose fiber
JPH10237766A (en) * 1996-12-17 1998-09-08 Asahi Chem Ind Co Ltd Processing of artificial cellulosic fiber
JP2013147762A (en) * 2012-01-18 2013-08-01 Nisshinbo Textile Inc Woven fabric product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237766A (en) * 1996-12-17 1998-09-08 Asahi Chem Ind Co Ltd Processing of artificial cellulosic fiber
JPH10195765A (en) * 1996-12-26 1998-07-28 Unitika Ltd Method for processing cloth made of regenerated cellulose fiber
JP2013147762A (en) * 2012-01-18 2013-08-01 Nisshinbo Textile Inc Woven fabric product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012901A (en) * 2016-07-22 2018-01-25 日油株式会社 Fiber treatment agent
WO2018135139A1 (en) * 2017-01-23 2018-07-26 パナソニックIpマネジメント株式会社 Polymer and method for producing polymer film
JPWO2018135139A1 (en) * 2017-01-23 2019-11-07 パナソニックIpマネジメント株式会社 Method for producing polymer and polymer film
US10851181B2 (en) 2017-01-23 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Polymer and method for producing polymer membrane
JP7113194B2 (en) 2017-01-23 2022-08-05 パナソニックIpマネジメント株式会社 Method for manufacturing polymer membrane

Also Published As

Publication number Publication date
JP6358803B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
EP3494254B1 (en) Non-iron fabrics and garments, and a method of finishing the same
US2121005A (en) Process of producing textiles with calender finish permanent to washing and product thereof
US11987927B2 (en) Launderable activated cotton
TW389799B (en) Cellulose multifilament yarn and fabric made thereof
JP6358803B2 (en) Textile products
JP2010144279A (en) Patterned denim product and method for producing the same
JP2002503294A (en) Method for treating fibrous cellulosic material
CN111394864A (en) Cotton satin type pure cotton fabric and preparation method and application thereof
JP2009007680A (en) Denim fabric and method for preventing discoloration of the fabric
EP0268368B1 (en) Fabric treatment
KR101629252B1 (en) Dyeing method
CN106192161B (en) A kind of viscous processing method for washing air bubble color-woven fabric
JP2010144277A (en) Denim product and method for producing the same
US20080220677A1 (en) Fabrics having soil resistance and no oil stains after wiping and manufacturing method thereof
JPH03206180A (en) Washable silk woven fabric and production thereof
JP2012001830A (en) Cellulosic fabric with good washing durability
CN114075787A (en) Production process of moisture crosslinking finished fabric
JP2006052480A (en) Method for processing cellulosic fiber-containing cloth and the cellulosic fiber-containing cloth
CN109023991A (en) A kind of woven fabric dispersion printing technology
JP2007182648A (en) Denim fabric and method for preventing color-fading of the fabric
JP4195679B2 (en) Method for producing a cotton fiber product having a smooth surface
JP2780747B2 (en) Cotton fiber-containing fiber product and method for producing the same
CN118147916A (en) Finishing method of high non-ironing cotton regenerated cellulose fabric based on liquid ammonia treatment
JP2022149482A (en) Fiber structure, and production method thereof
TWI360592B (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250