JP2015129744A - Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm - Google Patents

Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm Download PDF

Info

Publication number
JP2015129744A
JP2015129744A JP2014246174A JP2014246174A JP2015129744A JP 2015129744 A JP2015129744 A JP 2015129744A JP 2014246174 A JP2014246174 A JP 2014246174A JP 2014246174 A JP2014246174 A JP 2014246174A JP 2015129744 A JP2015129744 A JP 2015129744A
Authority
JP
Japan
Prior art keywords
acid
soil
biofilm
organic acid
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014246174A
Other languages
Japanese (ja)
Inventor
英樹 村上
Hideki Murakami
英樹 村上
良栄 菊地
Ryoei Kikuchi
良栄 菊地
正行 坪井
Masayuki Tsuboi
正行 坪井
雅人 上島
Masato Ueshima
雅人 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSE CO Ltd
Original Assignee
NSE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSE CO Ltd filed Critical NSE CO Ltd
Priority to JP2014246174A priority Critical patent/JP2015129744A/en
Publication of JP2015129744A publication Critical patent/JP2015129744A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)
  • Protection Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a farmland soil decontamination method, utilizing an organic acid and a filamentous bacterium/actinomycete biofilm, which breeds filamentous bacteria, actinomycetes, etc., in an organic acid solution and extracts cesium from soil to decontaminate farm land.SOLUTION: A farmland soil decontamination method utilizing an organic acid and a filamentous bacterium/actinomycete biofilm includes: forming the biofilm consisting principally of filamentous bacteria, actinomycetes, etc., on a soil surface by impregnating soil contaminated with radioactive cesium with one of 0.1-50.0%, preferably, 0.1-10.0% lactic acid, citric acid, malic acid, tartaric acid, acetic acid, gluconic acid, oxalic acid, fumaric acid, succinic acid, mugineic acid, and glycolic acid, or a solution of a mixture thereof; and peeling the biofilm off so as to remove the cesium that plants easily absorb.

Description

本発明は、有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法と植物活性化方法に関する。   The present invention relates to an agricultural land soil decontamination method and a plant activation method using organic acids and filamentous fungi / actinomycetes biofilms.

従来の、農地に対する除染技術は、土壌の剥ぎ取り、反転耕、吸着材の散布等で、農地の重要な部分が失われることや土壌の特性が変わってしまう等の問題があった。
土壌に吸着されたセシウムは、最終的に粘土や雲母鉱物の層間やエッジに取り込まれ、電気的に強固に固定されるため、その抽出は大変困難であった。
Conventional decontamination techniques for farmland have problems such as the removal of soil, reversal tillage, spraying of adsorbents, and loss of important parts of farmland and changes in soil characteristics.
The extraction of cesium adsorbed on the soil was extremely difficult because it was finally taken into the layers and edges of clay and mica minerals and fixed electrically.

従来技術とその欠点について、以下に述べると、
熱処理:回転炉により土壌を1300℃以上に加熱してセシウムを昇華分離する。この方法の欠点は、コストが極めて高い、高温熱処理のため、農地土壌への適用は困難、可搬型は無い等である。
分級処理:混合分級は特殊ポンプ分級や高圧洗浄、ボールミル等で磨砕処理を含む湿式分級を行う。後工程で700℃程度の加熱処理をする場合もある。この方法の欠点は、コストが高い、細粒分が除去されるので農地土壌への適用は困難である等である。
化学処理:シュウ酸等の有機酸を添加し、85〜90℃で加熱処理してセシウムを溶離回収する。この方法の欠点は、コストが高い、シュウ酸の場合、後処理による無害化も必要であること等である。
The prior art and its drawbacks are described below.
Heat treatment: The soil is heated to 1300 ° C. or higher in a rotary furnace to sublimate and separate cesium. Disadvantages of this method are extremely high cost, high temperature heat treatment, so that it is difficult to apply to farmland soil, and there is no portable type.
Classification treatment: Mixed classification involves wet classification including grinding by special pump classification, high-pressure washing, ball mill, etc. There is a case where heat treatment at about 700 ° C. is performed in a subsequent process. Disadvantages of this method are high cost, and it is difficult to apply to agricultural soil because fine particles are removed.
Chemical treatment: An organic acid such as oxalic acid is added and heat-treated at 85 to 90 ° C. to elute and recover cesium. Disadvantages of this method are high cost, and in the case of oxalic acid, it is necessary to make it harmless by post-treatment.

特開2013−217820号公報JP2013-217820A

本発明は、有機酸水溶液で糸状菌・放線菌類を繁殖させ、土壌からセシウムを抽出させて農地の除染を行う、有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法を提供することを目的とする。同時に非汚染土壌に対しては、バイオフィルムによる植物活性化方法を提供する。   The present invention provides a farmland soil decontamination method utilizing organic acids and filamentous fungi / actinomycetes biofilm, in which fungi and actinomycetes are propagated in an organic acid aqueous solution, and cesium is extracted from the soil to decontaminate farmland. The purpose is to provide. At the same time, a plant activation method using biofilm is provided for uncontaminated soil.

本発明の有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法は、放射性セシウムに汚染された水田、畑、果樹園などの農業用の土壌を有機酸水溶液に浸し、糸状菌や放線菌類を主体としたバイオフィルムを形成させて、該バイオフィルムを剥ぎ取ることで、植物が吸収し易いセシウムを放射性セシウムに汚染された水田、畑、果樹園などの農業用土壌から除去する。
本発明の有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法は、放射性セシウムに汚染された土壌に0.1〜50.0%、好ましくは0.1〜10.0%の乳酸やクエン酸、リンゴ酸、酒石酸、酢酸、グルコン酸、シュウ酸、フマル酸、コハク酸、ムギネ酸、グリコール酸の何れか一つの又はそれらを混合した水溶液を浸漬させ、土壌表面に糸状菌や放線菌類を主体としたバイオフィルムを形成させ、該バイオフィルムを剥ぎ取ることで、植物が吸収し易いセシウムを土壌から除去する。
Agricultural land soil decontamination method utilizing the organic acid and filamentous fungi / actinomycetes biofilm of the present invention, soaking agricultural soil such as paddy fields, fields, orchards contaminated with radioactive cesium in an organic acid aqueous solution, By forming a biofilm mainly composed of orbacteria and stripping the biofilm, cesium that is easily absorbed by plants is removed from agricultural soil such as paddy fields, fields, orchards contaminated with radioactive cesium .
The farmland soil decontamination method utilizing the organic acid and filamentous fungi / actinomycetes biofilm of the present invention is 0.1 to 50.0%, preferably 0.1 to 10.0% in soil contaminated with radioactive cesium. Soaked in an aqueous solution of any one or a mixture of lactic acid, citric acid, malic acid, tartaric acid, acetic acid, gluconic acid, oxalic acid, fumaric acid, succinic acid, mugineic acid, glycolic acid, and fungi on the soil surface By forming a biofilm mainly composed of actinomycetes and peeling off the biofilm, cesium that is easily absorbed by plants is removed from the soil.

水田に対しては、有機酸水溶液を満たすだけで実施できるが、畑や果樹園の様な透水性の土壌に対しては、珪藻土、パーライト、ゼオライト、又はゼオライトの吸水性材料や、水溶性セルロースエーテル、カラギーナン、又はアルギン酸ナトリウムのゲル化剤を、単独で又は組み合せて併用して、透水性土壌中に有機酸水溶液を保持することによりバイオフィルムを発生させることができる。   For paddy fields, this can be done simply by filling the organic acid solution, but for water-permeable soils such as fields and orchards, diatomaceous earth, pearlite, zeolite, zeolite water-absorbing materials, and water-soluble cellulose. A biofilm can be generated by holding an organic acid aqueous solution in a water-permeable soil by using a gelling agent of ether, carrageenan, or sodium alginate alone or in combination.

また、形成したバイオフィルムを除去後、植物を植えることにより、バイオフィルムとファイトレメディエーションを組合わせて土壌中の残存セシウムを効率良く吸収させることもできる。   Further, by removing the formed biofilm and then planting the plant, the biofilm and phytoremediation can be combined to efficiently absorb residual cesium in the soil.

非汚染土壌の場合は、同様の方法でバイオフィルムを形成させて、除去をせず、そのままにして植物を栽培することにより、植物の生長を早めたり、収穫物の収量を増加させたりすることもできる。これは、バイオフィルムがカリウムなどの植物への有効成分をセシウムと同様に抽出することと、有機酸がリンなどを土壌から効率良く溶かし出すことに起因する。   In the case of non-contaminated soil, the growth of plants can be accelerated or the yield of crops can be increased by cultivating the plant without removing it by forming a biofilm in the same way. You can also. This is due to the fact that biofilms extract active ingredients for plants such as potassium in the same way as cesium, and organic acids dissolve phosphorus and the like from soil efficiently.

前記有機酸水溶液は、ストロンチウムの溶脱も促す。その一方で土壌中には肥料などから供給された硫酸イオンが存在するため、これとストロンチウムが結び付き、難溶性の硫酸ストロンチウムとして沈殿する。これにより、植物による放射性ストロンチウムの吸収を抑制することができる。   The aqueous organic acid solution also promotes strontium leaching. On the other hand, since sulfate ions supplied from fertilizers and the like are present in the soil, this is combined with strontium and precipitates as hardly soluble strontium sulfate. Thereby, absorption of radioactive strontium by a plant can be suppressed.

本発明の有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法は、水田や畑、果樹園の土壌を有機酸水溶液で浸すことで除染ができるし、有機酸が、植物が根から出す根酸(有機酸の混合物)と同じ物質であるため低環境負荷でもある。さらに、バイオフィルムがセシウムを濃集するので、このバイオフィルムを剥ぎ取って除去すれば除染ができる等の効果がある。一方、バイオフィルム除去後に植物を植えて、ファイトレメディエーションと組合わせることで、残存セシウムを吸収除去することもできる。また、前述の様に土壌中に硫酸イオンが存在していれば、ストロンチウムの抽出と不溶化も同時に達成できる。   The farmland soil decontamination method utilizing the organic acid and filamentous fungi / actinomycetes biofilm of the present invention can be decontaminated by immersing the soil of paddy fields, fields, orchards with an organic acid aqueous solution, Because it is the same substance as root acid (a mixture of organic acids) that comes from the roots, it is also a low environmental load. Furthermore, since the biofilm concentrates cesium, there is an effect that decontamination can be achieved if the biofilm is peeled off and removed. On the other hand, a plant can be planted after removing the biofilm and combined with phytoremediation to absorb and remove residual cesium. If sulfate ions are present in the soil as described above, strontium extraction and insolubilization can be achieved simultaneously.

非汚染土壌に対しても、同じ方法でバイオフィルムを形成させて、セシウム抽出と同じメカニズムでカリウムなど植物に有効な成分を抽出・濃縮させることにより、植物を活性化させることもできる。また、このバイオフィルムは保水性があり、有機酸水溶液にはリンを土壌から溶かし出す効果があるため、これらの効果も植物の生長に良い方向で働く。   Plants can also be activated by forming biofilms by the same method on non-contaminated soil and extracting / concentrating components such as potassium that are effective for plants by the same mechanism as cesium extraction. Moreover, since this biofilm has water retention and the organic acid aqueous solution has an effect of dissolving phosphorus from the soil, these effects also work in a good direction for plant growth.

バイオフィルムを剥がす様子の写真図である。It is a photograph figure of a mode that a biofilm is peeled off. 有機酸処理二年目の稲の成長記録を示す写真図である。It is a photograph figure which shows the growth record of the rice of the 2nd year of organic acid treatment. 有機酸処理二年目の稲の収量差の違いを示す写真図である。It is a photograph figure which shows the difference in the yield difference of the rice of the 2nd year of organic acid treatment. 有機酸処理二年目の稲穂の収量の違いを示す写真図である。It is a photograph figure which shows the difference in the yield of the rice ear of the 2nd year of organic acid treatment. 水溶液中のストロンチウムの減少を示す図である。It is a figure which shows the reduction | decrease of strontium in aqueous solution. 有機酸処理三年目の稲の成長記録を示す写真図である。It is a photograph figure which shows the growth record of the rice of the 3rd year of organic acid treatment. 有機酸処理三年目の稲の収量差の違いを示す写真図である。It is a photograph figure which shows the difference in the yield difference of the rice of the 3rd year of organic acid treatment. 実際の水田で実証した稲の生長差を示す写真図である。It is a photograph figure which shows the growth difference of the rice field demonstrated in the actual paddy field.

本発明の有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法を以下に説明する。
土壌に吸着されたセシウムは、最終的に粘土や雲母鉱物の層間やエッジに取り込まれ、電気的に強固に固定されるため、その抽出は大変困難であった。
その一方で、有機酸やアンモニウム塩水溶液を用いれば、ある程度の抽出が可能であるが、そのためには100℃近くまで加熱しなければならず、大きなコストが掛かることが問題であった。
しかしながら、放射性セシウムに汚染された土壌を低濃度0.1〜50.0%、好ましくは0.1〜10.0%の乳酸やクエン酸水溶液に浸漬させたところ、土壌表面に糸状菌や放線菌類を主体としたバイオフィルムが形成された。
図1に示すように、このバイオフィルムを剥ぎ取り、できる限り土壌粒子を洗い流して放射能を測定したところ、kg当たり、約300〜1500Bqのセシウムが検出された。
この土壌は水田由来で、乾燥時の放射能量は3393Bq/kg(湿潤時は1750Bq/kg)であった。
これらのことは、セシウム濃縮作用を起こす糸状菌・放線菌類が特定の有機酸(根酸)存在下で効率良く繁殖することを示している。
なお、代表的な糸状菌の同定を行ったところ、Penicillium svalbardense、Penicillium crustosum、Penicillium expansum、Talaromyces wortmanniiなどのアオカビ属が確認された。
The farmland soil decontamination method using the organic acid and filamentous fungi / actinomycetes biofilm of the present invention will be described below.
The extraction of cesium adsorbed on the soil was extremely difficult because it was finally taken into the layers and edges of clay and mica minerals and fixed electrically.
On the other hand, if an organic acid or an ammonium salt aqueous solution is used, extraction to some extent is possible. However, for that purpose, it has to be heated to near 100 ° C., and it has been a problem that a large cost is required.
However, when soil contaminated with radioactive cesium is immersed in a low concentration of 0.1 to 50.0%, preferably 0.1 to 10.0% lactic acid or citric acid aqueous solution, filamentous fungi and actinomycetes on the soil surface A biofilm mainly composed of fungi was formed.
As shown in FIG. 1, when this biofilm was peeled off and soil particles were washed away as much as possible and the radioactivity was measured, about 300 to 1500 Bq of cesium per kg was detected.
This soil was derived from paddy fields, and the amount of radioactivity when dried was 3393 Bq / kg (1750 Bq / kg when wet).
These facts indicate that filamentous fungi and actinomycetes that cause cesium-concentrating action are efficiently propagated in the presence of a specific organic acid (root acid).
In addition, when representative filamentous fungi were identified, Penicillium svalbardense, Penicillium crustosum, Penicillium expansum, Talaromyces wortmannii and other blue molds were confirmed.

<試験1>
平成24年度に福島県南相馬市から水田土壌を分けて頂き、稲の栽培を行った。
肥料の配分量や除染資材であるゼオライトの添加量は、全て南相馬市で実施された試験栽培と同じ条件にした。
土壌を等量で二つに分け、一方を常温で5%のクエン酸水溶液に浸し、24時間後に上澄みを汲み出した。
この操作をもう一度行い、できる限りクエン酸溶液を汲み出した後、中性になるまでアンモンニア水溶液を添加した。
この有機酸処理土壌は、一ヶ月ほど非常に活発な微生物による発酵活動が続いたので、その沈静化を待ってから稲を植えた。
稲のセシウム吸収量を比較するため、クエン酸洗浄処理の南相馬市の水田土壌、無処理の南相馬市の水田土壌、原発事故前に山形県高畠町から採取した土壌試料、液肥による水耕栽培の4種類の条件で栽培を行った。
結果は以下の表1の通りである。
<Test 1>
In 2012, rice paddy soil was separated from Minamisoma City, Fukushima Prefecture, and rice was cultivated.
The amount of fertilizer allocated and the amount of zeolite used as a decontamination material were all set to the same conditions as in test cultivation conducted in Minamisoma City.
The soil was divided into two equal parts, one was immersed in a 5% aqueous citric acid solution at room temperature, and the supernatant was pumped out after 24 hours.
This operation was repeated once, and as much citric acid solution as possible was pumped out, and then an aqueous ammonia solution was added until neutrality.
This organic acid-treated soil continued fermentation activities with very active microorganisms for about a month, so rice was planted after waiting for its calming.
To compare the amount of cesium absorbed by rice, paddy soil in Minamisoma City, treated with citric acid, paddy soil in Minamisoma City, untreated, soil samples collected from Takatsuki Town, Yamagata Prefecture before the nuclear accident, hydroponics using liquid fertilizer Cultivation was carried out under four conditions of cultivation.
The results are as shown in Table 1 below.

Figure 2015129744

有機酸処理を行った土壌で、稲のセシウム含有量が著しく増加していることが確認できる。上記の結果は、有機酸が植物のセシウム吸収に影響していることを示している。
Figure 2015129744

It can be confirmed that the cesium content of rice is remarkably increased in the soil treated with organic acid. The above results indicate that organic acids affect plant cesium absorption.

これを確認するため、福島県(福島市・南相馬市・伊達市)から土壌を採取し、クエン酸と乳酸を用いて、有機酸によるセシウム抽出確認試験を行った。
各土壌を5%有機酸水溶液に浸漬し、48日後に水溶液を回収してGe半導体検出器を用いて放射能濃度を測定したところ、全て検出限界以下であった。
上記採取土壌試料の一覧を表2に示す。
To confirm this, soil was collected from Fukushima Prefecture (Fukushima City, Minamisoma City, Date City), and a cesium extraction confirmation test using organic acids was performed using citric acid and lactic acid.
Each soil was immersed in a 5% aqueous organic acid solution, and after 48 days, the aqueous solution was recovered and the radioactivity concentration was measured using a Ge semiconductor detector.
Table 2 shows a list of the collected soil samples.

Figure 2015129744
Figure 2015129744

一方、土壌表面に形成されたバイオフィルムの放射能を測定した結果、冒頭で述べたように、セシウムが濃縮されていることが確認できた。
バイオフィルム(水田土壌乳酸処理)の放射線測定結果を表3に示す。
On the other hand, as a result of measuring the radioactivity of the biofilm formed on the soil surface, it was confirmed that cesium was concentrated as described at the beginning.
Table 3 shows the radiation measurement results of the biofilm (paddy field soil lactic acid treatment).

Figure 2015129744
以上のことは、植物の根酸(有機酸)が土壌菌類の活動を活性化させ、それにより抽出されたセシウムを植物が吸収していることを示唆している。
Figure 2015129744
The above suggests that plant root acid (organic acid) activates the activity of soil fungi, and the plant absorbs the extracted cesium.

本試験で土壌表面に形成されたバイオフィルムは、糸状菌と放線菌類を主体としており、比較的強度があり、容易に引きはがして処理することができる。
この性質を利用すれば、水田を5%程度の有機酸水溶液で満たし、バイオフィルムを形成させて、それを剥ぎ取ることで、植物が吸収し易いセシウムを土壌から除去することが可能となる。
この作用を利用すれば、安価で効率良く環境に優しい土壌除染を実施できる。
また、有機酸は土壌からリンを溶かし出し、一方のバイオフィルムは、セシウムと同じアルカリ金属であるカリウムも濃縮させるため、バイオフィルム自身の保湿効果と相まって、図2と図3に示すように、植物生長促進作用も副次効果として発現する。なお、バイオフィルムが形成された土壌に浸漬した有機酸水溶液を回収してリンの濃度を測定したところ、クエン酸水溶液で176ppm、乳酸水溶液で26.3ppm含まれていた。
The biofilm formed on the soil surface in this test is mainly composed of filamentous fungi and actinomycetes, is relatively strong, and can be easily peeled off and treated.
If this property is utilized, it becomes possible to remove from the soil cesium that is easily absorbed by plants by filling the paddy field with an organic acid aqueous solution of about 5%, forming a biofilm, and peeling it off.
By utilizing this action, soil decontamination can be carried out efficiently at low cost and efficiently.
In addition, organic acid dissolves phosphorus from the soil, and one biofilm concentrates potassium, which is the same alkali metal as cesium. Therefore, coupled with the moisturizing effect of the biofilm itself, as shown in FIG. 2 and FIG. Plant growth promoting action is also expressed as a secondary effect. In addition, when the organic acid aqueous solution immersed in the soil in which the biofilm was formed was collect | recovered and the density | concentration of phosphorus was measured, 176 ppm was contained in the citric acid aqueous solution, and 26.3 ppm was contained in the lactic acid aqueous solution.

畑や果樹園の様に有機酸水溶液を満たすことができない透水性の土壌の場合は、有機酸水溶液で土壌を浸す際に、珪藻土、パーライト、ゼオライトなどの吸水性材料を土壌表面に敷設し、さらに水溶性セルロースエーテル、カラギーナン、アルギン酸ナトリウムなどのゲル化剤を用いて有機酸水溶液に粘性を持たせることで、有機酸水溶液を土壌に保持させて、バイオフィルムの形成を促すこともできる。   In the case of water-permeable soil that cannot be filled with an organic acid aqueous solution, such as fields and orchards, when water is immersed in the organic acid aqueous solution, a water-absorbing material such as diatomaceous earth, pearlite, or zeolite is laid on the soil surface. Furthermore, by making the organic acid aqueous solution viscous by using a gelling agent such as water-soluble cellulose ether, carrageenan, or sodium alginate, the organic acid aqueous solution can be retained in the soil and the formation of a biofilm can be promoted.

表1に示した様に、バイオフィルムを形成させた土壌は、セシウムが土壌から抽出されており、このほとんどが水溶性であるため、植物を植えることにより、バイオフィルム除去後の残存セシウムも回収することができる。即ち、ファイトレメディエーションの効率を上げることも可能である。   As shown in Table 1, cesium is extracted from the soil in which biofilm is formed, and most of this is water-soluble. Therefore, by planting plants, residual cesium after biofilm removal is also recovered. can do. That is, the efficiency of phytoremediation can be increased.

有機酸水溶液を土壌に添加すると、ストロンチウムの溶かし出しも同時に起きる。このストロンチウムは硫酸イオンと結び付いて難溶性の硫酸ストロンチウムとして沈殿するので、副次効果としてストロンチウムの植物への移行を抑制することもできる。
バイオフィルムを形成させた有機酸水溶液におけるストロンチウムの減少の様子を図4に示す。
乳酸とクエン酸で形成したバイオフィルム形成土壌に塩化ストロンチウム水溶液1000ppm1リットルを静かに注ぎ、一週間ごとに採水を行って、ストロンチウム濃度の測定を行った。
当初、最初の10〜11日間のストロンチウム濃度の減少は、土壌含有水による希釈と考えたが、最終採水の後に、試料を十分に攪拌してからさらに採水を行ってストロンチウムの濃度を測定したところ、この段階で約40〜50%の減少が確認された。この減少量は土壌含有水の希釈効果と一致する。即ち、本実験で減少するストロンチウムは沈殿除去分であり、土壌含有水による希釈は試料撹拌時に起きたことを意味している。以上の事は、塩化ストロンチウムのストロンチウムイオンが難溶性ストロンチウムとして沈殿したことを意味している。
When an organic acid aqueous solution is added to the soil, strontium dissolves simultaneously. Since this strontium is combined with sulfate ions and precipitated as poorly soluble strontium sulfate, it is also possible to suppress the transfer of strontium to plants as a secondary effect.
FIG. 4 shows how strontium is reduced in an organic acid aqueous solution on which a biofilm is formed.
One liter of 1000 ppm aqueous strontium chloride solution was gently poured into biofilm-forming soil formed with lactic acid and citric acid, and water was collected every week to measure the strontium concentration.
Initially, the decrease in strontium concentration during the first 10 to 11 days was thought to be dilution with soil-containing water, but after the final water collection, the sample was thoroughly stirred and then water was collected to measure the strontium concentration As a result, a decrease of about 40 to 50% was confirmed at this stage. This decrease is consistent with the diluting effect of soil-containing water. That is, strontium that decreases in this experiment is the amount of precipitate removed, and dilution with soil-containing water means that the sample agitated. This means that the strontium ion of strontium chloride was precipitated as hardly soluble strontium.

即ち、本発明には、1)バイオフィルムによる除染、2)バイオフィルムとファイトレディエーションを組み合わせた除染、3)植物(作物)生長促進、4)ストロンチウムの不溶化の四つの効果及び使用方法があるため、原発事故復興に広くつなげることができる。   That is, the present invention includes four effects of 1) decontamination with biofilm, 2) decontamination combining biofilm and phytoreduction, 3) plant (crop) growth promotion, and 4) insolubilization of strontium. Therefore, it can be widely used for nuclear accident recovery.

<試験2>
有機酸処理によるセシウム抽出効果と植物生長促進効果の複数年にわたる持続性を確認するため、試験1で用いた福島県南相馬市の水田土壌で、継続して二年目の稲の栽培を行った。
肥料の配分量や除染資材であるゼオライトの添加量は、全て南相馬市で実施された試験栽培と同じ条件にした。結果は以下の表4の通りである。
<Test 2>
In order to confirm the multi-year sustainability of cesium extraction effect and plant growth promotion effect by organic acid treatment, rice cultivation in the second year was continuously cultivated in paddy soil in Minamisoma City, Fukushima Prefecture used in Test 1. .
The amount of fertilizer allocated and the amount of zeolite used as a decontamination material were all set to the same conditions as in test cultivation conducted in Minamisoma City. The results are as shown in Table 4 below.

Figure 2015129744

二年目でも、藁および稲穂へのセシウムの吸収量が無処理土壌と比較して大幅に増加しているのが確認できる。
Figure 2015129744

Even in the second year, it can be confirmed that the amount of cesium absorbed by straw and rice spikes has increased significantly compared to untreated soil.

<試験3>
稲の生長効果の継続も確認するため、三年目の栽培実験を行った。三年目は苗の分蘖数を明確化させるため、苗を一本ずつ、計7本植えて成長差の確認を行った。用いた土壌は一年目及び二年目と同じであるが、三年目は肥料やゼオライトの添加は一切行わずに栽培を実施した。
図5と図6に示される様に、収穫量に差が出ており、稲穂の重さは有機酸処理区の方が1.5倍(ビニール袋の重さを差し引いて計算)である。ただ、二年目までに確認できた植物体そのものの大きさの差はあまり無く、分蘖数にのみ差が出ている。
<Test 3>
In order to confirm the continuation of the rice growth effect, a third year cultivation experiment was conducted. In the third year, in order to clarify the number of seedlings, seven seedlings were planted one by one, and the growth difference was confirmed. The soil used was the same as in the first and second years, but in the third year, cultivation was carried out without adding any fertilizer or zeolite.
As shown in FIG. 5 and FIG. 6, there is a difference in the harvest amount, and the weight of the rice ear is 1.5 times in the organic acid treatment section (calculated by subtracting the weight of the plastic bag). However, there is not much difference in the size of the plant itself that was confirmed by the second year, only the difference in the number of tillers.

<試験4>
稲の栽培実験の結果、上述の様に、収穫量に大きな差が確認できたので、さらにその確証を得るために実際の水田(秋田県男鹿市)を用いて栽培実験を行った。
図7に示す様に、稲の背の高さに違いが認められる。本栽培に用いた有機酸は乳酸で、10%水溶液を1平方メートル当たり1リットル散布した。乳酸散布区と対照区の36株当たりの収穫量は、1.85kgと1.52kgであり、約1.2倍である。
<Test 4>
As a result of the rice cultivation experiment, a large difference in the yield was confirmed as described above. In order to obtain further confirmation, a cultivation experiment was conducted using an actual paddy field (Oga City, Akita Prefecture).
As shown in FIG. 7, there is a difference in the height of rice. The organic acid used for the main cultivation was lactic acid, and 1 liter of a 10% aqueous solution was sprayed per square meter. The yields per 36 strains in the lactic acid spray area and the control area are 1.85 kg and 1.52 kg, which is about 1.2 times.

本発明は、福島第一原子力発電所の事故によって放出されたセシウムの低コスト除染を目的として行ったものであるが、植物の必須元素であるカリウムとセシウムが化学的にほほ同じ挙動を示すため、植物生長促進にも効果があり、農業分野への応用も可能である。   The present invention was carried out for the purpose of low-cost decontamination of cesium released by the accident at the Fukushima Daiichi nuclear power plant, but potassium and cesium, which are essential elements of plants, show almost the same behavior chemically. Therefore, it is effective in promoting plant growth and can be applied to the agricultural field.

Claims (7)

水田や畑、果樹園などの農業用の土壌を有機酸水溶液に浸し、糸状菌や放線菌類を主体としたバイオフィルムを形成させて、該バイオフィルムを剥ぎ取ることで、植物が吸収し易いセシウムを放射性セシウムに汚染された水田や畑、果樹園から除去することを特徴とする有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法。   Cesium that is easily absorbed by plants by soaking agricultural soil such as paddy fields, fields, orchards in organic acid aqueous solution, forming biofilms mainly composed of filamentous fungi and actinomycetes, and peeling off the biofilm A soil decontamination method using organic acids and filamentous fungi / actinomycetes biofilms, which is characterized by the removal of water from paddy fields, fields and orchards contaminated with radioactive cesium. 放射性セシウムに汚染された土壌に0.1〜50.0%、好ましくは0.1〜10.0%の乳酸やクエン酸、リンゴ酸、酒石酸、酢酸、グルコン酸、蓚酸、フマル酸、コハク酸、ムギネ酸、グリコール酸のいずれか一つの又はそれらを混合した水溶液を浸漬させ、土壌表面に糸状菌や放線菌類を主体としたバイオフィルムを形成させ、該バイオフィルムを剥ぎ取ることで、植物が吸収し易いセシウムを土壌から除去することを特徴とする有機酸と糸状菌・放線菌類バイオフィルムを活用した農地土壌除染方法。   0.1 to 50.0%, preferably 0.1 to 10.0% lactic acid, citric acid, malic acid, tartaric acid, acetic acid, gluconic acid, succinic acid, fumaric acid, succinic acid in soil contaminated with radioactive cesium By immersing an aqueous solution in which any one of mugineic acid or glycolic acid or a mixture thereof is immersed to form a biofilm mainly composed of filamentous fungi and actinomycetes on the soil surface, A farmland soil decontamination method using organic acid and filamentous fungi / actinomycetes biofilm, characterized by removing easily absorbable cesium from soil. 請求項1で形成したバイオフィルムを除去後、植物を植えることにより、土壌中の残存セシウムを効率良く吸収させる、バイオフィルムとファイトレメディエーションを組合わせた農地土壌除染方法。   A farmland soil decontamination method combining biofilm and phytoremediation, which efficiently absorbs residual cesium in soil by planting a plant after removing the biofilm formed in claim 1. 請求項1の有機酸水溶液で土壌を浸す際に、珪藻土、パーライト、又はゼオライトの吸水性材料や、水溶性セルロースエーテル、カラギーナン、又はアルギン酸ナトリウムのゲル化剤を、単独で又は組み合わせて併用して、透水性土壌に有機酸水溶液を保持させるバイオフィルム形成方法。   When soaking the soil with the organic acid aqueous solution of claim 1, a water-absorbing material of diatomaceous earth, pearlite, or zeolite, and a gelling agent of water-soluble cellulose ether, carrageenan, or sodium alginate are used alone or in combination. A method for forming a biofilm in which an organic acid aqueous solution is retained in a water-permeable soil. 請求項1、2又は4の方法で形成したバイオフィルムをそのままにして植物を栽培することにより、植物を活性化させる植物栽培方法。   A plant cultivation method for activating a plant by cultivating the plant with the biofilm formed by the method of claim 1, 2, or 4 as it is. 請求項1、2又は4の有機酸処理をした土壌で植物を栽培することにより、植物を活性化させる植物栽培方法。   A plant cultivation method for activating a plant by cultivating the plant in the soil treated with the organic acid according to claim 1, 2 or 4. 請求項1の有機酸水溶液で土壌を浸す際に、溶け出したストロンチウムを硫酸イオンと反応させて難溶性の硫酸ストロンチウムとして沈殿させる、ストロンチウム溶出防止方法。   A method for preventing elution of strontium, wherein when the soil is immersed in the organic acid aqueous solution according to claim 1, the dissolved strontium is reacted with sulfate ions to precipitate as hardly soluble strontium sulfate.
JP2014246174A 2013-12-04 2014-12-04 Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm Ceased JP2015129744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246174A JP2015129744A (en) 2013-12-04 2014-12-04 Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013251557 2013-12-04
JP2013251557 2013-12-04
JP2014246174A JP2015129744A (en) 2013-12-04 2014-12-04 Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017025951A Division JP6410858B2 (en) 2013-12-04 2017-02-15 Plant growth promotion method and phytoremediation method using organic acid and filamentous fungi / actinomycetes biofilm

Publications (1)

Publication Number Publication Date
JP2015129744A true JP2015129744A (en) 2015-07-16

Family

ID=53760555

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014246174A Ceased JP2015129744A (en) 2013-12-04 2014-12-04 Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm
JP2017025951A Active JP6410858B2 (en) 2013-12-04 2017-02-15 Plant growth promotion method and phytoremediation method using organic acid and filamentous fungi / actinomycetes biofilm

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017025951A Active JP6410858B2 (en) 2013-12-04 2017-02-15 Plant growth promotion method and phytoremediation method using organic acid and filamentous fungi / actinomycetes biofilm

Country Status (1)

Country Link
JP (2) JP2015129744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615486C1 (en) * 2016-08-30 2017-04-04 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") Method for soil purification from radioactive cesium isotope
JP2017148038A (en) * 2013-12-04 2017-08-31 英樹 村上 Plant growth promoting method and phytoremediation method utilizing organic acid and filamentous/actinomycetous biofilms
CN111482453A (en) * 2019-01-25 2020-08-04 浙江泛亚生物医药股份有限公司 Method for repairing heavy metal contaminated soil by combining plants and fungi
JP2020153749A (en) * 2019-03-19 2020-09-24 高嶋 康豪 Soil modification method
CN111869528A (en) * 2020-07-25 2020-11-03 桂林市农业科学研究中心 Overhead potato-bearing cultivation method for Chinese yam overhead planting
CN112760397A (en) * 2020-12-23 2021-05-07 慕恩(广州)生物科技有限公司 Application of Talaromyces wortmannii in crop drought resistance and growth promotion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001090B (en) * 2016-06-18 2019-02-05 江苏华东新能源勘探有限公司(江苏省有色金属华东地质勘查局八一三队) A kind of absorption of heavy metal pollution of mine soil-Co-bioremediation method
CN110140631A (en) * 2019-07-04 2019-08-20 湖北禾惠生态科技有限公司 A kind of rice nursery substrate based on biomass energy
CN111701995B (en) * 2020-06-24 2021-03-30 深圳市中装市政园林工程有限公司 Heavy metal soil deep two-stage type restoration and recovery method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129744A (en) * 2013-12-04 2015-07-16 英樹 村上 Farmland soil decontamination method and plant activation method utilizing organic acid and filamentous bacterium/actinomycete biofilm

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016050166; 村上 英樹, ほか1名: '"根酸構成成分(有機酸)を用いた農地土壌からのセシウムおよびストロンチウムの抽出とその濃縮・減量方法' ケミカルエンジニヤリング Vol.57, 20120601, p.419-424, 株式会社化学工業社 *
JPN7016004002; 村上 英樹, ほか3名: '"根酸構成成分による糸状菌類の繁殖と土壌からのセシウム抽出作用"' 第2回環境放射能除染研究発表会要旨集 , 20130605, p. 132, 一般社団法人 環境放射能除染学会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148038A (en) * 2013-12-04 2017-08-31 英樹 村上 Plant growth promoting method and phytoremediation method utilizing organic acid and filamentous/actinomycetous biofilms
RU2615486C1 (en) * 2016-08-30 2017-04-04 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") Method for soil purification from radioactive cesium isotope
CN111482453A (en) * 2019-01-25 2020-08-04 浙江泛亚生物医药股份有限公司 Method for repairing heavy metal contaminated soil by combining plants and fungi
JP2020153749A (en) * 2019-03-19 2020-09-24 高嶋 康豪 Soil modification method
CN111869528A (en) * 2020-07-25 2020-11-03 桂林市农业科学研究中心 Overhead potato-bearing cultivation method for Chinese yam overhead planting
CN112760397A (en) * 2020-12-23 2021-05-07 慕恩(广州)生物科技有限公司 Application of Talaromyces wortmannii in crop drought resistance and growth promotion

Also Published As

Publication number Publication date
JP2017148038A (en) 2017-08-31
JP6410858B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6410858B2 (en) Plant growth promotion method and phytoremediation method using organic acid and filamentous fungi / actinomycetes biofilm
Zhao et al. Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China
CN104550208B (en) A kind of farmland soil heavy metals pollution amelioration method of coupling activation and passivation
Salido et al. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea)
CN105344708B (en) A kind of restorative procedure of alkaline land soil heavy metal pollution
US20080071130A1 (en) Method Of Cleaning Heavy Metals-Containing Soil
CN106069429A (en) A kind of method reducing semilate rice Cd concentration of brown rice
CN105170623B (en) A kind of method of charcoal and plant combined restoration of soil polluted by heavy metal
CN101279325A (en) Method for repairing heavy metal polluted soil using combined technology of interacted plants and chemical leaching
CN110003913A (en) It is a kind of based on magnesia-montmorillonite composite material mixed biologic charcoal heavy metal soil-repairing agent and restorative procedure
CN105149341A (en) Method for restoring sludge land heavy metal contaminated soil
CN109226235B (en) A kind of restorative procedure of Pesticide-Polluted Soil
CN105583217A (en) Conditioner for repairing heavy metal contaminated soil and preparing method for conditioner
CN104117528B (en) A kind of plant growth regulator that utilizes promotes sunflower enrichment caesium or/and the method for strontium
JP6296832B2 (en) Cadmium absorption suppression material and crop cultivation method using the same
CN105330485B (en) A kind of barrier crops absorb foliar fertilizer and its application of cadmium
CN103894399A (en) Method for promoting enrichment of caesium and/or strontium to red spinach by virtue of plant hormone and chelating agent
CN106304894A (en) Treating method of vegetable seeds
CN104855029A (en) Simple formula fertilization method for plant prevention and treatment of heavy metal pollution
CN105057334B (en) A kind of hardening agent for the pollution of mao bamboon repairing heavy metal in soil
SIlvA et al. Management of root rot in avocado trees
CN106350077B (en) A kind of preparation method of the charcoal based modifier for reducing rice grain Cd uptake
Tucker et al. Correction of citrus seedling stunting on fumigated soils by phosphate application
CN106753405A (en) A kind of preparation method of As polluted soil spacetabs type in-situ immobilization agent
RU2560549C2 (en) Agent for deactivating soils contaminated with radioactive elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170921

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20180125