JP2015129326A - Manufacturing apparatus for organic el device - Google Patents

Manufacturing apparatus for organic el device Download PDF

Info

Publication number
JP2015129326A
JP2015129326A JP2014000980A JP2014000980A JP2015129326A JP 2015129326 A JP2015129326 A JP 2015129326A JP 2014000980 A JP2014000980 A JP 2014000980A JP 2014000980 A JP2014000980 A JP 2014000980A JP 2015129326 A JP2015129326 A JP 2015129326A
Authority
JP
Japan
Prior art keywords
mask
processed
organic
substrate
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014000980A
Other languages
Japanese (ja)
Inventor
功二 羽根
Koji Hane
功二 羽根
和彦 小泉
Kazuhiko Koizumi
和彦 小泉
清隆 矢野
Kiyotaka Yano
清隆 矢野
元気 関根
Genki Sekine
元気 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014000980A priority Critical patent/JP2015129326A/en
Publication of JP2015129326A publication Critical patent/JP2015129326A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of measuring an arrangement of a processed body and a mask, arranged oppositely to each other, with high precision that secures measurement precision and prevents the degree of vacuum from decreasing at a low cost even when an organic EL device becomes large-sized, and also prevents maintainability from decreasing in a manufacturing apparatus for an organic EL device.SOLUTION: There is provided an apparatus 10 which manufactures an organic EL device by passage through a plurality of zones Z2 arranged in a film deposition chamber S provided between a processing chamber A for a process as a precedent stage and a processing chamber B for a process as a following stage and having a single pressure-reducible internal space S1. The manufacturing device for an organic EL device is provided with measurement means C10 and C20 of measuring relative positions of a processed body W and a mask M at vapor-deposition positions respectively, and has adjustment means XY of adjusting the relative positions on the basis of measurement results.

Description

本発明は、有機ELデバイスの製造装置に用いて好適な技術に関する。   The present invention relates to a technique suitable for use in an organic EL device manufacturing apparatus.

有機ELデバイス等の製造工程においては、被処理体であるフィルムあるいは基板の表面に所定の薄膜を成膜する工程を有することがあり、この成膜工程には、基板等に対して所定のパターンで成膜する等、特定の領域に成膜範囲を制限(限定)して成膜する場合がある。真空蒸着法にて基板に対して所定のパターンで成膜する場合を例に説明すると、処理室内に蒸発源と基板とを配置し、真空下で蒸発源から所定の材料を蒸発させる。このとき、基板の蒸発源側に、成膜範囲を限定するマスクを配置し、マスク越しに成膜することで、特定の領域にのみ成膜される。ここで、基板の特定の領域に精度よく成膜するには、処理室内で相互に対向配置される基板とマスクとの配置を精度よく計測する必要がある。   A manufacturing process of an organic EL device or the like may include a process of forming a predetermined thin film on the surface of a film or substrate that is an object to be processed. In this film forming process, a predetermined pattern is formed on the substrate or the like. In some cases, the film forming range is limited (restricted) to a specific region, such as the film forming process. A case where a film is formed in a predetermined pattern on a substrate by vacuum deposition will be described as an example. An evaporation source and a substrate are arranged in a processing chamber, and a predetermined material is evaporated from the evaporation source under vacuum. At this time, a mask for limiting the film formation range is disposed on the evaporation source side of the substrate, and film formation is performed only over a specific region by forming the film over the mask. Here, in order to form a film on a specific region of the substrate with high accuracy, it is necessary to accurately measure the arrangement of the substrate and the mask that are arranged to face each other in the processing chamber.

特許文献1に示されるように、基板とマスクとが処理チャンバ内で真空雰囲気に保たれるのに対して、センサであるカメラや照明手段等は、真空外であるチャンバ外に配置され、チャンバ壁に設けられた窓部から計測をおこなっている。   As shown in Patent Document 1, the substrate and the mask are kept in a vacuum atmosphere in the processing chamber, whereas the camera, the illumination means, and the like that are sensors are arranged outside the chamber that is outside the vacuum, Measurements are taken from the windows on the wall.

特開2013−001947号公報JP 2013-001947 A

しかし、有機ELデバイスの大型化に伴って、被処理体である基板が大型化しチャンバの容量が増えたにもかかわらず、チャンバ内における基板の搬送位置はほぼ変化させられないことにより、チャンバ外に位置するセンサと基板との距離が離間して、必要な精度で適確な測定ができなくなるという問題が生じてきた。特に、基板およびマスクと計測手段であるカメラとの距離は、WD(Working distance)とも称され、必要な精度を維持するために、これらの距離を極めて厳密に設定することが必要である。   However, with the increase in size of organic EL devices, the substrate transfer position in the chamber remains almost unchanged, despite the fact that the substrate to be processed has increased in size and the capacity of the chamber has increased. A problem has arisen in that the distance between the sensor located on the substrate and the substrate is separated and accurate measurement cannot be performed with the required accuracy. In particular, the distance between the substrate and the mask and the camera as the measurement means is also referred to as WD (Working distance), and it is necessary to set these distances very strictly in order to maintain the required accuracy.

さらに、センサ等の計測デバイスの多くは真空仕様に対応していないため、チャンバ壁部を必要な形状に変形させてセンサの位置が測定可能な配置となるように対応することが考えられるが、基板の大型化に伴いチャンバ壁が複雑な凹凸形状となってしまい、このような場合、蒸着装置のメンテナンス作業性が低下するという問題が起きる可能性があり、また、複雑な凹凸形状となってしまうチャンバ壁部からのリークや真空度の低下が発生するという問題が起きる可能性があり好ましくない。
さらに、これらの問題を解決する際に低コストに対応したいという要求があった。
Furthermore, since many measuring devices such as sensors are not compatible with vacuum specifications, it can be considered that the position of the sensor can be measured by deforming the chamber wall to the required shape, As the substrate becomes larger, the chamber wall becomes a complicated uneven shape. In such a case, there is a possibility that the maintenance workability of the vapor deposition apparatus is lowered, and there is a complicated uneven shape. This may cause problems such as leakage from the chamber wall and a decrease in the degree of vacuum.
Furthermore, there has been a demand to cope with low costs when solving these problems.

本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
1.被処理体とマスクとに対する測定精度を確保すること。
2.処理雰囲気におけるリーク発生や真空度の低下を低コストに防止すること。
3.メンテナンス性の低下を安価に防止すること。
The present invention has been made in view of the above circumstances, and intends to achieve the following object.
1. Ensure measurement accuracy for workpieces and masks.
2. Preventing the occurrence of leaks and a decrease in vacuum in the processing atmosphere at low cost.
3. Preventing deterioration of maintainability at low cost.

本発明の有機ELデバイスの製造装置は、前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に設けられた、減圧可能な単一の内部空間を有する成膜室を備え、前記処理室Aから前記成膜室へ搬入された被処理体が、該成膜室の内部空間内に配された複数のゾーンを通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置であって、
前記複数のゾーンとして、
保持手段を用いて前記被処理体の裏面を保持する第一ゾーン、
前記保持手段により保持された前記被処理体の表面上に蒸着膜を形成する第二ゾーン、
前記保持手段から前記被処理体の保持を解除する第三ゾーン、
が順に並んで構成されており、
前記第二ゾーンにおいて、蒸着源と前記被処理体の表面側との間に所望のマスクを設けて所定の成膜を行う前に前記被処理体と前記マスクとの相対的な位置を計測する計測手段、および、計測手段の計測結果に基づいて前記被処理体と前記マスクとの相対的な位置を調整する調整手段を有し、前記計測手段が位置調整機構に内蔵されていることにより上記課題を解決した。
本発明は、前記位置調整機構が前記内部空間内において密閉され、前記計測手段が前記被処理体と前記マスクとの相対的な位置を透過して計測する計測窓部を有することが好ましい。
本発明の前記位置調整機構には、計測対象を照らす照射手段が搭載されることが好ましい。
本発明の前記位置調整機構には、前記被処理体を計測する基板撮像装置と、前記マスクを計測するマスク撮像装置とが設けられることができる。
The organic EL device manufacturing apparatus of the present invention includes a film forming chamber having a single internal space that can be decompressed, provided between a processing chamber A that performs a preceding process and a processing chamber B that performs a subsequent process. The object to be processed carried into the film forming chamber from the processing chamber A passes through a plurality of zones arranged in the internal space of the film forming chamber, and is then transferred to the processing chamber B to be organic. An apparatus for manufacturing an EL device,
As the plurality of zones,
A first zone for holding the back surface of the object to be processed using a holding means;
A second zone for forming a deposited film on the surface of the object to be processed held by the holding means;
A third zone for releasing the holding of the object to be processed from the holding means;
Are arranged in order,
In the second zone, the relative position between the object to be processed and the mask is measured before a desired mask is provided between the vapor deposition source and the surface side of the object to be processed. A measuring unit; and an adjusting unit that adjusts a relative position between the object to be processed and the mask based on a measurement result of the measuring unit, and the measuring unit is incorporated in a position adjusting mechanism. Solved the problem.
In the present invention, it is preferable that the position adjusting mechanism is hermetically sealed in the internal space, and the measurement unit has a measurement window part that transmits and measures a relative position between the object to be processed and the mask.
The position adjusting mechanism of the present invention preferably includes an irradiating means for illuminating the measurement target.
The position adjustment mechanism of the present invention may be provided with a substrate imaging device that measures the object to be processed and a mask imaging device that measures the mask.

本発明の有機ELデバイスの製造装置は、前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に設けられた、減圧可能な単一の内部空間を有する成膜室(チャンバ)Sを備え、前記処理室Aから前記成膜室Sへ搬入された(平板状の)被処理体が、該成膜室Sの内部空間内に配された複数のゾーンを通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置であって、
前記複数のゾーンとして、
保持手段(基板チャック)を用いて前記被処理体の裏面(一面)を保持する第一ゾーン、
前記保持手段により保持された前記被処理体の表面(他面)上に蒸着膜を蒸着する第二ゾーン、
前記保持手段から前記被処理体の保持を解除する第三ゾーン、
が順に並んで構成されており、
前記第二ゾーンにおいて、蒸着源と前記被処理体の表面側との間に所望のマスクを設けて所定の成膜を行う前に前記被処理体と前記マスクとの相対的な位置を計測する計測手段(光学系カメラ)、および、計測手段の計測結果に基づいて前記被処理体と前記マスクとの相対的な位置を調整する調整手段(XYステージ等)を有し、前記計測手段が位置調整機構(大気ボックス)に内蔵されていることにより、基板サイズが大型化した場合であってもこれに対応して、成膜室内の真空度の低下やリークを生じることなく、計測手段(光学系カメラ)におけるWD(Working distance)を所定の範囲内に設定して、被処理体(基板)とマスクとの計測を精度よくおこなうことを安価に可能とすることができる。これにより、被処理体(基板)とマスクとを所望の位置関係とし、また、メンテナンスの作業性の低下を防止し、製品コストの増大を防止することが可能となる。
The organic EL device manufacturing apparatus of the present invention has a film forming chamber (single chamber having a reduced internal space provided between a processing chamber A for performing a preceding process and a processing chamber B for performing a subsequent process. A chamber) S, and a (planar) object to be processed carried into the film forming chamber S from the processing chamber A passes through a plurality of zones arranged in the internal space of the film forming chamber S. An apparatus for producing an organic EL device by being carried out to the processing chamber B,
As the plurality of zones,
A first zone for holding the back surface (one surface) of the object to be processed using a holding means (substrate chuck);
A second zone for depositing a deposited film on the surface (other surface) of the object to be processed held by the holding means;
A third zone for releasing the holding of the object to be processed from the holding means;
Are arranged in order,
In the second zone, the relative position between the object to be processed and the mask is measured before a desired mask is provided between the vapor deposition source and the surface side of the object to be processed. Measuring means (optical system camera) and adjustment means (XY stage or the like) for adjusting the relative position between the object to be processed and the mask based on the measurement result of the measuring means, the measuring means being positioned The built-in adjustment mechanism (atmosphere box) allows the measurement means (optical) to cope with the increase in the substrate size without causing a decrease in the degree of vacuum or leakage in the film formation chamber. It is possible to set the WD (Working distance) in the system camera) within a predetermined range and to accurately measure the object to be processed (substrate) and the mask at low cost. Thereby, it becomes possible to make a to-be-processed object (board | substrate) and a mask into a desired positional relationship, to prevent the maintenance workability from falling, and to prevent the increase in product cost.

本発明は、前記位置調整機構が前記内部空間内において密閉され、前記計測手段が前記被処理体と前記マスクとの相対的な位置を透過して計測する計測窓部を有することで、処理室内に位置する位置調整機構内部に収納された計測手段と、前記被処理体および前記マスクとの距離を所定の範囲内に設定しても、真空内部での動作仕様とされていない計測デバイス等の計測手段が良好に動作して精度よく測定することが可能となる。   In the present invention, the position adjustment mechanism is sealed in the internal space, and the measurement unit has a measurement window portion that measures the relative position between the object to be processed and the mask. Even if the distance between the measuring means housed in the position adjustment mechanism located at the position and the object to be processed and the mask is set within a predetermined range, the measuring device is not in the operation specification inside the vacuum, etc. The measuring means operates well and can measure accurately.

本発明の前記位置調整機構には、計測対象を照らす照射手段が搭載されることにより、真空内部での動作仕様とされていない照射手段が良好に動作して必要な光量を照射して精度よく測定することが可能となる。   The position adjusting mechanism of the present invention is equipped with an irradiating means for illuminating the measurement target, so that the irradiating means not operating in the vacuum operates well and irradiates the necessary light quantity with high accuracy. It becomes possible to measure.

本発明の前記位置調整機構には、前記被処理体を計測する基板撮像装置と、前記マスクを計測するマスク撮像装置とが設けられることにより、被処理体(基板)とマスクとをそれぞれ正確に撮像して、精度よく測定することができる。   The position adjusting mechanism of the present invention is provided with a substrate imaging device that measures the object to be processed and a mask imaging device that measures the mask, so that the object to be processed (substrate) and the mask can be accurately each Images can be taken and measured accurately.

本発明によれば、基板サイズの大型化に対応し、成膜室内の真空度の低下やリークを生じることなく、計測手段におけるWD(Working distance)を所定の範囲内に設定して被処理体(基板)とマスクとの計測を高精度かつ安価に可能とし、被処理体(基板)とマスクとを所望の位置関係とし、また、メンテナンスの作業性の低下を防止し、製品コストの増大を防止することが可能となる、という効果を奏することができる。   According to the present invention, it is possible to cope with the increase in the substrate size, and to set the WD (Working distance) in the measuring means within a predetermined range without causing a decrease in the degree of vacuum or leakage in the film forming chamber. (Board) and mask can be measured with high accuracy and at low cost, the target object (substrate) and mask can be placed in the desired positional relationship, and maintenance workability can be prevented from being lowered, resulting in increased product costs. The effect that it becomes possible to prevent can be show | played.

本発明に係る有機ELデバイスの製造装置の一実施形態を示す模式正面図である。It is a schematic front view which shows one Embodiment of the manufacturing apparatus of the organic EL device which concerns on this invention. 有機ELデバイスの製造工程を示す模式断面図である。It is a schematic cross section which shows the manufacturing process of an organic EL device. 本発明に係る有機ELデバイスの製造装置の一実施形態における位置調整機構を示す模式平面図である。It is a schematic plan view which shows the position adjustment mechanism in one Embodiment of the manufacturing apparatus of the organic EL device which concerns on this invention. 本発明に係る有機ELデバイスの製造装置の一実施形態における位置調整機構を示す模式正段面図である。It is a model regular front view which shows the position adjustment mechanism in one Embodiment of the manufacturing apparatus of the organic EL device which concerns on this invention.

以下、本発明に係る有機ELデバイスの製造装置の一実施形態を、図面に基づいて説明する。
図1は、本実施形態における有機ELデバイスの製造装置を示す模式正面図であり、図において、符号10は、有機ELデバイスの製造装置である。
Hereinafter, an embodiment of an organic EL device manufacturing apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic front view showing an organic EL device manufacturing apparatus according to the present embodiment. In the figure, reference numeral 10 denotes an organic EL device manufacturing apparatus.

本実施形態における有機ELデバイスの製造装置10は、図1に示すように、前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に、仕切りバルブA1、B1を介して設けられた、減圧可能な単一の内部空間S1を有する成膜室(チャンバ)Sを備え、前記処理室Aから前記成膜室Sへ搬入された平板状の被処理体Wが、該成膜室Sの内部空間S1内に配された複数のゾーンZ1〜Z3を通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置である。   As shown in FIG. 1, the organic EL device manufacturing apparatus 10 according to the present embodiment includes partition valves A <b> 1 and B <b> 1 between a processing chamber A that performs a preceding process and a processing chamber B that performs a subsequent process. A plate-shaped workpiece W carried into the film formation chamber S from the process chamber A is provided with a film formation chamber (chamber) S having a single internal space S1 that can be decompressed. It is an apparatus for manufacturing an organic EL device by passing through a plurality of zones Z1 to Z3 arranged in the internal space S1 of the film chamber S and being carried out to the processing chamber B.

本実施形態における有機ELデバイスの製造装置10によって製造される有機ELデバイスは、図3にその一例を示すように、ガラスや可撓性材料等とされる透明基板Wに、陽極として機能するITO等の第一導電膜V1が形成され、前記第一導電膜V1上に正孔輸送層V2が形成され、前記正孔輸送層V2上に発光層V3が形成され、前記発光層V3上に電子輸送層V4が形成され、前記電子輸送層V4上に陰極として機能する第二導電膜V5が形成されている。   The organic EL device manufactured by the organic EL device manufacturing apparatus 10 according to the present embodiment is an ITO that functions as an anode on a transparent substrate W made of glass or a flexible material, as shown in FIG. The first conductive film V1 is formed, the hole transport layer V2 is formed on the first conductive film V1, the light emitting layer V3 is formed on the hole transport layer V2, and the electrons are formed on the light emitting layer V3. A transport layer V4 is formed, and a second conductive film V5 functioning as a cathode is formed on the electron transport layer V4.

有機ELデバイスの製造装置10において、図1に示すように、チャンバSに前記複数のゾーンZ1〜Z3として、保持手段(基板チャック)Tを用いて前記被処理体Wの裏面(一面)を保持する第一ゾーンZ1、前記保持手段Tにより保持された前記被処理体Wの表面(他面)上に陽極として機能するITO等の第一導電膜V1を形成し、前記第一導電膜V1上に正孔輸送層V2を形成し、前記正孔輸送層V2上に発光層V3を形成し、前記発光層V3上に電子輸送層V4を形成し、前記電子輸送層V4上に陰極として機能する第二導電膜V5を形成する第二ゾーンZ2、前記被処理体Wの移動方向における前記第二ゾーンZ2の下流側位置で保持手段Tから被処理体Wの保持を解除する第三ゾーン(検査ゾーン)Z3、が順に並んで構成されている。なおこれらの第二ゾーンZ2における各蒸着源E等は、模式的に示されたものであり、それぞれの蒸着膜V1〜V5等に対応して設けられるものであり、また、蒸着源を加熱する加熱手段、温度測定手段、膜厚制御用のシャッター等は図示を省略する。また、有機ELデバイスの製造装置10における雰囲気ガス制御手段も図示を省略する。   In the organic EL device manufacturing apparatus 10, as shown in FIG. 1, the back surface (one surface) of the workpiece W is held in the chamber S as the plurality of zones Z <b> 1 to Z <b> 3 using a holding means (substrate chuck) T. A first conductive film V1 such as ITO that functions as an anode is formed on the surface (other surface) of the workpiece W held by the holding means T, and the first conductive film V1 is formed on the first conductive film V1. A hole transport layer V2 is formed, a light emitting layer V3 is formed on the hole transport layer V2, an electron transport layer V4 is formed on the light emitting layer V3, and functions as a cathode on the electron transport layer V4. A second zone Z2 for forming the second conductive film V5, and a third zone for releasing the holding of the workpiece W from the holding means T at a position downstream of the second zone Z2 in the moving direction of the workpiece W (inspection) Zone) Z3, arranged in order It has been. In addition, each vapor deposition source E etc. in these 2nd zones Z2 is typically shown, provided corresponding to each vapor deposition film V1-V5 etc., and heats a vapor deposition source. The heating means, temperature measuring means, film thickness control shutter, etc. are not shown. Also, the atmospheric gas control means in the organic EL device manufacturing apparatus 10 is not shown.

有機ELデバイスの製造装置10において、図1に示すように、第一ゾーンZ1〜第三ゾーンZ3に亘って、基板Wを吸着した基板チャックTを搬送する基板搬送部(搬送手段)L1として、基板チャックTの移動方向と直交する軸線を有するローラLaが水平方向に多数並設され、図示しない駆動手段により、基板チャックTを搬送方向Hに搬送する。   In the organic EL device manufacturing apparatus 10, as shown in FIG. 1, as a substrate transport unit (transport means) L <b> 1 that transports the substrate chuck T that adsorbs the substrate W across the first zone Z <b> 1 to the third zone Z <b> 3, A large number of rollers La having an axis perpendicular to the moving direction of the substrate chuck T are arranged in parallel in the horizontal direction, and the substrate chuck T is conveyed in the conveying direction H by driving means (not shown).

有機ELデバイスの製造装置10は、第二ゾーンにおいて、それぞれ蒸着源Eと被処理体(基板)Wの表面側との間に所望のマスクMを設けて所定の成膜を行う前に、マスクMの位置を計測する計測手段(光学系カメラ)C10、基板WとマスクMとの相対的な位置を計測する計測手段(光学系カメラ)C20、および、計測手段C10,C20の計測結果に基づいて被処理体WとマスクMとの相対的な位置を調整する調整手段(XYステージ)XYを有する。これらの光学系カメラとしては、CCDカメラやCMOSカメラなど、発熱の少ないものを採用することが好ましい。計測手段C10,C20が位置調整機構(大気ボックス)BOに内蔵され、位置調整機構(大気ボックス)BOは基台に載置されている。   In the second zone, the organic EL device manufacturing apparatus 10 provides a desired mask M between the vapor deposition source E and the surface side of the object to be processed (substrate) W before performing predetermined film formation. Measurement means (optical system camera) C10 that measures the position of M, measurement means (optical system camera) C20 that measures the relative position between the substrate W and the mask M, and measurement results of the measurement means C10 and C20. Adjustment means (XY stage) XY for adjusting the relative position between the workpiece W and the mask M. As these optical system cameras, it is preferable to employ a camera that generates little heat, such as a CCD camera or a CMOS camera. Measuring means C10 and C20 are built in the position adjustment mechanism (atmosphere box) BO, and the position adjustment mechanism (atmosphere box) BO is mounted on the base.

計測手段(光学系カメラ)C10は、第二ゾーンZ2の各蒸着位置において基板搬送部L1よりも上側位置となるように設けられ、第二ゾーンZ2の各蒸着位置において基板搬送部L1より下側位置には、被処理体WとマスクMとの相対的な位置を計測する計測手段(光学系カメラ)C20が固設されている。   The measuring means (optical system camera) C10 is provided so as to be positioned above the substrate transport portion L1 at each vapor deposition position in the second zone Z2, and below the substrate transport portion L1 at each vapor deposition position in the second zone Z2. At the position, measuring means (optical system camera) C20 for measuring the relative position between the workpiece W and the mask M is fixed.

計測手段C10および計測手段C20としては、それぞれの蒸着位置において計測可能なように、第一の蒸着位置には計測手段C11および計測手段C21が設けられ、第二の蒸着位置には計測手段C12および計測手段C22が設けられ、第三の蒸着位置には計測手段C13および計測手段C23が設けられる。これらの計測手段C11、計測手段C12、計測手段C13はいずれも略同等の構成とされ、同様に、計測手段C21、計測手段C22、計測手段C23はいずれも略同等の構成とされる。   As the measurement means C10 and the measurement means C20, the measurement means C11 and the measurement means C21 are provided at the first vapor deposition position, and the measurement means C12 and the measurement means C21 are provided at the second vapor deposition position so that measurement is possible at the respective vapor deposition positions. Measuring means C22 is provided, and measuring means C13 and measuring means C23 are provided at the third deposition position. These measuring means C11, measuring means C12, and measuring means C13 are all configured substantially the same, and similarly, the measuring means C21, measuring means C22, and measuring means C23 are all configured approximately the same.

計測手段C10としてはマスクMに焦点を合わせてその位置を計測する撮像装置(カメラ)C10aと、計測対象を照らす照射手段LEDとが搭載される。
計測手段C20としては被処理体(基板)WとマスクMに焦点を合わせてその位置を計測する撮像装置(カメラ)C20aと、計測対象を照らす照射手段LEDが搭載される。
As the measurement means C10, an imaging device (camera) C10a that focuses on the mask M and measures its position and an irradiation means LED that illuminates the measurement target are mounted.
As the measurement means C20, an imaging device (camera) C20a that focuses on the object to be processed (substrate) W and the mask M and measures the position thereof, and an irradiation means LED that illuminates the measurement target are mounted.

計測手段C10においては、図3および図4に示すように、それぞれのカメラC11,C12,C13に対応するカメラC10aのレンズC10bが大気ボックスBOに設けられた測定窓部Bbを通して測定可能な位置に設けられる。同様に、計測手段C10としてのそれぞれのカメラC21,C12,C13には、照射手段LEDが、大気ボックスBOに設けられた測定窓部Bcに対応してレンズC10bと基板W進行方向に離間した位置に設けられる。   In the measuring means C10, as shown in FIGS. 3 and 4, the lens C10b of the camera C10a corresponding to each of the cameras C11, C12, and C13 is located at a position that can be measured through the measurement window Bb provided in the atmospheric box BO. Provided. Similarly, in each of the cameras C21, C12, and C13 serving as the measurement unit C10, the irradiation unit LED is located at a position spaced apart from the lens C10b and the substrate W in the traveling direction corresponding to the measurement window Bc provided in the atmospheric box BO. Is provided.

なお、図3,図4においては、計測手段C10のみを記載しているが、計測手段C20も略同等の構成とされる。また、計測手段C20において、基板WとマスクMに焦点を合わせてその位置を計測するカメラC20aを、同一の撮像装置として、撮像対称を切り替えて基板WとマスクMとを撮像して計測する構成とすることも、撮像装置C20aとして、基板Wに焦点を合わせてその位置を計測する撮像装置とマスクMに焦点を合わせてその位置を計測する撮像装置とを異なるカメラとして同じ大気ボックスBO内に収納する構成、あるいは、撮像装置C20aとして、基板Wに焦点を合わせてその位置を計測する撮像装置とマスクMに焦点を合わせてその位置を計測する撮像装置とを異なるカメラとして別々の大気ボックスBO内に収納する構成とすることもできる。
また、図3,図4においては、計測手段C10の撮像装置C10aを代表して示しているが、撮像装置C20aはこの撮像装置C10aと略同一の構成として、上下反転して配置されるとともに、撮像装置C10aとはマスクMの反対側から、基板WおよびマスクMに焦点を合わせてその位置を計測する撮像装置とすることができる。
3 and 4, only the measuring means C10 is shown, but the measuring means C20 has a substantially equivalent configuration. Further, in the measuring means C20, the camera C20a that focuses on the substrate W and the mask M and measures the position thereof is the same imaging device, and the measurement is performed by imaging the substrate W and the mask M while switching the imaging symmetry. Also, as the imaging device C20a, the imaging device that focuses on the substrate W and measures the position thereof and the imaging device that focuses on the mask M and measures the position thereof in the same atmospheric box BO as different cameras. As an imaging device C20a, the imaging device C20a focuses on the substrate W and measures its position, and the imaging device that focuses on the mask M and measures its position as different cameras, separate atmospheric boxes BO It can also be set as the structure accommodated in.
3 and 4, the imaging device C10a of the measuring unit C10 is shown as a representative, but the imaging device C20a is arranged upside down as substantially the same configuration as the imaging device C10a. The imaging apparatus C10a can be an imaging apparatus that focuses on the substrate W and the mask M from the opposite side of the mask M and measures the position thereof.

計測手段C10または計測手段C20においては、図4に計測手段C10として示すように、レンズ(撮像装置)C10bから計測窓部Bbまでの大気圧距離Daに対する計測窓部Bbから計測対象であるマスクMまたは被処理体(基板)Wまでの真空距離Dvの和の値を所定の範囲に設定することで、撮像装置C10aおよび撮像装置C20aにおけるWD(Working distance)値を所定の範囲内に設定して高精度な計測を確保することができる。   In the measuring means C10 or the measuring means C20, as shown as the measuring means C10 in FIG. 4, the mask M that is the measurement object from the measurement window Bb to the atmospheric pressure distance Da from the lens (imaging device) C10b to the measurement window Bb. Alternatively, by setting the sum of the vacuum distances Dv to the object to be processed (substrate) W within a predetermined range, the WD (Working distance) values in the imaging devices C10a and C20a are set within the predetermined range. Highly accurate measurement can be ensured.

大気ボックスBOは、真空性能として、収納側となる内部が大気圧、外部が例えば1×10−5Pa程度の高真空であっても、歪み発生がないという条件を設定することができる。
測定窓部Bbに光学的反射防止膜が設けられることができる。
The atmospheric box BO can be set as a condition that no distortion occurs even if the inside on the storage side is atmospheric pressure and the outside is a high vacuum of about 1 × 10 −5 Pa, for example, as the vacuum performance.
An optical antireflection film may be provided on the measurement window Bb.

次に、本実施形態の有機ELデバイスの製造装置10における有機ELデバイスの製造動作について説明する。   Next, an organic EL device manufacturing operation in the organic EL device manufacturing apparatus 10 of the present embodiment will be described.

本実施形態においては、処理室Aにおいて前段のプロセスを行い、この前処理が終了した基板Wを図示しない、搬送手段により仕切りバルブA1を介してチャンバS内に搬送する。
次いで、第一ゾーンZ1において、基板チャック(保持手段)Tを用いて基板(被処理体)Wの裏面(一面)を保持する。
In the present embodiment, the previous process is performed in the processing chamber A, and the substrate W after the preprocessing is transferred into the chamber S via the partition valve A1 by a transfer means (not shown).
Next, in the first zone Z1, the back surface (one surface) of the substrate (object to be processed) W is held using the substrate chuck (holding means) T.

次いで、第二ゾーンZ2の第一の蒸着位置において、光学系カメラ(計測手段)C11の照射手段LEDによって計測対象であるマスクMを照射しつつ撮像装置C10aでマスクMを撮像することによって、マスクMの位置を計測して所望の位置にあることを確認するか計測手段C11の計測結果に基づいてマスクMの位置を所望の状態に設定する。
その後、基板チャックTを基板搬送部L1によって第二ゾーンZ2の第一の蒸着位置に移動し、この第一の蒸着位置に基板Wを停止させる。計測手段C21の照射手段LEDによって計測対象である基板WとマスクMとを照射しつつ撮像装置C21aで基板Wを撮像してその位置を計測するとともにマスクMを撮像してその位置を計測する。
計測手段C21の計測結果に基づいて必要があればXYステージ(調整手段)XYを用いて基板WとマスクMとの相対的な位置を調整した後、第二ゾーンZ2の第一の蒸着位置において、基板チャックTにより保持された基板Wの表面(下面)上に陽極として機能するITO等の第一導電膜V1を形成する。
Next, at the first vapor deposition position in the second zone Z2, the mask M is imaged by the imaging device C10a while irradiating the mask M to be measured by the irradiation means LED of the optical system camera (measurement means) C11. The position of the mask M is set to a desired state by measuring the position of M to confirm that it is at the desired position or based on the measurement result of the measuring means C11.
Thereafter, the substrate chuck T is moved to the first vapor deposition position in the second zone Z2 by the substrate transport unit L1, and the substrate W is stopped at the first vapor deposition position. While the substrate W and the mask M to be measured are irradiated by the irradiation unit LED of the measuring unit C21, the imaging device C21a images the substrate W and measures its position, and images the mask M and measures its position.
If necessary, the relative position between the substrate W and the mask M is adjusted using an XY stage (adjustment means) XY if necessary based on the measurement result of the measurement means C21, and then at the first deposition position in the second zone Z2. A first conductive film V1 such as ITO functioning as an anode is formed on the surface (lower surface) of the substrate W held by the substrate chuck T.

次いで、第二ゾーンZ2の第二の蒸着位置において、光学系カメラ(計測手段)C12の照射手段LEDによって計測対象であるマスクMを照射しつつ撮像装置C10aでマスクMを撮像することによって、マスクMの位置を計測して所望の位置にあることを確認するか計測手段C12の計測結果に基づいてマスクMの位置を所望の状態に設定する。
その後、基板チャックTを基板搬送部L1によって第二ゾーンZ2の第二の蒸着位置に移動し、この第二の蒸着位置に基板Wを停止させる。計測手段C22の照射手段LEDによって計測対象である基板WとマスクMとを照射しつつ撮像装置C22aで基板Wを撮像してその位置を計測するとともにマスクMを撮像してその位置を計測する。
計測手段C22の計測結果に基づいて必要があればXYステージ(調整手段)XYを用いて基板WとマスクMとの相対的な位置を調整した後、第二ゾーンZ2の第二の蒸着位置において、第一導電膜V1上にマスクMのパターンMaに応じた正孔輸送層V2を形成する。
Next, at the second vapor deposition position in the second zone Z2, the mask M is imaged by the imaging device C10a while irradiating the mask M to be measured by the irradiation means LED of the optical system camera (measurement means) C12. The position of the mask M is set to a desired state by measuring the position of M and confirming that it is at the desired position or based on the measurement result of the measuring means C12.
Thereafter, the substrate chuck T is moved to the second vapor deposition position in the second zone Z2 by the substrate transport unit L1, and the substrate W is stopped at the second vapor deposition position. The substrate W and the mask M to be measured are irradiated by the irradiation unit LED of the measuring unit C22, the substrate W is imaged by the imaging device C22a, the position thereof is measured, the mask M is imaged, and the position is measured.
If necessary, the relative position between the substrate W and the mask M is adjusted using the XY stage (adjustment means) XY based on the measurement result of the measurement means C22, and then at the second deposition position in the second zone Z2. Then, the hole transport layer V2 corresponding to the pattern Ma of the mask M is formed on the first conductive film V1.

次いで、第二ゾーンZ2の第三の蒸着位置において、光学系カメラ(計測手段)C13の照射手段LEDによって計測対象であるマスクMを照射しつつ撮像装置C10aでマスクMを撮像することによって、マスクMの位置を計測して所望の位置にあることを確認するか計測手段C13の計測結果に基づいてマスクMの位置を所望の状態に設定する。
その後、基板チャックTを基板搬送部L1によって第二ゾーンZ2の第三の蒸着位置に移動し、この第三の蒸着位置に基板Wを停止させる。計測手段C23の照射手段LEDによって計測対象である基板WとマスクMとを照射しつつ撮像装置C23aで基板Wを撮像してその位置を計測するとともにマスクMを撮像してその位置を計測する。
計測手段C23の計測結果に基づいて必要があればXYステージ(調整手段)XYを用いて基板WとマスクMとの相対的な位置を調整した後、この第三の蒸着位置において、正孔輸送層V2上にマスクMのパターンMaに応じた発光層V3を形成する。
Next, at the third vapor deposition position in the second zone Z2, the mask M is imaged by the imaging device C10a while irradiating the mask M to be measured by the irradiation means LED of the optical system camera (measurement means) C13, whereby the mask The position of the mask M is set to a desired state by measuring the position of M and confirming that it is at the desired position or based on the measurement result of the measuring means C13.
Thereafter, the substrate chuck T is moved to the third vapor deposition position in the second zone Z2 by the substrate transport portion L1, and the substrate W is stopped at the third vapor deposition position. The substrate W and the mask M to be measured are irradiated by the irradiation unit LED of the measuring unit C23, the substrate W is imaged by the imaging device C23a, the position thereof is measured, the mask M is imaged, and the position is measured.
If necessary, the relative position between the substrate W and the mask M is adjusted using an XY stage (adjustment means) XY based on the measurement result of the measurement means C23, and then the hole transport is performed at this third vapor deposition position. A light emitting layer V3 corresponding to the pattern Ma of the mask M is formed on the layer V2.

同様にして、第四の蒸着位置において、発光層V3上にマスクMのパターンMaに応じた電子輸送層V4を形成し、第五の蒸着位置において、電子輸送層V4上にマスクMのパターンMaに応じた第二導電膜V5を形成する。   Similarly, the electron transport layer V4 corresponding to the pattern Ma of the mask M is formed on the light emitting layer V3 at the fourth vapor deposition position, and the pattern Ma of the mask M on the electron transport layer V4 at the fifth vapor deposition position. A second conductive film V5 corresponding to the above is formed.

次いで、基板チャックTを基板搬送部L1によって第三ゾーンZ3に移動し、基板チャックTによる基板Wの保持を解除するとともに、このチャンバS内における処理が終了した基板Wを、図示しない搬送手段により仕切りバルブB1を介して処理室Bにおける後段のプロセスへと搬送する。   Next, the substrate chuck T is moved to the third zone Z3 by the substrate transfer unit L1, and the holding of the substrate W by the substrate chuck T is released, and the substrate W that has been processed in the chamber S is transferred by a transfer means (not shown). It is transferred to a subsequent process in the processing chamber B via the partition valve B1.

本実施形態における有機ELデバイスの製造装置10によれば、連続した内部空間S1内で並設されたゾーンZ2において順次おこなわれる蒸着処理において、光学系カメラ(計測手段)C10および光学系カメラ(計測手段)C20におけるWD(Working distance)を所望の範囲内に設定して基板WとマスクMとの計測を高精度に可能とすることができる。また、計測手段C10,C10を位置調整機構(大気ボックス)BO内部に収納したことで、真空中では正常動作が確実でない計測デバイスを用いても安価にかつ精度よく計測をおこなうことができる。また、チャンバSの内壁形状を、この計測用に複雑な凹凸形状とする必要がないので、メンテナンス性を確保し、また、リーク発生の可能性を低減して、同時に、製品コストの増大を防止することが可能となる、   According to the organic EL device manufacturing apparatus 10 of the present embodiment, the optical system camera (measuring means) C10 and the optical system camera (measurement) are performed in the vapor deposition process sequentially performed in the zones Z2 arranged in parallel in the continuous internal space S1. Means) The WD (Working distance) at C20 can be set within a desired range, and the measurement of the substrate W and the mask M can be performed with high accuracy. Further, since the measuring means C10 and C10 are housed inside the position adjusting mechanism (atmosphere box) BO, it is possible to perform measurement at low cost and with high accuracy even when using a measuring device whose normal operation is not reliable in vacuum. In addition, since the inner wall shape of the chamber S does not need to be a complicated uneven shape for this measurement, maintenance is ensured, and the possibility of occurrence of leakage is reduced, and at the same time, an increase in product cost is prevented. It becomes possible to

10…有機ELデバイスの製造装置
C10…計測手段
Z1〜Z3…ゾーン
L1…基板搬送部(搬送手段)
L2…計測手段搬送部(搬送手段)
BO…大気ボックス(位置調整機構)
Bb…計測窓部
H…搬送方向(進行方向)
M…マスク
E…蒸着源
W…基板(被処理体)
T…基板チャック(保持手段)
S…チャンバ(成膜室)
S1…内部空間
XY…XYステージ(調整手段)
LED…照射手段
A1,B1…仕切りバルブ
DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus C10 of organic EL device ... Measuring means Z1-Z3 ... Zone L1 ... Substrate conveyance part (conveyance means)
L2: Measuring means conveying section (conveying means)
BO ... Atmosphere box (position adjustment mechanism)
Bb ... Measurement window H ... Conveying direction (traveling direction)
M ... Mask E ... Evaporation source W ... Substrate (object to be processed)
T ... Substrate chuck (holding means)
S ... Chamber (deposition chamber)
S1 ... Internal space XY ... XY stage (adjustment means)
LED ... Irradiation means A1, B1 ... Partition valve

Claims (4)

前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に設けられた、減圧可能な単一の内部空間を有する成膜室を備え、前記処理室Aから前記成膜室へ搬入された被処理体が、該成膜室の内部空間内に配された複数のゾーンを通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置であって、
前記複数のゾーンとして、
保持手段を用いて前記被処理体の裏面を保持する第一ゾーン、
前記保持手段により保持された前記被処理体の表面上に蒸着膜を形成する第二ゾーン、
前記保持手段から前記被処理体の保持を解除する第三ゾーン、
が順に並んで構成されており、
前記第二ゾーンにおいて、蒸着源と前記被処理体の表面側との間に所望のマスクを設けて所定の成膜を行う前に前記被処理体と前記マスクとの相対的な位置を計測する計測手段、および、計測手段の計測結果に基づいて前記被処理体と前記マスクとの相対的な位置を調整する調整手段を有し、前記計測手段が位置調整機構に内蔵されていることを特徴とする有機ELデバイスの製造装置。
A film formation chamber having a single internal space that can be decompressed is provided between a process chamber A that performs a preceding process and a process chamber B that performs a subsequent process. An object for manufacturing an organic EL device by passing an object to be processed to a processing chamber B through a plurality of zones arranged in the internal space of the film forming chamber,
As the plurality of zones,
A first zone for holding the back surface of the object to be processed using a holding means;
A second zone for forming a deposited film on the surface of the object to be processed held by the holding means;
A third zone for releasing the holding of the object to be processed from the holding means;
Are arranged in order,
In the second zone, the relative position between the object to be processed and the mask is measured before a desired mask is provided between the vapor deposition source and the surface side of the object to be processed. A measuring unit; and an adjusting unit that adjusts a relative position between the object to be processed and the mask based on a measurement result of the measuring unit, and the measuring unit is built in a position adjusting mechanism. An organic EL device manufacturing apparatus.
前記位置調整機構が前記内部空間内において密閉され、前記計測手段が前記被処理体と前記マスクとの相対的な位置を透過して計測する計測窓部を有することを特徴とする請求項1記載の有機ELデバイスの製造装置。   The said position adjustment mechanism is sealed in the said interior space, The said measurement means has a measurement window part which permeate | transmits and measures the relative position of the said to-be-processed object and the said mask. Organic EL device manufacturing equipment. 前記位置調整機構には、計測対象を照らす照射手段が搭載されることを特徴とする請求項1または2記載の有機ELデバイスの製造装置。   The organic EL device manufacturing apparatus according to claim 1, wherein the position adjusting mechanism includes an irradiating unit that illuminates a measurement target. 前記位置調整機構には、前記被処理体を計測する基板撮像装置と、前記マスクを計測するマスク撮像装置とが設けられることを特徴とする請求項1から3のいずれか記載の有機ELデバイスの製造装置。   4. The organic EL device according to claim 1, wherein the position adjusting mechanism includes a substrate imaging device that measures the object to be processed and a mask imaging device that measures the mask. 5. manufacturing device.
JP2014000980A 2014-01-07 2014-01-07 Manufacturing apparatus for organic el device Pending JP2015129326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000980A JP2015129326A (en) 2014-01-07 2014-01-07 Manufacturing apparatus for organic el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000980A JP2015129326A (en) 2014-01-07 2014-01-07 Manufacturing apparatus for organic el device

Publications (1)

Publication Number Publication Date
JP2015129326A true JP2015129326A (en) 2015-07-16

Family

ID=53760254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000980A Pending JP2015129326A (en) 2014-01-07 2014-01-07 Manufacturing apparatus for organic el device

Country Status (1)

Country Link
JP (1) JP2015129326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910809A1 (en) 2015-06-26 2021-11-17 Ntt Docomo, Inc. Rank indicator bit width determination based on maximum number of mimo layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200361A (en) * 2000-01-19 2001-07-24 Mitsubishi Heavy Ind Ltd Observatory apparatus in hot vacuum vapor deposition apparatus
JP2005085605A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Deposition device
JP2013139600A (en) * 2011-12-29 2013-07-18 V Technology Co Ltd Vapor deposition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200361A (en) * 2000-01-19 2001-07-24 Mitsubishi Heavy Ind Ltd Observatory apparatus in hot vacuum vapor deposition apparatus
JP2005085605A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Deposition device
JP2013139600A (en) * 2011-12-29 2013-07-18 V Technology Co Ltd Vapor deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910809A1 (en) 2015-06-26 2021-11-17 Ntt Docomo, Inc. Rank indicator bit width determination based on maximum number of mimo layers

Similar Documents

Publication Publication Date Title
KR102125839B1 (en) Position detection device, position detection method, and vapor deposition apparatus
US9496524B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
JP5506824B2 (en) Film forming apparatus and film forming method
JP2016102255A (en) Optical positioning compensation device, lamination degree detection device, vapor deposition system and its method
TW201709394A (en) Substrate processing apparatus and substrate processing method
KR102591022B1 (en) Masks for deposition systems and methods for using masks
JP2020003469A5 (en)
KR102006067B1 (en) Substrate processing apparatus and alignment method
WO2019174710A1 (en) Apparatus and method for an automated optical inspection of a substrate
TWI655305B (en) Thin film forming apparatus, method for forming thin film
JP5994089B2 (en) Vapor deposition equipment
US20120276282A1 (en) Tooling carrier for inline coating machine, method of operating thereof and process of coating a substrate
JP2022059618A (en) Film deposition device, device for producing electronic device, film deposition method, and method for producing electronic device
JP2015129326A (en) Manufacturing apparatus for organic el device
KR102634162B1 (en) Mask replacement timing determination apparatus, film forming apparatus, mask replacement timing determination method, film forming method, and manufacturing method of electronic device
JP6310704B2 (en) Film forming apparatus and film forming method
JP6270205B2 (en) Organic EL device manufacturing equipment
JP7082172B2 (en) Alignment device, film formation device, alignment method, film formation method, and manufacturing method of electronic devices
US20140127837A1 (en) Thin film deposition apparatus and method of depositing thin film using the same
JP6270204B2 (en) Organic EL device manufacturing equipment
KR102217879B1 (en) Method for processing a substrate, apparatus for vacuum processing, and vacuum processing system
KR102184501B1 (en) Method of handling mask arrangement, reference substrate for optical inspection of mask arrangement, and vacuum deposition system
US20220341722A1 (en) Digital holography for alignment in layer deposition
US20140078497A1 (en) Apparatus for inspecting film
JP2016191081A (en) Film deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180424