JP2015129322A - Steel for cold press die - Google Patents

Steel for cold press die Download PDF

Info

Publication number
JP2015129322A
JP2015129322A JP2014000580A JP2014000580A JP2015129322A JP 2015129322 A JP2015129322 A JP 2015129322A JP 2014000580 A JP2014000580 A JP 2014000580A JP 2014000580 A JP2014000580 A JP 2014000580A JP 2015129322 A JP2015129322 A JP 2015129322A
Authority
JP
Japan
Prior art keywords
steel
amount
mass
cold press
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014000580A
Other languages
Japanese (ja)
Other versions
JP6177694B2 (en
Inventor
祐樹 垣木
Yuki Kakigi
祐樹 垣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014000580A priority Critical patent/JP6177694B2/en
Publication of JP2015129322A publication Critical patent/JP2015129322A/en
Application granted granted Critical
Publication of JP6177694B2 publication Critical patent/JP6177694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive steel for cold press die achieving hardness and toughness required as a cold press die and reducing used amount of expensive elements as much as possible.SOLUTION: There is provided a cold tool steel used for a die for molding such as cold press containing, by mass%, C:0.75 to 0.90%, Si:0.30 to 0.90%, Mn:0.20 to 0.60%, Cr:6.50 to 8.50%, Mo:0.20 to 0.50% and further V:0.10% or less as impurities and having a chemical composition of 1.50≤[%C]/C≤1.80 of the formula (1) with C=0.06×[%Cr]+0.093×[%Mo] and consisting of the balance Fe with inevitable impurities. [% element] represents amount of alloy element in mass%.

Description

この発明は冷間プレスなどの成形用金型などに用いる冷間工具鋼に関する。   The present invention relates to a cold tool steel used for a molding die such as a cold press.

従来、冷間プレスなどの成型用金型には、JISに記載されたSKD11あるいはAISIで規格化されているD2などの冷間金型用工具鋼が多用されている。これらの冷間金型用工具鋼は、鋼中に1.5%前後のCと12%前後のCrを添加することにより、粗大なM73一次炭化物を形成し、優れた耐摩耗性を発揮する鋼材となっている。一方、これらの鋼材は一次炭化物を多量に含むことが原因で、靭性及び加工性が悪い。 Conventionally, tool steels for cold molds such as SKD11 described in JIS or D2 standardized by AISI are frequently used for molding dies such as cold presses. These tool steels for cold molds form coarse M 7 C 3 primary carbides by adding about 1.5% C and about 12% Cr to the steel and have excellent wear resistance. It has become a steel material that demonstrates. On the other hand, these steel materials have poor toughness and workability because they contain a large amount of primary carbides.

そこで、鋼材の靱性及び加工性が悪化することを阻止する対策として、この鋼の組成を低C、低Cr化することにより、一次炭化物の形成量を減少して、靭性の向上を図った冷間工具鋼が開発され、この鋼からなる鋼材が広く適用されている(例えば、特許文献1参照。)。   Therefore, as a measure to prevent the deterioration of the toughness and workability of the steel material, by reducing the composition of this steel to low C and low Cr, the amount of primary carbide formed is reduced, and the coldness is improved to improve the toughness. Interstitial tool steel has been developed, and steel materials made of this steel are widely applied (for example, see Patent Document 1).

特許文献1に係る発明の冷間工具鋼では、硬さ、靭性、熱処理変寸といった基本特性を備えた上に、切削仕上げ面粗さや切削工具寿命といった面でも問題のない冷間工具鋼である。   The cold tool steel of the invention according to Patent Document 1 is a cold tool steel that has basic characteristics such as hardness, toughness, heat treatment size change, and has no problems in terms of cutting finish surface roughness and cutting tool life. .

しかし、この特許文献1の冷間工具鋼は、焼戻しにより析出する炭化物を利用して硬度を得ることを目的として、Niを0.25〜1.00%(実施例では最小0.28%)、Mo当量としてMo+1/2Wを0.5〜3.0%(実施例では最小0.97%)、Vを0.5%以下(実施例では最小0%)およびCoを10%以下(実施例では最小0%)含有しており、この冷間工具鋼は硬さ、靭性、熱処理変寸といった基本特性を備えた上に、切削仕上げ面粗さや切削工具寿命といった面でも問題はないが、しかしながら、この冷間工具鋼は希少元素であるNi、Mo、W、VおよびCoを比較的多く添加しているため、鋼材費用が高くなる問題がある。   However, the cold tool steel of Patent Document 1 has a Ni content of 0.25 to 1.00% (minimum 0.28% in the examples) for the purpose of obtaining hardness using carbides precipitated by tempering. Mo + 1 / 2W as Mo equivalent 0.5-3.0% (minimum 0.97% in the example), V 0.5% or less (minimum 0% in the example) and Co 10% or less (implementation) In this example, this cold tool steel has basic characteristics such as hardness, toughness, heat treatment size change, and there is no problem in terms of cutting finish surface roughness and cutting tool life. However, since this cold tool steel contains a relatively large amount of rare elements Ni, Mo, W, V and Co, there is a problem that the cost of the steel material increases.

さらに、従来技術として、化学成分組成の調整と炭化物の制御により、従来品の優れた特性である高い摩耗性を維持し、欠点であった被削性及び耐かじり性を大幅に向上させた冷間工具鋼が提案されている(例えば、特許文献2参照。)。しかしながら、この冷間工具鋼は希少元素であるNi、Mo、W及びVを比較的多く添加しているため,鋼材費用が高くなる問題がある。   Furthermore, as a conventional technology, by adjusting the chemical composition and controlling the carbides, the high wear characteristics, which are the superior characteristics of the conventional products, are maintained, and the machinability and galling resistance, which were disadvantages, are greatly improved. Inter tool steel has been proposed (see, for example, Patent Document 2). However, this cold tool steel has a problem that the cost of the steel material is increased because relatively rare elements Ni, Mo, W and V are added.

特開2009−167435号公報JP 2009-167435 A 特開2007−077442号公報JP 2007-077442 A

工業製品には、一般的に大量生産品と少量多品種生産品が混在している。しかしながら、製品デザインの短期化および多様化が求められることから、現在のニーズとして、少量多品種生産品が求められている。各種製造業はその傾向に追従する結果、製造コストの低減目的として、従来は長寿命が得られる金型材料が求められてきたが、近年では必要最低限の特性を有した低価格な金型材料の要望が拡大している。そこで、冷間プレス用の金型材料である冷間工具鋼においては、前記要望に応えるために、金型製造費用と工期の削減を目的として、被削性の改善や焼入焼戻し後の変形の低減や寸法変化の低減を狙った開発も進められてきた。しかし、それらの多くは、冷間プレス用途としての特性、特に耐摩耗性や、耐焼付き性を維持および向上させるために、高価な希少元素を多く含有している場合が多く、結果として十分な金型費用の削減に貢献できるものになっていない。   Industrial products are generally a mixture of mass-produced products and small-quantity multi-product products. However, since short-term and diversified product designs are required, the current needs are small-quantity multi-product products. As a result of following the trends in various manufacturing industries, mold materials that have long life have been required for the purpose of reducing manufacturing costs, but in recent years, low-cost molds with the necessary minimum characteristics have been required. The demand for materials is expanding. Therefore, in cold tool steel, which is a die material for cold pressing, in order to meet the above-mentioned demand, in order to reduce die manufacturing cost and work period, improvement of machinability and deformation after quenching and tempering. Development aimed at reducing dimensional change and dimensional change has also been promoted. However, many of them often contain a lot of expensive rare elements in order to maintain and improve the properties for cold press applications, especially wear resistance and seizure resistance. It does not contribute to reducing mold costs.

そこで、本発明が解決しようとする課題は、冷間プレス金型として必要な硬度、靭性、耐摩耗性などの必要最低限の特性を確保した上で、金型材料の費用を増大させる高価な元素の使用量を極力削減することで、安価な冷間プレス金型鋼を提供することにある。   Therefore, the problem to be solved by the present invention is to increase the cost of the mold material while ensuring the necessary minimum characteristics such as hardness, toughness, and wear resistance necessary for the cold press mold. It is to provide an inexpensive cold-pressed die steel by reducing the amount of element used as much as possible.

上記の課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.75〜0.90%、Si:0.30〜0.90%、Mn:0.20〜0.60%、Cr:6.50〜8.50%、Mo:0.20〜0.50%を含有し、化学組成が、式(1)の1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物であることを特徴とする冷間プレス金型用鋼である。
ただし、上記の[%元素]は合金元素量であり、質量%を示す。
The means of the present invention for solving the above-mentioned problems is, in the first means, in mass%, C: 0.75 to 0.90%, Si: 0.30 to 0.90%, Mn: 0.00. 20 to 0.60%, Cr: 6.50 to 8.50%, Mo: 0.20 to 0.50%, and the chemical composition is 1.50 ≦ [% C] / of the formula (1) C eq ≦ 1.80, provided that C eq = 0.06 × [% Cr] + 0.093 × [% Mo], the balance being Fe and inevitable impurities, Steel.
However, the above-mentioned [% element] is the amount of alloying elements and indicates mass%.

第2の手段では、第1の手段の化学成分に加えて、質量%で、S≦0.120%を含有し、化学組成が、式(1)の1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物であることを特徴とする冷間プレス金型用鋼である。
ただし、上記の[%元素]は合金元素量であり、質量%を示す。
In the second means, in addition to the chemical component of the first means, it contains S ≦ 0.120% by mass, and the chemical composition is 1.50 ≦ [% C] / C of the formula (1). eq ≦ 1.80, provided that C eq = 0.06 × [% Cr] + 0.093 × [% Mo], the balance being Fe and inevitable impurities, for cold press dies It is steel.
However, the above-mentioned [% element] is the amount of alloying elements and indicates mass%.

第3の手段では、第1の手段の化学成分に加えて、質量%で、V≦0.10%を含有し、化学組成が、式(1)の1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物であることを特徴とする冷間プレス金型用鋼である。
ただし、上記の[%元素]は合金元素量であり、質量%を示す。
In the third means, in addition to the chemical component of the first means, V ≦ 0.10% is contained in mass%, and the chemical composition is 1.50 ≦ [% C] / C of the formula (1). eq ≦ 1.80, provided that C eq = 0.06 × [% Cr] + 0.093 × [% Mo], the balance being Fe and inevitable impurities, for cold press dies It is steel.
However, the above-mentioned [% element] is the amount of alloying elements and indicates mass%.

第4の手段では、第1の手段の化学成分に加えて、質量%で、S≦0.120%を含有し、さらにV≦0.10%を含有し、化学組成が、式(1)の1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物であることを特徴とする冷間プレス金型用鋼である。
ただし、上記の[%元素]は合金元素量であり、質量%を示す。
In the fourth means, in addition to the chemical component of the first means, in mass%, S ≦ 0.120% is further contained, V ≦ 0.10% is further contained, and the chemical composition is represented by the formula (1) 1.50 ≦ [% C] / C eq ≦ 1.80, where C eq = 0.06 × [% Cr] + 0.093 × [% Mo], and the balance is Fe and inevitable impurities This is a steel for cold pressing dies.
However, the above-mentioned [% element] is the amount of alloying elements and indicates mass%.

ここで、本願の第1の手段および第2の手段に係る発明である冷間工具鋼の化学成分の限定理由を以下に記載する。なお、化学成分の%は質量%によるものである。   Here, the reason for limitation of the chemical component of the cold tool steel which is the invention according to the first and second means of the present application will be described below. In addition,% of a chemical component is based on the mass%.

C:0.75〜0.90%
Cは、十分な焼入性を確保し、炭化物を形成させることで、硬さや耐摩耗性を得るための元素である。Cが0.75%未満であると十分な硬さや耐摩耗性が得られない。Cが0.90%より多いと、炭化物の粗大化および凝固偏析を助長し、靱性を阻害する。そこで、Cは0.75〜0.90%とする。望ましくは、C:0.75〜0.85%である。
C: 0.75 to 0.90%
C is an element for ensuring hardness and wear resistance by ensuring sufficient hardenability and forming carbides. If C is less than 0.75%, sufficient hardness and wear resistance cannot be obtained. When C is more than 0.90%, coarsening of carbide and solidification segregation are promoted, and toughness is inhibited. Therefore, C is set to 0.75 to 0.90%. Desirably, C: 0.75 to 0.85%.

Si:0.30〜0.90%
Siは、製鋼での脱酸効果および鋼の焼入性を確保するための元素である。Siが0.30%未満では、これらの効果が得られない。Siが0.90%より多すぎると、靱性を低下する。そこで、Siは0.30〜0.90%とする。
Si: 0.30-0.90%
Si is an element for ensuring the deoxidation effect in steel making and the hardenability of the steel. If Si is less than 0.30%, these effects cannot be obtained. When Si is more than 0.90%, the toughness is lowered. Therefore, Si is set to 0.30 to 0.90%.

Mn:0.20〜0.60%
Mnは、Si同様に脱酸材として添加をし、焼入性の確保にも必要な元素である。Mnが0.20%未満では、焼入性の確保に不十分である。Mnが0.60%より多すぎると、加工性を低下する。そこで、Mnは0.20〜0.60%とする。望ましくは、Mn:0.45〜0.55%である。
Mn: 0.20 to 0.60%
Mn is an element that is added as a deoxidizing material in the same manner as Si and is necessary for ensuring hardenability. If Mn is less than 0.20%, it is insufficient to ensure hardenability. When Mn is more than 0.60%, workability is lowered. Therefore, Mn is set to 0.20 to 0.60%. Desirably, it is Mn: 0.45-0.55%.

Cr:6.50〜8.50%
Crは、焼入性を改善する元素で、炭化物を形成し、耐摩耗性に寄与する元素である。Crが6.50%未満では、特に焼入性が低下することで、熱処理設備能力(炉内の均熱帯容積、冷却能など)や熱処理技術が劣る場合は適正な組織や硬さを担保できない。Crが8.50%より多すぎると、凝固時に粗大な一次炭化物が過剰に形成され、靱性および熱処理後の寸法変化特性を低下させる。また、焼戻し時に析出する炭化物組成はCrとMoの添加量バランスで変化するため、たとえ、Crが6.50〜8.50%であっても、式(1)を満足する必要がある。
Cr: 6.50-8.50%
Cr is an element that improves hardenability and forms carbides and contributes to wear resistance. If the Cr content is less than 6.50%, the hardenability deteriorates, and if the heat treatment equipment capacity (equal tropical volume in the furnace, cooling capacity, etc.) and heat treatment technology are inferior, the proper structure and hardness cannot be secured. . If the Cr content is more than 8.50%, coarse primary carbides are excessively formed during solidification, and the toughness and dimensional change characteristics after heat treatment are deteriorated. Moreover, since the carbide | carbonized_material composition which precipitates at the time of temper changes with the addition amount balance of Cr and Mo, even if Cr is 6.50-8.50%, it is necessary to satisfy Formula (1).

Mo:0.20〜0.50%
Moは、焼入性と二次硬化や耐摩耗性に寄与する元素である。Moが0.20%より少ないと、焼入性と二次硬化や耐摩耗の効果が得られない。Moが0.50%より過剰に添加しても、効果が飽和するばかりか、偏析を助長し、炭化物が粗大凝集することによって靭性を低下させる。さらにコストが嵩む。そこで、Moは0.20〜0.50%とする。
Mo: 0.20 to 0.50%
Mo is an element that contributes to hardenability, secondary hardening, and wear resistance. When Mo is less than 0.20%, the effects of hardenability, secondary hardening and wear resistance cannot be obtained. Even if Mo is added in excess of 0.50%, the effect is not only saturated, but also segregation is promoted, and the toughness is reduced by coarse aggregation of carbides. Furthermore, the cost increases. Therefore, Mo is 0.20 to 0.50%.

S:0.120%以下
Sは鋼材の被削性を改善する元素である。Sは製鋼の過程でMnと結合してMnSを形成する。このMnSが切削加工の際に破壊の起点になることで、鋼材の被削性を高め、切削加工費用の削減に寄与する。ただし、同時に、鋼材の靭性を低下させる要因にもなることから、過剰な添加は金型としての機能を大幅に損なうことになるので、上限を0.120%として添加しても良い。
S: 0.120% or less S is an element that improves the machinability of steel. S combines with Mn during the steel making process to form MnS. This MnS serves as a starting point of fracture during cutting, thereby improving the machinability of the steel material and contributing to reduction in cutting costs. However, at the same time, since it becomes a factor of lowering the toughness of the steel material, excessive addition significantly impairs the function as a mold, so the upper limit may be 0.120%.

V:0.10%以下
Vは、炭化物を形成して硬度と耐摩耗性の向上に寄与するが、稀少元素の一つであるためコスト高になる。本発明においては、積極添加は不要であるが、スクラップなどの原材料中に含まれている場合もある。原材料を特別管理すると、かえってコスト高になることから、無添加であり不純物として0.10%以下の含有は許容する。
V: 0.10% or less V forms carbides and contributes to improvement in hardness and wear resistance. However, V is one of the rare elements, which increases costs. In the present invention, positive addition is not required, but it may be contained in raw materials such as scrap. If the raw materials are specially managed, the cost is rather high. Therefore, it is not added and the content of 0.10% or less as an impurity is allowed.

次いで、本願請求項の化学組成であるCrおよびMo添加量に対するC添加量の限定式である式(1)のC/Ceq値をR値とするとき、本発明に係る請求項1において1.50≦R値≦1.80を満足する。そこで、この1.50≦R値≦1.80の限定理由について以下に説明する。 Next, when the C / C eq value of the formula (1), which is the limiting formula of the C addition amount relative to the Cr and Mo addition amounts, which is the chemical composition of the present application claim, is defined as the R value, .50 ≦ R value ≦ 1.80 is satisfied. Therefore, the reason for limitation of 1.50 ≦ R value ≦ 1.80 will be described below.

この1.50≦R値≦1.80は、本願発明に係る化学成分とFeおよび不可避的不純物からなる鋼を1030℃から焼入れ後490〜510℃で焼戻しをした場合において、いずれかの焼戻しで58HRC以上を確保しつつ、靭性25J/cm2以上の鋼材とするために必要な値である。ところで、焼戻し時には、炭化物が析出する。しかし、この炭化物の種類は焼入焼戻し硬さに多大の影響をおよぼし、特にMoは焼入焼戻し時に二次炭化物を析出し硬さの向上に有効である。そこで、Mo主体の炭化物を効果的に析出させるためには、本発明の範囲内においては、Moの添加量に加えてMoとCrとの添加量の関係を制御する必要がある。さらに、同時に靭性も確保するためには、MoとCrとの添加量に対するC量を制御する必要がある。さらには、CrとMoの添加量に対するCの添加量バランスに配慮することで、高価なMoの添加量を最小限に抑えることができる。そこで、本請求成分範囲で式(1)の値である1.50≦R値≦1.80とする。望ましくは、1.50≦R値≦1.75とする。 This 1.50 ≦ R value ≦ 1.80 is obtained by tempering any steel tempered from 1030 ° C. and 490 to 510 ° C. after quenching the steel comprising the chemical components, Fe and inevitable impurities according to the present invention. It is a value necessary for obtaining a steel material having a toughness of 25 J / cm 2 or more while ensuring 58 HRC or more. By the way, carbides precipitate during tempering. However, this type of carbide has a great influence on the quenching and tempering hardness. In particular, Mo precipitates secondary carbides during quenching and tempering and is effective in improving the hardness. Therefore, in order to effectively precipitate the Mo-based carbide, it is necessary to control the relationship between the addition amount of Mo and Cr in addition to the addition amount of Mo within the scope of the present invention. Furthermore, in order to ensure toughness at the same time, it is necessary to control the C amount relative to the addition amounts of Mo and Cr. Furthermore, the amount of expensive Mo added can be minimized by considering the balance of the amount of C added relative to the amount of Cr and Mo added. Therefore, 1.50 ≦ R value ≦ 1.80 which is the value of the formula (1) in the claimed component range. Desirably, 1.50 ≦ R value ≦ 1.75.

本発明は、CrとMoの添加量に対するCの添加量バランスに配慮することで、高価なMoの添加量を最小限に抑え、同様に高価な元素であるVについては積極的な添加を必要とすることなく、冷間プレス金型などの冷間成形用工具として必要な特性を有する冷間金型用鋼を、比較的に低価格で製造できる。   The present invention minimizes the amount of expensive Mo added by considering the balance of the amount of C added relative to the amount of Cr and Mo added, and also requires positive addition of V, which is also an expensive element. Therefore, it is possible to manufacture a steel for cold mold having characteristics necessary as a cold forming tool such as a cold press mold at a relatively low cost.

本発明の実施の形態について、以下に説明する。表1に記載する本発明鋼の9種の組成の鋼と比較鋼の15種の組成の鋼のそれぞれ1トンを、真空溶解炉を用いて溶製してインゴットに造塊した。当該インゴットを1125℃に加熱して、熱間鍛造により鍛練成形比が凡そ6Sとなる105mmの厚さで幅が215mmで長さが800mmの平角材を製造した。   Embodiments of the present invention will be described below. One ton of each of the nine types of steels of the present invention steel described in Table 1 and the comparative type steels of 15 types of steel was melted using a vacuum melting furnace and formed into an ingot. The ingot was heated to 1125 ° C., and a rectangular material having a thickness of 105 mm, a width of 215 mm, and a length of 800 mm was produced by hot forging to a forging ratio of about 6S.

焼入焼戻し硬さの評価としては、上記作製の105mmの厚さで幅が215mmで長さ800mmの各平角材を1030℃の焼入および2回の焼戻しを行った後、中央部を厚さ25mm、幅25mm、長さ25mmに切断して得た切断面を測定面とし、これらの測定面の熱影響層と、その反対面の表面にあるスケール層を平面研磨機にて除去して平行精度を高めた後、ロックウェル硬度計にて上記切断面の硬さを測定した値である。なお、焼入焼戻し硬さの測定値(HRCで示す。)はそれぞれの鋼材で得られた最高の硬さを示しており、その時の焼戻しの温度を焼戻温度(℃)として示している。   As for the evaluation of the quenching and tempering hardness, each of the above-prepared flat materials having a thickness of 105 mm, a width of 215 mm and a length of 800 mm was quenched at 1030 ° C. and tempered twice, and then the thickness of the central portion was increased. A cut surface obtained by cutting to 25 mm, a width of 25 mm, and a length of 25 mm is used as a measurement surface. This is a value obtained by measuring the hardness of the cut surface with a Rockwell hardness meter after increasing the accuracy. In addition, the measured value (it shows by HRC) of quenching tempering hardness has shown the highest hardness obtained with each steel materials, and has shown the temperature of tempering at that time as tempering temperature (degreeC).

耐摩耗性の評価としては、大越式迅速摩耗試験による比摩耗量(mm3/N・mm)を評価した。これは、上記作製の105mmの厚さで幅が215mmで長さ800mmの各平角材の中周部から、幅10mm、厚さ28mm、長さ60mmの試験片鋼材を、幅10mm、厚さ28mmの面が鋼材の鍛伸方向と垂直方向になるように採取し、この採取した素材を1030℃で30分均熱した後に、空冷による焼入れを施し、490〜510℃の焼戻温度にて、最高硬さに調質した。その後、該素材を幅7mm、厚さ25mm、長さ50mmに仕上げ加工し、厚さ25mm、長さ50mmの面を試験面とする試験片とした。一方、硬さが86HRBであるJIS規格のクロムモリブデン鋼のSCM420からなるリング材を試験片の相手材とし、この相手材であるリング材を、最終荷重61.8N、すべり速度2.4m/s、摩擦係数200mの条件で、試験片と摩擦させ、試験後の比摩耗量を評価の指標とした。 As an evaluation of the wear resistance, the specific wear amount (mm 3 / N · mm) by the Ogoshi quick wear test was evaluated. This is a 10 mm wide, 28 mm thick test piece steel material having a width of 10 mm, a thickness of 28 mm, and a length of 60 mm from the middle circumference of each of the above-prepared 105 mm thick, 215 mm wide and 800 mm long flat bars. Is taken so that the surface of the steel is perpendicular to the forging direction of the steel material, and after soaking the collected material at 1030 ° C. for 30 minutes, quenching by air cooling is performed, and at a tempering temperature of 490 to 510 ° C., Tempered to maximum hardness. Thereafter, the material was finished to a width of 7 mm, a thickness of 25 mm, and a length of 50 mm to obtain a test piece having a surface having a thickness of 25 mm and a length of 50 mm as a test surface. On the other hand, a ring material made of JIS standard chromium molybdenum steel SCM420 having a hardness of 86 HRB is used as a test material, and the other material is a final load of 61.8 N and a sliding speed of 2.4 m / s. The specimen was rubbed with a test piece under the condition of a friction coefficient of 200 m, and the specific wear after the test was used as an evaluation index.

靱性の評価としては、シャルピー衝撃試験により破壊に要したエネルギーで評価した。この試験では、105mmの厚さで幅が215mmで長さ800mmの各平角材の中心部から、鍛伸方向に対して、垂直方向が試験片の長さ方向になるように、1辺が12mm四方で長さが60mmの試験片素材を採取した。これらの試験片素材を1030℃で30分間の均熱を行った後、空冷により焼入れを施すことで、HRC58〜60に調質した。さらにその後、これらの素材を1辺が10mm四方で長さが55mmの角柱に仕上げ加工し、鍛伸方向に垂直となる面にノッチ半径10mm、深さ2mmのCノッチを加工して試験片としたものを用いてシャルピー衝撃試験を行った。衝撃試験値は破壊に要した衝撃エネルギーを試験片断面積で除した値であり、単位をJ/cm2で示している。 As an evaluation of toughness, the energy required for fracture was evaluated by a Charpy impact test. In this test, one side is 12 mm from the center of each square bar having a thickness of 105 mm, a width of 215 mm, and a length of 800 mm so that the direction perpendicular to the forging direction is the length direction of the test piece. A specimen material having a length of 60 mm in all directions was collected. These test piece materials were soaked at 1030 ° C. for 30 minutes, and then tempered to HRC58-60 by quenching by air cooling. After that, these materials are finished into a prism with a side of 10 mm square and a length of 55 mm, and a C notch with a notch radius of 10 mm and a depth of 2 mm is machined on a surface perpendicular to the forging direction. The Charpy impact test was performed using what was made. The impact test value is a value obtained by dividing the impact energy required for fracture by the cross-sectional area of the test piece, and the unit is indicated by J / cm 2 .

加工性の評価としては、熱間での圧縮試験により評価した。これは105mmの厚さで幅が215mmで長さ800mmの各平角材の焼なまし材の中心部より、直径が6mmで長さが9mmの円柱試験片を割出し、1175℃に加熱した状態で、100mm/sの加工速度により加工率70%の圧縮を行った時の、試験片の割れ発生有無により目視にて評価した。○は割れ発生がないものであり、×は割れを生じたものである。   As an evaluation of workability, it was evaluated by a hot compression test. This is a state in which a cylindrical test piece having a diameter of 6 mm and a length of 9 mm is indexed from the center part of the annealed material of each flat square having a thickness of 105 mm, a width of 215 mm and a length of 800 mm, and heated to 1175 ° C. Thus, the test piece was evaluated visually by the presence or absence of cracks in the test piece when compression was performed at a processing rate of 70% at a processing speed of 100 mm / s. ○ indicates that no cracks occurred, and × indicates that cracks occurred.

次いで、本願発明の実施の形態について、表を参照して以下に記載する。本発明鋼をA、B、C、D、E、F、G、HおよびIの9種の例とし、そのFeおよび不可避的不純物を除く合金組成とを質量%で示し、表1としている。また、本発明鋼の比較鋼をa1、a2、b1、b2、c1、c2、d1、d2、e1、e2、f1、f2、g1、h1、h2の15種の例とし、そのFeおよび不可避的不純物を除く合金組成とを質量%で示している。   Next, embodiments of the present invention will be described below with reference to the table. Table 1 shows the steel of the present invention as nine examples of A, B, C, D, E, F, G, H, and I. The alloy composition excluding Fe and unavoidable impurities is shown in mass%. Further, the comparative steels of the present invention are 15 examples of a1, a2, b1, b2, b1, c1, c2, d1, d2, e1, e2, f1, f2, g1, h1, and h2, and their Fe and unavoidable The alloy composition excluding impurities is shown by mass%.

Figure 2015129322
Figure 2015129322

Figure 2015129322
Figure 2015129322

表1において、注1として、本発明鋼は、合金組成の元素以外にFeと不可避的不純物を含有する。なお、表1の合金組成(質量%)の欄のハイフンは含有する元素が含まれないことを示し、ハイフン以外の数値は各元素の質量%で示す量である。
さらに表1において、注2として、R値の欄の各数値は合金元素であるCrおよびMoに対するCの限定式である、式(1)の値を示している。
In Table 1, as Note 1, the steel of the present invention contains Fe and inevitable impurities in addition to the elements of the alloy composition. In addition, the hyphen in the column of the alloy composition (mass%) in Table 1 indicates that the element to be contained is not included, and the numerical values other than the hyphen are the amounts indicated by mass% of each element.
Further, in Table 1, as Note 2, each numerical value in the R value column indicates the value of Formula (1), which is a limiting formula of C with respect to Cr and Mo, which are alloy elements.

表2において、注3として、焼入焼戻硬さ、耐摩耗性、靭性および加工性の特性にて、下線を付して、十分な特性が得られない項目である。   In Table 2, note 3 is an item for which sufficient characteristics cannot be obtained by underlining the characteristics of quenching and tempering hardness, wear resistance, toughness, and workability.

比較鋼a1はCr含有量が高く、高温焼戻し時に硬さを付与する有効な炭化物の析出が少なくなり、58HRC以上の硬度が得られず、耐摩耗性が低い。比較鋼a2はCr含有量が低く、形成される炭化物総量が不十分となり、耐摩耗性が低くなる。   The comparative steel a1 has a high Cr content, reduces the precipitation of effective carbides that impart hardness during high-temperature tempering, does not provide a hardness of 58 HRC or higher, and has low wear resistance. In comparison steel a2, the Cr content is low, the total amount of carbide formed is insufficient, and the wear resistance is low.

比較鋼b1およびb2は合金元素の添加量は本願発明範囲であるが、R値の条件を満たしていないため、高温焼戻し時の析出炭化物組成のバランスが悪く、25J/cm2以上の靭性が得られない。 In comparative steels b1 and b2, the alloy element addition amount is within the range of the present invention, but the R value condition is not satisfied, so the balance of the precipitated carbide composition during high temperature tempering is poor, and a toughness of 25 J / cm 2 or more is obtained. I can't.

比較鋼c1はMo含有量が少ないことで、炭化物量が不足をし、必要な硬度と耐摩耗性が得られない。比較鋼c2はMo含有量が多いため、炭化物の粗大凝縮が生じて靭性が低下する。   Since the comparative steel c1 has a small Mo content, the amount of carbide is insufficient, and the necessary hardness and wear resistance cannot be obtained. Since the comparative steel c2 has a high Mo content, coarse condensation of carbides occurs and the toughness decreases.

比較鋼d1はSi含有量が少ないため、鋼材基地に強度が得られず、硬さ及び耐摩耗性が低くなる。また、焼入性が低くなることから、靭性も低下する。比較鋼d2はSi含有量が多すぎるため、基地組織の延性が低下をし、靭性が劣る。   Since the comparative steel d1 has a low Si content, strength cannot be obtained at the steel base, and the hardness and wear resistance are reduced. Moreover, since hardenability becomes low, toughness also falls. Since the comparative steel d2 has too much Si content, the ductility of the base structure is lowered and the toughness is inferior.

比較鋼e1はMn含有量が少なすぎるため、焼入性が不足することで、靭性が低下する。比較鋼e2はMn含有量が多すぎるため、熱間加工性が悪化する。   Since comparative steel e1 has too little Mn content, toughness falls by hardenability being insufficient. Since the comparative steel e2 has too much Mn content, hot workability deteriorates.

比較鋼f1はC含有量が多すぎるため、偏析を助長し靭性が低下させ、熱間加工性も低下する。比較鋼f2はC含有量が少なすぎるため、58HRC以上の硬度が得られない。耐摩耗性も不十分である。   Since comparative steel f1 has too much C content, segregation is promoted, toughness is reduced, and hot workability is also reduced. Since the comparative steel f2 has too little C content, a hardness of 58HRC or higher cannot be obtained. Wear resistance is also insufficient.

比較鋼g1はS含有量が過剰であり、靭性に悪影響を及ぼす。また、熱間加工性も低下させる。   The comparative steel g1 has an excessive S content and adversely affects toughness. Moreover, hot workability is also reduced.

比較鋼h1およびh2は合金元素の添加量は本願発明範囲であるが、R値の条件を満たしていないため、高温焼戻し時の析出炭化物組成のバランスが悪く、58HRC以上の硬度が得られない。また、耐摩耗性も不十分である。   In comparative steels h1 and h2, the alloy element addition amount is within the scope of the present invention, but the R value condition is not satisfied. Also, the wear resistance is insufficient.

以上のように、表2において、本発明鋼の記号のA〜Iの9種は、いずれも焼入焼戻し硬さはHRC58.5以上、耐摩耗性は比摩耗量が3.0×10-73/N・mm以下、靱性は10R−C衝撃値が26.2J/cm2以上であり、したがって、これらは十分な焼入焼戻硬さ、靭性を有し、かつ耐摩耗性を兼備している。これらの本発明鋼の記号のA〜Iの9種は、CrとMoの添加量バランスに配慮することで、高価なMoの添加量を最小限に抑え、同様に高価な元素であるVについては積極的な添加を必要とせずとも、これらの鋼は、冷間プレス金型などの冷間成形用工具として必要な表2に示す特性を満たすことにより、比較的に安価な冷間工具鋼を需要企業に提供することが可能となった。 As described above, in Table 2, the nine types A to I of the steels of the present invention all have a quenching and tempering hardness of HRC 58.5 or more, and the wear resistance has a specific wear amount of 3.0 × 10 −. 7 m 3 / N · mm or less, and toughness is 10R-C impact value is 26.2 J / cm 2 or more. Therefore, these have sufficient quenching and tempering hardness, toughness, and wear resistance. Have both. Nine of these symbols A to I of the steels of the present invention are concerned with the addition amount of Cr and Mo, thereby minimizing the addition amount of expensive Mo and V, which is also an expensive element. Although these steels do not require aggressive addition, these steels are relatively inexpensive cold tool steels by satisfying the properties shown in Table 2 required for cold forming tools such as cold press dies. Can be provided to demanding companies.

Claims (4)

質量%で、C:0.75〜0.90%、Si:0.30〜0.90%、Mn:0.20〜060%、Cr:6.50〜8.50%、Mo:0.20〜0.50%を含有し、化学組成が、式(1)の1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物からなることを特徴とする冷間プレス金型用鋼。
ただし、上記の[%元素]は合金元素量で、質量%を示す。
In mass%, C: 0.75 to 0.90%, Si: 0.30 to 0.90%, Mn: 0.20 to 060%, Cr: 6.50 to 8.50%, Mo: 0.00. 20 to 0.50%, and the chemical composition is 1.50 ≦ [% C] / C eq ≦ 1.80 of formula (1), where C eq = 0.06 × [% Cr] +0. A steel for cold press dies characterized by being 093 × [% Mo] and the balance being Fe and inevitable impurities.
However, the above-mentioned [% element] is the amount of alloy element and indicates mass%.
請求項1の化学成分に加えて、質量%で、S≦0.120%を含有し、化学組成が、1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物からなることを特徴とする冷間プレス金型用鋼。
ただし、上記の[%元素]は合金元素量で、質量%を示す。
2. In addition to the chemical component of claim 1, it contains S ≦ 0.120% by mass, and the chemical composition is 1.50 ≦ [% C] / C eq ≦ 1.80, where C eq = 0 .06 × [% Cr] + 0.093 × [% Mo], the balance being made of Fe and inevitable impurities, a steel for cold press dies.
However, the above-mentioned [% element] is the amount of alloy element and indicates mass%.
請求項1の化学成分に加えて、質量%で、V≦0.10%を含有し、化学組成が、1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物からなることを特徴とする冷間プレス金型用鋼。
ただし、上記の[%元素]は合金元素量で、質量%を示す。
2. In addition to the chemical component of claim 1, it contains V ≦ 0.10% by mass, and the chemical composition is 1.50 ≦ [% C] / C eq ≦ 1.80, where C eq = 0 .06 × [% Cr] + 0.093 × [% Mo], the balance being made of Fe and inevitable impurities, a steel for cold press dies.
However, the above-mentioned [% element] is the amount of alloy element and indicates mass%.
請求項1の化学成分に加えて、質量%で、S≦0.120%を含有し、さらにV≦0.10%を含有し、化学組成が、1.50≦[%C]/Ceq≦1.80、ただし、Ceq=0.06×[%Cr]+0.093×[%Mo]であり、残部がFeおよび不可避的不純物からなることを特徴とする冷間プレス金型用鋼。
ただし、上記の[%元素]は合金元素量で、質量%を示す。
2. In addition to the chemical component of claim 1, in weight percent, S ≦ 0.120%, further V ≦ 0.10%, and the chemical composition is 1.50 ≦ [% C] / C eq ≦ 1.80, provided that C eq = 0.06 × [% Cr] + 0.093 × [% Mo], and the balance is made of Fe and inevitable impurities, the steel for cold press dies .
However, the above-mentioned [% element] is the amount of alloy element and indicates mass%.
JP2014000580A 2014-01-06 2014-01-06 Steel for cold press dies Active JP6177694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000580A JP6177694B2 (en) 2014-01-06 2014-01-06 Steel for cold press dies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000580A JP6177694B2 (en) 2014-01-06 2014-01-06 Steel for cold press dies

Publications (2)

Publication Number Publication Date
JP2015129322A true JP2015129322A (en) 2015-07-16
JP6177694B2 JP6177694B2 (en) 2017-08-09

Family

ID=53760251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000580A Active JP6177694B2 (en) 2014-01-06 2014-01-06 Steel for cold press dies

Country Status (1)

Country Link
JP (1) JP6177694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203176A (en) * 2016-05-09 2017-11-16 山陽特殊製鋼株式会社 Steel for resource saving cold press mold excellent in surface treatment property

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161051A (en) * 1981-03-31 1982-10-04 Daido Steel Co Ltd Steel for plastic mold
JPS59179761A (en) * 1983-03-30 1984-10-12 Daido Steel Co Ltd Tool steel
JPH0234750A (en) * 1988-07-25 1990-02-05 Kanto Special Steel Works Ltd Reinforcing roll material for rolling
JPH11193447A (en) * 1998-01-06 1999-07-21 Sanyo Special Steel Co Ltd Cold tool steel
JP2000045020A (en) * 1998-07-24 2000-02-15 Sanyo Special Steel Co Ltd Manufacture of tool steel excellent in earth and sand abrasion resistant characteristic
US6053991A (en) * 1998-01-06 2000-04-25 Sanyo Special Steel Co., Ltd. Production of cold working tool steel
JP2001064754A (en) * 1999-08-30 2001-03-13 Hitachi Metals Ltd Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same
JP2001294974A (en) * 2000-04-12 2001-10-26 Hitachi Metals Ltd Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JP2005120455A (en) * 2003-10-20 2005-05-12 Sanyo Special Steel Co Ltd High hardness steel excellent in cold workability
JP2009084699A (en) * 2008-12-08 2009-04-23 Nsk Ltd Rolling bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161051A (en) * 1981-03-31 1982-10-04 Daido Steel Co Ltd Steel for plastic mold
JPS59179761A (en) * 1983-03-30 1984-10-12 Daido Steel Co Ltd Tool steel
JPH0234750A (en) * 1988-07-25 1990-02-05 Kanto Special Steel Works Ltd Reinforcing roll material for rolling
JPH11193447A (en) * 1998-01-06 1999-07-21 Sanyo Special Steel Co Ltd Cold tool steel
US6053991A (en) * 1998-01-06 2000-04-25 Sanyo Special Steel Co., Ltd. Production of cold working tool steel
JP2000045020A (en) * 1998-07-24 2000-02-15 Sanyo Special Steel Co Ltd Manufacture of tool steel excellent in earth and sand abrasion resistant characteristic
JP2001064754A (en) * 1999-08-30 2001-03-13 Hitachi Metals Ltd Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same
JP2001294974A (en) * 2000-04-12 2001-10-26 Hitachi Metals Ltd Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JP2005120455A (en) * 2003-10-20 2005-05-12 Sanyo Special Steel Co Ltd High hardness steel excellent in cold workability
JP2009084699A (en) * 2008-12-08 2009-04-23 Nsk Ltd Rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203176A (en) * 2016-05-09 2017-11-16 山陽特殊製鋼株式会社 Steel for resource saving cold press mold excellent in surface treatment property

Also Published As

Publication number Publication date
JP6177694B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
EP2679697B1 (en) Manufacturing method for cold-working die
JP5276330B2 (en) Cold mold steel and cold press mold
JP7083242B2 (en) Hot tool steel with excellent thermal conductivity
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP2013087322A (en) Hot die steel
JP2017155306A (en) Hot tool steel having excellent high temperature strength and toughness
JP2014009396A (en) Cold tool steel having high hardness and high toughness
JP2016060961A (en) High-speed tool steel having high toughness and softening resistance
JP2014145100A (en) Cold tool steel having reduced alloy addition amount
JP5029942B2 (en) Hot work tool steel with excellent toughness
KR102009630B1 (en) Grater
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP5351528B2 (en) Cold mold steel and molds
JP6800532B2 (en) Hot tool steel with excellent thermal conductivity
KR20160010930A (en) (High wear-resistant cold work tool steels with enhanced impact toughness
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
RU2430186C2 (en) Heat-resistant steel
JP6177694B2 (en) Steel for cold press dies
KR20020001933A (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP6096040B2 (en) Powdered high-speed tool steel with excellent high-temperature tempering hardness
JP2005336553A (en) Hot tool steel
JP2012201909A (en) Hot tool steel
JP2005307242A (en) Prehardened steel for die casting mold
CN115279932A (en) Steel for hot working die, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250