JP2015122391A - MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET - Google Patents

MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET Download PDF

Info

Publication number
JP2015122391A
JP2015122391A JP2013264745A JP2013264745A JP2015122391A JP 2015122391 A JP2015122391 A JP 2015122391A JP 2013264745 A JP2013264745 A JP 2013264745A JP 2013264745 A JP2013264745 A JP 2013264745A JP 2015122391 A JP2015122391 A JP 2015122391A
Authority
JP
Japan
Prior art keywords
smfen
magnet
αfe
sintering
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013264745A
Other languages
Japanese (ja)
Inventor
巌 坂崎
Iwao Sakazaki
巌 坂崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013264745A priority Critical patent/JP2015122391A/en
Publication of JP2015122391A publication Critical patent/JP2015122391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a SmFeN magnet capable of sufficiently exerting magnetic properties even under a high temperature environment, requiring no power supply facility, capable of reducing facility cost, and to provide a SmFeN magnet.SOLUTION: The manufacturing method of a SmFeN magnet includes: applying a nitriding treatment to a SmFe powder to convert it to a SmFeN magnetic powder; and, when sintering it to produce a SmFeN magnet, either after the nitriding treatment process or during the sintering treatment process, applying a heat treatment at 350 to 550°C for 5 to 60 hours to precipitate αFe and sinter it.

Description

本発明はSmFeN系磁石の製造方法およびSmFeN系磁石に関し、特に耐熱性に優れたSmFeN系磁石の製造方法等に関するものである。   The present invention relates to a method for producing an SmFeN-based magnet and an SmFeN-based magnet, and more particularly to a method for producing an SmFeN-based magnet having excellent heat resistance.

SmFeN系磁石はNdFeB系磁石に比して耐食性が優れているが、従来の焼結温度である900℃以上で焼結すると、主相が分解して磁石特性が消失してしまう。そこで従来は樹脂等をバインダとして使用したボンド磁石が主流である。しかし、ボンド磁石は樹脂を含むことにより200℃以上の高温雰囲気下では使用できないという問題があった。そこで、例えば特許文献1には、焼結時のキャビティを画成する上下のパンチ間に電流を流して磁粉粒子間の接触抵抗によるジュール熱で瞬時に焼結を進行させ、熱負荷を軽減することによって、SmFeN系の焼結磁石を実現する方法が提案されている。   SmFeN magnets have better corrosion resistance than NdFeB magnets. However, when sintered at 900 ° C. or higher, which is the conventional sintering temperature, the main phase is decomposed and the magnet characteristics are lost. Therefore, conventionally, bonded magnets using resin or the like as a binder are the mainstream. However, the bond magnet has a problem that it cannot be used in a high temperature atmosphere of 200 ° C. or higher because it contains a resin. Thus, for example, in Patent Document 1, current is passed between upper and lower punches that define a cavity during sintering, and sintering is instantaneously advanced by Joule heat due to contact resistance between magnetic powder particles, thereby reducing the thermal load. Thus, a method for realizing an SmFeN-based sintered magnet has been proposed.

特開2005−171264JP-A-2005-171264

しかし、上記従来の方法では、焼結設備に給電設備を付設する必要があるとともに、磁粉表面を部分的に高温にするものであるため本来磁気特性を発揮し得る構造が喪失させられるという問題があった。   However, in the above conventional method, there is a problem that it is necessary to attach a power supply facility to the sintering facility, and the structure capable of exhibiting magnetic properties is lost because the surface of the magnetic powder is partially heated. there were.

そこで、本発明はこのような課題を解決するもので、給電設備が不要で設備コストが低減でき、かつ高温雰囲気下でも磁気特性を十分に発揮させることが可能なSmFeN系磁石の製造方法およびSmFeN系磁石を提供することを目的とする。   Therefore, the present invention solves such a problem, a method for producing an SmFeN-based magnet and an SmFeN that can reduce power supply equipment, reduce equipment costs, and can sufficiently exhibit magnetic properties even in a high-temperature atmosphere. It aims at providing a system magnet.

上記目的を達成するために、本第1発明のSmFeN系磁石の製造方法では、SmFe粉末を窒化処理してSmFeN磁粉とし、これを焼結処理してSmFeN系磁石を製造するに際して、前記窒化処理工程の後ないし焼結処理工程において350〜550℃で5時間〜60時間の熱処理を行ってαFeを析出させ焼結して得られることを特徴とする。   In order to achieve the above object, in the manufacturing method of the SmFeN-based magnet of the first invention, the nitriding treatment is performed when the SmFe powder is nitrided to obtain the SmFeN magnetic powder, and this is sintered to produce the SmFeN-based magnet. It is characterized by being obtained by performing heat treatment at 350 to 550 ° C. for 5 to 60 hours after the step or in the sintering treatment step to precipitate and sinter αFe.

本第2発明のSmFeN系磁石では、SmFeN磁粉の母相表面に析出したαFeが、他のSmFeN磁粉の母相あるいは当該母相表面に析出しているαFeと拡散接合して焼結されている。   In the SmFeN magnet of the second invention, αFe deposited on the surface of the parent phase of SmFeN magnetic powder is sintered by diffusion bonding with the parent phase of other SmFeN magnetic powder or αFe deposited on the surface of the parent phase. .

このような本発明によれば、十分に低温とした窒化処理工程を経て、あるいは十分に低温とした焼結処理工程を経てSmFeN磁粉の母相表面にαFeを析出させて、他のSmFeN磁粉の母相あるいは当該母相表面に析出しているαFeと拡散接合させて焼結状態を生成できる。したがって、焼結設備に従来のように給電設備を付設することなくSmFeN磁粉の焼結が可能となって、設備コストが大きく低減できる。またSmFeN磁粉の磁石特性が消失することがない十分な低温で焼結ができ、このような焼結磁石はボンド磁石と異なって樹脂材を使用していないから、磁気特性を損なうことなく200〜500℃での高温での使用が可能となるとともに耐食性も維持される。   According to the present invention, αFe is precipitated on the surface of the parent phase of the SmFeN magnetic powder through a sufficiently low temperature nitriding process or a sufficiently low temperature sintering process, and other SmFeN magnetic powder A sintered state can be generated by diffusion bonding with the parent phase or αFe precipitated on the surface of the parent phase. Therefore, SmFeN magnetic powder can be sintered without attaching power supply equipment to the sintering equipment as in the prior art, and the equipment cost can be greatly reduced. Moreover, since the magnet characteristics of the SmFeN magnetic powder can be sintered at a sufficiently low temperature, such a sintered magnet does not use a resin material unlike the bonded magnet, so that it does not impair the magnetic characteristics. Use at a high temperature of 500 ° C. is possible and corrosion resistance is maintained.

以上のように、本発明によれば、給電設備が不要で設備コストが低減でき、かつ高温雰囲気下でも磁気特性を十分に発揮させることが可能なSmFeN系磁石を実現できる。   As described above, according to the present invention, it is possible to realize an SmFeN-based magnet that does not require power supply equipment, can reduce equipment costs, and can sufficiently exhibit magnetic characteristics even in a high-temperature atmosphere.

SmFe薄帯のロール面のSEM像を示す図である。It is a figure which shows the SEM image of the roll surface of a SmFe ribbon. SmFe薄帯のロール面側の反射電子線像を示す図である。It is a figure which shows the reflected electron beam image by the side of the roll surface of a SmFe ribbon.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

(第1実施形態)
本実施形態では図1に示すように、SmFeの溶湯を急冷ロールに滴下して急冷法によってSmFeの薄帯を製造する。なお、急冷法に代えて還元拡散法等を使用しても良い。
(First embodiment)
In this embodiment, as shown in FIG. 1, a molten SmFe is dropped onto a quenching roll, and a SmFe ribbon is produced by a quenching method. Note that a reduction diffusion method or the like may be used instead of the rapid cooling method.

続いてSmFe薄帯(粉末)をアルゴン雰囲気下において500〜900℃で熱処理した後、窒素ガス単独又はアンモニアと水素の混合ガス雰囲気下で300〜600℃で加熱する窒化処理を施してSmFeN薄帯(磁粉)とする。本実施形態では窒化処理後、窒素ガス雰囲気中で350〜550℃で5〜60時間加熱処理を行う。このような処理により、窒化処理後に、薄帯のロール面にαFeを析出させることができる。   Subsequently, after heat-treating the SmFe ribbon (powder) at 500 to 900 ° C. in an argon atmosphere, the SmFeN ribbon is subjected to nitriding treatment by heating at 300 to 600 ° C. in an atmosphere of nitrogen gas alone or a mixed gas of ammonia and hydrogen. (Magnetic powder). In this embodiment, after nitriding, heat treatment is performed at 350 to 550 ° C. for 5 to 60 hours in a nitrogen gas atmosphere. By such treatment, αFe can be deposited on the roll surface of the ribbon after the nitriding treatment.

本実施形態における窒化処理後の加熱処理は窒素ガス以外のアルゴンガス等を使用しても良く、また真空状態で行っても良い。ここで、350℃以下ではαFeが効率的に析出せず、一方、550℃以上にするとSmFeN薄帯が化学分解してしまい、磁気特性が低下してしまう。また5時間以下ではαFeが確実に析出しない。一方、60時間以上加熱処理しては生産性が悪くなる。特に生産性の観点からは、加熱処理のより好ましい範囲の上限は30時間である。   The heat treatment after the nitriding treatment in this embodiment may use an argon gas other than the nitrogen gas or may be performed in a vacuum state. Here, at 350 ° C. or lower, αFe is not efficiently precipitated, whereas when it is set at 550 ° C. or higher, the SmFeN ribbon is chemically decomposed and the magnetic properties are deteriorated. In addition, αFe does not precipitate reliably within 5 hours or less. On the other hand, if the heat treatment is performed for 60 hours or more, the productivity is deteriorated. In particular, from the viewpoint of productivity, the upper limit of the more preferable range of the heat treatment is 30 hours.

次に、SmFeN薄帯は焼結装置へ送られる。焼結装置における焼結温度は従来に比して十分低くでき、本実施形態では350〜550℃と、磁石特性が消失しない十分に低い温度とすることができる。焼結時間は1時間程度で、アルゴンないし窒素雰囲気中で又は真空中で400Kgf/cm2以上の圧力でホットプレスする。このような低温度での焼結が可能になるのは、既述のように薄帯の母相表面に析出しているαFeが、他の薄帯の母相あるいは当該母相表面に析出しているαFeと拡散接合することで焼結状態が現出されるからである。   Next, the SmFeN ribbon is sent to a sintering apparatus. The sintering temperature in the sintering apparatus can be made sufficiently lower than in the prior art, and in the present embodiment, it can be set to 350 to 550 ° C., a sufficiently low temperature at which the magnet characteristics are not lost. The sintering time is about 1 hour, and hot pressing is performed in an argon or nitrogen atmosphere or in a vacuum at a pressure of 400 kgf / cm 2 or more. As described above, sintering at such a low temperature is possible because αFe precipitated on the surface of the parent phase of the ribbon precipitates on the parent phase of the other ribbon or the surface of the parent phase. This is because the sintered state appears by diffusion bonding with αFe.

(実施例)
急冷法で得たSmFe薄帯をアルゴン雰囲気下で500〜900℃で熱処理した後、アンモニアと水素の混合ガス雰囲気下で300〜600℃で窒化処理を行った後にアルゴン雰囲気下で460℃、5時間の熱処理によってαFeの析出を行なった。これを図1、図2に示す。図1はSmFe薄帯のロール面のSEM像であり、αFeの析出が認められる。また、図2はSmFe薄帯のロール面側の反射電子線像であり、矢印で挟まれた母相の表面領域にαFeが析出している。この処理で得た平均粒径100μmのSmFeN薄帯を公知の50×50黒鉛型内に投入して460℃に加熱し、400Kgf/cm2で1時間ホットプレスして焼結した。この過程で、各薄帯の母相表面に析出したαFeが、他の薄帯の母相あるいは当該母相表面に析出したαFeと拡散接合して焼結状態となった。
(Example)
The SmFe ribbon obtained by the rapid cooling method is heat-treated at 500 to 900 ° C. in an argon atmosphere, and then subjected to nitriding treatment at 300 to 600 ° C. in a mixed gas atmosphere of ammonia and hydrogen, and then at 460 ° C. and 5 in an argon atmosphere. Precipitation of αFe was performed by heat treatment over time. This is shown in FIGS. FIG. 1 is an SEM image of the roll surface of the SmFe ribbon, and precipitation of αFe is observed. FIG. 2 is a reflected electron beam image on the roll surface side of the SmFe ribbon, in which αFe is deposited in the surface region of the parent phase sandwiched by arrows. The SmFeN ribbon having an average particle diameter of 100 μm obtained by this treatment was put into a known 50 × 50 graphite mold, heated to 460 ° C., and hot-pressed at 400 kgf / cm 2 for 1 hour to sinter. In this process, αFe precipitated on the surface of the parent phase of each ribbon was diffusion-bonded to the parent phase of other ribbons or αFe deposited on the surface of the parent phase to be in a sintered state.

得られた縦横50mm、厚み14mmの焼結成形品から7×7×5(mm)の直方体を試料として切り出して、45KOeの磁界を印加して着磁した。得られた低温焼結磁石の磁気特性、すなわち残留磁束密度(Br)、保磁力(iHc)、最大エネルギー積((BH)max)をBHカーブトレーサで測定した。その結果を表1に示す。また、比較例として、同形状の試料をボンド磁石(ダイドー電子製:型番SP−14)で製造した場合の結果を同様に表1に示す。これによると、本実施例により製造した焼結磁石は従来のボンド磁石と同等以上の優れた磁気特性を発揮する。   A 7 × 7 × 5 (mm) rectangular parallelepiped was cut out from the obtained sintered molded product having a length and width of 50 mm and a thickness of 14 mm as a sample and magnetized by applying a 45 KOe magnetic field. Magnetic properties of the obtained low-temperature sintered magnet, that is, residual magnetic flux density (Br), coercive force (iHc), and maximum energy product ((BH) max) were measured with a BH curve tracer. The results are shown in Table 1. Further, as a comparative example, Table 1 similarly shows the results when a sample having the same shape is manufactured with a bonded magnet (manufactured by Daido Electronics: model number SP-14). According to this, the sintered magnet manufactured according to the present example exhibits excellent magnetic properties equivalent to or better than those of conventional bonded magnets.

(第2実施形態)
上記第1実施形態では窒化処理後にαFeの析出を行ったが、焼結工程でαFeの析出を行うようにしても良い。この場合は、第1実施形態と同様に急冷法によってSmFeの薄帯を製造し、続いてSmFe薄帯をアルゴン雰囲気下において500〜900℃で熱処理した後、窒素ガス単独又はアンモニアと水素の混合ガス雰囲気下で300〜600℃で加熱する窒化処理を施してSmFeN薄帯とする。続いてSmFeN薄帯は公知の焼結装置へ送られる。
(Second Embodiment)
In the first embodiment, αFe is deposited after nitriding, but αFe may be deposited in the sintering process. In this case, the SmFe ribbon is manufactured by the rapid cooling method in the same manner as in the first embodiment, and then the SmFe ribbon is heat treated at 500 to 900 ° C. in an argon atmosphere, and then nitrogen gas alone or a mixture of ammonia and hydrogen is used. Nitriding treatment is performed by heating at 300 to 600 ° C. in a gas atmosphere to obtain a SmFeN ribbon. Subsequently, the SmFeN ribbon is sent to a known sintering apparatus.

そして焼結装置において従来に比して十分低く磁石特性が消失しない350〜550℃の温度で、アルゴンないし窒素雰囲気中又は真空中で5〜60時間加熱しつつ、400Kgf/cm2以上の圧力でホットプレスする。このような焼結工程において、各薄帯の母相表面にαFeが析出させられると同時に、各薄帯に析出したαFeが、他の薄帯の母相あるいは当該母相表面に析出したαFeと拡散接合することで焼結状態が現出される。なお、本焼結工程において加熱処理の温度範囲および時間範囲を上記のように設定した理由は第1実施形態と同様である。   And it is hot at a pressure of 400 kgf / cm2 or higher while heating in an argon or nitrogen atmosphere or in a vacuum for 5 to 60 hours at a temperature of 350 to 550 ° C., which is sufficiently low compared with the prior art in a sintering apparatus. Press. In such a sintering process, αFe is precipitated on the surface of the parent phase of each ribbon, and at the same time, αFe precipitated on each ribbon is mixed with αFe deposited on the parent phase of the other ribbon or on the surface of the parent phase. The sintered state is revealed by diffusion bonding. The reason why the temperature range and time range of the heat treatment are set as described above in the main sintering step is the same as in the first embodiment.

(実施例)
急冷法で得たSmFe薄帯をアルゴン雰囲気下で500〜900℃で熱処理した後、アンモニアと水素の混合ガス雰囲気下で300〜600℃で窒化処理を行った。この処理で得た平均粒径100μmのSmFeN薄帯を公知の50×50黒鉛型内に投入して、460℃に加熱し、400Kgf/cm2で10時間ホットプレスし焼結を行った。すなわち、この低温長時間加熱加圧の過程で、各薄帯の母相表面にαFeが析出するとともに、各薄帯に析出したαFeが、他の磁粉の母相あるいは当該母相表面に析出したαFeと拡散接合して焼結状態となった。
(Example)
The SmFe ribbon obtained by the rapid cooling method was heat-treated at 500 to 900 ° C. in an argon atmosphere, and then nitridated at 300 to 600 ° C. in a mixed gas atmosphere of ammonia and hydrogen. The SmFeN ribbon having an average particle diameter of 100 μm obtained by this treatment was put into a known 50 × 50 graphite mold, heated to 460 ° C., and hot-pressed at 400 kgf / cm 2 for 10 hours for sintering. That is, in the process of low-temperature long-time heating and pressurization, αFe is precipitated on the surface of each thin ribbon, and αFe precipitated on each thin ribbon is precipitated on the parent phase of other magnetic powder or the surface of the parent phase. Diffusion bonding with αFe resulted in a sintered state.

得られた縦横50mm、厚み14mmの焼結成形品から7×7×5(mm)の直方体を試料として切り出して、45KOeの磁界を印加して着磁した。得られた低温焼結磁石の磁気特性、すなわち残留磁束密度(Br)、保磁力(iHc)、最大エネルギー積((BH)max)をBHカーブトレーサで測定した。その結果を表2に示す。また、比較例として、同形状の試料をボンド磁石(ダイドー電子製:型番SP−14)で製造した場合の結果を同様に表2に示す。これによると、本実施例により製造した焼結磁石は従来のボンド磁石と同等以上の優れた磁気特性を発揮する。   A 7 × 7 × 5 (mm) rectangular parallelepiped was cut out from the obtained sintered molded product having a length and width of 50 mm and a thickness of 14 mm as a sample and magnetized by applying a 45 KOe magnetic field. Magnetic properties of the obtained low-temperature sintered magnet, that is, residual magnetic flux density (Br), coercive force (iHc), and maximum energy product ((BH) max) were measured with a BH curve tracer. The results are shown in Table 2. Further, as a comparative example, the results when a sample having the same shape is manufactured with a bonded magnet (manufactured by Daido Electronics: model number SP-14) are also shown in Table 2. According to this, the sintered magnet manufactured according to the present example exhibits excellent magnetic properties equivalent to or better than those of conventional bonded magnets.

Claims (2)

SmFe粉末を窒化処理してSmFeN磁粉とし、これを焼結処理してSmFeN系磁石を製造するに際して、前記窒化処理工程の後ないし焼結処理工程において350〜550℃で5時間〜60時間の熱処理を行ってαFeを析出させ焼結して得られることを特徴とするSmFeN系磁石の製造方法。 When the SmFeN magnetic powder is produced by nitriding the SmFe powder and manufacturing the SmFeN magnet by sintering, the heat treatment is performed at 350 to 550 ° C. for 5 to 60 hours after the nitriding process or in the sintering process. The method for producing an SmFeN-based magnet is characterized in that αFe is deposited and sintered by performing the step. SmFeN磁粉の母相表面に析出したαFeが、他のSmFeN磁粉の母相あるいは当該母相表面に析出しているαFeと拡散接合して焼結されているSmFeN系磁石。 An SmFeN magnet in which αFe deposited on the surface of the parent phase of SmFeN magnetic powder is sintered by diffusion bonding with another parent phase of SmFeN magnetic powder or αFe deposited on the surface of the parent phase.
JP2013264745A 2013-12-23 2013-12-23 MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET Pending JP2015122391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264745A JP2015122391A (en) 2013-12-23 2013-12-23 MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264745A JP2015122391A (en) 2013-12-23 2013-12-23 MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET

Publications (1)

Publication Number Publication Date
JP2015122391A true JP2015122391A (en) 2015-07-02

Family

ID=53533778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264745A Pending JP2015122391A (en) 2013-12-23 2013-12-23 MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET

Country Status (1)

Country Link
JP (1) JP2015122391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246685A (en) * 2019-07-17 2019-09-17 徐靖才 A kind of preparation method of samarium ferromagnetic phase
JP2020053436A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Method of manufacturing rare earth magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053436A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Method of manufacturing rare earth magnet
JP7095524B2 (en) 2018-09-21 2022-07-05 トヨタ自動車株式会社 Manufacturing method of rare earth magnets
CN110246685A (en) * 2019-07-17 2019-09-17 徐靖才 A kind of preparation method of samarium ferromagnetic phase

Similar Documents

Publication Publication Date Title
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
CN106409497A (en) Grain boundary diffusion method for neodymium-iron-boron magnet
CN102496437B (en) Anisotropic nanocrystal complex-phase compact block neodymium-iron-boron permanent-magnet material and preparation method thereof
CN105869876B (en) A kind of rare-earth permanent magnet and its manufacture method
WO2013146073A1 (en) Process for producing sintered r-t-b magnet
CN103123843B (en) A kind of preparation method of fine grain anisotropy densification Nd-Fe-B permanent magnet
CN111063536B (en) Grain boundary diffusion method suitable for bulk rare earth permanent magnet material
KR101543111B1 (en) NdFeB PERMANENT MAGNET AND METHOD FOR PRODUCING THE SAME
EP2869311A1 (en) Method of manufacturing fully dense Nd-Fe-B magnets with enhanced coercivity and gradient microstructure
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
JP2011228663A (en) Permanent magnet and method of manufacturing permanent magnet
CN105321645A (en) Nanocrystalline thermal deformation rare-earth permanent magnet material with high coercivity and preparation method of nanocrystalline thermal deformation rare-earth permanent magnet material
CN106887321A (en) One kind improves the coercitive method of rare-earth magnet
CN102360909B (en) Preparation method for neodymium iron boron magnet
JP2013175650A (en) Magnet manufacturing method and magnet
JP2008255436A (en) Permanent magnet, and method for producing the same
JP2017050396A (en) Rare-earth magnet and manufacturing method therefor
CN106816253A (en) A kind of method of Mn Ga alloy magnetic hardenings
JP2015122391A (en) MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET
CN104103415B (en) A kind of method hydrogenating dysprosium nanometer powder doping preparation anisotropy NdFeB rare-earth permanent magnet
US20160293305A1 (en) Sintered magnet production method
JP4923149B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5908247B2 (en) Method for manufacturing permanent magnet
CN104103414A (en) Method for preparing nanocrystalline neodymium iron boron permanent magnet with high coercivity and anisotropy
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof