JP2015120835A - Polyolefin microporous film, separator for secondary battery, and secondary battery - Google Patents

Polyolefin microporous film, separator for secondary battery, and secondary battery Download PDF

Info

Publication number
JP2015120835A
JP2015120835A JP2013265785A JP2013265785A JP2015120835A JP 2015120835 A JP2015120835 A JP 2015120835A JP 2013265785 A JP2013265785 A JP 2013265785A JP 2013265785 A JP2013265785 A JP 2013265785A JP 2015120835 A JP2015120835 A JP 2015120835A
Authority
JP
Japan
Prior art keywords
fibril
diameter
oriented
tensile strength
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013265785A
Other languages
Japanese (ja)
Other versions
JP6296333B2 (en
Inventor
裕佳子 新部
Yukako Shinbe
裕佳子 新部
豊田 直樹
Naoki Toyoda
直樹 豊田
敏彦 金田
Toshihiko Kaneda
敏彦 金田
石原 毅
Takeshi Ishihara
毅 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Battery Separator Film Co Ltd
Original Assignee
Toray Battery Separator Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Battery Separator Film Co Ltd filed Critical Toray Battery Separator Film Co Ltd
Priority to JP2013265785A priority Critical patent/JP6296333B2/en
Publication of JP2015120835A publication Critical patent/JP2015120835A/en
Application granted granted Critical
Publication of JP6296333B2 publication Critical patent/JP6296333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a polyolefin microporous film that has high MD tensile strength and an excellent balance in the MD tensile strength and TD tensile strength, has high transmissivity, and can be suitably used as a separator for a secondary battery.SOLUTION: In a 10 μm-square field of view of an oriented fibril in the polyolefin microporous film, a fibril portion having an orientation direction in an angle range from 0 to 30° with respect to the mechanical direction (MD) is defined as an MD-oriented fibril portion; a fibril portion having an orientation direction in an angle range from 0 to 30° with respect to a direction (TD) perpendicular to the mechanical direction is defined as a TD-oriented fibril portion. A ratio D/Dis 1.2 to 3.0, where Dis a large-side average fibril diameter calculated by selecting 20% of the MD-oriented fibril portion in descending order of diameters, and Dis a large-side average fibril diameter calculated by selecting 20% of the TD-oriented fibril portion in descending order of diameters. The polyolefin microporous film has MD tensile strength of 1000 to 6000 kgf/cmand TD tensile strength of 1000 to 3000 kgf/cm.

Description

本発明は、ポリオレフィン微多孔膜、二次電池用セパレータおよび二次電池に関し、より詳しくは、MD方向の引張強度が高く透過性に優れたポリオレフィン微多孔膜、ならびにそれを用いてなる二次電池用セパレータおよび二次電池に関する。   The present invention relates to a polyolefin microporous membrane, a separator for a secondary battery, and a secondary battery, and more specifically, a polyolefin microporous membrane having a high tensile strength in the MD direction and excellent permeability, and a secondary battery using the same. The present invention relates to a separator and a secondary battery.

リチウムイオン電池などの非水電解液を用いた電池には、内部短絡を防止するため、所定の温度を超えた時点で反応をシャットダウンするシャットダウン機能を備えたセパレータが必須である。一般に電池用セパレータは微多孔膜からなり、温度が上昇すると、融点付近で収縮して微多孔が閉じ、電池反応をシャットダウンする。ここで、もしもセパレータの温度特性に局所的な偏りが存在すると、シャットダウンが不完全となり安全性の確保が困難となるおそれがあるため、セパレータは物性ムラの少ない均質な構造を有していることが望ましい。   For a battery using a non-aqueous electrolyte such as a lithium ion battery, a separator having a shutdown function for shutting down a reaction when a predetermined temperature is exceeded is essential to prevent an internal short circuit. In general, a battery separator is made of a microporous film. When the temperature rises, the battery shrinks in the vicinity of the melting point to close the micropore, and shuts down the battery reaction. Here, if there is a local bias in the temperature characteristics of the separator, shutdown may be incomplete and it may be difficult to ensure safety. Is desirable.

また、非水電解液系二次電池の普及および用途の拡大に伴い、セパレータに要求される品質水準も年々向上しており、安全性だけでなく、強度、透過性などの様々な特性が高いレベルで求められるようになっている。例えば、セパレータは張力をかけた状態で捲回されるので、捲回時の破膜防止のため、引張強度は高いことが好ましい。また、セパレータの捲回方向は通常MD方向であることから、MD方向の引張強度(以下、単に「MD引張強度」と記すこともある。)が、TD方向の引張強度(以下、単に「TD引張強度」と記すこともある。)に比べて適度に高いことが好ましい。   In addition, with the spread of non-aqueous electrolyte secondary batteries and the expansion of applications, the quality level required for separators has improved year by year, and not only safety but also various characteristics such as strength and permeability are high. It is required by level. For example, since the separator is wound in a tensioned state, it is preferable that the tensile strength is high in order to prevent film breakage during winding. Further, since the winding direction of the separator is usually the MD direction, the tensile strength in the MD direction (hereinafter sometimes simply referred to as “MD tensile strength”) is the tensile strength in the TD direction (hereinafter simply referred to as “TD”). It may be described as “tensile strength”).

電池の出力特性の観点からは、セパレータの透過性が高いことが好ましく、MD引張強度に優れていることが好ましい。透過性に優れた微多孔膜を用いることで電解質の通過が容易となり、高い電池特性を得ることができる。また、捲回時に高い張力をかけて密着させることで、電池の出力特性を高めることができる。   From the viewpoint of the output characteristics of the battery, it is preferable that the permeability of the separator is high, and it is preferable that the MD tensile strength is excellent. By using a microporous membrane having excellent permeability, the electrolyte can be easily passed and high battery characteristics can be obtained. Moreover, the output characteristic of a battery can be improved by making it adhere | attach with high tension | tensile_strength at the time of winding.

さらに、多様化する要求特性に応える方法として、近年では多孔質膜に機能材料を塗布して多機能化を実現するコーティング用セパレータの需要が高まりつつある。このようなコーティング用途においても、微多孔膜の強度は優れていることが好ましいが、コーティング用セパレータでは強度異方性の度合いが塗工時の張力制御に大きく影響することから、特定の配向方向のみ強度を高めるよりも、MD方向とTD方向に適度な異方性を持たせつつ、塗工に適した強度バランスに調整することが好ましい。   Furthermore, as a method for meeting diversified demand characteristics, in recent years, there is an increasing demand for a coating separator that realizes multi-functionality by applying a functional material to a porous film. Even in such a coating application, it is preferable that the strength of the microporous film is excellent. However, in a coating separator, the degree of strength anisotropy greatly affects the tension control during coating, and therefore a specific orientation direction. It is preferable to adjust the strength balance suitable for coating while giving moderate anisotropy in the MD direction and the TD direction rather than increasing the strength only.

一方、自動車用電池等、二次電池の大型化に伴い、安全性の確保がますます重要になりつつある。そこで、電池内における異物や衝撃による破膜防止の観点からは、引張強度だけでなく突刺強度も高いことが好ましい。   On the other hand, with the increase in the size of secondary batteries such as automobile batteries, ensuring safety is becoming increasingly important. Therefore, from the viewpoint of preventing film breakage due to foreign matter or impact in the battery, it is preferable that not only the tensile strength but also the puncture strength is high.

微多孔膜の強度を向上させる方法としては、シートを延伸する方法や、多孔質シートを積層する方法などが広く知られている。しかしながら、従来技術では、強度を向上させると透過性が低下してしまうという問題点があり、強度と透過性のバランスに優れた微多孔膜を得ることは困難であった。   As a method for improving the strength of the microporous membrane, a method of stretching a sheet, a method of laminating a porous sheet, and the like are widely known. However, in the prior art, there is a problem that if the strength is improved, the permeability is lowered, and it has been difficult to obtain a microporous membrane having an excellent balance between strength and permeability.

例えば、特許文献1には、超高分子量ポリエチレンおよび高密度ポリエチレンを溶融混練して同時二軸延伸を行った後、所定の温度にて熱固定し、しかる後に溶媒を除去して微多孔膜を製造することが記載されている。しかしながら、この微多孔膜は高透過性で熱収縮率が低いものの、引張強度が必ずしも十分ではなかった。   For example, in Patent Document 1, after melt-kneading ultrahigh molecular weight polyethylene and high-density polyethylene and performing simultaneous biaxial stretching, heat fixing at a predetermined temperature, and then removing the solvent to form a microporous membrane. Manufacturing is described. However, although this microporous membrane has high permeability and low thermal shrinkage, the tensile strength is not always sufficient.

また、特許文献2には、ポリエチレンおよびポリプロピレンからなる微多孔膜Aと、ポリエチレンからなる微多孔膜BをA/B/Aの形態に3枚積層した積層微多孔膜が記載されている。しかしながら、このような積層微多孔膜は強度を確保しやすいという利点はあるものの、透過性が低く、また積層構造のため薄膜化が困難であった。   Patent Document 2 describes a laminated microporous membrane in which three microporous membranes A made of polyethylene and polypropylene and three microporous membranes B made of polyethylene are laminated in the form of A / B / A. However, although such a laminated microporous membrane has an advantage that it is easy to ensure strength, it has low permeability and is difficult to reduce in thickness due to the laminated structure.

国際公開第2000/020492号International Publication No. 2000/020492 特開2002−321323号公報JP 2002-321323 A

そこで本発明の課題は、MD引張強度が高く、MD引張強度とTD引張強度のバランスに優れ、高い透過性を有し、二次電池用セパレータとして好適に用いることのできるポリオレフィン微多孔膜を提供することにある。   Therefore, an object of the present invention is to provide a polyolefin microporous membrane having high MD tensile strength, excellent balance between MD tensile strength and TD tensile strength, high permeability, and suitable for use as a separator for a secondary battery. There is to do.

本発明に係るポリオレフィン微多孔膜は、下記(1)〜(4)のいずれかの構成を有する。また、本発明に係る二次電池用セパレータは、下記(5)の構成を有する。さらに、本発明に係る二次電池は、下記(6)の構成を有する。
(1)10μm四方の視野中に配向しているフィブリルの、機械方向(MD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分をMD配向したフィブリル部分とし、機械方向に垂直な方向(TD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分をTD配向したフィブリル部分とするとき、前記MD配向したフィブリル部分を径大順に20%選択して算出した径大側平均フィブリル径DMDと、前記TD配向したフィブリル部分を径大順に20%選択して算出した径大側平均フィブリル径DTDの比DMD/DTDが1.2〜3.0であり、MD引張強度が1000〜6000kgf/cmであり、TD引張強度が1000〜3000kgf/cmであることを特徴とするポリオレフィン微多孔膜。
(2)前記DMDが80〜280nmであり、前記MD配向したフィブリル部分を径大順に20%選択して算出した径大側フィブリル径標準偏差σDMDがDMDの20%以下であり、前記DTDが25〜200nmであり、前記TD配向したフィブリル部分を径大順に20%選択して算出した径大側フィブリル径標準偏差σDTDがDTDの20%以下である、請求項1に記載のポリオレフィン微多孔膜。
(3)微多孔膜の膜厚を20μmとしたときの透気抵抗度が600sec/100mL以下である、上記(1)または(2)のポリオレフィン微多孔膜。
(4)重量平均分子量が1.0×10〜5.0×10の超高分子量ポリエチレンを1〜50重量%含有する、上記(1)〜(3)のいずれかのポリオレフィン微多孔膜。
(5)上記(1)〜(4)のいずれかのポリオレフィン微多孔膜を用いた二次電池用セパレータ。
(6)上記(5)のセパレータを含む二次電池。
The polyolefin microporous membrane according to the present invention has any one of the following constitutions (1) to (4). Moreover, the secondary battery separator according to the present invention has the following configuration (5). Furthermore, the secondary battery according to the present invention has the following configuration (6).
(1) The fibril portion oriented in the range of 0 to 30 ° with respect to the machine direction (MD) of the fibril oriented in the field of view of 10 μm square is defined as the MD-oriented fibril portion, and the machine direction When the fibril portion in which the angle formed by the alignment direction with respect to the direction perpendicular to the direction (TD) is in the range of 0 to 30 ° is a TD-aligned fibril portion, 20% of the MD-oriented fibril portions are selected in descending order of diameter. The ratio D MD / D TD between the large-diameter side average fibril diameter D MD and the large-diameter side average fibril diameter D TD calculated by selecting 20% of the TD-oriented fibril portions in descending order is 1.2 to is 3.0, MD tensile strength is 1000~6000kgf / cm 2, polyolefin TD tensile strength characterized in that it is a 1000~3000kgf / cm 2 fine Porous membrane.
(2) the D MD is 80~280Nm, the MD oriented large-diameter side fibril diameter standard deviation sigma DMD which fibrils portion was calculated by selecting 20% larger diameter order of 20% or less of D MD, the D TD is 25 to 200 nm, the large-diameter side fibril diameter standard deviation sigma DTD the TD oriented fibrils portion was calculated by selecting 20% larger diameter order of 20% or less of D TD, claim 1 Polyolefin microporous membrane.
(3) The polyolefin microporous membrane according to (1) or (2), wherein the air resistance when the thickness of the microporous membrane is 20 μm is 600 sec / 100 mL or less.
(4) The polyolefin microporous membrane according to any one of (1) to (3) above, containing 1 to 50% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1.0 × 10 6 to 5.0 × 10 6 .
(5) A separator for a secondary battery using the polyolefin microporous film according to any one of (1) to (4) above.
(6) A secondary battery including the separator of (5) above.

本発明のポリオレフィン微多孔膜は、MD配向したフィブリル部分のフィブリル径とTD配向したフィブリル部分のフィブリル径が適切なバランスに保たれているので、引張強度および突刺強度に優れ、良好な透過性を発揮する。また、この微多孔膜は強度と透過性のバランスが優れているので、セパレータに使用した場合に良好なサイクル特性および出力特性を発揮でき、電池特性を向上させることが可能である。さらに、強度向上によって電池生産性や安全性も向上させることが可能となる。   The polyolefin microporous membrane of the present invention is excellent in tensile strength and puncture strength and has good permeability because the fibril diameter of the MD-oriented fibril portion and the fibril diameter of the TD-oriented fibril portion are kept in an appropriate balance. Demonstrate. Moreover, since this microporous membrane has an excellent balance between strength and permeability, it can exhibit good cycle characteristics and output characteristics when used in a separator, and can improve battery characteristics. Furthermore, battery productivity and safety can be improved by improving the strength.

また、本発明のポリオレフィン微多孔膜は、MD方向とTD方向の異方性が適度な範囲内に調整されているので、コーティング用セパレータとしても好適に利用可能である。このような微多孔膜は張力制御が容易であり、塗りムラの少ない均一な塗工を実現することができる。また、高い張力に耐え得る優れた強度を有していることから、高速搬送による生産性の向上も可能となる。   The polyolefin microporous membrane of the present invention can be suitably used as a coating separator because the anisotropy in the MD and TD directions is adjusted within an appropriate range. Such a microporous membrane is easy to control the tension and can realize uniform coating with little coating unevenness. Further, since it has an excellent strength that can withstand high tension, productivity can be improved by high-speed conveyance.

実施例および比較例にて作製した微多孔膜の、走査型電子顕微鏡による表面観察図である。It is a surface observation figure by the scanning electron microscope of the microporous film produced in the Example and the comparative example. フィブリル径の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of a fibril diameter.

以下に、発明の望ましい実施の形態について、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明のポリオレフィン微多孔膜は、フィブリル構造を有していることを一つの特徴とする。主としてフィブリルで構成された島状部や球状部の少ない構造を採用することにより、物性ムラや温度特性の局所的な偏りを未然に防止でき、シャットダウン特性に優れセパレータに適した微多孔膜を得ることができる。   One feature of the microporous polyolefin membrane of the present invention is that it has a fibril structure. By adopting a structure with few island-like parts and spherical parts mainly composed of fibrils, it is possible to prevent unevenness in physical properties and local bias in temperature characteristics, and to obtain a microporous membrane suitable for separators with excellent shutdown characteristics. be able to.

微多孔膜がこのようなフィブリル構造を有する場合、フィブリルがどのように配向しているかが、引張強度や強度異方性などの機械的特性に大きく影響すると考えられる。例えば、MD引張強度に優れた微多孔膜を製造する場合、フィブリルがTD方向よりもMD方向に多く配向していることが好ましい。また、塗工に適した強度異方性を実現するという観点からは、フィブリルの配向性が、MD方向、TD方向のいずれにも偏りすぎず、適度なバランスを保っていることが好ましい。   When the microporous membrane has such a fibril structure, it is considered that how the fibrils are oriented greatly affects mechanical properties such as tensile strength and strength anisotropy. For example, when producing a microporous film excellent in MD tensile strength, it is preferable that fibrils are oriented more in the MD direction than in the TD direction. Further, from the viewpoint of realizing strength anisotropy suitable for coating, it is preferable that the orientation of the fibrils is not excessively biased in either the MD direction or the TD direction, and an appropriate balance is maintained.

特に、MD引張強度に優れた微多孔膜を作るには、MD方向の延伸倍率をTD方向の延伸倍率より高めながら同時に延伸し、かつ延伸後の熱固定温度の調整により、MD方向のフィブリルの成長を促し、最適なフィブリル径とすることが望ましい。   In particular, in order to make a microporous membrane having excellent MD tensile strength, the MD direction fibrils are stretched simultaneously by increasing the MD direction draw ratio higher than the TD direction draw ratio and adjusting the heat setting temperature after stretching. It is desirable to promote growth and achieve an optimum fibril diameter.

上述の観点から、本発明のポリオレフィン微多孔膜は、10μm四方の視野中に配向しているフィブリルの、機械方向(MD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分をMD配向したフィブリル部分とし、機械方向に垂直な方向(TD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分をTD配向したフィブリル部分とするとき、前記MD配向したフィブリル部分を径大順に20%選択して算出した径大側平均フィブリル径DMDと、前記TD配向したフィブリル部分を径大順に20%選択して算出した径大側平均フィブリル径DTDの比DMD/DTDが、所定の範囲内にあることを一つの特徴とする。 From the above viewpoint, the polyolefin microporous membrane of the present invention is a fibril in which the angle formed by the orientation direction with respect to the machine direction (MD) of the fibril oriented in a 10 μm square field is in the range of 0 to 30 °. When the portion is an MD-oriented fibril portion and the fibril portion having an angle of 0 to 30 ° with respect to the direction perpendicular to the machine direction (TD) is a TD-oriented fibril portion, the MD orientation was the fibrils portion large-diameter order 20% selected large diameter side average fibril diameter D MD calculated by the TD oriented fibrils portion of the large-diameter-side average fibril diameter D TD calculated by selecting 20% large diameter order One feature is that the ratio D MD / D TD is within a predetermined range.

図2は、走査型電子顕微鏡を用いてフィブリル表面を観察した結果の一例を示す模式図である。図2の視野1内には湾曲したフィブリル2が写っており、フィブリル2は、MD方向に対し0〜30°の角度で配向しているフィブリル部分(区間Aおよび区間C)と、TD方向に対し0〜30°の角度で配向している部分(区間B)の両方を含んでいる。このような場合においては、各区間を独立して取り扱い、MD配向したフィブリル部分が2箇所(区間Aおよび区間C)、TD配向したフィブリル部分が1箇所(区間B)存在するものとして、各フィブリル部分についてフィブリル径の測定を行う。また、区間内のフィブリル径が一定でない場合は、区間内の最大径を、当該区間におけるフィブリル径の測定値として採用する。なお、区間内のフィブリル部分の長さが500nm以上あれば、当該区間をフィブリル径の測定に用いることができるものとする。   FIG. 2 is a schematic diagram showing an example of the result of observing the fibril surface using a scanning electron microscope. A curved fibril 2 is shown in the visual field 1 of FIG. 2, and the fibril 2 has a fibril portion (section A and section C) oriented at an angle of 0 to 30 ° with respect to the MD direction, and a TD direction. It includes both portions (section B) oriented at an angle of 0 to 30 °. In such a case, each section is handled independently, assuming that there are two MD-oriented fibril parts (section A and section C) and one TD-oriented fibril part (section B). The fibril diameter is measured for the part. Further, when the fibril diameter in the section is not constant, the maximum diameter in the section is adopted as a measured value of the fibril diameter in the section. If the length of the fibril portion in the section is 500 nm or more, the section can be used for measurement of the fibril diameter.

このようにしてフィブリル部分ごとにフィブリル径を測定した後、MD方向およびTD方向のそれぞれに対し、所定の方向に配向したフィブリル部分を径大順に20%選択して径大側平均フィブリル径を算出する。例えば、MD配向したフィブリル部分が視野内に100箇所あった場合は、最大径が大きいものから順に20箇所を選択して平均値を算出し、得られた値を径大側平均フィブリル径DMD(nm)とする。TD方向の径大側平均フィブリル径DTD(nm)についても同様である。 After measuring the fibril diameter for each fibril part in this way, the fibril part oriented in a predetermined direction is selected in the order of diameter in the order of 20% in the MD direction and the TD direction, and the large diameter side average fibril diameter is calculated. To do. For example, when there are 100 MD-oriented fibril portions in the field of view, the average value is calculated by selecting 20 locations in order from the largest maximum diameter, and the obtained value is used as the large-side average fibril diameter D MD. (Nm). The same applies to the larger diameter average fibril diameter D TD (nm) in the TD direction.

本発明のポリオレフィン微多孔膜において、上述のDMD/DTDは通常1.2〜3.0であり、好ましくは1.5〜2.9である。DMD/DTDを1.2以上とすることで、MD引張強度に優れたポリオレフィン微多孔膜を得ることができる。また、DMD/DTDを3.0以下とすることで、MD引張強度とTD引張強度のバランスを適度な範囲に保つことができ、塗工時や搬送時の張力制御が容易となる。 In the polyolefin microporous membrane of the present invention, the above-mentioned D MD / D TD is usually 1.2 to 3.0, preferably 1.5 to 2.9. By setting D MD / D TD to 1.2 or more, a polyolefin microporous film excellent in MD tensile strength can be obtained. In addition, by setting 3.0 or less D MD / D TD, it is possible to maintain the balance of the MD tensile strength and TD tensile strength to an appropriate range, it is easy to tension control during or during transport coating.

引張強度と透気度とを両立させる観点から、上記DMDは80〜280nmであることが好ましく、120〜260nmであることがより好ましく、180〜240nmであることが特に好ましい。また、上記DTDは、25〜200nmであることが好ましく、40〜180nmであることがより好ましく、60〜160nmであることが特に好ましい。一般に、フィブリル径が大きいほど透気抵抗度が高くなるため、フィブリル径が大き過ぎると所望の透気度を得ることが難しくなる。また、フィブリル径が小さ過ぎると、十分な引張強度を確保することが困難になる。 From the viewpoint of satisfying both tensile strength and air permeability, it is preferable that the D MD is 80~280Nm, more preferably 120~260Nm, particularly preferably 180~240Nm. Also, the D TD is preferably 25 to 200 nm, more preferably from 40~180Nm, particularly preferably 60~160Nm. In general, the larger the fibril diameter, the higher the air resistance. Therefore, if the fibril diameter is too large, it becomes difficult to obtain a desired air permeability. On the other hand, if the fibril diameter is too small, it is difficult to ensure sufficient tensile strength.

また、微多孔膜の孔径分布のばらつきを抑えるという観点からは、MD配向したフィブリル部分とTD配向したフィブリル部分のいずれに関しても、フィブリル径の標準偏差は小さいことが好ましい。より具体的には、MD配向したフィブリル部分を径大順に20%選択して算出した径大側フィブリル径標準偏差をσDMD(nm)とするとき、σDMDはDMDの20%以下であることが好ましく、18%以下であることがより好ましく、16%以下であることが特に好ましい。同様に、TD配向したフィブリル部分を径大順に20%選択して算出した径大側フィブリル径標準偏差をσDTD(nm)とするとき、σDTDはDTDの20%以下であることが好ましく、18%以下であることがより好ましく、16%以下であることが特に好ましい。なお、σDMDの下限はDMDの1%以上であることが好ましく、σDTDの下限はDTDの1%以上であることが好ましい。このようにフィブリル径のばらつきを所定の範囲内に抑えることにより、孔径が均一で物性ムラの少ない微多孔膜を得ることができ、シャットダウン特性や塗工特性に優れたセパレータが製造可能となる。 Further, from the viewpoint of suppressing variation in the pore size distribution of the microporous membrane, it is preferable that the standard deviation of the fibril diameter is small for both the MD-oriented fibril portion and the TD-oriented fibril portion. More specifically, when the large diameter fibril diameter standard deviation calculated by selecting 20% of MD-oriented fibril parts in order of diameter is σ DMD (nm), σ DMD is 20% or less of D MD. It is preferably 18% or less, more preferably 16% or less. Similarly, when the large diameter fibril diameter standard deviation calculated by selecting 20% of TD-oriented fibril parts in order of diameter is σ DTD (nm), σ DTD is preferably 20% or less of D TD. 18% or less is more preferable, and 16% or less is particularly preferable. The lower limit of sigma DMD is preferably at least 1% of D MD, the lower limit of the sigma DTD is preferably 1% or more of D TD. Thus, by suppressing the variation in the fibril diameter within a predetermined range, a microporous film having a uniform pore diameter and little physical property unevenness can be obtained, and a separator having excellent shutdown characteristics and coating characteristics can be manufactured.

上述のようにフィブリル径のバランスを調整することで、MD引張強度が高く、MD引張強度とTD引張強度のバランスに優れた微多孔膜を得ることができる。本発明の微多孔膜において、MD引張強度は、通常1000〜6000kgf/cmであり、好ましくは1500〜4500kgf/cmであり、より好ましくは2000〜3500kgf/cmである。また、TD引張強度は、通常1000〜3000kgf/cmであり、好ましくは1000〜2000kgf/cmであり、より好ましくは1000〜1650kgf/cmである。このような微多孔膜は引張強度が優れているため、高い張力が掛かった場合も膜が破断しにくく、高い耐久性が要求される用途に好適に用いることができる。また、このような強度に優れた微多孔膜を電池用セパレータとして用いることで、電池作製時や使用時における短絡を防ぐことができるとともに、高い張力をかけてセパレータを巻回可能となり、電池の高容量化も図られる。なお、微多孔膜の引張強度(引張破断強度)は、例えばASTM D882に準拠した方法により測定することができる。 By adjusting the fibril diameter balance as described above, a microporous membrane having high MD tensile strength and excellent balance between MD tensile strength and TD tensile strength can be obtained. In the microporous membrane of the present invention, MD tensile strength is usually 1000~6000kgf / cm 2, preferably 1500~4500kgf / cm 2, more preferably 2000~3500kgf / cm 2. Further, TD tensile strength is usually 1000~3000kgf / cm 2, preferably 1000~2000kgf / cm 2, more preferably 1000~1650kgf / cm 2. Since such a microporous membrane has excellent tensile strength, the membrane is not easily broken even when high tension is applied, and can be suitably used for applications requiring high durability. In addition, by using such a microporous membrane with excellent strength as a battery separator, it is possible to prevent a short circuit during battery production or use, and it is possible to wind the separator by applying high tension. High capacity can also be achieved. In addition, the tensile strength (tensile breaking strength) of the microporous membrane can be measured by a method based on ASTM D882, for example.

本発明の微多孔膜は、膜厚を20μmとしたときの透気抵抗度が600sec/100mL以下であることが好ましい。ここで、膜厚を20μmとしたときの透気抵抗度とは、膜厚T(μm)の微多孔膜において、JIS P8117に準拠して測定した透気抵抗度をPとするとき、式:P=(P×20)/Tによって算出される透気抵抗度Pのことを指す。なお、以下では、膜厚について特に記載がない限り、「透気抵抗度」を「膜厚を20μmとしたときの透気抵抗度」の意味で用いるものとする。 The microporous membrane of the present invention preferably has an air permeability resistance of 600 sec / 100 mL or less when the thickness is 20 μm. Here, the air resistance when the film thickness is 20 μm means that the air resistance measured in accordance with JIS P8117 is P 1 in a microporous film having a film thickness T 1 (μm). formula refers to the P 2 = (P 1 × 20 ) / T 1 air resistance P 2 calculated by. In the following description, “air permeability resistance” is used to mean “air resistance when the film thickness is 20 μm” unless otherwise specified.

微多孔膜を電池用セパレータとして用いる場合、透気抵抗度は低い値であることが好ましい。透気抵抗度が600sec/100mLを超えると、電池の出力が小さくなることがある。なお、透気抵抗度の上限としては、400sec/100mL以下がより好ましく、300sec/100mL以下が特に好ましい。また、シャットダウン性能確保の観点から、透気抵抗度の下限は50sec/100mL以上であることが好ましく、100sec/100mL以上であることがより好ましい。   When the microporous membrane is used as a battery separator, the air permeability resistance is preferably a low value. When the air resistance exceeds 600 sec / 100 mL, the output of the battery may be small. In addition, as an upper limit of air permeability resistance, 400 sec / 100 mL or less is more preferable, and 300 sec / 100 mL or less is especially preferable. Further, from the viewpoint of ensuring the shutdown performance, the lower limit of the air permeability resistance is preferably 50 sec / 100 mL or more, and more preferably 100 sec / 100 mL or more.

上記ポリオレフィン微多孔膜において、105℃にて8時間保持したときのMD方向の熱収縮率は、8%以下であることが好ましく、6%以下であることがより好ましい。また、105℃にて8時間保持したときのTD方向の熱収縮率は、8%以下であることが好ましく、6%以下であることがより好ましい。熱収縮率が上記範囲内であると、セパレータを電極に捲回した後、乾燥工程にてセパレータが適度に収縮するため、セパレータと電極の密着性が向上し、従って電池組み立て時の不良率を低減できる。また、電池が異常作動し高温となった場合は、セパレータが徐々に縮んで少しずつショートしていくことが望ましく、セパレータが縮みすぎたり、逆にセパレータがほとんど縮まなかったりすると、十分な安全性を確保することが困難となるおそれがある。従って、安全性の観点からも、セパレータの熱収縮率は上記範囲内であることが好ましい。なお、熱収縮率が高過ぎると、コーティング時に乾燥工程などの熱によって基材が収縮し、乾燥皺や塗工膜のはがれを引き起こすおそれがある。そこで、コーティング時の不具合抑制の観点からは、MD方向の熱収縮率を6%以下とすることが好ましい。   In the above microporous polyolefin membrane, the thermal shrinkage in the MD direction when held at 105 ° C. for 8 hours is preferably 8% or less, and more preferably 6% or less. Further, the thermal shrinkage rate in the TD direction when held at 105 ° C. for 8 hours is preferably 8% or less, and more preferably 6% or less. If the thermal shrinkage rate is within the above range, the separator is appropriately shrunk in the drying process after the separator is wound on the electrode, so that the adhesion between the separator and the electrode is improved. Can be reduced. In addition, when the battery operates abnormally and becomes hot, it is desirable that the separator shrinks gradually and short-circuits gradually. If the separator shrinks too much, or conversely, the separator hardly shrinks, sufficient safety will be achieved. It may be difficult to ensure Therefore, from the viewpoint of safety, the thermal shrinkage rate of the separator is preferably within the above range. If the thermal shrinkage rate is too high, the base material shrinks due to heat during the drying process during coating, which may cause peeling of the drying flaws or the coating film. Therefore, from the viewpoint of suppressing defects during coating, it is preferable that the thermal shrinkage rate in the MD direction is 6% or less.

膜強度の観点から、空孔率の上限は、好ましくは70%以下であり、より好ましくは60%以下である。また、透過性能および電解液含有量の観点から、空孔率の下限は、好ましくは20%以上であり、より好ましくは30%以上である。空孔率を上記範囲内とすることにより、透過性、強度および電界液含有量のバランスが良くなり、電池反応の不均一性が解消され、デンドライト発生が抑制される。その結果、良好な安全性、強度、透過性が得られる。   From the viewpoint of film strength, the upper limit of the porosity is preferably 70% or less, and more preferably 60% or less. Further, from the viewpoints of permeation performance and electrolytic solution content, the lower limit of the porosity is preferably 20% or more, and more preferably 30% or more. By setting the porosity within the above range, the balance of permeability, strength and electric field liquid content is improved, the non-uniformity of the battery reaction is eliminated, and the generation of dendrites is suppressed. As a result, good safety, strength and permeability can be obtained.

ポリオレフィン微多孔膜を構成するポリオレフィンに関しては、ポリエチレンを用いることが好ましい。ポリエチレンの含有量は、ポリオレフィン全体を100重量%としたとき、90重量%以上であることが好ましく、95重量%以上であることがより好ましく、99重量%以上であることが特に好ましい。ポリエチレンの構成比率を上記範囲内とすることにより、ポリマー種の相分離がほとんどまたは全くない、均一性の高い微多孔膜を得ることができる。   Regarding the polyolefin constituting the polyolefin microporous membrane, it is preferable to use polyethylene. The polyethylene content is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 99% by weight or more, based on 100% by weight of the entire polyolefin. By setting the composition ratio of polyethylene within the above range, a highly uniform microporous membrane with little or no phase separation of polymer species can be obtained.

また、物性ムラの少ない均質な微多孔膜を得るためには、フィブリル以外の構造を持つ領域、例えば、島状部や球状部、ラフト状部などができるだけ少ないことが望ましい。具体的には、微多孔膜の表面を観察したとき、フィブリル部分の面積の合計が、空孔部分を除いた樹脂部分全体の面積に対して90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることが特に好ましい。フィブリル以外の構造を持つ領域をできるだけ少なくすることで、物性ムラや温度特性の偏りが少ない、シャットダウン特性に優れた微多孔膜を得ることができる。フィブリル部分の面積の算出にあたっては、微多孔膜の表面から無作為に選んだ複数の箇所で測定を実施し、得られた結果の平均値を求めることが好ましい。   Further, in order to obtain a homogeneous microporous film with little physical property unevenness, it is desirable that the number of regions having a structure other than fibrils, for example, an island-shaped portion, a spherical portion, and a raft-shaped portion is as small as possible. Specifically, when the surface of the microporous membrane is observed, the total area of the fibril parts is preferably 90% or more with respect to the entire area of the resin part excluding the pores, and is 95% or more. More preferably, it is 99% or more. By reducing the number of regions having structures other than fibrils as much as possible, it is possible to obtain a microporous film with excellent physical properties and uneven temperature characteristics and excellent shutdown characteristics. In calculating the area of the fibril portion, it is preferable to perform measurement at a plurality of locations randomly selected from the surface of the microporous membrane and obtain an average value of the obtained results.

強度向上の観点から、上記微多孔膜は、重量平均分子量が1.0×10〜5.0×10の超高分子量ポリエチレン(以下、単に「UHMWPE」とも記す。)を含有していることが好ましい。UHMWPEの含有量は、ポリオレフィン全体の重量を100重量%として、1〜50重量%が好ましく、1〜45重量%がより好ましく、1〜40重量%が特に好ましい。UHMWPEの含有量が50重量%を超えると、ダイからのシート押出しが困難となるため、好ましくない。 From the viewpoint of improving the strength, the microporous membrane contains ultra high molecular weight polyethylene (hereinafter, also simply referred to as “UHMWPE”) having a weight average molecular weight of 1.0 × 10 6 to 5.0 × 10 6 . It is preferable. The content of UHMWPE is preferably 1 to 50% by weight, more preferably 1 to 45% by weight, and particularly preferably 1 to 40% by weight, based on 100% by weight of the entire polyolefin. If the content of UHMWPE exceeds 50% by weight, sheet extrusion from the die becomes difficult, which is not preferable.

強度と透過性を両立させるという観点から、上記ポリオレフィン微多孔膜の製造方法は、下記(1)、(2)の工程を含んでいることが好ましい。
(1)ダイから押し出されたシートを、延伸温度100〜130℃、MD方向の延伸倍率2〜10倍、TD方向の延伸倍率2〜10倍にて同時二軸延伸する、湿式同時二軸延伸工程
(2)湿式同時二軸延伸工程によって延伸されたシートを洗浄し乾燥した後、乾燥したシートを、延伸温度が110〜150℃、MD方向の延伸倍率1.2〜3.0倍、TD方向の延伸倍率1.1〜2.0倍にてMD方向歪速度1〜30%/sec、TD方向歪速度1〜20%/secで延伸し、その後、熱固定温度110〜150℃、保持時間3〜15秒にて熱固定を行う、乾式同時二軸延伸工程
ここで、優れたMD引張強度を確保する観点から、上記(2)の乾式同時二軸延伸工程において、MD方向の延伸倍率は、TD方向の延伸倍率よりも高いことが好ましい。製造時にこれらの工程を実施することにより、MD方向のフィブリルの成長を促し、最適なフィブリル径とすることができる。これにより、延伸倍率が同程度である従来のポリオレフィン微多孔膜と比較して、適切な径のフィブリルをMD方向に異方性をもたせて存在させることができ、その結果、MD強度が向上し、捲回性に優れた微多孔膜を得ることができるため、電池特性の向上が望める。さらに、従来のポリオレフィン微多孔膜では、延伸倍率が高くなるとひずみが多く残り、透過性が悪化する傾向にあるが、上述の工程を実施することで、ひずみの発生を抑えて透気抵抗度を低く保つことができ、強度の向上と透過性の確保を高い水準で両立させることが可能となる。さらに、従来品と同程度の透過性を維持しつつより高い延伸倍率まで延伸が可能となるため、生産性も向上する。
From the viewpoint of achieving both strength and permeability, the method for producing a polyolefin microporous membrane preferably includes the following steps (1) and (2).
(1) Wet simultaneous biaxial stretching in which a sheet extruded from a die is simultaneously biaxially stretched at a stretching temperature of 100 to 130 ° C., a stretching ratio of 2 to 10 times in the MD direction, and a stretching ratio of 2 to 10 times in the TD direction. Step (2) After the sheet stretched by the wet simultaneous biaxial stretching process is washed and dried, the dried sheet is stretched at a stretching temperature of 110 to 150 ° C., a stretching ratio of 1.2 to 3.0 times in the MD direction, TD Stretched in the MD direction strain rate of 1 to 30% / sec and in the TD direction strain rate of 1 to 20% / sec at a direction stretching ratio of 1.1 to 2.0 times, and then maintained at a heat setting temperature of 110 to 150 ° C. The dry simultaneous biaxial stretching step in which heat setting is performed for 3 to 15 seconds. From the viewpoint of ensuring excellent MD tensile strength, in the dry simultaneous biaxial stretching step (2) above, the stretching ratio in the MD direction Is preferably higher than the draw ratio in the TD direction. Good. By carrying out these steps at the time of production, it is possible to promote the growth of fibrils in the MD direction and to obtain an optimum fibril diameter. As a result, fibrils having an appropriate diameter can be present with anisotropy in the MD direction as compared with the conventional polyolefin microporous membrane having the same draw ratio, and as a result, the MD strength is improved. Since a microporous film excellent in winding property can be obtained, improvement in battery characteristics can be expected. Furthermore, in the conventional polyolefin microporous membrane, when the draw ratio is increased, a large amount of strain remains and the permeability tends to deteriorate, but by performing the above-described process, the occurrence of strain is suppressed and the air resistance is reduced. It can be kept low, and it is possible to achieve both improvement in strength and securing of transparency at a high level. Furthermore, since it becomes possible to stretch to a higher stretching ratio while maintaining the same degree of permeability as the conventional product, productivity is also improved.

本発明はまた、上記ポリオレフィン微多孔膜を用いてなる二次電池用セパレータと、このような二次電池用セパレータを含む二次電池を提供する。強度に優れ透過性の高い本発明のポリオレフィン微多孔膜を用いることにより、安全性が高く優れた電池特性を有する二次電池が実現可能となる。   The present invention also provides a separator for a secondary battery using the polyolefin microporous membrane and a secondary battery including such a separator for a secondary battery. By using the polyolefin microporous membrane of the present invention having excellent strength and high permeability, a secondary battery having high safety and excellent battery characteristics can be realized.

以下に、本発明における具体例を、実施例を用いて説明するが、本発明はこれに限定されるものではない。   Specific examples of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

1. フィブリル径
フィブリル径に関しては、以下の方法で測定を行った。まず、微多孔膜の表面のいずれかの場所を無作為に選んで走査型電子顕微鏡(SEM)(JEOL製、型式:JSM−6701F)で観察し、10μm四方の広さの電子顕微鏡写真を視野として得た。この視野中に写っているフィブリルの、機械方向(MD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分(MD配向したフィブリル部分)の全てについて、フィブリル径を測定した。なお、MD配向したフィブリル部分のフィブリル径が一定でない場合は、当該フィブリル部分における最大径を測定値として採用した。また、一つのフィブリルが複数のMD配向したフィブリル部分を有している場合は、それぞれのMD配向したフィブリル部分について測定を行った。得られた測定値のうち、径の大きさ順に上位20%以内のものを選択し、それらの算術平均および標準偏差を、MD配向したフィブリル部分の径大側平均フィブリル径DMDおよび径大側フィブリル径標準偏差σDMDとして求めた。TD方向についても同様の測定を行い、TD配向したフィブリル部分の径大側平均フィブリル径DTDおよび径大側フィブリル径標準偏差σDTDを算出した。
1. Fibril diameter The fibril diameter was measured by the following method. First, any location on the surface of the microporous membrane was randomly selected and observed with a scanning electron microscope (SEM) (manufactured by JEOL, model: JSM-6701F). Got as. The fibril diameter was measured for all the fibril portions (MD-oriented fibril portions) in which the angle formed by the orientation direction with respect to the machine direction (MD) was within a range of 0 to 30 ° with respect to the machine direction (MD). . In addition, when the fibril diameter of the fibril part MD-oriented was not constant, the maximum diameter in the fibril part was adopted as a measurement value. In addition, when one fibril has a plurality of MD-oriented fibril parts, the measurement was performed on each MD-oriented fibril part. Among the obtained measured values, those within the top 20% are selected in the order of the diameter, and the arithmetic average and standard deviation thereof are calculated as the large diameter average fibril diameter DMD and large diameter side of the MD-oriented fibril portion. The fibril diameter standard deviation σ DMD was obtained. Perform similar measurement for the TD direction were calculated large diameter side average fibril diameter D TD and the large-diameter side fibril diameter standard deviation sigma DTD fibrils moieties TD orientation.

2.引張強度
MD引張強度およびTD引張強度については、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
2. Tensile strength About MD tensile strength and TD tensile strength, it measured by the method based on ASTMD882 using the strip-shaped test piece of width 10mm.

3.膜厚
微多孔膜の厚みは、接触式厚さ計を用いて、無作為に選択したMD位置で測定した。測定は、膜のTD(幅)に沿った点で、30cmの距離にわたって5mmの間隔で行った。そして、上記TDに沿った測定を5回行い、その算術平均を試料の厚さとした。
3. Film thickness The thickness of the microporous film was measured at a randomly selected MD position using a contact-type thickness meter. Measurements were taken at 5 mm intervals over a distance of 30 cm at points along the TD (width) of the membrane. And the measurement along said TD was performed 5 times and the arithmetic mean was made into the thickness of a sample.

4.透気抵抗度
膜厚Tの微多孔膜に対して透気度計(旭精工株式会社製、EGO−1T)で透気抵抗度Pを測定し、式:P=(P×20)/Tにより、膜厚を20μmとしたときの透気度Pに換算した。
4). Air permeability resistance The air resistance P 1 is measured with an air permeability meter (AGO-1T, manufactured by Asahi Seiko Co., Ltd.) with respect to a microporous film having a film thickness T 1 , and the formula: P 2 = (P 1 × 20) / T 1 , converted to air permeability P 2 when the film thickness was 20 μm.

5.突刺強度
先端に球面(曲率半径R:0.5mm)を有する直径1mmの針を、平均膜厚T(μm)の微多孔膜に2mm/秒の速度で突刺して最大荷重L(貫通する直前の荷重、単位:gf)を測定し、L=(L×20)/Tの式により、膜厚を20μmとしたときの突刺強度L(gf/20μm)を算出した。
5. Puncture strength A needle with a diameter of 1 mm having a spherical surface (curvature radius R: 0.5 mm) at the tip is pierced into a microporous film with an average film thickness T 1 (μm) at a speed of 2 mm / sec, and the maximum load L 1 (penetration) The load immediately before the measurement, unit: gf) was measured, and the puncture strength L 2 (gf / 20 μm) when the film thickness was 20 μm was calculated by the formula L 2 = (L 1 × 20) / T 1 .

6.熱収縮率
微多孔膜を105℃にて8時間保持したときのMD方向における収縮率を3回測定し、それらの平均値をMD方向の熱収縮率とした。TD方向についても同様の測定を行い、TD方向の熱収縮率を算出した。
6). Thermal shrinkage The shrinkage in the MD direction when the microporous membrane was held at 105 ° C. for 8 hours was measured three times, and the average value thereof was taken as the thermal shrinkage in the MD direction. The same measurement was performed for the TD direction, and the thermal contraction rate in the TD direction was calculated.

7.空孔率
空孔率は、微多孔膜の質量w1と、微多孔膜と同じポリエチレン組成物からなる同サイズの空孔のない膜の質量w2から、空孔率(%)=(w2−w1)/w2×100の式により算出した。
7). Porosity The porosity is calculated from the mass w1 of the microporous membrane and the mass w2 of the same size non-porous membrane made of the same polyethylene composition as the microporous membrane, and the porosity (%) = (w2-w1). ) / W2 × 100.

(実施例1)
(a)重量平均分子量Mw1が2.89×10であり、分子量分布Mw1/Mn1(ここで、Mn1は数平均分子量である。)が5.28である超高分子量ポリエチレン(UHMWPE)30重量% と、(b)重量平均分子量Mw2が5.72×10であり、分子量分布Mw2/Mn2(ここで、Mn2は数平均分子量である。)が4.81である高密度ポリエチレン(HDPE)70重量%とからなるポリエチレン組成物30重量部を二軸押出機に投入し、この二軸押出機のサイドフィーダーから流動パラフィン70重量部を供給し、210℃および200rpmの条件で溶融混練して、ポリエチレン樹脂溶液を押出機中で調製した。続いて、このポリエチレン樹脂溶液を、押出機の先端に設置されたシート形成ダイから押し出し、得られたシート状押出物を25℃の冷却ロールで引き取りながら、ゲル状成形物を形成した。得られたゲル状成形物に対して、115℃で5×5倍になるように湿式同時二軸延伸を施した後、延伸されたシートを25℃の塩化メチレンに浸漬してリキッドパラフィンを除去し、室温で空気乾燥させた。そして、乾燥させたシートに対し、温度132℃、MD方向の延伸倍率1.6倍、TD方向の延伸倍率1.2倍、ラインスピード1m/min、熱固定温度132℃の運転条件で乾式同時二軸延伸を実施し、ポリエチレン微多孔膜を作製した。
得られた微多孔膜の膜特性を表1に示す。また、走査型電子顕微鏡による微多孔膜の表面観察図を図1(A)に示す。この微多孔膜はDMDがDTDと比べて適度に高く、径の大きいフィブリルがMD方向に多く配向する構造を有していた。また、σDMDがDMDと比べて小さく、σDMDがDTDと比べて小さいことから、フィブリル径のばらつきも小さかった。そして、延伸倍率が同程度である従来例(例えば、後述する比較例2など)と比較すると、この微多孔膜はMD引張強度、突刺強度および透過性に優れており、二次電池用セパレータに適した特性を備えていた。
Example 1
(A) Ultra high molecular weight polyethylene (UHMWPE) having a weight average molecular weight Mw1 of 2.89 × 10 6 and a molecular weight distribution Mw1 / Mn1 (where Mn1 is a number average molecular weight) of 5.28 And (b) high density polyethylene (HDPE) having a weight average molecular weight Mw2 of 5.72 × 10 5 and a molecular weight distribution Mw2 / Mn2 (where Mn2 is a number average molecular weight) of 4.81 30 parts by weight of a polyethylene composition comprising 70% by weight is charged into a twin screw extruder, 70 parts by weight of liquid paraffin is supplied from the side feeder of this twin screw extruder, and melt kneaded at 210 ° C. and 200 rpm. A polyethylene resin solution was prepared in an extruder. Subsequently, the polyethylene resin solution was extruded from a sheet forming die installed at the tip of the extruder, and a gel-like molded product was formed while taking the obtained sheet-shaped extrudate with a 25 ° C. cooling roll. The resulting gel-like molded product was wet biaxially stretched at 115 ° C to 5x5 times, and the liquid paraffin was removed by immersing the stretched sheet in methylene chloride at 25 ° C. And air dried at room temperature. The dried sheet was simultaneously dry-dried under the operating conditions of a temperature of 132 ° C., a draw ratio of 1.6 times in the MD direction, a draw ratio of 1.2 times in the TD direction, a line speed of 1 m / min, and a heat setting temperature of 132 ° C. Biaxial stretching was performed to produce a polyethylene microporous membrane.
Table 1 shows the film characteristics of the obtained microporous film. Further, FIG. 1A shows a surface observation view of the microporous film by a scanning electron microscope. The microporous membrane D MD moderately higher than the D TD, large fibril diameter had a structure oriented more in the MD direction. Furthermore, sigma DMD is smaller than the D MD, since sigma DMD is smaller than the D TD, was small variations in fibril diameter. And compared with the conventional example (for example, comparative example 2 etc. which are mentioned later) whose draw ratio is comparable, this microporous film is excellent in MD tensile strength, puncture strength, and permeability, and is used as a separator for secondary batteries. It had suitable characteristics.

(実施例2)
乾式同時二軸延伸において、MD方向への延伸倍率を2.0倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。
得られた微多孔膜の膜特性を表1に示す。また、走査型電子顕微鏡による微多孔膜の表面観察図を図1(B)に示す。この微多孔膜は実施例1と同様にフィブリル径の測定結果が良好であった。また、この微多孔膜はMD引張強度、突刺強度および透過性に優れており、二次電池用セパレータに適した特性を備えていた。
(Example 2)
In dry simultaneous biaxial stretching, a polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio in the MD direction was 2.0 times.
Table 1 shows the film characteristics of the obtained microporous film. Further, FIG. 1B shows a surface observation view of the microporous film by a scanning electron microscope. This microporous membrane had good fibril diameter measurement results as in Example 1. Moreover, this microporous film was excellent in MD tensile strength, puncture strength and permeability, and had characteristics suitable for a secondary battery separator.

(実施例3)
乾式同時二軸延伸において、MD方向への延伸倍率を2.4倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。
得られた微多孔膜の膜特性を表1に示す。また、走査型電子顕微鏡による微多孔膜の表面観察図を図1(C)に示す。この微多孔膜は実施例1と同様にフィブリル径の測定結果が良好であった。また、この微多孔膜はMD引張強度、突刺強度および透過性に優れており、二次電池用セパレータに適した特性を備えていた。
(Example 3)
In dry simultaneous biaxial stretching, a polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio in the MD direction was 2.4 times.
Table 1 shows the film characteristics of the obtained microporous film. Further, FIG. 1C shows a surface observation view of the microporous film by a scanning electron microscope. This microporous membrane had good fibril diameter measurement results as in Example 1. Moreover, this microporous film was excellent in MD tensile strength, puncture strength and permeability, and had characteristics suitable for a secondary battery separator.

(比較例1)
湿式同時二軸延伸後、乾式同時二軸延伸を行わなかったほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。
得られた微多孔膜の膜特性を表1に示す。また、走査型電子顕微鏡による微多孔膜の表面観察図を図1(D)に示す。この微多孔膜は、フィブリル径のばらつきは比較的小さかったものの、径の大きいフィブリルはMD方向とTD方向にほぼ均等に配向しており、異方性が小さかった。また、MD引張強度や透気度が比較的低く、二次電池用セパレータとしての特性についても改善の余地が見られた。
(Comparative Example 1)
A polyethylene microporous membrane was obtained in the same manner as in Example 1 except that dry simultaneous biaxial stretching was not performed after wet simultaneous biaxial stretching.
Table 1 shows the film characteristics of the obtained microporous film. Further, FIG. 1D shows a surface observation view of the microporous film by a scanning electron microscope. Although the microporous membrane had a relatively small variation in the fibril diameter, the fibril with a large diameter was oriented almost uniformly in the MD direction and the TD direction, and the anisotropy was small. Moreover, MD tensile strength and air permeability were relatively low, and there was room for improvement in characteristics as a secondary battery separator.

(比較例2)
乾式同時二軸延伸において、MD方向への延伸倍率を1.0倍とし、TD方向への延伸倍率を2.0倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。
得られた微多孔膜の膜特性を表1に示す。また、走査型電子顕微鏡による微多孔膜の表面観察図を図1(E)に示す。得られた微多孔膜の膜特性を表1に示す。また、走査型電子顕微鏡による微多孔膜の表面観察図を図1(D)に示す。この微多孔膜は、フィブリル径のばらつきは比較的小さかったものの、径の大きいフィブリルはMD方向ではなくTD方向に多く配向していた。また、MD引張強度や突刺強度、透気度などが比較的低く、二次電池用セパレータとしての特性についても改善の余地が見られた。
(Comparative Example 2)
In dry simultaneous biaxial stretching, a polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio in the MD direction was 1.0 and the stretching ratio in the TD direction was 2.0. .
Table 1 shows the film characteristics of the obtained microporous film. Further, FIG. 1E shows a surface observation view of the microporous film by a scanning electron microscope. Table 1 shows the film characteristics of the obtained microporous film. Further, FIG. 1D shows a surface observation view of the microporous film by a scanning electron microscope. In this microporous membrane, although the variation in the fibril diameter was relatively small, the fibrils having a large diameter were largely oriented in the TD direction, not in the MD direction. Moreover, MD tensile strength, puncture strength, air permeability, etc. were relatively low, and there was room for improvement in characteristics as a secondary battery separator.

上述の実施例および比較例から示される通り、本発明により得られる微多孔膜は従来の微多孔膜に比べ延伸倍率が上がっているにもかかわらず、低い透気抵抗度と高い空孔率を維持しており、透過性を保ちつつ強度特性が改善されている点で優れている。   As shown from the above-mentioned Examples and Comparative Examples, the microporous membrane obtained by the present invention has low air resistance and high porosity even though the draw ratio is higher than that of the conventional microporous membrane. It is excellent in that the strength characteristics are improved while maintaining permeability.

Figure 2015120835
Figure 2015120835

なお、本出願では、数値範囲を示す「A〜B」という表記を、下限値Aおよび上限値Bを含めた範囲、すなわち「A以上B以下」の意味で用いている。   In the present application, the notation “A to B” indicating a numerical range is used in a range including the lower limit value A and the upper limit value B, that is, “A or more and B or less”.

本発明に係るポリオレフィン微多孔膜は、特に二次電池用セパレータとして好適に使用することができる。   The polyolefin microporous membrane according to the present invention can be particularly suitably used as a separator for a secondary battery.

1 視野
2 フィブリル
A、C MD配向したフィブリル部分
B TD配向したフィブリル部分
1 Field of view 2 Fibril A, CMD-oriented fibril part B TD-oriented fibril part

Claims (6)

10μm四方の視野中に配向しているフィブリルの、機械方向(MD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分をMD配向したフィブリル部分とし、機械方向に垂直な方向(TD)に対し配向方向のなす角度が0〜30°の範囲内にあるフィブリル部分をTD配向したフィブリル部分とするとき、前記MD配向したフィブリル部分を径大順に20%選択して算出した径大側平均フィブリル径DMDと、前記TD配向したフィブリル部分を径大順に20%選択して算出した径大側平均フィブリル径DTDの比DMD/DTDが1.2〜3.0であり、MD引張強度が1000〜6000kgf/cmであり、TD引張強度が1000〜3000kgf/cmであることを特徴とするポリオレフィン微多孔膜。 The fibril portion oriented in the range of 0 to 30 ° with respect to the machine direction (MD) of the fibril oriented in the 10 μm square field of view is defined as MD-oriented fibril portion, and perpendicular to the machine direction. When the fibril portion in which the angle formed by the orientation direction with respect to the direction (TD) is within a range of 0 to 30 ° is set as the TD-oriented fibril portion, the MD-oriented fibril portion is selected by calculating 20% in order of the diameter. The ratio D MD / D TD of the large diameter average fibril diameter D MD and the large diameter average fibril diameter D TD calculated by selecting 20% of the TD-oriented fibril parts in order of large diameter is 1.2 to 3.0. in and, MD tensile strength is 1000~6000kgf / cm 2, the microporous polyolefin membrane, wherein a TD tensile strength is 1000~3000kgf / cm 2 . 前記DMDが80〜280nmであり、前記MD配向したフィブリル部分を径大順に20%選択して算出した径大側フィブリル径標準偏差σDMDがDMDの20%以下であり、前記DTDが25〜200nmであり、前記TD配向したフィブリル部分を径大順に20%選択して算出した径大側フィブリル径標準偏差σDTDがDTDの20%以下である、請求項1に記載のポリオレフィン微多孔膜。 Wherein D MD is 80~280Nm, the MD oriented large-diameter side fibril diameter standard deviation sigma DMD which fibrils portion was calculated by selecting 20% larger diameter order of 20% or less of D MD, the D TD is is 25 to 200 nm, the TD oriented large-diameter side fibril diameter standard deviation sigma DTD that fibrils portion was calculated by selecting 20% larger diameter order of 20% or less of D TD, polyolefins according to claim 1 fine Porous membrane. 微多孔膜の膜厚を20μmとしたときの透気抵抗度が600sec/100mL以下である、請求項1または2に記載のポリオレフィン微多孔膜。   3. The polyolefin microporous membrane according to claim 1, wherein the air permeability resistance is 600 sec / 100 mL or less when the thickness of the microporous membrane is 20 μm. 重量平均分子量が1.0×10〜5.0×10の超高分子量ポリエチレンを1〜50重量%含有する、請求項1〜3のいずれかに記載のポリオレフィン微多孔膜。 The polyolefin microporous film according to any one of claims 1 to 3, comprising 1 to 50% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1.0 x 10 6 to 5.0 x 10 6 . 請求項1〜4のいずれかに記載のポリオレフィン微多孔膜を用いた二次電池用セパレータ。   The separator for secondary batteries using the polyolefin microporous film in any one of Claims 1-4. 請求項5に記載のセパレータを含む二次電池。   A secondary battery comprising the separator according to claim 5.
JP2013265785A 2013-12-24 2013-12-24 Polyolefin microporous membrane, separator for secondary battery, and secondary battery Active JP6296333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265785A JP6296333B2 (en) 2013-12-24 2013-12-24 Polyolefin microporous membrane, separator for secondary battery, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265785A JP6296333B2 (en) 2013-12-24 2013-12-24 Polyolefin microporous membrane, separator for secondary battery, and secondary battery

Publications (2)

Publication Number Publication Date
JP2015120835A true JP2015120835A (en) 2015-07-02
JP6296333B2 JP6296333B2 (en) 2018-03-20

Family

ID=53532757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265785A Active JP6296333B2 (en) 2013-12-24 2013-12-24 Polyolefin microporous membrane, separator for secondary battery, and secondary battery

Country Status (1)

Country Link
JP (1) JP6296333B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012838B1 (en) * 2015-11-30 2016-10-25 住友化学株式会社 Method for producing separator for non-aqueous electrolyte secondary battery
JP2017228404A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
WO2018078704A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator and secondary battery including separator
WO2018078702A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator and secondary battery including separator
WO2019045077A1 (en) * 2017-08-31 2019-03-07 旭化成株式会社 Polyolefin microporous membrane
KR20190062538A (en) * 2016-10-24 2019-06-05 스미또모 가가꾸 가부시키가이샤 A secondary battery including a separator and a separator
JP2019102126A (en) * 2017-11-28 2019-06-24 東レ株式会社 Battery separator and non-aqueous electrolyte secondary battery
JPWO2018078711A1 (en) * 2016-10-24 2019-09-05 住友化学株式会社 Separator and secondary battery including separator
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11155015B2 (en) 2017-02-09 2021-10-26 Sumitomo Chemical Company, Limited Synthetic resin microporous film and manufacturing method thereof, and separator for power storage device and power storage device
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632927A (en) * 1992-07-16 1994-02-08 Ube Ind Ltd Porous polyethylene membrane
JPH10511782A (en) * 1995-01-06 1998-11-10 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Light reflecting surface and method of making and using the same
JP2003105123A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2005343958A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632927A (en) * 1992-07-16 1994-02-08 Ube Ind Ltd Porous polyethylene membrane
JPH10511782A (en) * 1995-01-06 1998-11-10 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Light reflecting surface and method of making and using the same
JP2003105123A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2005343958A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012838B1 (en) * 2015-11-30 2016-10-25 住友化学株式会社 Method for producing separator for non-aqueous electrolyte secondary battery
JP2017228404A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
CN107528036A (en) * 2016-06-21 2017-12-29 住友化学株式会社 Layered product
JP7074419B2 (en) 2016-06-21 2022-05-24 住友化学株式会社 Laminate
CN107528036B (en) * 2016-06-21 2021-08-10 住友化学株式会社 Laminated body
KR102073226B1 (en) * 2016-10-24 2020-02-05 스미또모 가가꾸 가부시키가이샤 Secondary battery including the separator and the separator
US10661528B2 (en) 2016-10-24 2020-05-26 Sumitomo Chemical Company, Limited Separator and secondary battery including the separator
KR20190062537A (en) 2016-10-24 2019-06-05 스미또모 가가꾸 가부시키가이샤 A secondary battery including a separator and a separator
CN109863622A (en) * 2016-10-24 2019-06-07 住友化学株式会社 Spacer and secondary cell comprising spacer
CN109891631A (en) * 2016-10-24 2019-06-14 住友化学株式会社 Spacer and secondary cell comprising spacer
KR20190070339A (en) 2016-10-24 2019-06-20 스미또모 가가꾸 가부시키가이샤 A secondary battery including a separator and a separator
WO2018078704A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator and secondary battery including separator
JPWO2018078704A1 (en) * 2016-10-24 2019-06-27 住友化学株式会社 Separator, and secondary battery including the separator
JPWO2018078702A1 (en) * 2016-10-24 2019-06-27 住友化学株式会社 Separator, and secondary battery including the separator
JPWO2018078711A1 (en) * 2016-10-24 2019-09-05 住友化学株式会社 Separator and secondary battery including separator
WO2018078702A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator and secondary battery including separator
CN109863622B (en) * 2016-10-24 2020-06-02 住友化学株式会社 Spacer and secondary battery including the same
CN109891631B (en) * 2016-10-24 2020-03-10 住友化学株式会社 Spacer and secondary battery including the same
KR20190062538A (en) * 2016-10-24 2019-06-05 스미또모 가가꾸 가부시키가이샤 A secondary battery including a separator and a separator
KR102117501B1 (en) * 2016-10-24 2020-06-01 스미또모 가가꾸 가부시키가이샤 A separator and a secondary battery comprising the separator
US11155015B2 (en) 2017-02-09 2021-10-26 Sumitomo Chemical Company, Limited Synthetic resin microporous film and manufacturing method thereof, and separator for power storage device and power storage device
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2019045077A1 (en) * 2017-08-31 2019-03-07 旭化成株式会社 Polyolefin microporous membrane
US11837693B2 (en) 2017-08-31 2023-12-05 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane with improved puncture elongation and thermomechanical properties and method for manufacturing the same
JP2020079426A (en) * 2017-08-31 2020-05-28 旭化成株式会社 Polyolefin microporous membrane
JPWO2019045077A1 (en) * 2017-08-31 2020-01-23 旭化成株式会社 Polyolefin microporous membrane
JP2019102126A (en) * 2017-11-28 2019-06-24 東レ株式会社 Battery separator and non-aqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6296333B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6296333B2 (en) Polyolefin microporous membrane, separator for secondary battery, and secondary battery
JP6013368B2 (en) Polyolefin microporous film, polyolefin microporous film roll, production method thereof, and battery separator using them
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
JP5967589B2 (en) Polyolefin microporous membrane and method for producing the same
JP6295641B2 (en) Microporous membrane and separator using the same
JP6645516B2 (en) Polyolefin microporous membrane, battery separator, and method for producing them
KR101611229B1 (en) Method for manufacturing separator, the separator, and battery using the separator
JP6747289B2 (en) Polyolefin microporous film, method for producing the same, and battery separator
JP6394597B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
JP6627967B2 (en) Polyolefin microporous membrane, battery separator, and method for producing them
WO2015056631A1 (en) Porous film, porous-film roller, and method for producing porous film
JP2016032934A (en) Manufacturing method of polyolefin-based multilayer composite porous film
KR101852803B1 (en) Method of manufacturing a microporous polyethylene film
JP5594873B2 (en) Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane
JP2011140633A (en) Porous polypropylene film roll
JP6645512B2 (en) Battery separator and manufacturing method thereof
JP2012015073A (en) Microporous film, method for producing the same, and battery separator
JP2004099799A (en) Rolled item of fine porous membrane made of polyolefin
JP6087550B2 (en) Microporous film and wound lithium ion battery using the same
JP2011162669A (en) Porous polypropylene film roll and method for producing the same
JP2004335255A (en) Manufacturing method of polyolefine microporous membrane
JP2013108045A (en) Method for producing polyolefin microporous membrane
JP2017119769A (en) Polyolefin microporous film and method for producing the same, roll and method of evaluating polyolefin microporous film
JP2012176998A (en) Polyolefin microporous film
KR101611235B1 (en) Manufacturing separator, the separator and battery using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R151 Written notification of patent or utility model registration

Ref document number: 6296333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151