JP2015119046A - Light-emitting device and light source for projector using the same - Google Patents

Light-emitting device and light source for projector using the same Download PDF

Info

Publication number
JP2015119046A
JP2015119046A JP2013261551A JP2013261551A JP2015119046A JP 2015119046 A JP2015119046 A JP 2015119046A JP 2013261551 A JP2013261551 A JP 2013261551A JP 2013261551 A JP2013261551 A JP 2013261551A JP 2015119046 A JP2015119046 A JP 2015119046A
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
layer
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261551A
Other languages
Japanese (ja)
Other versions
JP6253392B2 (en
Inventor
真也 星野
Shinya Hoshino
真也 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013261551A priority Critical patent/JP6253392B2/en
Publication of JP2015119046A publication Critical patent/JP2015119046A/en
Application granted granted Critical
Publication of JP6253392B2 publication Critical patent/JP6253392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To increase the output of a reflection type light-emitting device using a light source emitting laser light and especially, and to provide a light-emitting device capable of obtaining high output as a light source for green color.SOLUTION: The light-emitting device includes a light source 10 emitting laser light and a light-emitting part 20 arranged spatially away from the light source. The light-emitting part includes a substrate 30, a phosphor layer 21 arranged on the substrate, and a reflection layer 22 arranged between the substrate and the phosphor layer. Further, the light-emitting device includes optical path adjustment means for changing the propagation direction of the laser light propagating through the phosphor layer. The optical path adjustment means is, for instance, an interpolation material dispersed in the phosphor layer or a white ceramic layer arranged in contact with the phosphor layer.

Description

本発明は、レーザー光を発する光源と、レーザー光を励起光とし、それと異なる波長の光を発する蛍光体とを組み合わせた発光装置に関し、特に蛍光体における光損失を低減した高出力の発光装置に関する。   The present invention relates to a light emitting device that combines a light source that emits laser light and a phosphor that uses laser light as excitation light and emits light of a different wavelength, and more particularly to a high-output light emitting device that reduces light loss in the phosphor. .

半導体発光素子が高出力化するに伴い、その用途は一般照明、LCDバックライト、車両用前照灯の光源へと拡大している。高出力の光源を使用する用途のうちプロジェクターは、映像をスクリーンに拡大投影するので特に高い出力が必要とされ、従来は高圧放電等が利用されてきたが、コンパクト化の要請からLDやLED光源が用いられるようになってきた。   As semiconductor light emitting devices have increased in output, their applications are expanding to light sources for general lighting, LCD backlights, and vehicle headlamps. Among applications that use a high-power light source, projectors require a particularly high output because they project an image on a screen, and high-voltage discharge has been used in the past. Has come to be used.

プロジェクター用光源では、色を再現するためにRGB(赤、緑、青)の三原色の光源が必要となる。従来、青色光源と赤色光源には高出力LDまたはLEDがあるが、これらに匹敵する高出力が得られる緑色光源がなかった。   In the light source for a projector, light sources of three primary colors of RGB (red, green, blue) are required to reproduce colors. Conventionally, a blue light source and a red light source have a high output LD or LED, but there is no green light source capable of obtaining a high output comparable to these.

緑色光源に用いられる蛍光体としては、例えば特許文献1に記載される蛍光体が知られている。特許文献1は、Alからなる第1相と、Ceを含有するLuAGから成る第2相で構成された緑色蛍光体を提案しており、青色LEDと組み合わせた場合に、第2相の割合が特定の範囲のときに、第2相が100%のときより高い発光強度が得られることが記載されている。 As a phosphor used for a green light source, for example, a phosphor described in Patent Document 1 is known. Patent Document 1 proposes a green phosphor composed of a first phase made of Al 2 O 3 and a second phase made of LuAG containing Ce, and the second phase when combined with a blue LED. It is described that when the ratio of is in a specific range, higher emission intensity can be obtained than when the second phase is 100%.

一方、高出力が得られる光源装置として、レーザー光源と蛍光体とを空間的に離れた位置に配置した光源装置が特許文献2に記載されている。特許文献2に記載された技術では、蛍光体層から反射方式で光を取りだすことにより、従来の透過型の光源に比べて、熱放射効率が改善され高輝度な光源装置が提供される。   On the other hand, Patent Document 2 discloses a light source device in which a laser light source and a phosphor are arranged at spatially separated positions as a light source device capable of obtaining high output. In the technique described in Patent Document 2, by extracting light from the phosphor layer by a reflection method, a thermal light source efficiency is improved as compared with a conventional transmissive light source, and a high-luminance light source device is provided.

特開2012−62444号公報JP 2012-62444 A 特開2012−226986号公報JP 2012-226986 A

特許文献1では、緑色用蛍光体についてLEDを用いた透過型の装置とした場合の発光強度の検討がなされているが、反射型の場合やレーザー光源との組み合わせについて検討はされていない。また特許文献2では、輝度を高めるために蛍光体層と基板との間に反射層を設けるなどの工夫がなされているが、反射層には波長依存性があり単に反射層を設けただけでは必ずしも高輝度化を図ることはできない。   In Patent Document 1, the light emission intensity is examined when the green phosphor is a transmissive device using an LED, but the reflection type or combination with a laser light source is not studied. In Patent Document 2, a device such as a reflective layer is provided between the phosphor layer and the substrate in order to increase the luminance. However, the reflective layer has a wavelength dependency, and simply providing a reflective layer. It is not always possible to increase the brightness.

本発明は、レーザー光を発する光源を用いた反射型の発光装置の高出力化を図ること、特に緑色用光源として高出力が得られる発光装置を提供することを課題とする。   An object of the present invention is to increase the output of a reflective light-emitting device using a light source that emits laser light, and in particular to provide a light-emitting device that can obtain high output as a green light source.

上記課題を解決する本発明の発光装置は、レーザー光を発する光源と、前記光源に対し空間的に離間して配置された発光部とを備え、前記発光部は基板と、前記基板上に配置された蛍光体層と、前記基板と前記蛍光体層との間に配置された反射層とを有し、前記蛍光体層を伝搬するレーザー光の伝搬方向を変化させる光路調整手段を備えたことを特徴する。   A light-emitting device of the present invention that solves the above problems includes a light source that emits laser light and a light-emitting unit that is spatially spaced from the light source, and the light-emitting unit is disposed on the substrate and the substrate. And an optical path adjusting means for changing the propagation direction of the laser light propagating through the phosphor layer, the phosphor layer having a reflection layer disposed between the substrate and the phosphor layer. Features.

本発明において、レーザー光の伝搬方向を変化させる光路調整手段はいくつかの態様を取りえる。光路調整手段の一つの態様は、蛍光体層に蛍光体に加えて含有される補間材である。他の態様は、蛍光体層に接する白色セラミック層である。   In the present invention, the optical path adjusting means for changing the propagation direction of the laser light can take several forms. One aspect of the optical path adjusting means is an interpolation material contained in the phosphor layer in addition to the phosphor. Another embodiment is a white ceramic layer in contact with the phosphor layer.

本発明者らの検討によれば、発光部に全反射層を設けただけの発光装置では、蛍光体濃度が高いほど、発光部の発光出力は増加し、蛍光体濃度100%のときに最大となる。しかし反射層に増反射膜や全反射膜を設けて反射層の反射特性を向上させた場合には蛍光体濃度100%の蛍光体プレートを用いた場合には、蛍光体濃度100%未満の蛍光体プレートを用いた場合よりも出力が低下することを見出した。この現象は、以下の蛍光体励起メカニズムに起因すると考えられる。   According to the study by the present inventors, in a light emitting device in which a total reflection layer is provided in the light emitting portion, the light emission output of the light emitting portion increases as the phosphor concentration increases, and the maximum is obtained when the phosphor concentration is 100%. It becomes. However, when a reflection layer is provided with an enhanced reflection film or a total reflection film to improve the reflection characteristics of the reflection layer, when a phosphor plate with a phosphor concentration of 100% is used, the fluorescence with a phosphor concentration of less than 100% is used. It has been found that the output is lower than when a body plate is used. This phenomenon is considered to be caused by the following phosphor excitation mechanism.

レーザー光の強度分布は中心が高く、周囲が急激に弱くなるガウシアン分布である。そのため、蛍光体プレートに垂直入射して反射層に到達したレーザー光は、入射光の光路と同じ光路で光出射側に反射される。その結果、蛍光体が励起飽和を起こし蛍光出力が増加しない(蛍光効率が向上しない)と考えられる。   The intensity distribution of the laser light is a Gaussian distribution with a high center and a sharp weakening in the periphery. For this reason, the laser light that vertically enters the phosphor plate and reaches the reflection layer is reflected to the light emission side along the same optical path as the incident light. As a result, it is considered that the phosphor is excited and saturated, and the fluorescence output does not increase (fluorescence efficiency does not improve).

本発明では、蛍光体層内を伝搬する光の伝搬方向を変化させる手段を設けたことにより、入射した光路と反射後の光路にずれを生じさせることができ、これにより励起飽和を防止し、高輝度化を図ることができる。   In the present invention, by providing means for changing the propagation direction of light propagating in the phosphor layer, it is possible to cause a deviation between the incident optical path and the reflected optical path, thereby preventing excitation saturation, High brightness can be achieved.

本発明の発光装置の全体概要を示す図The figure which shows the whole light-emitting device outline | summary of this invention 第1実施形態の蛍光体プレートを示す断面図Sectional drawing which shows the fluorescent substance plate of 1st Embodiment (a)〜(c)は、それぞれ、第1実施形態の蛍光体プレートの変更例を示す図(A)-(c) is a figure which shows the example of a change of the fluorescent substance plate of 1st Embodiment, respectively. 第2実施形態の発光装置の構造を示す図The figure which shows the structure of the light-emitting device of 2nd Embodiment. 第3実施形態のプロジェクター用光源装置の概要を示す図The figure which shows the outline | summary of the light source device for projectors of 3rd Embodiment. 実施例1の反射防止層の反射スペクトルを示すグラフThe graph which shows the reflection spectrum of the antireflection layer of Example 1 実施例1の反射層の入射角依存性を示すグラフThe graph which shows the incident angle dependence of the reflection layer of Example 1 実施例1の反射層の反射スペクトルを示すグラフThe graph which shows the reflection spectrum of the reflection layer of Example 1 実施例で用いた蛍光体出力測定装置の概要を示す図The figure which shows the outline | summary of the fluorescent substance output measuring apparatus used in the Example

以下、図面を参照して本発明の発光装置の実施形態を説明する。
まず図1を参照して、本発明が適用される発光装置の概要を説明する。図1に示す発光装置100は、レーザー光源10と発光部20を備え、レーザー光源10と発光部20とは図示しない支持構造によって互いに空間的に離れて配置されている。レーザー光源10は、所定の波長のレーザー光を発する光源で、例えば青色光レーザーを発するレーザーダイオード(LD)が用いられる。レーザー光源10を構成するLDは単数でも複数個でも良い。
Hereinafter, an embodiment of a light emitting device of the present invention will be described with reference to the drawings.
First, an outline of a light emitting device to which the present invention is applied will be described with reference to FIG. A light emitting device 100 shown in FIG. 1 includes a laser light source 10 and a light emitting unit 20, and the laser light source 10 and the light emitting unit 20 are arranged spatially separated from each other by a support structure (not shown). The laser light source 10 is a light source that emits laser light of a predetermined wavelength, and for example, a laser diode (LD) that emits a blue light laser is used. The LD constituting the laser light source 10 may be singular or plural.

発光部20は、主として、蛍光体プレート(蛍光体層)21と基板30を有し、蛍光体プレート21は接合材40により基板30に固定されている。また蛍光体プレート21の基板側には反射層22が形成され、蛍光体プレート21の上面(基板側と反対側)には反射防止層25が形成されている。反射防止層25が形成される面が発光部20の光出射面となる。なお図1では、レーザー光が蛍光体プレート上面に対し斜めに入射する場合を示しているが、レーザー光の蛍光体プレート21に対する入射角は0度でもよい。   The light emitting unit 20 mainly includes a phosphor plate (phosphor layer) 21 and a substrate 30, and the phosphor plate 21 is fixed to the substrate 30 by a bonding material 40. A reflection layer 22 is formed on the substrate side of the phosphor plate 21, and an antireflection layer 25 is formed on the upper surface of the phosphor plate 21 (the side opposite to the substrate side). The surface on which the antireflection layer 25 is formed becomes the light emitting surface of the light emitting unit 20. Although FIG. 1 shows the case where the laser light is incident obliquely on the upper surface of the phosphor plate, the incident angle of the laser light with respect to the phosphor plate 21 may be 0 degrees.

蛍光体プレート21は、レーザー光源10からのレーザー光を吸収し、レーザー光と異なる波長の光を発する蛍光体を含む部材である。蛍光体としては、赤色光を発する赤色蛍光体、黄色光を発する黄色蛍光体、緑色光を発する緑色蛍光体など公知の蛍光体を用いることができるが、本発明は特に緑色蛍光体の高出力化に好適である。緑色蛍光体としては、LuAG:CeやLuAG:Ce+Alを用いることができる。なお、LuAGとはLuAl12の組成式で示されるガーネット結晶構造の結晶体であり、Luはルテチウム、Alはアルミニウム、Oは酸素である。そしてLuAG:Ceは、LuAG結晶のLu原子サイトの一部を賦活材であるCe(セリウム)で置換した結晶体を意味する。また、LuAG:Ce+AlはLuAGとAlの多結晶体を意味する。 The phosphor plate 21 is a member including a phosphor that absorbs laser light from the laser light source 10 and emits light having a wavelength different from that of the laser light. As the phosphor, known phosphors such as a red phosphor that emits red light, a yellow phosphor that emits yellow light, and a green phosphor that emits green light can be used. It is suitable for conversion. As the green phosphor, LuAG: Ce or LuAG: Ce + Al 2 O 3 can be used. Note that LuAG is a crystal having a garnet crystal structure represented by the composition formula of Lu 3 Al 5 O 12 , where Lu is lutetium, Al is aluminum, and O is oxygen. LuAG: Ce means a crystal body in which a part of the Lu atom site of the LuAG crystal is replaced with Ce (cerium) as an activator. LuAG: Ce + Al 2 O 3 means a polycrystal of LuAG and Al 2 O 3 .

蛍光体プレート21の形態としては、蛍光体粉末をガラスや樹脂中に分散させたもの、ガラス母体に発光中心イオンを添加したガラス蛍光体、及び蛍光体セラミックス等を用いることができる。特に、蛍光体粉末の焼結体である蛍光体セラミックスが好ましい。また蛍光体プレートは、透光性の高いものが好ましい。透光性の高い蛍光体プレートを用いることにより、蛍光層からの光の取り出し効率を高めることができ、また蛍光体プレート内で発生した熱を効率よく拡散することができる。   As a form of the phosphor plate 21, a phosphor powder dispersed in glass or resin, a glass phosphor in which a luminescent center ion is added to a glass matrix, a phosphor ceramic, or the like can be used. In particular, a phosphor ceramic that is a sintered body of phosphor powder is preferable. The phosphor plate preferably has a high translucency. By using a phosphor plate with high translucency, the light extraction efficiency from the phosphor layer can be increased, and the heat generated in the phosphor plate can be diffused efficiently.

基板30は、蛍光体プレート21の支持部材であるとともに、蛍光体プレート21で発する熱を放熱する機能を有する。このためアルミニウム、銅、スレンレスなど熱導電性のよい金属を用いることが好ましい。また図1では平板状の基板30を示しているが、基板30は蛍光体プレート21が固定される面と反対側にフィン等の放熱構造を備えていてもよいし、形状は任意である。   The substrate 30 is a support member for the phosphor plate 21 and has a function of radiating heat generated by the phosphor plate 21. For this reason, it is preferable to use a metal with good thermal conductivity, such as aluminum, copper, or slenless. 1 shows a flat substrate 30, the substrate 30 may be provided with a heat dissipation structure such as fins on the side opposite to the surface to which the phosphor plate 21 is fixed, and the shape is arbitrary.

蛍光体プレート21を基板30に固定する接合材40としては、シリコーン樹脂、ガラス等を用いることができる。また蛍光体プレート21に形成された反射層22が金属層の場合、熱伝導性の良いAgフィラーやグラファイトフィラーを添加したエポキシ樹脂やシリコーン樹脂、はんだ、金錫等を用いることも可能である。接合材40が樹脂やガラスの場合、透明(光透過性)でも不透明でもよく、透明な場合には蛍光体プレート21側面を覆うように設けてもよい。透明な樹脂は蛍光体プレート21側面からの光の出射を妨げないので側面からの光も利用することができる。   As the bonding material 40 for fixing the phosphor plate 21 to the substrate 30, silicone resin, glass or the like can be used. When the reflective layer 22 formed on the phosphor plate 21 is a metal layer, it is also possible to use an epoxy resin, a silicone resin, solder, gold tin, or the like to which Ag filler or graphite filler with good thermal conductivity is added. When the bonding material 40 is resin or glass, it may be transparent (light transmissive) or opaque, and in the case of being transparent, it may be provided so as to cover the side surface of the phosphor plate 21. Since the transparent resin does not hinder the emission of light from the side surface of the phosphor plate 21, light from the side surface can also be used.

蛍光体プレート21の裏面側に設けられる反射層22としては、金属反射膜、誘電体多層膜からなる増反射膜、金属反射膜と増反射膜との組み合わせなどを用いることができる。好適には、図2に示すように、蛍光体プレート21側から順に、全反射膜223、増反射膜222及び金属反射膜221を組み合わせたものが好適である。   As the reflection layer 22 provided on the back surface side of the phosphor plate 21, a metal reflection film, a reflection enhancement film made of a dielectric multilayer film, a combination of a metal reflection film and a reflection enhancement film, or the like can be used. Preferably, as shown in FIG. 2, a combination of a total reflection film 223, an increased reflection film 222, and a metal reflection film 221 in order from the phosphor plate 21 side is preferable.

金属反射膜221は、Ag、Al等の金属が用いられる。特に反射率の高いAgが好適である。金属反射膜221の厚みは、特に限定されるものではないが、用いる金属の反射率が飽和する厚み以上が好ましい。Ag、Alならば1000〜2000Å(100〜200nm)が好ましい。また金属反射膜の外側には、金属の劣化を防止するためTi、Pt、Ti/Au、Pt/Au等の金属性の保護膜26やAl、TiO、SiO等の金属酸化物の保護膜26を形成することが好ましい。 The metal reflection film 221 is made of a metal such as Ag or Al. In particular, Ag having a high reflectance is suitable. The thickness of the metal reflective film 221 is not particularly limited, but is preferably equal to or greater than the thickness at which the reflectance of the metal used is saturated. In the case of Ag and Al, 1000 to 2000 mm (100 to 200 nm) is preferable. Further, on the outer side of the metal reflection film, a metallic protective film 26 such as Ti, Pt, Ti / Au, Pt / Au or the like, or metal oxide such as Al 2 O 3 , TiO 2 , or SiO 2 is used to prevent metal deterioration. It is preferable to form a protective film 26 of the object.

増反射膜222は、屈折率(n)の異なる材料を交互に積層した光学多層膜であり、各層の厚みが入射光の波長λの1/4程度に調整され、さらに入射光の角度依存性による反射率低下を防ぐために反射波長帯域を広くする構造とすることにより入射光の一部または殆どを透過せず反射光にすることができる。その層構成は励起光及び波長変換部材20が発する光の波長を考慮して調整される。なお増反射膜222の入射光の反射可能な最大入射角(反射限界角)が小さければ層構成は簡素化でき、大きければ層構成は複雑化、多層化する。低屈折率材料としては、例えば、NaAl14(チオライト)(n=1.33)、AlF(n=1.36)、CaF(n=1.38)、SiO(n=1.45)、Al(n=1.64)等が用いられる。高屈折率材料としては、CeO(n=2.13)、Ta(n=2.20)、Ti(n=2.31)、TiO(n=2.35)、Nb(n=2.37)等が用いられる。本実施形態に好適な一例として、蛍光体プレート側から順にTa(54nm)/SiO(24nm)/Ta(54nm)/SiO(100nm)/Ta(42nm)/SiO(54nm))の構成とした多層膜が挙げられる。 The increased reflection film 222 is an optical multilayer film in which materials having different refractive indexes (n) are alternately stacked. The thickness of each layer is adjusted to about ¼ of the wavelength λ of incident light, and the angle dependency of incident light. In order to prevent a decrease in reflectance due to the structure, the reflection wavelength band is widened, so that a part or most of the incident light can be transmitted without being transmitted. The layer configuration is adjusted in consideration of the wavelength of the excitation light and the light emitted from the wavelength conversion member 20. It should be noted that the layer configuration can be simplified if the maximum incident angle (reflection limit angle) at which the incident light of the increased reflection film 222 can be reflected is small, and if it is large, the layer configuration becomes complicated and multi-layered. As a low refractive index material, for example, Na 5 Al 3 F 14 (thiolite) (n = 1.33), AlF 3 (n = 1.36), CaF 2 (n = 1.38), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.64), etc. are used. As a high refractive index material, CeO 2 (n = 2.13), Ta 2 O 5 (n = 2.20), Ti 3 O 5 (n = 2.31), TiO 2 (n = 2.35). Nb 2 O 5 (n = 2.37) or the like is used. As an example suitable for this embodiment, Ta 2 O 5 (54 nm) / SiO 2 (24 nm) / Ta 2 O 5 (54 nm) / SiO 2 (100 nm) / Ta 2 O 5 (42 nm) in this order from the phosphor plate side. / SiO 2 (54 nm)).

全反射膜223は、蛍光体プレート21よりも屈折率が小さい透光性材料からなる。これにより蛍光体プレート21から全反射膜223に入射する入射光のうち全反射が起こる最も小さい入射角(全反射臨界角)以上の入射光を全反射できる。すなわち、全反射膜223を設けることにより増反射膜222の反射限界角を小さくでき、層構成を簡素化できる。   The total reflection film 223 is made of a translucent material having a refractive index smaller than that of the phosphor plate 21. As a result, the incident light having the smallest incident angle (total reflection critical angle) at which the total reflection occurs among the incident light incident on the total reflection film 223 from the phosphor plate 21 can be totally reflected. That is, by providing the total reflection film 223, the reflection limit angle of the increased reflection film 222 can be reduced, and the layer configuration can be simplified.

全反射膜223を構成する材料の屈折率は、蛍光体プレート21の屈折率より小さく、増反射膜の反射限界角と同等か小さい角度で全反射臨界角となる値が好ましい。具体的には、蛍光体プレート21の屈折率がn1、全反射膜223の屈折率がn2、増反射膜222の反射限界角がθならば、n2≦sin(θ)×n1となる関係が良い。例えば、蛍光体プレートであるLuAGの屈折率が1.85、増反射膜の反射限界角が65°ならば、全反射膜の屈折率n2は1.68以下となれば良い。このような低屈折率材料として、具体的には、NaAl14(チオライト)(n=1.33)、AlF(n=1.36)、MgF(n=1.38)、CaF(n=1.43)、SiO(n=1.45)、Al(n=1.64)などの誘電体物質を用いることができる。また蛍光体プレートの屈折率が大きければAlN(n=1.9−2.2)、Si(n=2.03)などの誘電体物質も用いることができる。これらのうち化学的安定性、屈折率、成膜性の観点からはSiO、Alが好適である。 The refractive index of the material that constitutes the total reflection film 223 is preferably a value that is smaller than the refractive index of the phosphor plate 21 and that becomes the total reflection critical angle at an angle equal to or smaller than the reflection limit angle of the increased reflection film. Specifically, if the refractive index of the phosphor plate 21 is n1, the refractive index of the total reflection film 223 is n2, and the reflection limit angle of the increased reflection film 222 is θ, the relationship of n2 ≦ sin (θ) × n1 is established. good. For example, if the refractive index of LuAG as a phosphor plate is 1.85 and the reflection limit angle of the increased reflection film is 65 °, the refractive index n2 of the total reflection film may be 1.68 or less. As such a low refractive index material, specifically, Na 5 Al 3 F 14 (thiolite) (n = 1.33), AlF 3 (n = 1.36), MgF 2 (n = 1.38) , CaF 2 (n = 1.43), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.64), and other dielectric materials can be used. If the refractive index of the phosphor plate is large, a dielectric material such as AlN (n = 1.9-2.2) or Si 3 N 4 (n = 2.03) can also be used. Of these, SiO 2 and Al 2 O 3 are preferable from the viewpoints of chemical stability, refractive index, and film formability.

全反射膜223の厚みは、限定されるものではないが、全反射膜223と金属反射膜221との間に誘電体層の多層膜(増反射膜)222を設ける場合には、300nm以上、好ましくは500nm以上である。また上限は2μm以下、好ましくは1μm以下である。厚みを300nm以上とすることにより、増反射膜と干渉を起こすことなく全反射機能を得ることができる。また2μm以下とすることにより製造時間の短縮を図ることができる。   The thickness of the total reflection film 223 is not limited, but when a multilayer film (increased reflection film) 222 of a dielectric layer is provided between the total reflection film 223 and the metal reflection film 221, 300 nm or more, Preferably it is 500 nm or more. The upper limit is 2 μm or less, preferably 1 μm or less. By setting the thickness to 300 nm or more, a total reflection function can be obtained without causing interference with the increased reflection film. Moreover, shortening of manufacturing time can be aimed at by setting it as 2 micrometers or less.

金属反射膜221、増反射膜222及び全反射膜223及び保護膜26は、それぞれ、スパッタリング、イオンプレーティング、真空蒸着、イオンアシスト蒸着等の方法で、蛍光体プレート21或いはその上に形成された反射層の表面に成膜することができる。   The metal reflection film 221, the enhanced reflection film 222, the total reflection film 223, and the protective film 26 were formed on or on the phosphor plate 21 by a method such as sputtering, ion plating, vacuum deposition, or ion assist deposition, respectively. A film can be formed on the surface of the reflective layer.

蛍光体プレート21の光出射面に設けられる反射防止層25は、蛍光体プレート21へ入射する励起光の反射を低減し入射効率を向上するとともに、励起放射された蛍光を効率よく取りだす機能を持つ。反射防止層25としては、高屈折率材料(誘電体)と低屈折率材料(誘電体)とを交互に多層に積層した多層膜を用いることができる。本実施形態に好適な一例として、蛍光体プレート側よりTa(23nm)/SiO(25nm)/Ta(58nm)/SiO(18nm)/Ta(41nm)/SiO(99nm)とした構成の多層膜が挙げられる。反射防止層25は、他の反射層22と同様に、蒸着、イオンプレーティングなど公知の手法で蛍光体プレート上に成膜することができるが、イオンアシスト機能を利用した蒸着は、蒸着時の基板温度を下げることができ好ましい。なお反射防止層25の層構成は、反射防止する波長によって異なり、前掲のものに限定されるものではない。 The antireflection layer 25 provided on the light emitting surface of the phosphor plate 21 has a function of reducing the reflection of excitation light incident on the phosphor plate 21 and improving the incidence efficiency, and efficiently extracting the fluorescence emitted by the excitation. . As the antireflection layer 25, a multilayer film in which a high refractive index material (dielectric) and a low refractive index material (dielectric) are alternately laminated in multiple layers can be used. As an example suitable for the present embodiment, Ta 2 O 5 (23 nm) / SiO 2 (25 nm) / Ta 2 O 5 (58 nm) / SiO 2 (18 nm) / Ta 2 O 5 (41 nm) / An example of the multilayer film is SiO 2 (99 nm). The antireflection layer 25 can be formed on the phosphor plate by a known method such as vapor deposition or ion plating, as with the other reflective layer 22, but vapor deposition using the ion assist function is performed at the time of vapor deposition. The substrate temperature can be lowered, which is preferable. The layer structure of the antireflection layer 25 varies depending on the wavelength to be prevented from being reflected, and is not limited to the above.

発光装置100は、発光装置の構造体の一部である基板30に接合材40を介して発光部20の反射層22側を接合して固定し、発光部20の光出射面に対し所定の角度でレーザー光が照射されるようにレーザー光源10を取り付けることにより製造することができる。発光装置100は、レーザー光源10から発したレーザー光の光路を調整するために、レンズ、ハーフミラー、ダイクロックミラーなどの図示しない光学部材を備えていてもよい。   The light emitting device 100 is bonded and fixed to the substrate 30 which is a part of the structure of the light emitting device by bonding the reflective layer 22 side of the light emitting unit 20 via the bonding material 40, and is fixed to the light emitting surface of the light emitting unit 20. It can manufacture by attaching the laser light source 10 so that a laser beam may be irradiated at an angle. The light emitting device 100 may include an optical member (not shown) such as a lens, a half mirror, and a dichroic mirror in order to adjust the optical path of the laser light emitted from the laser light source 10.

本発明の発光装置は、上述した構造を基本として、蛍光体プレート21に入射されたレーザー光による蛍光体の励起飽和を防止する手段(光路調整手段)を設けたことが特徴であり、以下、光路調整手段の態様毎に実施形態を説明する。   The light emitting device of the present invention is characterized by providing means (optical path adjusting means) for preventing excitation saturation of the phosphor by the laser light incident on the phosphor plate 21 based on the structure described above. An embodiment will be described for each aspect of the optical path adjusting means.

<第1実施形態>
本実施形態の発光装置は、光路調整手段として、蛍光体プレートが補間材を含むことが特徴である。発光装置の構造は図1に示したものと同じであり、蛍光体プレート以外の要素については説明を省略する。以下、本実施形態の特徴である蛍光体プレートについて説明する。
<First Embodiment>
The light emitting device of the present embodiment is characterized in that the phosphor plate includes an interpolation material as the optical path adjusting means. The structure of the light emitting device is the same as that shown in FIG. 1, and description of elements other than the phosphor plate is omitted. Hereinafter, the phosphor plate that is a feature of the present embodiment will be described.

本実施形態の発光装置が用いる蛍光体プレートは、蛍光体粉末と補間材とを焼結して得られる蛍光体セラミックスからなる。蛍光体粉末としては、CaAlSiN:Eu2+、(Ca,Sr)AlSiN:Eu2+、(Sr,Ba)SiO:Eu2+、(Ca,Sr)Si:Eu2+、等の赤色発光蛍光体、YAl12:Ce3+、(Sr,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+、(Ba,Sr,Ca)SiO:Eu2+、TbAl12:Ce3+、Ca−α−Sialon:Eu2+等の黄色発光蛍光体、Y(Ga,Al)12:Ce3+、LuAl12:Ce3+、(Ba,Sr)SiO:Eu2+、CaScSi12:Ce3+、CaSc:Eu2+、CaSc:Ce3+、(Si,Al)(O,N):Eu2+、β−Sialon:Eu2+、(Sr,Ba)Si:Eu2+、BaSi12:Eu2+等の緑色発光蛍光体を用いることができる。結晶構造の観点からはガーネット結晶構造のTAG系(テルビウム・アルミニウム・ガーネット系)、YAG系(イットリウム・アルミニウム・ガーネット系)、LuAG(ルビジウム・アルミニウム・ガーネット系)系蛍光体が適している。本実施形態は緑色発光蛍光体、特にLuAl12:Ce3+等のLuAG系蛍光体に好適に適用することができる。 The phosphor plate used by the light emitting device of this embodiment is made of phosphor ceramics obtained by sintering phosphor powder and an interpolation material. As phosphor powders, CaAlSiN 3 : Eu 2+ , (Ca, Sr) AlSiN 3 : Eu 2+ , (Sr, Ba) 2 SiO 5 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , etc. Red light-emitting phosphor, Y 3 Al 5 O 12 : Ce 3+ , (Sr, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si, Al) 12 (O, N) 16 : Eu 2+ , (Ba, Sr) , Ca) 2 SiO 4 : Eu 2+ , Tb 3 Al 5 O 12 : Ce 3+ , Ca-α-Sialon: Eu 2+ and other yellow light-emitting phosphors, Y 3 (Ga, Al) 5 O 12 : Ce 3+ , Lu 3 Al 5 O 12 : Ce 3+ , (Ba, Sr) 2 SiO 4 : Eu 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , CaSc 2 O 4 : Eu 2+ , CaSc 2 O 4 : Ce 3+ , (Si, Al) 6 (O, N) 8 : Eu 2+ , β-Sialon: Eu 2+ , (Sr, Ba) Si 2 O 2 N 2 : Eu 2+ , Ba 3 Si 6 O 12 N 2 : A green light emitting phosphor such as Eu 2+ can be used. From the viewpoint of crystal structure, TAG (terbium, aluminum, garnet), YAG (yttrium, aluminum, garnet), and LuAG (rubidium, aluminum, garnet) phosphors having a garnet crystal structure are suitable. The present embodiment can be suitably applied to a green light emitting phosphor, in particular, a LuAG phosphor such as Lu 3 Al 5 O 12 : Ce 3+ .

補間材は、焼結体中で蛍光体の結晶相とは別の結晶相を形成することによって、蛍光体プレートの透光性を損なうことなく光拡散性を与える材料であり、蛍光体(結晶)と屈折率が異なる材料が用いられる。具体的には、蛍光体と共通する元素を有するAl、SiO、AlN、Si等の金属酸化物が用いられる。 The interpolating material is a material that imparts light diffusivity without impairing the translucency of the phosphor plate by forming a crystal phase different from the crystal phase of the phosphor in the sintered body. ) And a different refractive index are used. Specifically, a metal oxide such as Al 2 O 3 , SiO 2 , AlN, Si 3 N 4 and the like having an element common to the phosphor is used.

透光性を損なうことなくレーザー光を散乱するために、補間材の粒界径はレーザー光が粒界通過時に進行方向に回折散乱するような粒界径、すなわち0.5μm〜5μm程度の粒界径であることが好ましく、好適には1μm前後が良い。粒界径が0.5μmより小さくなるとレーザー光の進行方向後方側の回折散乱強度が高くなり、励起光であるレーザー光が蛍光体プレート深部へ届かなくなり蛍光効率(蛍光出力÷励起光出力)が低下する。反対に5μmより大きくなると進行方向の回折散乱角が狭くなり、蛍光体結晶への入射光量が減少しやはり蛍光効率が低下する。   In order to scatter laser light without impairing translucency, the grain boundary diameter of the interpolating material is such that the laser light diffracts and scatters in the traveling direction when passing through the grain boundary, that is, grains having a size of about 0.5 μm to 5 μm. The field diameter is preferred, preferably around 1 μm. When the grain boundary diameter is smaller than 0.5 μm, the diffraction scattering intensity on the rear side in the traveling direction of the laser beam increases, and the laser beam, which is the excitation light, does not reach the deep part of the phosphor plate, and the fluorescence efficiency (fluorescence output ÷ excitation light output) descend. On the other hand, if it exceeds 5 μm, the diffraction scattering angle in the traveling direction becomes narrow, the amount of light incident on the phosphor crystal decreases, and the fluorescence efficiency also decreases.

レーザー光の回折散乱に適した補間材の粒界形状は略球状、略球状多角形が良い。それには補間材の結晶構造が蛍光体結晶と異なると共に蛍光体結晶構成元素を含むことが好ましい。このような性状の補間材は、補間材と蛍光体を焼結形成する過程において補間材粒界が略球状、略球状多角形になり易い。   The grain boundary shape of the interpolating material suitable for diffraction scattering of laser light is preferably a substantially spherical shape or a substantially spherical polygon shape. For this purpose, the crystal structure of the interpolating material is preferably different from that of the phosphor crystal and includes a phosphor crystal constituent element. In the interpolation material having such properties, the grain boundary of the interpolation material tends to be substantially spherical or substantially spherical polygon in the process of sintering the interpolation material and the phosphor.

蛍光体プレート中における補間材の割合(濃度)は、5vol.%〜25vol.%であることが好ましい。5vol.%以上とすることにより、蛍光体結晶中に補間材が上述したサイズおよび形状で分散する粒界を形成するので蛍光体の励起飽和を防止するのに必要な散乱が得られる。また25vol.%を超えると、蛍光体濃度が低下して蛍光効率が低下する。   The ratio (concentration) of the interpolating material in the phosphor plate is 5 vol. % To 25 vol. % Is preferred. 5 vol. By setting the ratio to at least%, a grain boundary in which the interpolating material is dispersed in the above-described size and shape is formed in the phosphor crystal, so that scattering necessary for preventing excitation saturation of the phosphor can be obtained. In addition, 25 vol. If it exceeds 50%, the phosphor concentration decreases and the fluorescence efficiency decreases.

本実施形態の蛍光体プレートは、通常の蛍光体セラミックスの製造方法と同じである。補間材となる金属酸化物の微粒子を所定の量で混合する。その後、例えば、金型等によって一軸成形後、冷間静水圧成形を行って成形体とし、不活性ガス、酸素ガス、減圧、真空の何れかまたは組み合わせた雰囲気で焼結する。焼結体を板状に加工した後、反射層22、保護膜26及び反射防止層25を形成した後、所定の形状にダイシングし、蛍光体プレートを得る。   The phosphor plate of the present embodiment is the same as the ordinary phosphor ceramic manufacturing method. A predetermined amount of metal oxide fine particles as an interpolation material is mixed. Thereafter, for example, after uniaxial molding with a mold or the like, cold isostatic pressing is performed to form a molded body, which is sintered in an atmosphere of inert gas, oxygen gas, reduced pressure, vacuum, or a combination thereof. After processing the sintered body into a plate shape, the reflective layer 22, the protective film 26, and the antireflection layer 25 are formed, and then diced into a predetermined shape to obtain a phosphor plate.

本実施形態の発光装置は、図1の蛍光体プレートとして上述した補間材を含む蛍光体プレート21を用いたことが特徴であり、層構造は図1に示すような単層でもよいし、図3(a)〜(c)に示すように、複数の層(蛍光体プレート)から構成されているものでもよい。図3(a)は、上層211と下層212の二層からなり、レーザー光が入射される上層211が補間材を含まない蛍光体プレート、下層212が補間材を含む蛍光体プレートである。図3(b)は、図3(a)と逆で、上層211が補間材を含む蛍光体プレート、下層212が補間材を含まない蛍光体プレートである。図3(c)は、補間材を含まない蛍光体プレートからなる中間層213を、補間材を含む蛍光体プレートからなる上下の層214、215で挟んだ構造である。補間材を含む蛍光体プレートの位置は、図3に示す例に限定されず、上層、中間層、下層のいずれでもよい。尚、このような層構造にした場合、蛍光体プレート21の体積に換算しときの補間材濃度が5vol.%〜25vol.%となるように上層、中間層または下層となる補間材を含む蛍光体プレートを形成する。   The light-emitting device of the present embodiment is characterized in that the phosphor plate 21 including the interpolation material described above is used as the phosphor plate in FIG. 1, and the layer structure may be a single layer as shown in FIG. As shown in 3 (a) to (c), it may be composed of a plurality of layers (phosphor plates). FIG. 3A shows two layers, an upper layer 211 and a lower layer 212. The upper layer 211 on which laser light is incident is a phosphor plate that does not include an interpolation material, and the lower layer 212 is a phosphor plate that includes an interpolation material. FIG. 3B is a reverse of FIG. 3A, in which the upper layer 211 is a phosphor plate containing an interpolation material, and the lower layer 212 is a phosphor plate not containing an interpolation material. FIG. 3C shows a structure in which an intermediate layer 213 made of a phosphor plate not containing an interpolation material is sandwiched between upper and lower layers 214 and 215 made of a phosphor plate containing an interpolation material. The position of the phosphor plate including the interpolating material is not limited to the example shown in FIG. 3, and may be any of the upper layer, the intermediate layer, and the lower layer. In the case of such a layer structure, the concentration of the interpolation material when converted to the volume of the phosphor plate 21 is 5 vol. % To 25 vol. A phosphor plate including an interpolating material which is an upper layer, an intermediate layer, or a lower layer is formed so as to be%.

蛍光体プレート21を複数の層で構成する場合、種類の異なる蛍光体プレートを接合材で接合してもよいし、各蛍光体プレートの蛍光体と補間材を成形後、焼結体とする前に重ねて同時に焼結し1枚の蛍光体プレートとしてもよい。   When the phosphor plate 21 is composed of a plurality of layers, different types of phosphor plates may be joined with a joining material, or before forming the sintered body and the phosphor and interpolating material of each phosphor plate. It is good also as a single fluorescent substance plate by stacking together and sintering simultaneously.

本実施形態の発光装置では、レーザー光源10から発せられたレーザー光は、反射防止層25を通過し発光部20の蛍光体プレート21に入射する。ここで蛍光体プレート21に補間材を含む上層、中間層または下層の蛍光体プレートの層が存在することにより、発光部20に入射したレーザー光は回折散乱を受ける。この散乱では、光は後方散乱せず蛍光体プレートの下側の反射層22に向かうことができるので、反射層22までの光路(往路)と反射層22で反射されて光出射面から出射されるまでの光路(復路)とで、蛍光体プレート中の蛍光体を十分に励起することができる。しかも補間材による回折散乱によってレーザー光の往路と復路とが異なることから、励起飽和による蛍光効率の低下を生じることがない。   In the light emitting device of the present embodiment, the laser light emitted from the laser light source 10 passes through the antireflection layer 25 and enters the phosphor plate 21 of the light emitting unit 20. Here, since the phosphor plate 21 includes an upper layer, an intermediate layer, or a lower layer of the phosphor plate containing the interpolation material, the laser light incident on the light emitting unit 20 is diffracted and scattered. In this scattering, the light is not back-scattered and can go to the reflection layer 22 below the phosphor plate, so that it is reflected by the light path (outward path) to the reflection layer 22 and the reflection layer 22 and is emitted from the light exit surface. The phosphor in the phosphor plate can be sufficiently excited by the optical path (return path) up to In addition, the forward and backward paths of the laser light are different due to diffraction scattering by the interpolating material, so that the fluorescence efficiency is not lowered due to excitation saturation.

さらに本実施形態の発光装置では、反射層22を金属反射膜221、増反射膜222及び全反射膜223で構成したことにより、蛍光体プレート21と反射層22との界面でレーザー光及び蛍光の光損失がなく極めて高い反射率で光出射面側に反射されるので、高い蛍光効率(高出力)を得ることができる。   Furthermore, in the light emitting device of this embodiment, the reflective layer 22 is composed of the metal reflective film 221, the enhanced reflective film 222, and the total reflective film 223, so that laser light and fluorescent light are emitted at the interface between the phosphor plate 21 and the reflective layer 22. Since there is no light loss and the light is reflected to the light exit surface side with an extremely high reflectance, high fluorescence efficiency (high output) can be obtained.

<第2実施形態>
本実施形態の発光装置は、光路調整手段として、蛍光体プレートに接する反射層として白色セラミックを用いたことが特徴である。発光装置の構造は図4に示す。図4において図1と同じ構成要素については同じ符号で示し、説明を省略する。なお図4ではレーザー光源10を省略しているが、レーザー光源10を発光部20に対し空間的に離して配置することは図1の発光装置100と同じである。
Second Embodiment
The light emitting device of the present embodiment is characterized in that white ceramic is used as a reflection layer in contact with the phosphor plate as an optical path adjusting means. The structure of the light emitting device is shown in FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. Although the laser light source 10 is omitted in FIG. 4, the laser light source 10 is spatially separated from the light emitting unit 20 in the same manner as the light emitting device 100 in FIG. 1.

本実施形態の発光装置も、発光部20は基板30の上に接合材40により固定された構造を持つ。発光部20は蛍光体プレート21の光出射面側に反射防止層25が形成され、その反対側の面に反射層22が形成されている。   Also in the light emitting device of this embodiment, the light emitting unit 20 has a structure fixed on the substrate 30 by the bonding material 40. In the light emitting unit 20, an antireflection layer 25 is formed on the light emitting surface side of the phosphor plate 21, and a reflection layer 22 is formed on the opposite surface.

反射層22は、蛍光体プレート21側から順に、白色セラミック層225及び金属反射膜221からなる。なお金属反射膜221は、発光部20を基板30に固定する接合材40として、はんだや金錫等の金属接合材を用いる場合には必要であるが、接合材40が樹脂やガラスの場合には省くことも可能である。その場合には金属反射膜221を保護する保護膜も省略することができる。   The reflective layer 22 includes a white ceramic layer 225 and a metal reflective film 221 in order from the phosphor plate 21 side. The metal reflection film 221 is necessary when a metal bonding material such as solder or gold-tin is used as the bonding material 40 for fixing the light emitting unit 20 to the substrate 30, but when the bonding material 40 is a resin or glass. Can be omitted. In that case, a protective film for protecting the metal reflective film 221 can also be omitted.

白色セラミック層225は、蛍光体プレート21を透過したレーザー光及びレーザー光によって蛍光体プレート21が発した蛍光を拡散反射または均等拡散反射し、反射層22までの光路(往路)と反射層22から光出射面までの光路(復路)を異ならせる光路調整手段として機能する。この機能を持たせるために、レーザー光の波長(例えば450nm)と蛍光の波長(緑色蛍光体の場合約510nm)に対し高い反射率を持つ白色アルミナ反射膜が好適である。白色アルミナ反射膜は、波長450nmの光に対し95%以上の高い反射率を持ち、正反射光の少ない拡散反射が得られる。   The white ceramic layer 225 diffuses or uniformly diffuses and reflects the laser light transmitted through the phosphor plate 21 and the fluorescence emitted from the phosphor plate 21 by the laser light, and from the light path (outward path) to the reflection layer 22 and the reflection layer 22. It functions as an optical path adjusting means that varies the optical path (return path) to the light exit surface. In order to provide this function, a white alumina reflective film having a high reflectance with respect to the wavelength of laser light (for example, 450 nm) and the wavelength of fluorescence (about 510 nm in the case of a green phosphor) is suitable. The white alumina reflective film has a high reflectance of 95% or more with respect to light having a wavelength of 450 nm, and diffuse reflection with less regular reflection light can be obtained.

白色アルミナ反射膜等のセラミック層225は、蛍光体プレート21の面にプラズマ溶射によりμmオーダーの膜厚精度で形成することができる。他にスパッタ、プラズマCVD等でも形成可能だが、拡散反射面または均等拡散反射面を形成するにはプラズマ溶射膜が好ましい。また所定の基材上に白色セラミック層27を溶射により形成したものを蛍光体プレート21に透明な樹脂やガラス等の接合材を介して接合してもよい。セラミック層225の厚みは、特に限定されないが、金属反射膜221を設ける場合にはレーザー光の拡散に必要な1μm〜20μm程度の膜厚で良い。またセラミック層225だけで拡散反射させる場合には反射率の低下を防ぐために20μm〜100μm程度とすることが好ましい。   The ceramic layer 225 such as a white alumina reflective film can be formed on the surface of the phosphor plate 21 by plasma spraying with a film thickness accuracy of the order of μm. In addition, it can be formed by sputtering, plasma CVD, or the like, but a plasma sprayed film is preferable for forming a diffuse reflection surface or a uniform diffuse reflection surface. Moreover, what formed the white ceramic layer 27 on the predetermined base material by thermal spraying may be joined to the phosphor plate 21 via a joining material such as a transparent resin or glass. The thickness of the ceramic layer 225 is not particularly limited, but when the metal reflective film 221 is provided, the thickness may be about 1 μm to 20 μm necessary for the diffusion of laser light. In addition, when diffuse reflection is performed only by the ceramic layer 225, it is preferable to set the thickness to about 20 μm to 100 μm in order to prevent a decrease in reflectance.

セラミック層225に熱伝導性の高い部材を用いれば、蛍光体プレート21が蛍光する際に発する熱を効率良く基板30へ伝熱できるので蛍光体プレート21の温度消光を防止できる。白色アルミナの熱伝導率は20W/(m・K)〜30W/(m・K)と高い熱伝導率を有するので好適な部材である。   If a member having high thermal conductivity is used for the ceramic layer 225, the heat generated when the phosphor plate 21 fluoresces can be efficiently transferred to the substrate 30, so that temperature quenching of the phosphor plate 21 can be prevented. Since white alumina has a high thermal conductivity of 20 W / (m · K) to 30 W / (m · K), it is a suitable member.

蛍光体プレート21は、第1実施形態と同様のものを用いてもよいが、励起飽和の問題がなければ、蛍光体濃度が高いほど高い蛍光効率(光出力)が得られるので、蛍光体濃度100%の蛍光体プレートを用いることが好ましい。蛍光体濃度100%の蛍光体プレートとは、補間材を含まない蛍光体プレートであることを意味し、不可避的に混入する成分を含むものを排除するものではない。蛍光体プレート21を構成する蛍光体としては第1実施形態で例示した蛍光体を用いることができ、本実施形態においても、LuAG等の緑色蛍光体を好適に用いることができる。また蛍光体プレートの製造方法は、原料の比率が異なる以外は蛍光体濃度100%未満の場合と同様である。   The phosphor plate 21 may be the same as that of the first embodiment, but if there is no problem of excitation saturation, the higher the phosphor concentration, the higher the fluorescence efficiency (light output) is obtained. It is preferable to use a 100% phosphor plate. A phosphor plate having a phosphor concentration of 100% means a phosphor plate that does not contain an interpolating material, and does not exclude those that contain components that are inevitably mixed. As the phosphor constituting the phosphor plate 21, the phosphor exemplified in the first embodiment can be used. Also in this embodiment, a green phosphor such as LuAG can be suitably used. The method for manufacturing the phosphor plate is the same as that in the case where the phosphor concentration is less than 100%, except that the ratio of the raw materials is different.

なお反射防止層25は省略することもできる。   The antireflection layer 25 can be omitted.

本実施形態の発光装置は、発光部20の反射層22として、蛍光体プレート21に接する部分に拡散反射性を持つ白色セラミック層225を用いたことにより、蛍光体プレート21を往復するレーザー光による蛍光体の励起飽和を効果的に防止し、且つ蛍光体が発する光に対しても高い反射性が維持できるので、高出力を得ることができる。   The light emitting device according to the present embodiment uses a white ceramic layer 225 having diffuse reflectivity in a portion in contact with the phosphor plate 21 as the reflection layer 22 of the light emitting unit 20, thereby using laser light that reciprocates the phosphor plate 21. Since excitation saturation of the phosphor can be effectively prevented and high reflectivity can be maintained even for light emitted from the phosphor, high output can be obtained.

<第3実施形態>
次に本発明の発光装置をプロジェクター用光源に利用した実施形態を説明する。
<Third Embodiment>
Next, an embodiment in which the light emitting device of the present invention is used as a light source for a projector will be described.

図5にプロジェクター用光源装置の一例を示す。このプロジェクター用光源装置800は、青色レーザーを発するレーザー光源10と、蛍光体を備えた発光部20と、赤色光を発する赤色光源80と、ハーフミラー91及び複数のダイクロイックミラー92(921〜923)を含む光学部材と、光を映像光に変換する変換素子94とを備えている。   FIG. 5 shows an example of a light source device for a projector. The projector light source device 800 includes a laser light source 10 that emits a blue laser, a light emitting unit 20 that includes a phosphor, a red light source 80 that emits red light, a half mirror 91, and a plurality of dichroic mirrors 92 (921 to 923). And a conversion element 94 that converts light into image light.

レーザー光源10は、図1の発光装置100のレーザー光源と同様であるが、ここでは青色レーザーを発するレーザー光源を複数用いている。レーザー光源10からの光はレンズ95で集光された後、ハーフミラー91により一部は反射され、残りはハーフミラー91を透過し、さらに所定の波長を透過するダイクロイックミラー921を透過し、発光部20に入射する。   The laser light source 10 is the same as the laser light source of the light emitting device 100 of FIG. 1, but here, a plurality of laser light sources that emit blue laser are used. After the light from the laser light source 10 is collected by the lens 95, a part of the light is reflected by the half mirror 91, the rest is transmitted through the half mirror 91, and further transmitted through the dichroic mirror 921 that transmits a predetermined wavelength. Incident on the part 20.

発光部20は、緑色蛍光体を含む蛍光体プレートに反射層を備え、第1実施形態又は第2実施形態のいずれかと同様の発光部20であり、ダイクロイックミラー921を通して入射された青色レーザー光を蛍光体が吸収し、緑色の光を出射する。発光部20から出射された緑色の光は、ダイクロイックミラー921は透過せず反射されて、さらに第2のダイクロイックミラー922で反射され、第3のダイクロイックミラー923を透過し、変換素子94に到達する。   The light emitting unit 20 includes a reflective layer on a phosphor plate containing a green phosphor, and is the same light emitting unit 20 as in either the first embodiment or the second embodiment, and receives blue laser light incident through the dichroic mirror 921. The phosphor absorbs and emits green light. The green light emitted from the light emitting unit 20 is reflected without being transmitted through the dichroic mirror 921, further reflected by the second dichroic mirror 922, transmitted through the third dichroic mirror 923, and reaches the conversion element 94. .

またハーフミラー91で反射されたレーザー光源10からの光は、ダイクロイックミラー923でさらに反射されて変換素子94に到達する。   The light from the laser light source 10 reflected by the half mirror 91 is further reflected by the dichroic mirror 923 and reaches the conversion element 94.

赤色光源80は、赤色LED等からなり、赤色に対し透過特性を持つ第2のダイクロイックミラー922の後方に配置され、そこから発した赤色光はダイクロイックミラー922及び第3のダイクロイックミラー923を透過して変換素子94に到達する。   The red light source 80 is formed of a red LED or the like, and is disposed behind the second dichroic mirror 922 having a transmission characteristic with respect to red, and the red light emitted therefrom passes through the dichroic mirror 922 and the third dichroic mirror 923. And reaches the conversion element 94.

変換素子94は、液晶素子やDLP(Digital Light Processing)素子からなり、多数の画素に対応し、素子がONのときに光を通過させ、OFFのときに光を遮断することにより光を映像光に変換する。レーザー光源10からの青色光、発光部20からの緑色光及び赤色光源80からの赤色光は、変換素子94によって、所定の割合で合成された映像光となって出力される。   The conversion element 94 includes a liquid crystal element and a DLP (Digital Light Processing) element. The conversion element 94 corresponds to a large number of pixels, passes light when the element is ON, and blocks light when the element is OFF. Convert to The blue light from the laser light source 10, the green light from the light emitting unit 20, and the red light from the red light source 80 are output as image light combined at a predetermined ratio by the conversion element 94.

本実施形態の発光装置では、緑色光を発する発光部20として、出力の高い赤色LEDや青色LDに劣らない高出力の発光部を用いることができるので、明るく色再現性のよい映像が得られる。   In the light emitting device of the present embodiment, a high output light emitting unit that is not inferior to a high output red LED or blue LD can be used as the light emitting unit 20 that emits green light, so that a bright and good color reproducible image can be obtained. .

<実施例1>
蛍光体LuAG:Ceと補間材Alとを含み、蛍光体濃度が異なる複数の蛍光体プレート(厚み:100nm)を用意した。蛍光体濃度は、試料1:25vol.%、試料2:50vol.%、試料3:75vol.%、試料4:90vol.%、試料5:95vol.%、試料6:100vol.%の6種類とした。なお賦活材濃度([Ce]/([Lu]+[Ce]×100)は5<atomic%と一定にした。
<Example 1>
A plurality of phosphor plates (thickness: 100 nm) containing phosphor LuAG: Ce and an interpolation material Al 2 O 3 and having different phosphor concentrations were prepared. The phosphor concentration was measured in Sample 1: 25 vol. %, Sample 2: 50 vol. %, Sample 3: 75 vol. %, Sample 4: 90 vol. %, Sample 5: 95 vol. %, Sample 6: 100 vol. %. The activator concentration ([Ce] / ([Lu] + [Ce] × 100)) was kept constant at 5 <atomic%.

イオンアシスト機能を持つ蒸着装置を用いて、これら蛍光体プレートの一方の面に、反射防止層として、蛍光体プレート側よりTa(23nm)/SiO(25nm)/Ta(58nm)/SiO(18nm)/Ta(41nm)/SiO(99nm))を形成した。同様に、イオンアシスト機能を持つ蒸着装置を用いて、蛍光体プレートの他方の面に全反射膜(SiO、厚み:500nm)、増反射膜(全反射膜側よりTa(54nm)/SiO(24nm)/Ta(54nm)/SiO(100nm)/Ta(42nm)/SiO(54nm))、接着層(Al(10nm))、金属反射膜(Ag(150nm))をこの順に形成し、最後にAg膜の上に保護膜(TiO(50nm))を形成した。 Using a vapor deposition apparatus having an ion assist function, Ta 2 O 5 (23 nm) / SiO 2 (25 nm) / Ta 2 O 5 (from the phosphor plate side as an antireflection layer on one surface of these phosphor plates. 58 nm) / SiO 2 (18 nm) / Ta 2 O 5 (41 nm) / SiO 2 (99 nm)). Similarly, using a vapor deposition apparatus having an ion assist function, a total reflection film (SiO 2 , thickness: 500 nm) and an increase reflection film (Ta 2 O 5 (54 nm from the total reflection film side) are formed on the other surface of the phosphor plate. / SiO 2 (24 nm) / Ta 2 O 5 (54 nm) / SiO 2 (100 nm) / Ta 2 O 5 (42 nm) / SiO 2 (54 nm)), adhesive layer (Al 2 O 3 (10 nm)), metal reflection A film (Ag (150 nm)) was formed in this order, and finally a protective film (TiO 2 (50 nm)) was formed on the Ag film.

実施例1の反射防止層および反射層の反射特性を以下の通り確認した。
(1)反射防止層の反射率特性
透光性のYAG基板(屈折率1.85)の上に実施例1で形成した反射防止層と同じ多層膜を形成し、この反射防止層の反射スペクトルを、反射率測定装置を用い入射角5°で測定した。結果を図6に示す。図6において横軸は波長(nm)、縦軸は反射率(%)である。図示するように、本実施例の反射防止層は、波長430nm〜580nmの光に対する反射率が0.4%以下であり、励起光である青色レーザー光(約450nm)に対して反射率0.2%以下と高い反射防止性があることが確認された。また蛍光体の発光波長(約510nm)付近では0.2%以下の反射率すなわち高い透過性があることが確認された。
The reflection characteristics of the antireflection layer and the reflection layer of Example 1 were confirmed as follows.
(1) Reflectivity characteristics of antireflection layer The same multilayer film as the antireflection layer formed in Example 1 is formed on a translucent YAG substrate (refractive index 1.85), and the reflection spectrum of this antireflection layer Was measured at an incident angle of 5 ° using a reflectance measuring device. The results are shown in FIG. In FIG. 6, the horizontal axis represents wavelength (nm) and the vertical axis represents reflectance (%). As shown in the figure, the antireflection layer of this example has a reflectance of 0.4% or less with respect to light having a wavelength of 430 nm to 580 nm, and a reflectance of 0.4% with respect to blue laser light (about 450 nm) as excitation light. It was confirmed that the antireflection property was as high as 2% or less. Further, it was confirmed that the phosphor had a reflectance of 0.2% or less, that is, high transparency in the vicinity of the emission wavelength (about 510 nm) of the phosphor.

(2)反射層の反射率の入射角依存性
ガラス基板(屈折率1.82)の上に実施例1で形成した反射層(全反射膜+増反射膜+金属反射膜+保護膜)と同じ反射層を形成し、励起光と同じ波長450nmの光と、蛍光体の発光波長と同じ波長510nmの光について、入射角を0°〜28°まで変化させた場合の反射率を、反射率測定装置を用いてガラス側から測定した。結果を図7に示す。図7において横軸は入射角(°)、縦軸は反射率(%)である。図示するように、測定したすべての入射角において、両波長の光に対し92%以上の反射率を示した。青色光(波長450nm)は5°〜10°程度までの入射角に対し97%以上の反射率を有し、緑色光(波長510nm)は、レーザー光源からの入射角として想定される角度範囲0°〜28°の入射角に対し95%以上の反射率を有した。
(2) Incident angle dependence of reflectivity of reflective layer Reflective layer (total reflective film + increased reflective film + metal reflective film + protective film) formed in Example 1 on a glass substrate (refractive index 1.82) The reflectance when the incident angle is changed from 0 ° to 28 ° with respect to the light having the same wavelength as the excitation light and the light having the same wavelength of 450 nm as the excitation light and the light having the same wavelength as the emission wavelength of the phosphor of 510 nm. It measured from the glass side using the measuring apparatus. The results are shown in FIG. In FIG. 7, the horizontal axis represents the incident angle (°), and the vertical axis represents the reflectance (%). As shown in the figure, the reflectance of 92% or more was shown for light of both wavelengths at all measured incident angles. Blue light (wavelength 450 nm) has a reflectivity of 97% or more with respect to an incident angle of up to about 5 ° to 10 °, and green light (wavelength 510 nm) has an angle range 0 assumed as an incident angle from a laser light source. It had a reflectivity of 95% or more with respect to an incident angle of ° to 28 °.

(3)反射層の反射率の波長依存性
上記(2)の反射層の反射スペクトルを、反射率測定装置を用い入射角5°で測定した。結果を図8に示す。図8において横軸は波長(nm)、縦軸は反射率(%)である。図示するように、波長450nmの反射率および波長510nmの反射率はともに98%以上であり、非常に反射特性が良好であることが確認された。
(3) Wavelength dependence of reflectance of reflection layer The reflection spectrum of the reflection layer of (2) above was measured at an incident angle of 5 ° using a reflectance measuring device. The results are shown in FIG. In FIG. 8, the horizontal axis represents wavelength (nm) and the vertical axis represents reflectance (%). As shown in the figure, the reflectance at a wavelength of 450 nm and the reflectance at a wavelength of 510 nm are both 98% or more, and it was confirmed that the reflection characteristics were very good.

上述のように一方の面に反射防止層、他方の面に反射層を形成した蛍光体濃度の異なる6種の蛍光体プレートを所定の大きさ(1mm×1mm)にカットし、試料片を得た。これら6個の試料片を、UV洗浄後の金属基板(アルミ基板、厚さ0.5m)に透明樹脂(シリコーン樹脂)を用いて接合し、150℃で4時間硬化した。   As described above, six types of phosphor plates with different phosphor concentrations, each having an antireflection layer on one side and a reflection layer on the other side, are cut into a predetermined size (1 mm × 1 mm) to obtain a sample piece. It was. These six sample pieces were bonded to a metal substrate (aluminum substrate, thickness 0.5 m) after UV cleaning using a transparent resin (silicone resin) and cured at 150 ° C. for 4 hours.

<比較例1>
増反射膜と金属反射膜を設けないこと以外は、実施例1と同様にして、蛍光体濃度の異なる6種類の蛍光体プレート試料および金属基板接合後の試料を得た。
<Comparative Example 1>
Except for not providing the increased reflection film and the metal reflection film, six types of phosphor plate samples having different phosphor concentrations and samples after joining the metal substrate were obtained in the same manner as in Example 1.

上述した実施例1および比較例1の各試料について、図9に示すような測定装置900を用いて、金属基板接合後の蛍光体プレート試料の蛍光出力を測定した。図9において、波長450nmの青色レーザーを発するレーザー光源からのレーザー光を、ハーフミラーおよび集光レンズを介しては蛍光体プレート試料に照射し、蛍光体プレート試料が発する蛍光をハーフミラーおよびダイクロイックミラーで分離し、サーモパイルセンサで検出した。レーザー光出力は室温下で10Wとし、照射サイズを約1mm×1.5mm角とした。   For each sample of Example 1 and Comparative Example 1 described above, the fluorescence output of the phosphor plate sample after metal substrate bonding was measured using a measuring apparatus 900 as shown in FIG. In FIG. 9, a laser beam from a laser light source emitting a blue laser having a wavelength of 450 nm is irradiated to a phosphor plate sample through a half mirror and a condenser lens, and the fluorescence emitted from the phosphor plate sample is emitted to the half mirror and the dichroic mirror. And detected with a thermopile sensor. The laser light output was 10 W at room temperature, and the irradiation size was about 1 mm × 1.5 mm square.

結果を表1に示す。表1の結果は、比較例1の蛍光体濃度100%の蛍光出力値で規格化した値である。

Figure 2015119046
The results are shown in Table 1. The results in Table 1 are values normalized with the fluorescence output value of the phosphor concentration of Comparative Example 1 at 100%.
Figure 2015119046

表1に示す結果からわかるように、増反射膜および金属反射膜を設けない比較例1では、蛍光出力は蛍光体濃度の増加に伴い増加し、蛍光体濃度100%のときに最大となる。これに対し、増反射膜および金属反射膜を備える実施例1では、蛍光体濃度が約90%で蛍光出力は最大となり、それより蛍光体濃度が多くても逆に蛍光出力が低下する。しかしながら蛍光体濃度75%、90%および95%の試料で比較例1の蛍光体濃度100%のものより高い蛍光体出力が得られた。これは実施例1の蛍光体プレート試料が比較例1の蛍光体プレート試料に対して増反射膜を備えたことによる低入射角光の反射率が高くなったことに起因する。   As can be seen from the results shown in Table 1, in Comparative Example 1 in which the reflection-increasing film and the metal reflection film are not provided, the fluorescence output increases as the phosphor concentration increases, and becomes maximum when the phosphor concentration is 100%. On the other hand, in Example 1 provided with the increased reflection film and the metal reflection film, the fluorescence output becomes the maximum when the phosphor concentration is about 90%, and the fluorescence output decreases conversely even if the phosphor concentration is higher. However, higher phosphor outputs were obtained with the phosphor concentrations of 75%, 90%, and 95% than those with the phosphor concentration of Comparative Example 1 of 100%. This is due to the fact that the phosphor plate sample of Example 1 is provided with an increased reflection film with respect to the phosphor plate sample of Comparative Example 1, and thus the reflectance of low incident angle light is increased.

比較例1の試料は、増反射膜と金属反射膜を備えていないので、蛍光体プレートへ入射したレーザー光の内、蛍光体励起に用いられず蛍光体プレートの反対面に到達した残光成分は出射して接合部材や金属基板で吸収減衰する。従って補間材による回折拡散効果の有無に関係なく蛍光体濃度にのみ蛍光出力が左右される。   Since the sample of Comparative Example 1 does not include the increased reflection film and the metal reflection film, the afterglow component that has not been used for excitation of the phosphor and has reached the opposite surface of the phosphor plate among the laser light incident on the phosphor plate. Is emitted and absorbed and attenuated by the joining member and the metal substrate. Therefore, the fluorescence output depends only on the phosphor concentration regardless of the presence or absence of the diffraction diffusion effect by the interpolation material.

実施例1の試料は、増反射膜と金属反射膜を備えているので、蛍光体プレートに入射したレーザー光の内、蛍光体励起に用いられず蛍光体プレートの反対面に到達した残光成分は増反射膜で反射され、再び蛍光体を励起する再励起光となる。この時、補間材粒界によるレーザー光の進行方向の回折拡散効果が十分に得られる蛍光体濃度90vol.%までは、レーザー光が拡散して広い範囲の蛍光体粒界を励起するので、再励起光による蛍光体の励起飽和が防止でき蛍光出力が増加する。対して、補間材による回折散乱効果が減少する蛍光体濃度90vol.%程度超では、レーザー光の拡散が不十分になり狭い範囲の蛍光体粒界のみを励起するので、再励起光による蛍光体の励起飽和が起こり、蛍光出力が減少する。   Since the sample of Example 1 is provided with the increased reflection film and the metal reflection film, the afterglow component that has not been used for excitation of the phosphor and has reached the opposite surface of the phosphor plate among the laser light incident on the phosphor plate. Is re-excited light that is reflected by the increased reflection film and excites the phosphor again. At this time, the phosphor concentration of 90 vol. %, The laser light diffuses and excites a wide range of phosphor grain boundaries, so that excitation saturation of the phosphor due to re-excitation light can be prevented and the fluorescence output increases. On the other hand, the phosphor concentration of 90 vol. If it exceeds about%, the diffusion of the laser beam becomes insufficient and only a narrow phosphor grain boundary is excited, so that excitation saturation of the phosphor due to re-excitation light occurs and the fluorescence output decreases.

蛍光体濃度90%vol%未満では蛍光出力は減少するが、蛍光体濃度75vol.%までは再励起光分の蛍光出力が加わるので増反射膜と金属反射膜を備えていない比較例1より蛍光出力は高い。   When the phosphor concentration is less than 90% by volume, the fluorescence output decreases, but the phosphor concentration is 75 vol. %, The fluorescence output corresponding to the re-excitation light is added, so the fluorescence output is higher than that of Comparative Example 1 that does not include the reflective reflection film and the metal reflection film.

全反射膜と増反射膜で殆どの光(90%以上)を反射するので、金属反射膜は無くてもよく、蛍光出力に大差はない。   Since most light (90% or more) is reflected by the total reflection film and the increased reflection film, there is no need for the metal reflection film and there is no great difference in the fluorescence output.

<実施例2>
実施例1の試料6(蛍光体濃度100%)と同じ蛍光体プレート試料を作成し、その一方の面に実施例1と同様に反射防止層を形成した。また他方の面に白色アルミナ層(厚み:30μm)をプラズマ溶射により形成した。この白色アルミナ層形成後の蛍光体プレート試料を、白色アルミナ層側を実施例1と同様に金属基板に接合し、実施例2の試料とした。
<Example 2>
The same phosphor plate sample as the sample 6 of Example 1 (phosphor concentration 100%) was prepared, and an antireflection layer was formed on one surface thereof in the same manner as in Example 1. A white alumina layer (thickness: 30 μm) was formed on the other surface by plasma spraying. The phosphor plate sample after the formation of the white alumina layer was joined to the metal substrate on the white alumina layer side in the same manner as in Example 1 to obtain a sample of Example 2.

実施例2の試料の白色アルミナ層の反射特性を確認するため、ガラス基板上にプラズマ溶射により白色アルミナ層を形成し、反射スペクトルを測定したところ、波長450nmおよび510nmの光に対し、95%以上の反射率があることが確認された。   In order to confirm the reflection characteristics of the white alumina layer of the sample of Example 2, when a white alumina layer was formed on a glass substrate by plasma spraying and the reflection spectrum was measured, it was 95% or more for light with wavelengths of 450 nm and 510 nm. It was confirmed that there was a reflectance of.

実施例2の試料について、実施例1と同様に蛍光体出力を測定したところ、1.07(比較例1の蛍光体濃度100%の値で規格化した値)であり、高い輝度が得られることが確認された。   When the phosphor output of the sample of Example 2 was measured in the same manner as in Example 1, it was 1.07 (value normalized by the phosphor concentration of 100% of Comparative Example 1), and high luminance was obtained. It was confirmed.

本発明によれば、プロジェクター用光源として好適な高輝度の緑色光源を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high-intensity green light source suitable as a light source for projectors can be provided.

10・・・レーザー光源、20・・・発光部、21・・・蛍光体プレート、22・・・反射層、25・・・反射防止層、26・・・保護膜、27・・・セラミック層、30・・・基板、40・・・接合材、50・・・高周波振動台、55・・・高周波振動子、60・・・支持部材、80・・・赤色光源、91・・・ハーフミラー、92(921〜923)・・・ダイクロイックミラー、94・・・変換素子100・・・発光装置、221・・・金属反射膜、222・・・増反射膜、223・・・全反射膜、800・・・プロジェクター用光源装置。

DESCRIPTION OF SYMBOLS 10 ... Laser light source, 20 ... Light emission part, 21 ... Phosphor plate, 22 ... Reflection layer, 25 ... Antireflection layer, 26 ... Protective film, 27 ... Ceramic layer , 30 ... substrate, 40 ... bonding material, 50 ... high frequency vibration table, 55 ... high frequency vibrator, 60 ... support member, 80 ... red light source, 91 ... half mirror , 92 (921 to 923) ... Dichroic mirror, 94 ... Conversion element 100 ... Light emitting device, 221 ... Metal reflection film, 222 ... Increase reflection film, 223 ... Total reflection film, 800: Light source device for projector.

Claims (13)

レーザー光を発する光源と、前記光源に対し空間的に離間して配置された発光部とを備え、前記発光部は基板と、前記基板上に配置された蛍光体層と、前記基板と前記蛍光体層との間に配置され反射層とを有し、
前記蛍光体層を伝搬するレーザー光の伝搬方向を変化させる光路調整手段を備えたことを特徴する発光装置。
A light source that emits laser light; and a light emitting unit that is spatially spaced from the light source, wherein the light emitting unit is a substrate, a phosphor layer that is disposed on the substrate, the substrate, and the fluorescent light. A reflective layer disposed between the body layer and
A light emitting device comprising an optical path adjusting means for changing a propagation direction of laser light propagating through the phosphor layer.
請求項1に記載の発光装置であって、
前記反射層は、前記基板から順に、金属反射膜、増反射膜及び全反射膜を備えたことを特徴する発光装置。
The light-emitting device according to claim 1,
The light-emitting device, wherein the reflective layer includes a metal reflective film, an increased reflective film, and a total reflective film in order from the substrate.
請求項2に記載の発光装置であって、前記光路調整手段は前記蛍光体層内に分散された補間材であることを特徴とする発光装置。   3. The light emitting device according to claim 2, wherein the optical path adjusting means is an interpolating material dispersed in the phosphor layer. 請求項2に記載の発光装置であって、前記蛍光体層は複数の層から成り、前記光路調整手段は前記複数の層の少なくとも1層内に分散された補間材であることを特徴とする発光装置。   3. The light emitting device according to claim 2, wherein the phosphor layer is composed of a plurality of layers, and the optical path adjusting means is an interpolation material dispersed in at least one of the plurality of layers. Light emitting device. 請求項3又は4に記載の発光装置であって、前記補間材は、レーザー光を該レーザー光の進行方向に回折散乱する粒界径を有することを特徴とする発光装置。   5. The light-emitting device according to claim 3, wherein the interpolating material has a grain boundary diameter that diffracts and scatters laser light in a traveling direction of the laser light. 請求項3又は4に記載の発光装置であって、前記補間材は、粒界形状が略球状または略球状多角形であることを特徴とする発光装置。   5. The light-emitting device according to claim 3, wherein the interpolating material has a grain boundary shape of a substantially spherical shape or a substantially spherical polygonal shape. 請求項3又は4に記載の発光装置であって、前記補間材は、蛍光体結晶と異なる結晶構造を有し、蛍光体結晶構成元素を含むことを特徴とする発光装置。   5. The light-emitting device according to claim 3, wherein the interpolating material has a crystal structure different from that of the phosphor crystal and includes a phosphor crystal constituent element. 請求項3又は4に記載の発光装置であって、
前記レーザー光が青色レーザーであって、前記蛍光体層に含まれる蛍光体がLuAG:Ce、前記補間材がAlであることを特徴とする発光装置。
The light-emitting device according to claim 3 or 4,
The light-emitting device, wherein the laser light is a blue laser, the phosphor contained in the phosphor layer is LuAG: Ce, and the interpolating material is Al 2 O 3 .
請求項8に記載の発光装置であって、
前記蛍光体層に含まれる蛍光体の濃度が75体積%以上95体積%以下であることを特徴とする発光装置。
The light-emitting device according to claim 8,
A light-emitting device, wherein the concentration of the phosphor contained in the phosphor layer is 75 volume% or more and 95 volume% or less.
請求項1に記載の発光装置であって、前記反射層は、前記基板から順に、金属反射膜と白色セラミック層とを備え、前記光路調整手段は前記白色セラミック層であり前記蛍光体層に接して配置されることを特徴とする発光装置。   2. The light emitting device according to claim 1, wherein the reflective layer includes a metal reflective film and a white ceramic layer in order from the substrate, and the optical path adjusting means is the white ceramic layer and is in contact with the phosphor layer. A light emitting device characterized by being arranged. 請求項10に記載の発光装置であって、
前記レーザー光が青色レーザーであって、前記蛍光体層は蛍光体としてLuAG:Ceを含み、補間材を実質的に含まないことを特徴とする発光装置。
The light-emitting device according to claim 10,
The light emitting device, wherein the laser light is a blue laser, and the phosphor layer contains LuAG: Ce as a phosphor and substantially does not contain an interpolation material.
請求項1ないし11のいずれか一項に記載の発光装置であって、
前記蛍光体層の上に、反射防止膜が形成されていることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 11,
A light-emitting device, wherein an antireflection film is formed on the phosphor layer.
LD青色光源、LED赤色光源及び緑色光源を組み合わせたプロジェクター用光源であって、前記緑色光源が請求項1ないし12に記載の発光装置であることを特徴とするプロジェクター用光源。   A light source for a projector, which is a combination of an LD blue light source, an LED red light source and a green light source, wherein the green light source is the light emitting device according to claim 1.
JP2013261551A 2013-12-18 2013-12-18 Light emitting device and light source for projector using the same Active JP6253392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261551A JP6253392B2 (en) 2013-12-18 2013-12-18 Light emitting device and light source for projector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261551A JP6253392B2 (en) 2013-12-18 2013-12-18 Light emitting device and light source for projector using the same

Publications (2)

Publication Number Publication Date
JP2015119046A true JP2015119046A (en) 2015-06-25
JP6253392B2 JP6253392B2 (en) 2017-12-27

Family

ID=53531533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261551A Active JP6253392B2 (en) 2013-12-18 2013-12-18 Light emitting device and light source for projector using the same

Country Status (1)

Country Link
JP (1) JP6253392B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121586A (en) * 2013-12-20 2015-07-02 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method of the same, and light-emitting device for projector
JP2016081054A (en) * 2014-10-13 2016-05-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Optical wavelength-converting device and illumination system using the same
JP2017059396A (en) * 2015-09-16 2017-03-23 ウシオ電機株式会社 Fluorescent light source device and lighting device
JP2017075973A (en) * 2015-10-13 2017-04-20 パナソニックIpマネジメント株式会社 Light source device and projection type image display device
US9982868B2 (en) 2016-09-21 2018-05-29 Nichia Corporation Phosphor-containing member and light emitting device containing thereof
JP2018097257A (en) * 2016-12-15 2018-06-21 セイコーエプソン株式会社 Lighting device and projector
JP2018165785A (en) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JP2019012160A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Light emitting body and light emitting device
JP2019035981A (en) * 2016-02-04 2019-03-07 パナソニックIpマネジメント株式会社 Phosphor wheel, light source device, projection type video display device, and manufacturing method of phosphor wheel
US10241384B2 (en) 2017-08-03 2019-03-26 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
WO2019065175A1 (en) * 2017-09-29 2019-04-04 日本特殊陶業株式会社 Optical wavelength converter and composite optical device
JP2019139205A (en) * 2018-02-09 2019-08-22 パナソニックIpマネジメント株式会社 Phosphor wheel, light source device, and projection type video display device
CN110716256A (en) * 2018-07-12 2020-01-21 采钰科技股份有限公司 Optical element and method for manufacturing the same
JPWO2018221042A1 (en) * 2017-05-31 2020-04-02 ソニー株式会社 Light emitting device and method for manufacturing light emitting device
JP2020059764A (en) * 2018-10-04 2020-04-16 デンカ株式会社 Composite, light-emitting device and production method of composite
CN111123629A (en) * 2018-11-01 2020-05-08 深圳光峰科技股份有限公司 Wavelength conversion device, manufacturing method thereof, light emitting device and projection device
US10725367B2 (en) 2018-03-20 2020-07-28 Seiko Epson Corporation Wavelength conversion element, method of manufacturing wavelength conversion element, light source device, and projector
US10859899B2 (en) 2017-08-03 2020-12-08 Seiko Epson Corporation Wavelength conversion element, method for producing wavelength conversion element, light source device, and projector
EP3588151A4 (en) * 2017-02-27 2021-02-17 NGK Spark Plug Co., Ltd. Light wavelength conversion member and light emitting device
JP2021071598A (en) * 2019-10-31 2021-05-06 日本特殊陶業株式会社 Wavelength conversion member and wavelength conversion device
US11131433B2 (en) 2018-08-20 2021-09-28 Nichia Corporation Fluorescent module and illumination device
US11131914B2 (en) 2017-02-27 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member
CN113934095A (en) * 2020-06-29 2022-01-14 松下知识产权经营株式会社 Wavelength conversion device, projector, and phosphor ceramic member
US11556050B2 (en) 2019-11-28 2023-01-17 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
JP7472558B2 (en) 2020-03-12 2024-04-23 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340905A (en) * 1991-05-17 1992-11-27 Tokyo Tokushu Glass Kk Surface reflection mirror
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element
JP2011168627A (en) * 2010-02-16 2011-09-01 National Institute For Materials Science Wavelength converting member, method for manufacturing the same and light-emitting equipment using the same
JP2011198800A (en) * 2010-03-17 2011-10-06 Mitsubishi Chemicals Corp Semiconductor light-emitting element
JP2012008549A (en) * 2010-05-27 2012-01-12 Panasonic Corp Light source device and illuminating device using the same, and image display device
JP2012062444A (en) * 2010-09-17 2012-03-29 Covalent Materials Corp Green phosphor
JP2012083695A (en) * 2010-09-16 2012-04-26 Seiko Epson Corp Light source device and projector
JP2012190628A (en) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd Light source device, and lighting device
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2013134424A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Wavelength converter and light-emitting device using the same
JP2013203822A (en) * 2012-03-28 2013-10-07 Nichia Corp Inorganic molded article for color conversion and method for producing the molded article, and light-emitting device
JP2013232479A (en) * 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device
JP2014179231A (en) * 2013-03-14 2014-09-25 Toshiba Lighting & Technology Corp Light source device and lighting device
JP2014186882A (en) * 2013-03-25 2014-10-02 Ushio Inc Light emitting device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340905A (en) * 1991-05-17 1992-11-27 Tokyo Tokushu Glass Kk Surface reflection mirror
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element
JP2011168627A (en) * 2010-02-16 2011-09-01 National Institute For Materials Science Wavelength converting member, method for manufacturing the same and light-emitting equipment using the same
JP2011198800A (en) * 2010-03-17 2011-10-06 Mitsubishi Chemicals Corp Semiconductor light-emitting element
JP2012008549A (en) * 2010-05-27 2012-01-12 Panasonic Corp Light source device and illuminating device using the same, and image display device
JP2012083695A (en) * 2010-09-16 2012-04-26 Seiko Epson Corp Light source device and projector
JP2012062444A (en) * 2010-09-17 2012-03-29 Covalent Materials Corp Green phosphor
JP2012190628A (en) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd Light source device, and lighting device
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2013134424A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Wavelength converter and light-emitting device using the same
JP2013203822A (en) * 2012-03-28 2013-10-07 Nichia Corp Inorganic molded article for color conversion and method for producing the molded article, and light-emitting device
JP2013232479A (en) * 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device
JP2014179231A (en) * 2013-03-14 2014-09-25 Toshiba Lighting & Technology Corp Light source device and lighting device
JP2014186882A (en) * 2013-03-25 2014-10-02 Ushio Inc Light emitting device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121586A (en) * 2013-12-20 2015-07-02 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method of the same, and light-emitting device for projector
JP2016081054A (en) * 2014-10-13 2016-05-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Optical wavelength-converting device and illumination system using the same
JP2017059396A (en) * 2015-09-16 2017-03-23 ウシオ電機株式会社 Fluorescent light source device and lighting device
JP2017075973A (en) * 2015-10-13 2017-04-20 パナソニックIpマネジメント株式会社 Light source device and projection type image display device
JP2019035981A (en) * 2016-02-04 2019-03-07 パナソニックIpマネジメント株式会社 Phosphor wheel, light source device, projection type video display device, and manufacturing method of phosphor wheel
US9982868B2 (en) 2016-09-21 2018-05-29 Nichia Corporation Phosphor-containing member and light emitting device containing thereof
JP2018097257A (en) * 2016-12-15 2018-06-21 セイコーエプソン株式会社 Lighting device and projector
DE112018001029B4 (en) 2017-02-27 2023-06-29 Panasonic intellectual property Management co., Ltd wavelength conversion element
US11214731B2 (en) 2017-02-27 2022-01-04 Ngk Spark Plug Co., Ltd. Light wavelength conversion member and light emitting device
US11131914B2 (en) 2017-02-27 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member
EP3588151A4 (en) * 2017-02-27 2021-02-17 NGK Spark Plug Co., Ltd. Light wavelength conversion member and light emitting device
JP2018165785A (en) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JPWO2018221042A1 (en) * 2017-05-31 2020-04-02 ソニー株式会社 Light emitting device and method for manufacturing light emitting device
JP2019012160A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Light emitting body and light emitting device
JP7016037B2 (en) 2017-06-30 2022-02-04 パナソニックIpマネジメント株式会社 Light emitter and light emitting device
US10241384B2 (en) 2017-08-03 2019-03-26 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
US10859899B2 (en) 2017-08-03 2020-12-08 Seiko Epson Corporation Wavelength conversion element, method for producing wavelength conversion element, light source device, and projector
WO2019065175A1 (en) * 2017-09-29 2019-04-04 日本特殊陶業株式会社 Optical wavelength converter and composite optical device
CN111133343A (en) * 2017-09-29 2020-05-08 日本特殊陶业株式会社 Optical wavelength conversion device and optical multiplexing device
JP2019066632A (en) * 2017-09-29 2019-04-25 日本特殊陶業株式会社 Light wavelength conversion device and light composite device
KR102470285B1 (en) * 2017-09-29 2022-11-23 니뽄 도쿠슈 도교 가부시키가이샤 Optical wavelength conversion device and optical composite device
KR20200042933A (en) * 2017-09-29 2020-04-24 니뽄 도쿠슈 도교 가부시키가이샤 Optical wavelength conversion device and optical complex device
JP7120745B2 (en) 2017-09-29 2022-08-17 日本特殊陶業株式会社 Optical wavelength conversion device and optical composite device
CN111133343B (en) * 2017-09-29 2022-04-29 日本特殊陶业株式会社 Optical wavelength conversion device and optical multiplexing device
EP3690497A4 (en) * 2017-09-29 2021-06-09 NGK Spark Plug Co., Ltd. Optical wavelength converter and composite optical device
US11316078B2 (en) * 2017-09-29 2022-04-26 Ngk Spark Plug Co., Ltd. Optical wavelength converter and composite optical device
JP2019139205A (en) * 2018-02-09 2019-08-22 パナソニックIpマネジメント株式会社 Phosphor wheel, light source device, and projection type video display device
US10725367B2 (en) 2018-03-20 2020-07-28 Seiko Epson Corporation Wavelength conversion element, method of manufacturing wavelength conversion element, light source device, and projector
CN110716256A (en) * 2018-07-12 2020-01-21 采钰科技股份有限公司 Optical element and method for manufacturing the same
US11231533B2 (en) 2018-07-12 2022-01-25 Visera Technologies Company Limited Optical element having dielectric layers formed by ion-assisted deposition and method for fabricating the same
JP2020013099A (en) * 2018-07-12 2020-01-23 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Optical element and manufacturing method therefor
US11585494B2 (en) 2018-08-20 2023-02-21 Nichia Corporation Fluorescent module and illumination device
US11131433B2 (en) 2018-08-20 2021-09-28 Nichia Corporation Fluorescent module and illumination device
JP7078509B2 (en) 2018-10-04 2022-05-31 デンカ株式会社 Complex, light emitting device and method for manufacturing complex
JP2020059764A (en) * 2018-10-04 2020-04-16 デンカ株式会社 Composite, light-emitting device and production method of composite
CN111123629A (en) * 2018-11-01 2020-05-08 深圳光峰科技股份有限公司 Wavelength conversion device, manufacturing method thereof, light emitting device and projection device
JP2021071598A (en) * 2019-10-31 2021-05-06 日本特殊陶業株式会社 Wavelength conversion member and wavelength conversion device
JP7295778B2 (en) 2019-10-31 2023-06-21 日本特殊陶業株式会社 WAVELENGTH CONVERSION MEMBER AND WAVELENGTH CONVERTER
US11556050B2 (en) 2019-11-28 2023-01-17 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
JP7472558B2 (en) 2020-03-12 2024-04-23 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
CN113934095A (en) * 2020-06-29 2022-01-14 松下知识产权经营株式会社 Wavelength conversion device, projector, and phosphor ceramic member
CN113934095B (en) * 2020-06-29 2024-01-23 松下知识产权经营株式会社 Wavelength conversion device, projector, and phosphor ceramic member

Also Published As

Publication number Publication date
JP6253392B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6253392B2 (en) Light emitting device and light source for projector using the same
US8872208B2 (en) Light source device and lighting device
US10365551B2 (en) Wavelength conversion member including phosphor
TWI696685B (en) Optical wavelength conversion device and optical composite device
JP2012104267A (en) Light source device and lighting system
JP2015050124A (en) Light emitting device
JP2012089316A (en) Light source device, and lighting system
JP6943984B2 (en) Light wavelength converter and light emitting device
JP2012243618A (en) Light source device and lighting device
JP2012079989A (en) Light source device and lighting fixture
US11585494B2 (en) Fluorescent module and illumination device
JP7428869B2 (en) light emitting device
JP5781367B2 (en) Light source device and lighting device
JP7188893B2 (en) Optical wavelength conversion member and optical wavelength conversion device
TWI817246B (en) Fluorescent light-emitting modules and light-emitting devices
US11262046B2 (en) Phosphor element, method for producing same, and lighting device
JP7147138B2 (en) Light-emitting device, lighting device, image display device, and vehicle indicator light
US11635189B2 (en) Phosphor element and lighting device
TWI802898B (en) Phosphor plate, wavelength conversion member, and light source device
WO2023229022A1 (en) Fluorescent body device and light source module
JP6660484B2 (en) Phosphor element and lighting device
JP2022089745A (en) Fluorescent light emitting module and light emitting device
JP2023056465A (en) Phosphor device and light emitting apparatus
JP2012089419A (en) Light source device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250