JP2015118788A - Folding battery - Google Patents

Folding battery Download PDF

Info

Publication number
JP2015118788A
JP2015118788A JP2013260975A JP2013260975A JP2015118788A JP 2015118788 A JP2015118788 A JP 2015118788A JP 2013260975 A JP2013260975 A JP 2013260975A JP 2013260975 A JP2013260975 A JP 2013260975A JP 2015118788 A JP2015118788 A JP 2015118788A
Authority
JP
Japan
Prior art keywords
current collector
electrode current
positive electrode
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013260975A
Other languages
Japanese (ja)
Other versions
JP6020437B2 (en
Inventor
三宅 秀明
Hideaki Miyake
秀明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013260975A priority Critical patent/JP6020437B2/en
Publication of JP2015118788A publication Critical patent/JP2015118788A/en
Application granted granted Critical
Publication of JP6020437B2 publication Critical patent/JP6020437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a folding battery than can be manufactured continuously with higher productivity.SOLUTION: A strip positive electrode collector and strip negative electrode collector form a primary structure where they are superposed while fitting the slits each other and changing up and down alternately. The primary structure forms a secondary structure where they are folded alternately like a bellows, with the position of the slit as the crease. In each region between the positive electrode collector and negative electrode collector of secondary structure, a positive electrode active material layer, a solid electrolyte layer or a separator, and a negative electrode active material layer are laminated in this order from the positive electrode collector side.

Description

本発明は、折り畳み式電池に関する。   The present invention relates to a foldable battery.

近年、自動車、パソコン、携帯電話、及びタブレット端末等の電源として、小型で高性能な電池の開発が求められている。このような電池として、液体の電解質を用いた電解液電池と並んで、固体の電解質を用いた全固体電池の開発が盛んに行われている。   In recent years, there has been a demand for the development of small, high-performance batteries as power sources for automobiles, personal computers, mobile phones, tablet terminals, and the like. As such a battery, along with an electrolyte battery using a liquid electrolyte, an all-solid battery using a solid electrolyte has been actively developed.

全固体電池及び電解液電池は、一般に、正極集電体、正極活物質層、固体電解質層若しくはセパレータ、負極活物質層、及び負極集電体を、この順に積層した単電池の構造を少なくとも一つ有し、任意に、複数の単電池を積層して積層体電池を形成している。   An all-solid battery and an electrolyte battery generally have at least one unit cell structure in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer or separator, a negative electrode active material layer, and a negative electrode current collector are stacked in this order. A plurality of unit cells are optionally stacked to form a stacked body battery.

例えば、特許文献1には、正極集電体と、特定のガラスセラミックス及び正極活物質を含む第一合材層と、固体電解質層と、特定のガラスセラミックス及び負極活物質を含む第二合材層と、負極集電体とを、この順に積層した単電池の構造を有し、この単電池を複数積層した積層体電池の構造を有する電池ユニットが記載されている。   For example, Patent Document 1 discloses that a positive electrode current collector, a first composite material layer containing a specific glass ceramic and a positive electrode active material, a solid electrolyte layer, a second composite material containing a specific glass ceramic and a negative electrode active material. A battery unit having a structure of a unit cell in which a layer and a negative electrode current collector are stacked in this order and a structure of a layered battery in which a plurality of the unit cells are stacked is described.

このような電池の製造においては、一般に、正極と負極とが短絡しないように、これらの層を、正確に位置を合わせて積層する必要があるため、位置合わせ及び積層に時間がかかっている。   In the manufacture of such a battery, it is generally necessary to align and stack these layers so that the positive electrode and the negative electrode are not short-circuited.

特開2010―073544号公報JP 2010-073544 A

本発明は、連続的に製造することができ、より生産性の高い、折り畳み式電池を提供することを目的とする。   An object of the present invention is to provide a foldable battery that can be manufactured continuously and has higher productivity.

本発明は、1つの長辺に、間隔を空けて設けられた複数のスリットを有する、帯状の正極集電体と、1つの長辺に、帯状の正極集電体に設けられた複数のスリットに対応する間隔を空けて設けられた複数のスリットを有する、帯状の負極集電体とを有しており、帯状の正極集電体と、帯状の負極集電体とが、互いのスリットを嵌め合い、上下が交互に交替するように重ねられた一次構造を形成しており、一次構造は、スリットの位置を折り目として交互に蛇腹状に折り畳まれた、二次構造を形成しており、二次構造の正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が、この順に積層されており、かつ正極集電体と、負極集電体とが絶縁されている、折り畳み式電池を提供する。   The present invention relates to a strip-shaped positive electrode current collector having a plurality of slits provided at intervals on one long side, and a plurality of slits provided on a strip-shaped positive electrode current collector on one long side. A strip-shaped negative electrode current collector having a plurality of slits provided at intervals corresponding to each other, and the strip-shaped positive electrode current collector and the strip-shaped negative electrode current collector have mutual slits. Fits and forms a primary structure that is stacked so that the top and bottom alternate with each other, and the primary structure forms a secondary structure that is alternately folded in a bellows shape with the position of the slit as a fold, A positive electrode active material layer, a solid electrolyte layer or a separator, and a negative electrode active material layer are laminated in this order from the positive electrode current collector side in each region generated between the positive electrode current collector and the negative electrode current collector having a secondary structure. And the positive electrode current collector and the negative electrode current collector are insulated, Ri folded to provide a type battery.

本発明によれば、連続的に製造することができ、より生産性の高い、折り畳み式電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the folding type battery which can be manufactured continuously and has higher productivity is provided.

図1は、本発明の折り畳み式電池における、正極集電体及び負極集電体の一次構造を説明するための模式図である。FIG. 1 is a schematic diagram for explaining primary structures of a positive electrode current collector and a negative electrode current collector in a foldable battery of the present invention. 図2は、本発明の折り畳み式電池における、正極集電体及び負極集電体の二次構造を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the secondary structure of the positive electrode current collector and the negative electrode current collector in the foldable battery of the present invention. 図3は、本発明の折り畳み式電池の第一の実施形態を表す模式図である。FIG. 3 is a schematic view showing the first embodiment of the foldable battery of the present invention. 図4は、本発明の折り畳み式電池の第一の実施形態を表す模式図である。FIG. 4 is a schematic diagram showing the first embodiment of the foldable battery of the present invention. 図5は、本発明の折り畳み式電池の第一の実施形態を表す模式図である。FIG. 5 is a schematic diagram showing the first embodiment of the foldable battery of the present invention. 図6は、本発明の折り畳み式電池の第二の実施形態を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a second embodiment of the foldable battery of the present invention.

本発明の折り畳み式電池は、1つの長辺に、間隔を空けて設けられた複数のスリットを有する、帯状の正極集電体と、1つの長辺に、帯状の正極集電体に設けられた複数のスリットに対応する間隔を空けて設けられた複数のスリットを有する、帯状の負極集電体とを有する。帯状の正極集電体と、帯状の負極集電体とは、互いのスリットを嵌め合い、上下が交互に交替するように重ねられた一次構造を形成している。一次構造は、スリットの位置を折り目として交互に蛇腹状に折り畳まれた、二次構造を形成している。二次構造の正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が、この順に積層されており、かつ正極集電体と、負極集電体とが絶縁されている。以下、正極集電体及び負極集電体を総括して電極集電体ということがある。   The foldable battery of the present invention is provided on a strip-like positive electrode current collector having a plurality of slits provided at intervals on one long side, and on a strip-like positive electrode current collector on one long side. And a strip-shaped negative electrode current collector having a plurality of slits provided at intervals corresponding to the plurality of slits. The strip-shaped positive electrode current collector and the strip-shaped negative electrode current collector form a primary structure in which the slits are fitted to each other so that the top and bottom are alternately switched. The primary structure forms a secondary structure that is alternately folded in a bellows shape with the slit positions as folds. A positive electrode active material layer, a solid electrolyte layer or a separator, and a negative electrode active material layer are laminated in this order from the positive electrode current collector side in each region generated between the positive electrode current collector and the negative electrode current collector having a secondary structure. And the positive electrode current collector and the negative electrode current collector are insulated. Hereinafter, the positive electrode current collector and the negative electrode current collector may be collectively referred to as an electrode current collector.

《一次構造》
本発明の折り畳み式電池において、帯状の正極集電体と、帯状の負極集電体とは、互いのスリットを嵌め合い、上下が交互に交替するように重ねられた一次構造を形成している。例えば図1(a)及び(b)に模式的に示すように、1つの長辺に、一定の間隔を空けて設けられた複数のスリット(1s)を有する正極集電体(1)と、1つの長辺に、これに対応する間隔を空けて設けられた複数のスリット(5s)を有する負極集電体(5)とを、図1(c)に示すように、スリット(1s)とこれに対応するスリット(5s)とを嵌め合うようにして、及び上下が交互に交替するようにして重ねて、一次構造(10)を形成することができる。
《Primary structure》
In the foldable battery of the present invention, the strip-shaped positive electrode current collector and the strip-shaped negative electrode current collector form a primary structure in which the slits are fitted to each other so that the top and bottom are alternately alternated. . For example, as schematically shown in FIGS. 1 (a) and 1 (b), a positive electrode current collector (1) having a plurality of slits (1s) provided at a certain interval on one long side; A negative electrode current collector (5) having a plurality of slits (5s) provided on one long side at intervals corresponding thereto, as shown in FIG. 1 (c), a slit (1s) The primary structure (10) can be formed by fitting the corresponding slits (5s) and overlapping the upper and lower sides alternately.

図1においては、5つのスリットを有する電極集電体が描かれているが、これに限定されず、所望の積層数に応じて、任意の数のスリットを設けることができる。   In FIG. 1, an electrode current collector having five slits is illustrated, but the present invention is not limited thereto, and an arbitrary number of slits can be provided depending on the desired number of stacked layers.

なお、一次構造は、本発明の折り畳み式電池の構造を説明するためのものであって、製造方法を特定するものではない。   The primary structure is for explaining the structure of the foldable battery of the present invention, and does not specify a manufacturing method.

《二次構造》
本発明の折り畳み式電池において、一次構造は、スリットの位置を折り目として交互に蛇腹状に折り畳まれた、二次構造を形成している。例えば図2(a)に模式的に示すように、一次構造(10)を、スリットの位置で、すなわち図面上の山折り線(11)、及び谷折り線(12)の位置で、山折りと谷折りとを繰り返し、蛇腹状に折り畳むことによって、図2(b)に示すような二次構造(20)を形成することができる。
《Secondary structure》
In the foldable battery of the present invention, the primary structure forms a secondary structure that is alternately folded into a bellows shape with the position of the slit as a fold. For example, as schematically shown in FIG. 2 (a), the primary structure (10) is formed into a mountain fold and a valley at the position of the slit, that is, at the position of the mountain fold line (11) and the valley fold line (12) on the drawing. A secondary structure (20) as shown in FIG. 2 (b) can be formed by repeating the folding and folding it into a bellows shape.

本発明の折り畳み式電池は、二次構造を形成している正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が、この順に積層されている。   The foldable battery of the present invention includes a positive electrode active material layer, a solid electrolyte layer, or a separator in each region generated between a positive electrode current collector and a negative electrode current collector forming a secondary structure from the positive electrode current collector side. And the negative electrode active material layer are laminated in this order.

より具体的には、例えば図2(b)のA―A断面を示す図2(c)に示すように、二次構造においては、図面の上から順に正極集電体と負極集電体とに挟まれた領域(21a)、及び上から順に負極集電体と正極集電体とに挟まれた領域(21b)が複数存在することとなる。   More specifically, for example, as shown in FIG. 2 (c) showing a cross section AA of FIG. 2 (b), in the secondary structure, the positive electrode current collector and the negative electrode current collector are sequentially arranged from the top of the drawing. There are a plurality of regions (21a) sandwiched between the negative electrode current collector and the positive electrode current collector in that order from above.

また、図2(b)のA’―A’断面を示す図2(d)に示すように、二次構造においては、図面の上から順に正極集電体と負極集電体とに挟まれた領域(21a)、及び上から順に負極集電体と正極集電体とに挟まれた領域(21b)が複数存在することとなる。   Further, as shown in FIG. 2 (d) showing the A′-A ′ cross section of FIG. 2 (b), the secondary structure is sandwiched between the positive electrode current collector and the negative electrode current collector in order from the top of the drawing. A plurality of regions (21b) sandwiched between the negative electrode current collector and the positive electrode current collector in this order from the top.

二次構造は、このような正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が、この順に積層されていることによって、単電池の構造を少なくとも一つ有することができる。   The secondary structure has a positive electrode active material layer, a solid electrolyte layer or a separator, and a negative electrode active material layer in each region generated between the positive electrode current collector and the negative electrode current collector, from the positive electrode current collector side. By stacking in this order, at least one unit cell structure can be provided.

一次構造を形成する前に、任意の数の正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層を、予め正極集電体上、及び/又は負極集電体上に形成しておくことによって、正極集電体及び負極集電体を組み合わせて折り畳んだ後に、正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が、この順に積層されるようにすることができる。   Before forming the primary structure, an arbitrary number of positive electrode active material layers, solid electrolyte layers or separators, and negative electrode active material layers are previously formed on the positive electrode current collector and / or the negative electrode current collector. Thus, after the positive electrode current collector and the negative electrode current collector are combined and folded, each region generated between the positive electrode current collector and the negative electrode current collector is provided with a positive electrode active material layer, a solid electrolyte from the positive electrode current collector side. The layer or separator and the negative electrode active material layer can be laminated in this order.

なお、二次構造は、一次構造と同様に、本発明の折り畳み式電池の構造を説明するためのものであって、製造方法を特定するものではない。   The secondary structure is for explaining the structure of the foldable battery of the present invention, as in the case of the primary structure, and does not specify the manufacturing method.

《絶縁》
本発明の折り畳み式電池は、正極集電体と負極集電体とが絶縁されている。絶縁の方法としては、正極集電体と負極集電体とが電気的に切断されていれば特に限定されない。例えば、正極集電体と負極集電体とを、間隔を空けて離すことにより、絶縁することができる。
<Insulation>
In the foldable battery of the present invention, the positive electrode current collector and the negative electrode current collector are insulated. The insulating method is not particularly limited as long as the positive electrode current collector and the negative electrode current collector are electrically disconnected. For example, the positive electrode current collector and the negative electrode current collector can be insulated by being spaced apart from each other.

また、正極集電体と負極集電体との間の領域のうち、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が積層されていない領域の少なくとも一部、例えば少なくともスリットの縁部に、絶縁部材を設けることによって、正極集電体と負極集電体とを絶縁することができる。   In addition, at least a part of a region where the positive electrode active material layer, the solid electrolyte layer or the separator, and the negative electrode active material layer are not stacked among the regions between the positive electrode current collector and the negative electrode current collector, for example, at least slits. By providing an insulating member at the edge, the positive electrode current collector and the negative electrode current collector can be insulated.

絶縁部材としては、電気絶縁性を有する任意の材料とすることができ、例えば、限定されないが、ポリエチレンテレフタラート(PET)、ポリアミド、ポリ塩化ビニル、合成ゴム、ポリエステル、エポキシ、及びシリコーン等の樹脂材料を挙げることができる。絶縁部材の形態としては、限定されないが、例えば、フィルム、シート、又はコーティングとして適用することができる。   The insulating member can be any material having electrical insulation properties, such as, but not limited to, resins such as polyethylene terephthalate (PET), polyamide, polyvinyl chloride, synthetic rubber, polyester, epoxy, and silicone. Materials can be mentioned. Although it does not limit as a form of an insulating member, For example, it can apply as a film, a sheet | seat, or coating.

本発明において、固体電解質の代わりにセパレータを用いる場合、セパレータを上記の絶縁部材として使用することもできる。   In the present invention, when a separator is used instead of the solid electrolyte, the separator can be used as the insulating member.

《各構成要素》
以下では、本発明の折り畳み式電池を構成する各構成要素について説明する。
<Each component>
Below, each component which comprises the foldable battery of this invention is demonstrated.

〈正極集電体及び負極集電体〉
正極集電体及び負極集電体は、一般に、それぞれ正極活物質層及び負極活物質層からの集電を行う機能を有する。
<Positive electrode current collector and negative electrode current collector>
The positive electrode current collector and the negative electrode current collector generally have a function of collecting current from the positive electrode active material layer and the negative electrode active material layer, respectively.

電極集電体の形態としては、帯状、換言すればバンド状、又はテープ状等であって、折り畳む際に屈曲することができれば特に限定されず、例えば箔状、メッシュ状、及び多孔質体等であってもよい。   The shape of the electrode current collector is not particularly limited as long as it can be bent when folded, such as a band shape, in other words, a band shape, or a tape shape. For example, a foil shape, a mesh shape, a porous body, and the like It may be.

電極集電体の幅、すなわち一方の長辺と他方の長辺との距離は、製造される電池の大きさに合わせて、任意に設定することができ、正極集電体の幅と負極集電体の幅とが異なっても良く、同程度であってもよい。また、電極集電体の幅は、製造される電池の設計に合わせて、一定であってもよく、部分的に異なっていてもよい。   The width of the electrode current collector, that is, the distance between one long side and the other long side can be arbitrarily set according to the size of the battery to be manufactured. The width of the electric body may be different or the same. Further, the width of the electrode current collector may be constant or partially different in accordance with the design of the battery to be manufactured.

電極集電体の材料としては、例えばステンレス鋼、Al、Cu、Cr、Au、Pt、Fe、Ti、及びZn等の金属又は合金を挙げることができる。   Examples of the material for the electrode current collector include metals or alloys such as stainless steel, Al, Cu, Cr, Au, Pt, Fe, Ti, and Zn.

本発明における正極集電体は、その1つの長辺に、間隔を空けて設けられた複数のスリットを有する。また、本発明における負極集電体は、その1つの長辺に、上記の正極集電体に設けられた複数のスリットに対応する間隔を空けて設けられた、複数のスリットを有する。   The positive electrode current collector in the present invention has a plurality of slits provided at intervals on one long side thereof. Moreover, the negative electrode current collector in the present invention has a plurality of slits provided on one long side thereof at intervals corresponding to the plurality of slits provided in the positive electrode current collector.

スリットとは、電極集電体の一方の長辺から他方の長辺に向かって延在する、切れ目、又は隙間等とすることができる。   The slit can be a cut or gap extending from one long side of the electrode current collector to the other long side.

スリットの長さ、すなわちスリットの解放端から収束端までの距離の上限は、電極集電体を分断することが無ければ、任意の長さとすることができる。   The upper limit of the length of the slit, that is, the distance from the open end of the slit to the convergence end, can be set to an arbitrary length as long as the electrode current collector is not divided.

スリットの長さの下限は、正極集電体と負極集電体とを組み合わせて一次構造を形成することができれば、任意の長さとすることができる。スリットの長さの下限は、正極集電体のスリットの長さと、これに対応する負極集電体のスリットの長さとの合計が、正極集電体又は負極集電体のうち、より幅の狭い電極集電体の幅以上にすることが好ましく、これによって、一次構造において、正極集電体と負極集電体との重ね合わせを促進することができる。   The lower limit of the slit length can be set to any length as long as the primary structure can be formed by combining the positive electrode current collector and the negative electrode current collector. The lower limit of the slit length is that the total length of the slit length of the positive electrode current collector and the corresponding slit length of the negative electrode current collector is larger than the positive electrode current collector or the negative electrode current collector. It is preferable that the width be equal to or greater than the width of the narrow electrode current collector, whereby the superposition of the positive electrode current collector and the negative electrode current collector can be promoted in the primary structure.

スリットの形状は、限定されないが、例えば線形状、長方形状、三角形状、円形状、楕円形状、及びこれらの組合せが挙げられる。任意に、スリットの解放端側の幅を、収束端側の幅より広くすることにより、対極の電極集電体との嵌め合い、及び位置合わせがより容易となる。   The shape of the slit is not limited, and examples thereof include a linear shape, a rectangular shape, a triangular shape, a circular shape, an elliptical shape, and combinations thereof. Optionally, by making the width on the open end side of the slit wider than the width on the converging end side, the fitting and alignment with the counter electrode current collector becomes easier.

スリットとスリットとの間隔は、製造される電池の大きさに対応するため、所望とする電池の大きさに合わせて、任意に設定することができる。間隔は、一定の間隔であってもよく、一定の間隔でなくてもよく、例えば、二種類の間隔を交互に繰り返してもよい。   Since the interval between the slits corresponds to the size of the battery to be manufactured, it can be arbitrarily set according to the desired size of the battery. The interval may be a fixed interval or may not be a fixed interval. For example, two types of intervals may be alternately repeated.

スリットを形成する方法としては、最終的に上記の間隔及び形状を形成することができれば特に限定されず、例えば、刃、レーザー、又は超音波等による切断、研磨、切削、又は打ち抜き等が挙げられる。   The method of forming the slit is not particularly limited as long as the above-mentioned interval and shape can be finally formed, and examples thereof include cutting with a blade, laser, or ultrasonic wave, polishing, cutting, or punching. .

〈正極活物質層〉
正極活物質層は、正極活物質を含み、任意に、これに加えて固体電解質、導電助剤、バインダー等の添加物を含む。正極活物質は、リチウム、ナトリウム、カルシウム等のイオンを、放電の際に吸蔵し、任意に充電の際に放出することができる任意の材料とすることができる。
<Positive electrode active material layer>
The positive electrode active material layer includes a positive electrode active material, and optionally includes additives such as a solid electrolyte, a conductive additive, and a binder. The positive electrode active material can be any material that can occlude ions such as lithium, sodium, and calcium during discharge and can optionally release ions during charge.

例えば、リチウムイオン電池の場合、正極活物質としては、限定されないが、例えばLiNi1/3Mn1/3Co1/32、LiCoO2、及びLiNiO2等のリチウム金属酸化物、又はLiFePO4、LiMnPO4、LiNiPO4、及びLiCoPO4等のリン酸金属リチウム等が挙げられる。 For example, in the case of a lithium ion battery, the positive electrode active material is not limited. For example, lithium metal oxides such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiCoO 2 , and LiNiO 2 , or LiFePO 4 Lithium metal phosphate such as LiMnPO 4 , LiNiPO 4 , and LiCoPO 4 .

正極活物質層の形成は、例えば、正極活物質、固体電解質等の材料を分散媒中に混合及び分散させてスラリーを作り、得られたスラリーを基材上に塗布して乾燥させることによって形成することができる。   The positive electrode active material layer is formed, for example, by mixing and dispersing materials such as a positive electrode active material and a solid electrolyte in a dispersion medium to form a slurry, and applying and drying the obtained slurry on a substrate. can do.

〈固体電解質層〉
固体電解質層は、固体電解質を含み、任意に、これに加えてバインダー等の添加剤を含む。固体電解質は、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温、例えば15℃〜25℃において固体である任意の材料とすることができる。
<Solid electrolyte layer>
The solid electrolyte layer includes a solid electrolyte, and optionally includes additives such as a binder in addition to the solid electrolyte. The solid electrolyte has an ion conductivity such as lithium, sodium, and calcium, and can be any material that is solid at room temperature, for example, 15 ° C. to 25 ° C.

例えば、リチウムイオン電池の場合、LiS−P、Li2S−P23、Li2S−P23−P25、LiI−Li2S−P25、及びLiI−Li2S−P25等の硫化物固体電解質、並びにLi2O−B23−P25、Li2O−SiO2、Li5La3Ta212、Li7La3Zr212、及びLi6BaLa2Ta212等の酸化物固体電解質が挙げられる。 For example, in the case of a lithium ion battery, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 3 , Li 2 S—P 2 S 3 —P 2 S 5 , LiI—Li 2 S—P 2 S 5 And sulfide solid electrolytes such as LiI-Li 2 S—P 2 S 5 , and Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 5 La 3 Ta 2 O 12 , Examples thereof include solid oxide electrolytes such as Li 7 La 3 Zr 2 O 12 and Li 6 BaLa 2 Ta 2 O 12 .

固体電解質層の形成は、正極活物質における説明と同様に行うことができる。   The formation of the solid electrolyte layer can be performed in the same manner as described for the positive electrode active material.

〈セパレータ〉
任意に、固体電解質層の代わりにセパレータを用いることができる。セパレータは、正極活物質層と負極活物質層との間に設けられ、一般に、正極活物質層と負極活物質層との接触を防止する機能を有する。
<Separator>
Optionally, a separator can be used in place of the solid electrolyte layer. The separator is provided between the positive electrode active material layer and the negative electrode active material layer, and generally has a function of preventing contact between the positive electrode active material layer and the negative electrode active material layer.

セパレータの材料としては、例えばポリエチレン、ポリプロピレン、ポリエステル、セルロース、及びポリアミド等の樹脂、及びこれらの組合せを挙げることができる。セパレータの形態としては、限定されないが、不織布、又は多孔質体等とすることができる。   Examples of the material for the separator include resins such as polyethylene, polypropylene, polyester, cellulose, and polyamide, and combinations thereof. Although it does not limit as a form of a separator, It can be set as a nonwoven fabric or a porous body.

本発明において、固体電解質層の代わりにセパレータを用いる場合、折り畳み式電池を形成する任意の工程中に、又は折り畳み式電池を形成した後に、電解液を注入することができる。電解液としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温、例えば15℃〜25℃において液体であれば、任意の材料とすることができる。   In the present invention, when a separator is used instead of the solid electrolyte layer, the electrolytic solution can be injected during an optional step of forming the folding battery or after forming the folding battery. As the electrolytic solution, any material can be used as long as it has ion conductivity such as lithium, sodium, calcium, etc. and is liquid at room temperature, for example, 15 ° C. to 25 ° C.

〈負極活物質層〉
負極活物質層は、負極活物質を含み、任意に、これに加えて固体電解質、導電助剤、バインダー等の添加物を含む。負極活物質は、リチウム、ナトリウム、カルシウム等のイオンを、放電の際に放出し、任意に充電の際に吸蔵することができる任意の材料とすることができる。
<Negative electrode active material layer>
The negative electrode active material layer includes a negative electrode active material, and optionally includes additives such as a solid electrolyte, a conductive additive, and a binder. The negative electrode active material can be any material that can release ions such as lithium, sodium, and calcium during discharge and can optionally be occluded during charging.

リチウムイオン電池の場合、負極活物質としては、限定されないが、例えば黒鉛(グラファイト)、及びハードカーボン等の炭素材料、In、Al、Si等の金属材料、SiO、Li4Ti512等の金属酸化物材料を挙げることができる。 In the case of a lithium ion battery, the negative electrode active material is not limited. For example, graphite (graphite), carbon materials such as hard carbon, metal materials such as In, Al, Si, SiO, Li 4 Ti 5 O 12 and the like Mention may be made of metal oxide materials.

負極活物質の形成は、正極活物質における説明と同様に行うことができる。   The negative electrode active material can be formed in the same manner as described for the positive electrode active material.

〈他の構成要素〉
二次構造は、任意に、電極集電体と外部とを電気的に接続する電極タブ、又は電池ケース等の他の構成要素を有することができる。電池ケースの形態としては、特に限定されないが、例えば円筒型、角型、コイン型、及びラミネート型等が挙げられる。
<Other components>
The secondary structure can optionally have other components such as an electrode tab that electrically connects the electrode current collector to the outside, or a battery case. Although it does not specifically limit as a form of a battery case, For example, a cylindrical shape, a square shape, a coin shape, a laminate type etc. are mentioned.

《実施形態》
以下、図3〜6を参照しながら、本発明を更に具体的に説明するが、本発明は、以下の実施形態に限定されるものではない。
<Embodiment>
Hereinafter, the present invention will be described more specifically with reference to FIGS. 3 to 6, but the present invention is not limited to the following embodiments.

〈実施形態1〉
本発明の第一の実施形態において、図3(a)及び(c)に示すように、1つの長辺に、所定の間隔を空けて複数のスリット(1s)を有する帯状の正極集電体(1)の両面に対して、スリットとスリットとの間に正極活物質層(2)を形成することができる。
<Embodiment 1>
In the first embodiment of the present invention, as shown in FIGS. 3 (a) and 3 (c), a strip-shaped positive electrode current collector having a plurality of slits (1s) at a predetermined interval on one long side. A positive electrode active material layer (2) can be formed between the slits on both sides of (1).

また、図3(b)及び(c)に示すように、正極集電体(1)の複数のスリットに対応する間隔を空けて設けられた複数のスリット(5s)を有する負極集電体(5)の両面に対して、スリットとスリットとの間に、負極活物質層(4)、及び固体電解質層(3)を、この順に形成することができる。更に、負極集電体(5)の縁部、及びスリットの縁部に絶縁部材(6)を設けることができる。また、折り畳む際に折り目となる部分に開口部(7)を設けて負極集電体(5)を露出させることにより、折り畳んだ後に開口部(7)から集電を行うことができるようにしてもよい。   Moreover, as shown in FIGS. 3B and 3C, a negative electrode current collector having a plurality of slits (5 s) provided at intervals corresponding to the plurality of slits of the positive electrode current collector (1) ( On both surfaces of 5), the negative electrode active material layer (4) and the solid electrolyte layer (3) can be formed in this order between the slits. Furthermore, an insulating member (6) can be provided at the edge of the negative electrode current collector (5) and the edge of the slit. In addition, an opening (7) is provided in a portion that becomes a fold when folding, and the negative electrode current collector (5) is exposed so that current can be collected from the opening (7) after folding. Also good.

これらの正極集電体、及び負極集電体を、互いのスリットを嵌め合い、かつ上下が交互に交替するように重ることによって、図4に示すように、一次構造(10)を形成することができる。   The positive electrode current collector and the negative electrode current collector are overlapped with each other so that the slits are fitted to each other and the top and bottom are alternately changed to form a primary structure (10) as shown in FIG. be able to.

一次構造(10)を、図4に示すように、スリットの位置、すなわち山折り線(11)、及び谷折り線(12)の位置を折り目として、交互に蛇腹状に折り畳むことによって、図5に示すような二次構造(20)を形成することができる。この二次構造は、図5(a)のD―D断面を表す図5(b)に示すように、正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層、及び負極活物質層が、この順に積層され、かつ正極集電体と負極集電体とが絶縁部材(6)で絶縁された構造を有することができる。   As shown in FIG. 4, the primary structure (10) is alternately folded in a bellows shape with the positions of the slits, that is, the positions of the mountain fold line (11) and the valley fold line (12), as shown in FIG. A secondary structure (20) as shown in FIG. As shown in FIG. 5 (b) showing a DD cross section of FIG. 5 (a), this secondary structure is formed in each region generated between the positive electrode current collector and the negative electrode current collector. The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer can be laminated in this order, and the positive electrode current collector and the negative electrode current collector can be insulated by the insulating member (6). .

二次構造(20)に、任意に電極タブ、及び電池ケース等の他の構成要素を備えることによって、本発明の折り畳み式電池を製造することができる。   The foldable battery of the present invention can be manufactured by optionally providing the secondary structure (20) with other components such as an electrode tab and a battery case.

〈実施形態2〉
本発明の第二の実施形態は、図6に示すように、負極集電体(5)の両面に対して、スリットとスリットとの間に負極活物質層(4)を形成し、負極集電体の両面をセパレータ(8)で覆うこと以外は、第一の実施形態と同様に行うことができる。また、折り畳む際に折り目となる部分に開口部(7)を設けて負極集電体(5)を露出させることにより、折り畳んだ後に開口部(7)から集電を行うことができるようにしてもよい。
<Embodiment 2>
In the second embodiment of the present invention, as shown in FIG. 6, the negative electrode active material layer (4) is formed between the slits on both sides of the negative electrode current collector (5), and the negative electrode current collector is formed. It can be performed in the same manner as in the first embodiment except that both surfaces of the electric body are covered with the separator (8). In addition, an opening (7) is provided in a portion that becomes a fold when folding, and the negative electrode current collector (5) is exposed so that current can be collected from the opening (7) after folding. Also good.

実施形態1及び2に示した本発明の折り畳み式電池は、上記のような構成を有することによって連続的に製造することができ、生産性が高い。   The foldable battery of the present invention shown in Embodiments 1 and 2 can be continuously manufactured by having the above-described configuration, and has high productivity.

1 正極集電体
1s スリット
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 負極集電体
5s スリット
6 絶縁部材
7 開口部
8 セパレータ
10 一次構造
11 山折り線
12 谷折り線
20 二次構造
21a、21b 正極集電体と負極集電体との間の領域
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 1s Slit 2 Positive electrode active material layer 3 Solid electrolyte layer 4 Negative electrode active material layer 5 Negative electrode collector 5s Slit 6 Insulation member 7 Opening part 8 Separator 10 Primary structure 11 Mountain fold line 12 Valley fold line 20 Secondary Structure 21a, 21b Area between the positive electrode current collector and the negative electrode current collector

Claims (2)

1つの長辺に、間隔を空けて設けられた複数のスリットを有する、帯状の正極集電体と、
1つの長辺に、前記帯状の正極集電体に設けられた複数のスリットに対応する間隔を空けて設けられた複数のスリットを有する、帯状の負極集電体と、
を有しており、
前記帯状の正極集電体と、前記帯状の負極集電体とが、互いのスリットを嵌め合い、上下が交互に交替するように重ねられた一次構造を形成しており、
前記一次構造は、スリットの位置を折り目として交互に蛇腹状に折り畳まれた、二次構造を形成しており、
前記二次構造の正極集電体と負極集電体との間に生ずる各領域に、正極集電体側から、正極活物質層、固体電解質層若しくはセパレータ、及び負極活物質層が、この順に積層されており、かつ
前記正極集電体と、前記負極集電体とが絶縁されている、
折り畳み式電池。
A strip-shaped positive electrode current collector having a plurality of slits provided at intervals on one long side;
On one long side, a strip-shaped negative electrode current collector having a plurality of slits provided at intervals corresponding to the plurality of slits provided on the strip-shaped positive electrode current collector,
Have
The belt-like positive electrode current collector and the belt-like negative electrode current collector form a primary structure in which the slits are fitted to each other so that the top and bottom are alternately alternated,
The primary structure forms a secondary structure that is alternately folded in a bellows shape with the position of the slit as a fold.
A positive electrode active material layer, a solid electrolyte layer or a separator, and a negative electrode active material layer are laminated in this order from the positive electrode current collector side in each region generated between the positive electrode current collector and the negative electrode current collector of the secondary structure. And the positive electrode current collector and the negative electrode current collector are insulated,
Foldable battery.
前記正極集電体と、前記負極集電体とが、絶縁部材によって絶縁されている、請求項1に記載の折り畳み式電池。   The foldable battery according to claim 1, wherein the positive electrode current collector and the negative electrode current collector are insulated by an insulating member.
JP2013260975A 2013-12-18 2013-12-18 Folding battery Active JP6020437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260975A JP6020437B2 (en) 2013-12-18 2013-12-18 Folding battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260975A JP6020437B2 (en) 2013-12-18 2013-12-18 Folding battery

Publications (2)

Publication Number Publication Date
JP2015118788A true JP2015118788A (en) 2015-06-25
JP6020437B2 JP6020437B2 (en) 2016-11-02

Family

ID=53531372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260975A Active JP6020437B2 (en) 2013-12-18 2013-12-18 Folding battery

Country Status (1)

Country Link
JP (1) JP6020437B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018663A (en) * 2016-07-27 2018-02-01 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing the same
JP2019075293A (en) * 2017-10-17 2019-05-16 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing electrochemical cell
JP2020126769A (en) * 2019-02-05 2020-08-20 本田技研工業株式会社 Secondary battery
CN111864257A (en) * 2019-04-24 2020-10-30 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
CN111864274A (en) * 2019-04-24 2020-10-30 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
WO2021006161A1 (en) * 2019-07-11 2021-01-14 株式会社村田製作所 Secondary battery
DE102020108778A1 (en) 2020-03-30 2021-09-30 Monbat New Power GmbH Lithium-ion accumulator and method for producing a lithium-ion accumulator
WO2021210286A1 (en) * 2020-04-15 2021-10-21 パナソニックIpマネジメント株式会社 Battery and laminated battery
CN114156529A (en) * 2021-12-03 2022-03-08 珠海冠宇电池股份有限公司 Battery pack
CN114188503A (en) * 2021-12-03 2022-03-15 珠海冠宇电池股份有限公司 Battery pack
WO2024046190A1 (en) * 2022-09-02 2024-03-07 华为技术有限公司 Bare cell, cell, battery and electronic device
CN111864257B (en) * 2019-04-24 2024-06-25 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203539A (en) * 1994-12-13 1996-08-09 Pioneer Electron Corp Laminated type battery
WO1998038688A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous secondary battery and method for manufacturing the same
WO2011093164A1 (en) * 2010-01-29 2011-08-04 Jsr株式会社 Electrochemical device
JP2013222602A (en) * 2012-04-17 2013-10-28 Denso Corp Method for manufacturing laminated type cell and laminated electrode body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203539A (en) * 1994-12-13 1996-08-09 Pioneer Electron Corp Laminated type battery
WO1998038688A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous secondary battery and method for manufacturing the same
WO2011093164A1 (en) * 2010-01-29 2011-08-04 Jsr株式会社 Electrochemical device
JP2013222602A (en) * 2012-04-17 2013-10-28 Denso Corp Method for manufacturing laminated type cell and laminated electrode body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018663A (en) * 2016-07-27 2018-02-01 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing the same
JP2019075293A (en) * 2017-10-17 2019-05-16 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing electrochemical cell
JP2020126769A (en) * 2019-02-05 2020-08-20 本田技研工業株式会社 Secondary battery
JP7253399B2 (en) 2019-02-05 2023-04-06 本田技研工業株式会社 secondary battery
JP7220617B2 (en) 2019-04-24 2023-02-10 本田技研工業株式会社 ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
CN111864274A (en) * 2019-04-24 2020-10-30 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
JP2020181669A (en) * 2019-04-24 2020-11-05 本田技研工業株式会社 All-solid battery and manufacturing method thereof
JP2020181668A (en) * 2019-04-24 2020-11-05 本田技研工業株式会社 All-solid battery and manufacturing method thereof
CN111864257B (en) * 2019-04-24 2024-06-25 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
CN111864274B (en) * 2019-04-24 2023-10-24 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
CN111864257A (en) * 2019-04-24 2020-10-30 本田技研工业株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
JP7061588B2 (en) 2019-04-24 2022-04-28 本田技研工業株式会社 Manufacturing method of all-solid-state battery and all-solid-state battery
US11431030B2 (en) 2019-04-24 2022-08-30 Honda Motor Co., Ltd. Solid state battery and solid state battery manufacturing method
US11545699B2 (en) * 2019-04-24 2023-01-03 Honda Motor Co., Ltd. Solid state battery and solid state battery manufacturing method
WO2021006161A1 (en) * 2019-07-11 2021-01-14 株式会社村田製作所 Secondary battery
DE102020108778A1 (en) 2020-03-30 2021-09-30 Monbat New Power GmbH Lithium-ion accumulator and method for producing a lithium-ion accumulator
WO2021210286A1 (en) * 2020-04-15 2021-10-21 パナソニックIpマネジメント株式会社 Battery and laminated battery
CN114188503A (en) * 2021-12-03 2022-03-15 珠海冠宇电池股份有限公司 Battery pack
CN114156529A (en) * 2021-12-03 2022-03-08 珠海冠宇电池股份有限公司 Battery pack
WO2024046190A1 (en) * 2022-09-02 2024-03-07 华为技术有限公司 Bare cell, cell, battery and electronic device

Also Published As

Publication number Publication date
JP6020437B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6020437B2 (en) Folding battery
JP6027136B2 (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
JP6884459B2 (en) Electrode assembly and secondary battery equipped with it
JP6183348B2 (en) Electrode body and method for producing electrode body
WO2015147066A1 (en) Multilayer battery and manufacturing method therefor
JP2007329050A (en) Sheet type battery and its manufacturing method
WO2013054593A1 (en) Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery
JP2017069207A (en) Lithium ion secondary battery and manufacturing method for the same
JP2015050153A (en) Laminate for all-solid state battery
JP5686076B2 (en) Method for producing lithium ion secondary battery
JP7021057B2 (en) Secondary battery and comb-shaped electrode
CN103490089A (en) Electrode subassembly, preparation method thereof and lithium secondary battery
JPWO2012124188A1 (en) Non-aqueous secondary battery electrode, manufacturing method thereof, and non-aqueous secondary battery
CN110178247A (en) The manufacturing method of charge storage element electrode, charge storage element and charge storage element electrode
JP2013182677A (en) Laminate type power storage device
JP2012054003A (en) Lithium ion battery
JP2011096550A (en) Solid battery, and manufacturing method of solid battery
JP2010135361A (en) Negative electrode, lithium ion capacitor, and manufacturing method of them
JP5761439B2 (en) Non-aqueous electrolyte secondary battery and storage circuit using the same
JP6674885B2 (en) Secondary battery and method of manufacturing secondary battery
JP7077000B2 (en) How to make an electrode stack for a battery cell, and a battery cell
CN106170883B (en) Platypelloid type secondary cell
KR101090684B1 (en) Electrode assembly for battery and manufacturing thereof
JP2017162775A (en) Electrochemical cell and manufacturing method of electrochemical cell
JP2013097907A (en) Solid state battery and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6020437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151