WO2013054593A1 - Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery - Google Patents

Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery Download PDF

Info

Publication number
WO2013054593A1
WO2013054593A1 PCT/JP2012/071036 JP2012071036W WO2013054593A1 WO 2013054593 A1 WO2013054593 A1 WO 2013054593A1 JP 2012071036 W JP2012071036 W JP 2012071036W WO 2013054593 A1 WO2013054593 A1 WO 2013054593A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sheet
cutting blade
cutting
width
Prior art date
Application number
PCT/JP2012/071036
Other languages
French (fr)
Japanese (ja)
Inventor
鞍懸淳
山道裕司
阿部敏浩
黒石知樹
有吉英朗
Original Assignee
日立マクセルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセルエナジー株式会社 filed Critical 日立マクセルエナジー株式会社
Priority to JP2013538467A priority Critical patent/JP5768137B2/en
Publication of WO2013054593A1 publication Critical patent/WO2013054593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a sheet-like electrode. Moreover, this invention relates to the lithium ion secondary battery provided with the sheet-like electrode manufactured using the said manufacturing method, and the said sheet-like electrode.
  • Non-aqueous electrolyte batteries represented by lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. With higher performance of portable devices, further increase in capacity of lithium ion secondary batteries is being promoted. In order to further improve the energy density, a laminated lithium ion sheathed with a flexible laminate sheet in which a metal foil such as an aluminum foil is used as a core material and a heat-fusible resin film is laminated as an adhesive layer on its inner surface Secondary batteries are often used.
  • Patent Document 1 As an electrode laminated body incorporated in a laminated lithium ion secondary battery, for example, a sheet-like positive electrode housed in a bag-like separator and a sheet-like negative electrode are alternately stacked (Patent Document 1). And a separator in which a separator is folded in a zigzag manner, and sheet-like positive electrodes and sheet-like negative electrodes are alternately stacked via separators (see Patent Document 2).
  • the sheet-like electrodes of the positive electrode and the negative electrode used in these electrode laminates are generally a rectangular electrode portion in which an electrode mixture layer containing an active material is applied to a metal foil as a current collector, and the rectangular shape. And a tab portion that protrudes from one side of the electrode portion and is not coated with an electrode mixture layer.
  • an electrode base material in which an electrode mixture layer is intermittently applied to a strip-shaped current collector is punched at once with a die having a cutting blade shape that matches the shape of the desired sheet-like electrode.
  • JP 7-302616 A WO 06/120959 pamphlet JP 2002-231230 A
  • a laminate-type lithium ion secondary battery has an advantage that it is excellent in the degree of freedom of size change according to the shape of the device in which it is built.
  • a mold for punching the sheet-like electrode is prepared in advance for each size of the sheet-like electrode, and production is attempted. It is necessary to exchange the mold every time the size of the sheet electrode to be changed. This leads to an increase in cost due to creation and storage of various types of molds, and a reduction in work efficiency and productivity due to mold replacement. This problem becomes more serious as the number of types of sheet electrode sizes increases. Therefore, it is actually difficult to produce a variety of sheet-like electrodes.
  • the present invention solves the above-described conventional problems, and can use the same cutting blade to efficiently manufacture sheet-shaped electrodes having different sizes at low cost, and a universal sheet-shaped electrode manufacturing method.
  • the purpose is to provide.
  • Another object of the present invention is to provide an inexpensive sheet electrode and a lithium ion secondary battery.
  • a long electrode base material in which an electrode mixture layer containing an active material is intermittently formed on at least one surface of a belt-like current collector in the longitudinal direction of the current collector.
  • a sheet-like shape having a substantially rectangular electrode portion that is cut and formed with the electrode mixture layer, and a tab portion that includes a region that protrudes from one side of the electrode portion and is not formed with the electrode mixture layer
  • An electrode is manufactured.
  • the manufacturing method includes the step of forming the tab portion of the sheet-like electrode and the first side from which the tab portion protrudes using a first cutting blade having a cuttable width longer than the width of the electrode base material. Forming a second side opposite to the first side of the sheet-like electrode using a second cutting blade having a cuttable width longer than the width of the electrode base material.
  • the sheet-like electrode of the present invention is produced using the above-described method for producing a sheet-like electrode.
  • the lithium ion secondary battery of the present invention includes the sheet-like electrode.
  • the electrode substrate is cut using the first cutting blade and the second cutting blade having a cuttable width longer than the width of the electrode substrate. Accordingly, by appropriately changing the positions of the first cutting blade and the second cutting blade in the width direction and the longitudinal direction with respect to the electrode substrate, sheet-like electrodes having different sizes using the same first cutting blade and second cutting blade can be obtained. Can be manufactured. As a result, many types of sheet-like electrodes having different sizes can be efficiently manufactured at low cost.
  • an inexpensive sheet electrode and a lithium ion secondary battery can be realized.
  • FIG. 1 is a plan view of a sheet-like electrode according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of an electrode base material for manufacturing the sheet electrode according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a cutting position by the first cutting blade and the second cutting blade with respect to the electrode base material in the sheet-like electrode manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 4A is a plan view of an electrode substrate piece obtained by cutting an electrode substrate with a first cutting blade and a second cutting blade in the method for manufacturing a sheet-like electrode according to Embodiment 1 of the present invention.
  • FIG. 1 is a plan view of a sheet-like electrode according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of an electrode base material for manufacturing the sheet electrode according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a cutting position by the first cutting blade and the second cutting blade with respect to the
  • FIG. 4B is an enlarged plan view of a first corner portion of the sheet-like electrode formed by the sheet-like electrode manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 5 is a plan view of a sheet-like electrode according to Embodiment 2 of the present invention.
  • FIG. 6 is a plan view of a first electrode base material piece obtained by cutting an electrode base material with a first cutting blade and a second cutting blade in the sheet-like electrode manufacturing method according to Embodiment 2 of the present invention. is there.
  • FIG. 7 is a plan view of a second electrode substrate piece obtained by cutting an electrode substrate with first to fourth cutting blades in the method for producing a sheet-like electrode according to Embodiment 2 of the present invention.
  • FIG. 8 is a perspective plan view showing a schematic configuration of a lithium ion secondary battery according to Embodiment 3 of the present invention.
  • FIG. 9 is a perspective view showing a configuration of an electrode laminate constituting the lithium ion secondary battery according to Embodiment 3 of the present invention.
  • FIG. 10A is a perspective view showing a pancake of an electrode substrate for a negative electrode used in Examples 1 and 2 of the present invention.
  • FIG. 10B is a plan view of a part of the electrode substrate for a negative electrode shown in FIG. 10A.
  • FIG. 11 is a plan view of a first electrode substrate piece for negative electrode obtained by cutting an electrode substrate for negative electrode at a constant pitch with a first cutting blade for negative electrode in Examples 1 and 2 of the present invention. is there.
  • FIG. 12 is a plan view of a second electrode substrate piece for negative electrode obtained by cutting a first electrode substrate piece for negative electrode with a second cutting blade in Examples 1 and 2 of the present invention.
  • FIG. 13 is a plan view of a negative electrode sheet electrode obtained in Examples 1 and 2 of the present invention.
  • 14A, 14B, and 14C are partially enlarged plan views of the portions 14A, 14B, and 14C of FIG.
  • FIG. 15A is a perspective view showing a pancake of an electrode base material for a positive electrode used in Examples 1 and 2 of the present invention.
  • FIG. 15B is a plan view of a part of the electrode substrate for a positive electrode shown in FIG. 15A.
  • FIG. 16 is a plan view of the first electrode substrate piece for positive electrode obtained by cutting the electrode substrate for positive electrode at a constant pitch with the first cutting blade for positive electrode in Examples 1 and 2 of the present invention. is there.
  • FIG. 17 is a plan view of a second electrode substrate piece for a positive electrode obtained by cutting a first electrode substrate piece for a positive electrode with a second cutting blade in Examples 1 and 2 of the present invention.
  • FIG. 18 is a plan view of a positive electrode sheet electrode obtained in Examples 1 and 2 of the present invention.
  • 19A, 19B, and 19C are partially enlarged plan views of the portions 19A, 19B, and 19C of FIG.
  • FIG. 20A is a plan view showing the cutting blade shape of the first cutting blade for a negative electrode used in Examples 1 and 2 of the present invention.
  • FIG. 20B is a plan view showing the cutting blade shape of the second cutting blade for negative electrode and positive electrode used in Examples 1 and 2 of the present invention.
  • FIG. 20C is a plan view showing the cutting blade shape of the first cutting blade for positive electrode used in Examples 1 and 2 of the present invention.
  • FIGS. 21A to 21D are plan views showing the cutting blade shapes of the corner cutting blades used in Examples 1 and 2 of the present invention.
  • FIG. 22 is a plan view of the electrode laminate obtained in Examples 1 and 2 of the present invention.
  • a long electrode base material in which an electrode mixture layer containing an active material is intermittently formed on at least one surface of a belt-like current collector in the longitudinal direction of the current collector.
  • a sheet-like shape having a substantially rectangular electrode portion that is cut and formed with the electrode mixture layer, and a tab portion that includes a region that protrudes from one side of the electrode portion and is not formed with the electrode mixture layer
  • An electrode is manufactured.
  • the manufacturing method includes the step of forming the tab portion of the sheet-like electrode and the first side from which the tab portion protrudes using a first cutting blade having a cuttable width longer than the width of the electrode base material. Forming a second side opposite to the first side of the sheet-like electrode using a second cutting blade having a cuttable width longer than the width of the electrode base material.
  • the manufacturing method of the present invention further includes a step of adjusting the positions of the first cutting blade in the longitudinal direction and the width direction of the electrode base material.
  • variety of a tab part and the length of a sheet-like electrode can differ can be manufactured using the same 1st cutting blade.
  • the manufacturing method of the present invention may further include a step of adjusting the position of the second cutting blade in the longitudinal direction of the electrode base material. Thereby, the sheet-like electrode from which length differs can be manufactured using the same 2nd cutting blade.
  • the width of the electrode substrate is preferably the same as the width of the sheet-like electrode. Therefore, since the process of cutting the side of the electrode base material so as to match the desired width of the sheet-like electrode is not required, the manufacturing process of the sheet-like electrode can be simplified.
  • At least one of the four corners of the sheet-like electrode is formed in an arc shape using an arc-shaped corner cutting blade different from the first cutting blade and the second cutting blade. It is preferable to further include a step. Thereby, at least one of the four corners of the sheet-like electrode can be formed in an arc shape. Furthermore, even if the size of the sheet-like electrode is different, each of the four corners can be formed in an arc shape by using the same corner cutting blade.
  • the central angle of the arc formed at at least one of the four corners of the sheet-like electrode is less than 90 °. Thereby, the positioning accuracy of the corner cutting blade can be relaxed.
  • the arc length of the corner cutting blade is preferably longer than the arc length of the arc formed at the corner of the sheet-like electrode by the corner cutting blade. Thereby, the positioning accuracy of the corner cutting blade can be relaxed.
  • the sheet electrode is a negative electrode sheet electrode.
  • the negative electrode sheet electrode is larger than the positive electrode sheet electrode. Therefore, by forming at least one of the four corners of the negative electrode sheet electrode in an arc shape, the handleability of the electrode laminate in which the negative electrode sheet electrode and the positive electrode sheet electrode are stacked via the separator is remarkable. To improve.
  • the manufacturing method of the present invention further includes a step of adjusting the position of the corner cutting blade in the first side direction and the direction orthogonal thereto.
  • each of the four corners of the sheet-like electrode having different four corner positions can be formed in an arc shape using the same corner cutting blade.
  • At least one of the pair of side edges excluding the first side and the second side of the sheet-like electrode is separated from the first cutting blade and the second cutting blade. It is preferable to further include a step of forming using three cutting blades. Thereby, the sheet-like electrode from which a width
  • a cuttable width of the third cutting blade is longer than the length of at least one of the pair of side edges.
  • the manufacturing method of the present invention further includes a step of adjusting the position of the third cutting blade in the first side direction.
  • the sheet-like electrode from which width differs can be manufactured using the same 3rd cutting blade.
  • One of the pair of side edges is formed using the third cutting blade, and the other is a fourth cutting blade different from the first cutting blade, the second cutting blade, and the third cutting blade. It is preferable to use and cut. This further increases the number of types of sheet-like electrodes that can be manufactured from the same electrode substrate.
  • FIG. 1 is a plan view of a sheet-like electrode 1 according to Embodiment 1 of the present invention.
  • the sheet-like electrode 1 includes a substantially rectangular electrode part 20 in which an electrode mixture layer containing an active material is formed on one or both sides of a current collector made of metal foil or the like, and a tab protruding from one side of the electrode part 20 Part 27.
  • the electrode mixture layer is not formed on the entire tab part 27 or at least a part of the front end side (the side opposite to the electrode part 20), and the current collector is exposed.
  • a large number of dots are attached to the region where the electrode mixture layer is formed.
  • the sheet electrode 1 can be used for both the positive electrode and the negative electrode. However, according to the polarity of the sheet-like electrode 1, the position of the tab part 27, the dimension of the sheet-like electrode 1, the material of a collector or an electrode mixture layer, etc. are changed suitably.
  • the side on which the tab portion 27 is formed is the first side 21, the side facing the first side 21 is the second side 22, Two opposite sides other than the first side 21 and the second side 22 are referred to as a first side 23 and a second side 24.
  • the tab portion 27 is formed along the second side 24.
  • the first side 21 and the second side 22 are parallel to each other, and the first side 23 and the second side 24 are parallel to each other.
  • the first side 21 and the second side 22 are orthogonal to the first side 23 and the second side 24.
  • the corner at the end on the first side 21 side is the first corner 25 a
  • the corner at the end on the second side 22 is the second corner 25 b
  • the second side 24 is the corner at the end on the second side 22 side
  • the corner at the end on the second side 22 side is called the third corner portion 25c
  • the corner at the end on the first side 21 side is called the fourth corner portion 25d.
  • the fourth corner portion 25 d is located on the tab portion 27.
  • the edges of the first to fourth corner portions 25a to 25d are formed in an arc shape.
  • the tab portion 27 is formed along the second side 24 at the end on the second side 24 side of the first side 21, but on the first side at the end on the first side 23 side. It may be formed along the side 23, or may be formed at a position on the first side 21 away from both the first side 23 and the second side 24. In FIG. 1, the tab portion 27 is formed on the short side of the substantially shaped electrode portion 20, but may be formed on the long side.
  • the direction in which the first side edge 23 and the second side edge 24 face each other is referred to as the “width direction”, and the direction in which the first edge 21 and the second edge 22 face each other (up and down in FIG. Direction) is called “longitudinal direction”.
  • the “longitudinal direction” of the sheet-like electrode 1 is a convenient name for the “width direction”, and the “longitudinal direction” of the sheet-like electrode 1 does not mean the “major axis direction” of the sheet-like electrode 1. Absent.
  • the electrode substrate 30 includes a strip-shaped current collector extending in the vertical direction of the paper surface of FIG.
  • subjected the dot is the electrode area
  • subjected the dot is the non-electrode area
  • the electrode regions 35 and the non-electrode regions 37 are regularly and alternately arranged at a constant pitch in the longitudinal direction of the current collector (up and down direction on the paper surface of FIG. 2).
  • the width W30 of the electrode base material 30 (the dimension in the left-right direction of the electrode base material 30 in FIG. 2) is the same as the width W1 (see FIG. 1) of the sheet-like electrode 1 to be manufactured.
  • the material of the electrode mixture layer can be transferred and formed on the surface of a traveling belt-like current collector using a printing roll.
  • the electrode base material 30 is cut along the broken lines 41 and 42 so as to cross the width direction.
  • the broken line 41 indicates the first cutting blade (more precisely, the cutting blade shape of the first cutting blade).
  • the first cutting blade 41 has the same stepped shape as the outline of the tab portion 27 of the sheet-like electrode 1 shown in FIG. 1 and the first side 21 from which the tab portion 27 protrudes.
  • the dimension of the first cutting blade 41 in the width direction of the electrode base material 30 (that is, the cuttable width of the first cutting blade 41) W41 is larger than the width W30 of the electrode base material 30. Big enough.
  • the broken line 42 indicates a second cutting blade independent of the first cutting blade (more precisely, the cutting blade shape of the second cutting blade).
  • the second cutting blade 42 has a linear shape parallel to the width direction of the electrode substrate 30.
  • the dimension of the second cutting blade 42 in the width direction of the electrode base material 30 that is, the severable width of the second cutting blade 42
  • W42 is larger than the width W30 of the electrode base material 30. Big enough.
  • the electrode substrate 30 is first cut using the first cutting blade 41 while intermittently unwinding the long electrode substrate 30 wound on a roll.
  • the electrode substrate 30 is cut using the second cutting blade 42.
  • the first cutting blade 41 may be used for cutting. Or you may cut
  • 1st cutting blade 41 and 2nd cutting blade 42 can be attached to the member (henceforth "elevating member") which raises / lowers a punching apparatus, for example.
  • the 1st cutting blade 41 and the 2nd cutting blade 42 may be attached to the same raising / lowering member, and may be attached to two different raising / lowering members, respectively.
  • the cutting positions of the first cutting blade 41 and the second cutting blade 42 can be changed by changing the mounting positions of the first cutting blade 41 and the second cutting blade 42 with respect to the lifting member.
  • the positions of the first cutting blade 41 in the width direction (left and right direction in FIG. 3) and the longitudinal direction (up and down direction in FIG. 3) with respect to the electrode substrate 30 are set according to the size of the sheet-like electrode 1 to be formed. Is done.
  • the position of the first cutting blade 41 in the width direction can be set in consideration of the width W27 (see FIG. 1) of the tab portion 27 to be formed.
  • the cutting position in the longitudinal direction of the first cutting blade 41 can be set in consideration of the relationship between the boundary position between the electrode region 35 and the non-electrode region 37 and the tab portion 27 to be formed.
  • the position of the second cutting blade 42 in the longitudinal direction (vertical direction in FIG. 3) with respect to the electrode substrate 30 is set according to the size of the sheet electrode 1 to be formed. Specifically, the length of the second cutting blade 42 is set such that the cutting position of the first cutting blade 41 and the cutting position of the second cutting blade 42 coincide with the longitudinal dimension of the sheet-like electrode 1 to be formed.
  • the cutting position in the direction can be set.
  • FIG. 4A is a plan view of the electrode substrate piece 31 obtained by cutting the long electrode substrate 30 with the first cutting blade 41 and the second cutting blade 42 shown in FIG.
  • the four corners of the electrode base piece 31 are cut off along broken lines 46a, 46b, 46c, and 46d.
  • Broken lines 46a, 46b, 46c and 46d indicate the first to fourth corner cutting blades (more precisely, the cutting blade shapes of the first to fourth corner cutting blades) in order.
  • the first corner cutting blade 46a, the second corner cutting blade 46b, the third corner cutting blade 46c, and the fourth corner cutting blade 46d are independent from each other.
  • the first to fourth corner cutting blades 46a to 46d have arc shapes having the same curvature as the arcs formed in the first to fourth corner portions 25a to 25d shown in FIG.
  • the arc lengths of the arcs of the first to fourth corner cutting blades 46a to 46d are as shown in FIG. It is sufficiently longer than the arc length of the arc formed in the first to fourth corner portions 25a to 25d shown in FIG.
  • the central angle of the arcs of the first to fourth corner cutting blades 46a to 46d is preferably as large as possible within a range of 90 ° or less.
  • the order of cutting using the first to fourth corner cutting blades 46a to 46d is arbitrary. These four cutting blades 46a to 46d may be cut using one by one in order, or two or more (of course, all four) may be used simultaneously for cutting.
  • the first to fourth corner cutting blades 46a to 46d can be attached to elevating members of a punching device, for example.
  • the first to fourth corner cutting blades 46a to 46d may be attached to the same elevating member, or may be separately attached to two or more different elevating members.
  • the cutting positions by the first to fourth corner cutting blades 46a to 46d can be changed.
  • the positions of the first to fourth corner cutting blades 46a to 46d in the width direction (left and right direction in FIG. 3) and the longitudinal direction (up and down direction in FIG. 3) are the sheet-like electrodes to be formed. 1 can be set according to the size of 1 (that is, the positions of the first to fourth corners 25a to 25d).
  • the first cutting blade 41 and the second cutting blade 42 having a cuttable width longer than the width W30 of the long electrode substrate 30 are used. Then, the electrode base material 30 is cut so as to cross the width direction, and the tab portion 27, the first side 21, and the second side 22 are formed. Therefore, even when the width W30 of the electrode base material 30, that is, the width W1 of the sheet-like electrode 1 to be finally obtained is changed, the width W30 (or the width W1) is cut by the first cutting blade 41.
  • End edges of the first to fourth corner portions 25a to 25d are formed in an arc shape by using first to fourth corner cutting blades 46a to 46d that are independent from the first cutting blade 41 and the second cutting blade 42. . Therefore, even if the relative position of the first cutting blade 41 and / or the second cutting blade 42 with respect to the electrode base material 30 is changed in accordance with the size change of the sheet-like electrode 1 to be manufactured, the first to second It is not necessary to replace the four corner cutting blades 46a to 46d, and the relative positions of the first to fourth corner cutting blades 46a to 46d with respect to the electrode base piece 31 may be changed.
  • FIG. 4B is an enlarged plan view of the first corner 25a of the sheet-like electrode 1 obtained by the manufacturing method of the first embodiment.
  • An arc 26 is formed in the first corner 25a using only a part of the first corner cutting blade 46a. Therefore, the central angle ⁇ of the circular arc 26 defined by both ends 26a and 26b of the circular arc 26 and the center 26c of the circular arc 26 is generally less than 90 °.
  • the tangent lines 27 a and 27 b of the arc 26 at both ends 26 a and 26 b of the arc 26 generally do not coincide with the first side 21 and the first side 23.
  • the sheet-like electrodes 1 having different sizes can be obtained without replacing the first cutting blade 41, the second cutting blade 42, and the first to fourth corner cutting blades 46a to 46d.
  • Manufacture can be performed simply by changing the cutting position. Therefore, many types of sheet-like electrodes 1 having different sizes can be manufactured efficiently and at low cost.
  • the first and fourth corner cutting blades 46a to 46d are cut after the first and second cutting blades 41 and 42, but the order of these cuttings is not limited to this.
  • the first and fourth corner cutting blades 46a and 46d are cut, and after the second cutting blade 42 is cut, the second and third corner cutting blades 46b and 46c are cut. You may go.
  • the cutting with the first to fourth corner cutting blades 46a to 46d may be performed before the cutting with the first cutting blade 41 and the second cutting blade 42.
  • the cutting by the first to fourth corner cutting blades 46a to 46d can be omitted.
  • One of the reasons for forming the first to fourth corner portions 25a to 25d in an arc shape is that the corner portion of the sheet-like electrode 1 is caught by other members in the manufacturing process of the lithium ion secondary battery, so that the yield and The purpose is to prevent the productivity from decreasing.
  • the positive electrode sheet electrode is smaller than the negative electrode sheet electrode. Therefore, the possibility that the corner of the sheet electrode is caught by another member is higher in the negative electrode sheet than in the positive electrode sheet. Therefore, the cutting by the first to fourth corner cutting blades 46a to 46d can be omitted for the positive electrode sheet-like electrode and performed only for the negative electrode sheet-like electrode. Thereby, the manufacturing man-hour of the sheet-like electrode for positive electrodes can be decreased.
  • the configurations of the first cutting blade 41, the second cutting blade 42, and the first to fourth corner cutting blades 46a to 46d are arbitrary.
  • a shearing blade such as a punching blade or scissors
  • It may be a Thomson blade or a similar one that cuts by pressing a blade arranged on one side of the workpiece against the workpiece, or any other than these A cutting blade may be used.
  • the relative positioning of the object to be cut (the electrode base material 30, the electrode base material piece 31) and the cutting blade may move only one of the object to be cut and the cutting blade, or may move both. Good.
  • Embodiment 2 In Embodiment 1, the sheet-like electrode 1 having the same width as this was manufactured using the electrode base material 30 having the width W30 (see FIG. 2). On the other hand, in this Embodiment 2, the sheet-like electrode 2 narrower than the electrode base material 30 is manufactured.
  • FIG. 5 is a plan view of the sheet-like electrode 2 according to the second embodiment of the present invention.
  • This sheet-like electrode 2 differs from the sheet-like electrode 1 of the first embodiment in that it has a width W2 that is narrower than the width W1 of the sheet-like electrode 1 of the first embodiment. Except for this, the sheet electrode 2 of the second embodiment is the same as the sheet electrode 1 of the first embodiment.
  • a long electrode substrate 30 shown in FIG. 2 is prepared.
  • the width W30 of the electrode substrate 30 is larger than the width W2 (see FIG. 5) of the sheet-like electrode 2 to be manufactured.
  • the electrode substrate 30 is cut across the width direction using the first cutting blade 41 and the second cutting blade 42 (see FIG. 3), and the first shown in FIG.
  • the electrode substrate piece 31a is obtained.
  • the both sides of the first electrode base piece 31a are cut off along the broken lines 43 and 44 as shown in FIG.
  • the broken line 43 indicates the third cutting blade (more precisely, the cutting blade shape of the third cutting blade), and the broken line 44 indicates the fourth cutting blade (more precisely, the cutting blade shape of the fourth cutting blade).
  • the third cutting blade 43 and the fourth cutting blade 44 are independent from each other.
  • the 3rd cutting blade 43 and the 4th cutting blade 44 are the longitudinal directions of the 1st electrode base-material piece 31a (namely, the up-down direction of the paper surface of FIG. 6. This is the longitudinal direction of the electrode base material 30 shown in FIG. And a straight line shape parallel to.
  • W44 is sufficiently longer than the length L23 of the first side 23 and the length L24 (see FIG. 5) of the second side 24 of the sheet electrode 2 to be manufactured.
  • the 3rd cutting blade 43 and the 4th cutting blade 44 can be attached to the raising / lowering member of a punching apparatus, for example.
  • the 3rd cutting blade 43 and the 4th cutting blade 44 may be attached to the same raising / lowering member, and may be attached to two different raising / lowering members, respectively.
  • the cutting position by the third cutting blade 43 and the fourth cutting blade 44 can be changed by changing the attachment position of the third cutting blade 43 and the fourth cutting blade 44 to the lifting member.
  • the positions of the third cutting blade 43 and the fourth cutting blade 44 in the width direction (left and right direction in FIG. 6) with respect to the first electrode substrate piece 31a are set according to the size of the sheet electrode 1 to be formed. .
  • the cutting position in the width direction of the fourth cutting blade 44 can be set so that the tab portion 27 having a desired width W27 (see FIG. 5) can be obtained.
  • the cutting position in the width direction of the third cutting blade 43 and the fourth cutting blade 44 is such that the interval between the cutting position of the third cutting blade 43 and the cutting position of the fourth cutting blade 44 is to be formed. It can be set to match the width W2 of 2.
  • the order of the cutting by the third cutting blade 43 and the cutting by the fourth cutting blade 44 is arbitrary.
  • the cutting with the third cutting blade 43 and the cutting with the fourth cutting blade 44 can be performed simultaneously.
  • FIG. 7 is a plan view of the second electrode substrate piece 31b obtained by cutting the first electrode substrate piece 31a with the third cutting blade 43 and the fourth cutting blade 44 shown in FIG.
  • the four corners of the second electrode base material piece 31b are the same as described in FIG. 4A of the first embodiment, and the first corner cutting blade 46a, the second corner cutting blade 46b, and the third corner shown by broken lines in FIG. Cut off with the cutting blade 46c and the fourth corner cutting blade 46d.
  • the both sides of the first electrode base material piece 31a are connected to the third cutting blade 43. And a step of forming the first side edge 23 and the second side edge 24 by cutting off with the fourth cutting blade 44. Therefore, even if the width W2 of the sheet-like electrode 2 to be finally obtained is smaller than the width W30 of the electrode base piece 30, a cutting process by the third cutting blade 43 and the fourth cutting blade 44 is added. Except for the above, it is not necessary to replace the first and second cutting blades 41 and 42 and the first to fourth corner cutting blades 46a to 46d used in the first embodiment. It can be used as well.
  • the cutting position in the width direction of the third cutting blade 43 and the fourth cutting blade 44 may be changed.
  • the width W27 (refer FIG. 5, FIG. 6) of the tab part 27 of the sheet-like electrode 2 if the position of the width direction of the 1st cutting blade 41 and / or the 4th cutting blade 44 is changed. Good.
  • the length L23 of the first side 23 and the length L24 of the second side 24 of the sheet-like electrode 2 to be finally obtained are changed, the length L23 of the first side 23 is If it is not larger than the cuttable width W43 of the third cutting blade 43, it is not necessary to replace the third cutting blade 43, and the length L24 of the second side 24 is larger than the cuttable width W44 of the fourth cutting blade 44. Otherwise, it is not necessary to replace the fourth cutting blade 44. Accordingly, the same third cutting blade 43 and fourth cutting blade 44 can be used for cutting.
  • the cutting positions of the first cutting blade 41, the second cutting blade 42, and the first to fourth corner cutting blades 46a to 46d are changed according to the size of the sheet-like electrode 2. do it.
  • the sheet-like electrodes 2 having different sizes can be cut without replacing the first to fourth cutting blades 41 to 44 and the first to fourth corner cutting blades 46a to 46d. It can be manufactured simply by changing the position. Therefore, many types of sheet-like electrodes 2 having different sizes can be efficiently manufactured at low cost.
  • Embodiment 2 since the electrode substrate 30 wider than the width W2 of the sheet electrode 2 can be used to manufacture the sheet electrode 2, the width of the sheet electrode can be used. There is no need to manufacture the electrode substrate 30 according to the above. This is also advantageous for efficient and low-cost production of various types of sheet-like electrodes having different sizes.
  • the third cutting blade 43 and the fourth cutting blade 44 that are independent from each other are used, but either one of the cutting blades may be omitted. That is, even when only the third cutting blade 43 (or the fourth cutting blade 44) is used and moved in the width direction, both the first and second side edges 23 and 24 of the sheet-like electrode 2 are formed. Good.
  • the cutting with the third cutting blade 43 and the cutting with the fourth cutting blade 44 were performed. Cutting can be omitted. That is, one of the both sides in the width direction of the long electrode substrate 30 shown in FIG. 2 can be set as one of the first and second sides 23 and 24 of the sheet-like electrode 2. . Thereby, the manufacturing process of the sheet-like electrode 2 can be simplified.
  • cutting with the first and second cutting blades 41 and 42, cutting with the third and fourth cutting blades 43 and 44, and cutting with the first to fourth corner cutting blades 46a to 46d were performed in this order.
  • the order of these cuts is not limited to this.
  • the cutting with the first and second cutting blades 41 and 42 may be performed.
  • the cutting with the first to fourth corner cutting blades 46a to 46d may be performed first.
  • the first and second cutting blades 41 and 42 are first cut, and then the third and fourth corner cutting blades 46a and 46b are cut after the third cutting blade 43, and the fourth cutting is performed.
  • cutting by the third and fourth corner cutting blades 46c and 46d may be performed.
  • the cutting order by each cutting blade can be rearranged arbitrarily.
  • the configurations of the third and fourth cutting blades 43 and 44 are arbitrary, and in the same way as the first and second cutting blades 41 and 42 and the first to fourth corner cutting blades 46a to 46d described in the first embodiment, shearing is performed.
  • Known cutting blades such as blades and Thomson blades can be used.
  • the relative positioning of the workpiece (electrode substrate 30, first and second electrode substrate pieces 31a, 31b) and the cutting blade may be such that only one of the workpiece and the cutting blade is moved. , You may move both.
  • the second embodiment is the same as the first embodiment except for the above.
  • the description of the first embodiment is applied to the second embodiment as it is or after being appropriately changed.
  • FIG. 8 is a perspective plan view showing a schematic configuration of a lithium ion secondary battery 60 according to Embodiment 3 of the present invention.
  • 61p is a positive electrode
  • 61n is a negative electrode
  • these positive electrode 61p and negative electrode 61n are the sheet-like electrodes of the present invention manufactured according to the method described in the first or second embodiment.
  • the positive electrode 61p and the negative electrode 61n include a substantially rectangular electrode portion and a tab portion protruding from one side of the electrode portion.
  • 62p is a tab portion of the positive electrode 61p
  • 62n is a tab portion of the negative electrode 61n.
  • 63p is a positive electrode lead body
  • 63n is a negative electrode lead body
  • 64p is a positive electrode terminal
  • 64n is a negative electrode terminal.
  • One end of the positive electrode lead body 63p is connected to the positive electrode tab portion 62p, and the other end is connected to the positive electrode terminal 64p.
  • One end of the negative electrode lead body 63n is connected to the negative electrode tab portion 62n, and the other end is connected to the negative electrode terminal 64n.
  • 66 is a separator disposed between the positive electrode 61p and the negative electrode 61n
  • 68 is a laminate sheet (exterior material) of the lithium ion secondary battery 60.
  • a region 69 along the outer peripheral edge of the laminate sheet 68 is a heat seal portion where the front and back laminate sheets 68 are heat-sealed.
  • the positive electrode 61p has, for example, a structure in which a layer (positive electrode mixture layer) made of a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder and the like is formed on one side or both sides of the current collector.
  • a positive electrode active material consists of an active material which can occlude / release lithium ion.
  • Such a positive electrode active material includes, for example, lithium having a layered structure represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, etc.) Transition metal oxide, LiMn 2 O 4 , lithium manganese oxide having a spinel structure in which part of the element is replaced with another element, and olivine type represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) It preferably consists of any one of compounds.
  • Lithium-containing transition metal oxide of the above layered structure for example, LiCoO 2, LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3,0.01 ⁇ y ⁇ 0.2), And an oxide containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3/5 Mn 1/5 Co 1/5 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 ) is preferable.
  • the current collector of the positive electrode 61p is preferably made of, for example, an aluminum foil or an aluminum alloy foil.
  • the thickness of the current collector varies depending on the size and capacity of the battery, but is preferably 0.01 to 0.02 mm, for example.
  • the positive electrode 61p is manufactured by the following method.
  • a positive electrode mixture containing the above-described positive electrode active material, a conductive additive such as graphite, acetylene black, carbon black, and fibrous carbon, and a binder such as polyvinylidene fluoride (PVDF) is used as N-methyl-2-pyrrolidone.
  • a paste-like or slurry-like composition uniformly dispersed using a solvent such as (NMP) is prepared (the binder may be dissolved in the solvent).
  • This composition is intermittently applied onto a strip-shaped current collector and dried, and the thickness of the positive electrode mixture layer is adjusted by pressing as necessary.
  • the long positive electrode substrate (electrode substrate) thus obtained is cut into a predetermined shape by the method of Embodiments 1 and 2 described above to obtain the positive electrode 61p.
  • the thickness of the positive electrode mixture layer in the positive electrode 61p is preferably 30 to 100 ⁇ m per side.
  • the content of each component in the positive electrode mixture layer is preferably positive electrode active material: 90 to 98% by mass, conductive assistant: 1 to 5% by mass, and binder: 1 to 5% by mass.
  • the positive electrode lead body 63p is preferably made of aluminum or an aluminum alloy.
  • the thickness of the positive electrode lead body 63p is preferably 20 to 300 ⁇ m.
  • the material of the positive electrode terminal 64p is determined from the viewpoint of facilitating connection with a device using the battery 60.
  • aluminum or an aluminum alloy can be used.
  • the thickness of the positive electrode terminal 64p is preferably 50 to 300 ⁇ m.
  • the thickness of the positive electrode terminal 64p is 50 ⁇ m or more, the positive electrode terminal 64p can be prevented from being cut during welding of the positive electrode terminal 64p, and the positive electrode terminal 64p can be prevented from being broken by being pulled and bent.
  • the thickness of the positive electrode terminal 64p is 300 ⁇ m or less, it is possible to prevent a gap from being generated between the positive electrode terminal 64p and the laminate sheet 68 in the heat seal portion 69 of the laminate sheet 68.
  • a resin adhesive layer (for example, the laminate sheet 68) is provided in advance in a region that is expected to be located in the heat seal portion 69 of the positive electrode terminal 64p.
  • An adhesive layer made of the same kind of resin as the heat-fusible resin layer may be provided.
  • connection method between the positive electrode tab portion 62p and the positive electrode lead body 63p and the connection method between the positive electrode lead body 63p and the positive electrode terminal 64p are, for example, resistance welding, ultrasonic welding, laser welding, caulking, adhesion by a conductive adhesive.
  • Various methods can be employed. Among these, ultrasonic welding is preferable.
  • the negative electrode 61n has, for example, a structure in which a layer containing a negative electrode active material capable of inserting and extracting lithium ions (negative electrode mixture layer) is formed on one side or both sides of a current collector.
  • Negative electrode active materials include graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon that can occlude and release lithium ions such as carbon fibers. It is preferable that it consists of 1 type, or 2 or more types of mixtures of system material.
  • the negative electrode active material may be an element such as Si, Sn, Ge, Bi, Sb, or In, an alloy of Si, Sn, Ge, Bi, Sb, or In, a lithium-containing nitride, or a lithium metal such as lithium oxide. It is preferably made of any of a compound (LiTi 3 O 12 or the like) that can be charged and discharged at a near low voltage, lithium metal, and a lithium / aluminum alloy.
  • the current collector of the negative electrode 61n copper foil is suitable.
  • the thickness of the current collector varies depending on the size or capacity of the battery, but is preferably 0.005 to 0.02 mm, for example.
  • the negative electrode 61n is manufactured by the following method.
  • the negative electrode active material described above a binder (such as a mixed binder of rubber binder such as PVDF or styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC)), and graphite, acetylene black, carbon black, etc.
  • a paste-like or slurry-like composition in which a negative electrode mixture containing a conductive aid or the like is uniformly dispersed using a solvent such as NMP or water is prepared (the binder may be dissolved in the solvent). .
  • a long negative electrode base material (electrode base material) obtained by intermittently applying this composition onto a strip-shaped current collector is cut into a predetermined shape by the method of Embodiments 1 and 2, and the negative electrode is obtained. 61n are obtained. You may adjust the thickness or density of a negative mix layer by press processing as needed.
  • the thickness of the negative electrode mixture layer in the negative electrode 61n is preferably 30 to 100 ⁇ m per side.
  • the content of each component in the negative electrode mixture layer is preferably negative electrode active material: 90 to 98% by mass and binder: 1 to 5% by mass.
  • the content of the conductive assistant in the negative electrode mixture layer is preferably 1 to 5% by mass.
  • the negative electrode lead body 63n is preferably made of copper.
  • the thickness of the negative electrode lead body 63n is preferably 20 to 300 ⁇ m.
  • the material of the negative electrode terminal 64n is determined from the viewpoint of facilitating connection with a device using the battery 60.
  • nickel, nickel-plated copper, nickel-copper clad, and the like can be used.
  • the thickness of the negative electrode terminal 64n is preferably 50 to 300 ⁇ m, like the positive electrode terminal 64p.
  • the thickness of the negative electrode terminal 64n is 50 ⁇ m or more, the negative electrode terminal 64n can be prevented from being cut during welding of the negative electrode terminal 64n, and the negative electrode terminal 64n can be prevented from being broken by being pulled and bent.
  • the thickness of the negative electrode terminal 64n is 300 ⁇ m or less, it is possible to prevent a gap from being generated between the negative electrode terminal 64n and the laminate sheet 68 in the heat seal portion 69 of the laminate sheet 68.
  • a resin adhesive layer (for example, the laminate sheet 68) is provided in advance in a region that is planned to be located in the heat seal portion 69 of the negative electrode terminal 64n.
  • An adhesive layer made of the same kind of resin as the heat-fusible resin layer may be provided.
  • connection method between the negative electrode tab 62n and the negative electrode lead body 63n, and the connection method between the negative electrode lead body 63n and the negative electrode terminal 64n are, for example, resistance welding, ultrasonic welding, laser welding, caulking, and adhesion using a conductive adhesive.
  • Various methods can be employed. Among these, ultrasonic welding is preferable.
  • the separator 66 includes a porous film that separates the positive electrode 61p and the negative electrode 61n and transmits lithium ions.
  • the separator 66 preferably has a safety mechanism (shutdown characteristic) that melts and closes the hole when the battery 60 abnormally generates heat and reaches a high temperature (for example, 100 to 140 ° C.).
  • the porous film is preferably made of a thermoplastic resin having a melting point of about 80 to 140 ° C., and specifically, preferably made of a polyolefin polymer such as polypropylene or polyethylene.
  • the thickness of the porous film is not particularly limited, but is preferably 10 to 50 ⁇ m.
  • the separator 66 may be formed by coating a plate-like inorganic fine particle layer on the porous film. Thereby, the thermal contraction of the separator 66 at the time of abnormal heat generation can be suppressed, and safety can be improved.
  • the separator 66 may have a laminated structure of the porous film and the heat-resistant porous substrate.
  • a fibrous material having a heat resistant temperature of 150 ° C. or higher can be used as the heat resistant porous substrate.
  • the fibrous material may be formed of at least one material selected from the group consisting of cellulose and its modified products, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyester, polyacrylonitrile, aramid, polyamideimide, and polyimide. it can. Specifically, it is preferably made of a nonwoven fabric made of the above materials.
  • Heat resistance of a porous substrate means that substantial dimensional change due to softening or the like does not occur. Specifically, is the upper limit temperature (heat resistant temperature) at which the rate of shrinkage (shrinkage ratio) with respect to the length of the porous substrate at room temperature maintained at 5% or less is sufficiently higher than the shutdown temperature of the separator? The heat resistance is evaluated based on the result. In order to increase the safety of the laminated battery after shutdown, it is desirable that the porous substrate has a heat resistance higher by 20 ° C. than the shutdown temperature. More specifically, the heat resistance temperature of the porous substrate is 150 ° C. It is preferable that the temperature is higher than or equal to ° C, and more preferable that the temperature is higher than or equal to 180 ° C.
  • a solution (nonaqueous electrolytic solution) in which a solute such as LiPF 6 or LiBF 4 is dissolved in a high dielectric constant solvent or an organic solvent can be used.
  • a solute such as LiPF 6 or LiBF 4
  • a high dielectric constant solvent any of ethylene carbonate (EC), propylene carbonate (PC), and ⁇ -butyrolactone (BL) can be used.
  • a low viscosity solvent such as linear dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (EMC) can be used.
  • the solvent for the electrolytic solution it is preferable to use a mixed solvent of the above-described high dielectric constant solvent and low viscosity solvent.
  • PVDF a rubber-based material, an alicyclic epoxy, a material having an oxetane-based three-dimensional crosslinked structure, and the like may be mixed and solidified into the above-described solution to form a polymer electrolyte.
  • the separator 66 is interposed between the positive electrode 61p and the negative electrode 61n, and the positive electrode 61p and the negative electrode 61n are alternately stacked to form an electrode laminate.
  • the method for producing the electrode laminate is not particularly limited.
  • the separator 66 is folded zigzag by alternately repeating a mountain fold and a valley fold at regular intervals, and the positive electrode 61p is sandwiched between each surface of the separator 66 from each side.
  • the negative electrode 61n is sandwiched between the other surface side and each valley fold.
  • the positive electrode tab portion 62p and the negative electrode tab portion 62n protrude outside from the same side of the separator 66.
  • a plurality of rectangular bags formed by the separators 66 and the positive electrodes 61p inserted into the respective bags made of the separators 66 may be alternately stacked with the negative electrodes 61n.
  • the positive electrode lead body 63p is connected to the positive electrode tab portions 62p of the plurality of positive electrode electrodes 61p protruding from the electrode laminate thus obtained, and the positive electrode terminal 64p is connected to the positive electrode lead body 63p.
  • the negative electrode lead body 63n is connected to the negative electrode tab portions 62n of the plurality of negative electrode electrodes 61n protruding from the electrode laminate, and the negative electrode terminal 64n is connected to the negative electrode lead body 63n.
  • Two substantially rectangular laminate sheets 68 are arranged above and below the electrode laminate thus obtained, and two laminate sheets 68 are formed along three sides excluding the sides where the positive electrode terminal 64p and the negative electrode terminal 64n are formed.
  • the laminate sheet 68 is formed into a bag shape by heat sealing. Rather than using two laminate sheets, one rectangular laminate sheet is folded and overlapped so as to sandwich the electrode laminate, and the laminated sheet 68 is heat-sealed along two sides and laminated sheet 68 may be formed in a bag shape. Thereafter, an electrolytic solution is injected into the bag of the laminate sheet 68.
  • the laminate sheet 68 is heat-sealed together with a part of the positive and negative electrode lead bodies 63p and 63n and a part of the positive and negative electrode terminals 64p and 64n along the non-heat-bonded side.
  • An ion secondary battery 60 is obtained.
  • the configuration of the laminate sheet 68 is not particularly limited, and for example, a known laminate sheet that is used as an exterior material of a laminated lithium ion secondary battery can be used.
  • a multilayer sheet in which a modified polyolefin layer is laminated as a heat-fusible resin layer on one side of a base layer made of aluminum can be used.
  • the above lithium ion secondary battery 60 is merely an example, and the lithium ion secondary battery using the positive electrode sheet electrode and the negative electrode sheet electrode of the present invention is not limited to the above.
  • the positive electrode sheet electrode and the negative electrode sheet electrode of the present invention can be applied to a known lithium ion secondary battery.
  • the positive terminal 64p and the negative terminal 64n are drawn from the same short side of the substantially rectangular laminate sheet 68, but may be drawn from different sides.
  • the sheet-like electrode of the present invention can be used for a lithium ion secondary battery other than the laminated type.
  • a sheet-like electrode for the negative electrode was produced as follows.
  • FIG. 10A is a perspective view of a pancake around which the electrode substrate 30n is wound
  • FIG. 10B is a plan view of a part of the electrode substrate 30n for the negative electrode.
  • Example 1 and Example 2 differ only in the width W30n of the electrode base material 30n.
  • the electrode substrate 30n was cut at a constant pitch along the broken line 41n in FIG. 10B while intermittently unwinding the long electrode substrate 30n shown in FIG. 10B from the pancake.
  • a broken line 41n indicates the first cutting blade for the negative electrode, and the shape of the cutting blade is shown in FIG. 20A.
  • the first cutting blade 41n had a stepped cutting blade shape.
  • Each value of the level difference Hn of the first cutting blade 41n and the cuttable width W41n is also shown in FIG. 20A. In Examples 1 and 2, the same first cutting blade 41n was used.
  • the first cutting blade 41n was fixed to the lifting member of the punching device.
  • the relative position in the width direction of the first cutting blade 41n with respect to the electrode substrate 30n is the width W27n of the tab portion 27n of the negative electrode sheet electrode of Examples 1 and 2 to be finally obtained (FIG. 11, which will be described later). (See FIG. 13). Since the width W27n is different between the first embodiment and the second embodiment, the mounting position of the first cutting blade 41n with respect to the lifting member is changed between the first embodiment and the second embodiment.
  • FIG. 11 is a plan view of the first electrode substrate piece 31n-1 for negative electrode obtained by cutting the electrode substrate 30n for negative electrode with the first cutting blade 41n for negative electrode at a pitch Pn.
  • the dimensions of each part are also shown in FIG. Example 1 and Example 2 differ in the width W27n of the tab portion.
  • the first electrode substrate piece 31n-1 was cut along the broken line 42 shown in FIG.
  • the broken line 42 indicates the second cutting blade, and the shape of the cutting blade is shown in FIG. 20B.
  • the second cutting blade 42 had a linear cutting blade shape.
  • the value of the cuttable width W42 of the second cutting blade 42 is also shown in FIG. 20B.
  • the same second cutting blade 42 was used.
  • the second cutting blade 42n was fixed to the lifting member of the punching device.
  • the position of the second cutting blade 42 in the longitudinal direction relative to the first electrode substrate piece 31n-1 is the length L20n of the electrode portion 20n of the negative electrode sheet electrode of Examples 1 and 2 to be finally obtained (described later) (See FIG. 13). Since the length L20n is different between the first embodiment and the second embodiment, the mounting position of the second cutting blade 42n with respect to the lifting member is changed between the first embodiment and the second embodiment.
  • FIG. 12 is a plan view of the second electrode substrate piece 31n-2 for negative electrode obtained by cutting the first electrode substrate piece 31n-1 for negative electrode with the second cutting blade 42.
  • FIG. 12 is a plan view of the second electrode substrate piece 31n-2 for negative electrode obtained by cutting the first electrode substrate piece 31n-1 for negative electrode with the second cutting blade 42.
  • the three corners 125n-a, 125n-b, and 125n-c of the electrode region 35n of the second electrode substrate piece 31n-2 shown in FIG. 12 are represented by broken lines 146a, 146b, It cut off into circular arc shape along 146c. Dashed lines 146a, 146b, and 146c indicate corner cutting blades used for cutting the corners 125n-a, 125n-b, and 125n-c, and the shapes of the cutting blades are shown in FIGS. 21A, 21B, and 21C.
  • Each of the corner cutting blades 146a, 146b, and 146c had an arc shape with a radius R of 20 mm and a central angle ⁇ c of 90 degrees.
  • the same corner cutting blades 146a, 146b, and 146c were used.
  • the corner cutting blades 146a, 146b, 146c were fixed to the same lifting member of the punching device.
  • the mounting positions of the corner cutting blades 146a, 146b, and 146c with respect to the lifting member are changed between the first and second embodiments in accordance with the positions of the corners 125n-a, 125n-b, and 125n-c.
  • FIGS. 14A, 14B, and 14C are enlarged plan views of the portions 14A, 14B, and 14C of FIG. 13 including the three corner portions 125n-a, 125n-b, and 125n-c of the electrode portion 20n.
  • the width direction dimension Wa of the arc defined by the central angle ⁇ a of the arcs 126n-a, 126n-b, 126n-c formed at the corners 125n-a, 125n-b, 125n-c, and both ends of the arc.
  • the values of the longitudinal dimension La are also shown in FIGS. 14A, 14B, and 14C. These are the same in Example 1 and Example 2.
  • Example 1 and Example 2 the dimensions of the prepared sheet-like electrode 1n are different from each other.
  • the first cutting blade 41n, the second cutting blade 42, and the corner cutting blades 146a, 146b, and 146c used in the process of manufacturing the sheet electrode 1n of Example 1 and the sheet electrode 1n of Example 2 are the same. there were.
  • the same cutting blade is used, and the size of the first and second embodiments is different only by changing the mounting position of the cutting blade with respect to the lifting member according to the size of the sheet-like electrode 1n.
  • the sheet-like electrode 1n was able to be manufactured.
  • a sheet-like electrode for a positive electrode was produced as follows.
  • FIG. 15A is a perspective view of a pancake around which the electrode substrate 30p is wound
  • FIG. 15B is a plan view of a part of the electrode substrate 30p for positive electrode.
  • Example 1 and Example 2 differ only in the width W30p of the electrode base material 30p.
  • the electrode substrate 30p was cut at a constant pitch along the broken line 41p in FIG. 15B while intermittently unwinding the long electrode substrate 30p shown in FIGS. 15A and 15B from the pancake.
  • the broken line 41p shows the first cutting blade for the positive electrode, and the shape of the cutting blade is shown in FIG. 20C.
  • the first cutting blade 41p had a stepped cutting blade shape.
  • Each value of the level difference Hp of the first cutting blade 41p and the cuttable width W41p is also shown in FIG. 20C.
  • the same first cutting blade 41p was used.
  • the 1st cutting blade 41p was fixed to the raising / lowering member of the punching apparatus.
  • the relative position in the width direction of the first cutting blade 41p with respect to the electrode substrate 30p is the width W27p of the tab portion 27p of the positive electrode sheet-like electrode of Examples 1 and 2 to be finally obtained (FIG. (See FIG. 18). Since the width W27p is different between the first embodiment and the second embodiment, the mounting position of the first cutting blade 41p with respect to the lifting member is changed between the first embodiment and the second embodiment.
  • FIG. 16 is a plan view of the first electrode substrate piece 31p-1 for positive electrode obtained by cutting the electrode substrate 30p for positive electrode with the first cutting blade 41p for positive electrode at the pitch Pp.
  • the dimensions of each part are also shown in FIG. Example 1 and Example 2 differ in the tab portion width W27p.
  • the first electrode substrate piece 31p-1 was cut along the broken line 42 shown in FIG.
  • the broken line 42 indicates the second cutting blade, and the shape of the cutting blade is shown in FIG. 20B.
  • the second cutting blade 42 is the same as the second cutting blade 42 (see FIG. 11) used when cutting the first electrode substrate piece 31n-1 for negative electrode.
  • the 2nd cutting blade 42p was fixed to the raising / lowering member of the punching apparatus.
  • the position of the second cutting blade 42 in the longitudinal direction relative to the first electrode substrate piece 31p-1 is the length L20p of the electrode portion 20p of the positive electrode sheet-like electrode of Examples 1 and 2 to be finally obtained (described later). (See FIG. 18). Since the length L20p is different between the first embodiment and the second embodiment, the mounting position of the second cutting blade 42p with respect to the lifting member is changed between the first embodiment and the second embodiment.
  • FIG. 17 is a plan view of the second electrode substrate piece 31p-2 for positive electrode obtained by cutting the first electrode substrate piece 31p-1 for positive electrode with the second cutting blade 42.
  • FIG. 17 is a plan view of the second electrode substrate piece 31p-2 for positive electrode obtained by cutting the first electrode substrate piece 31p-1 for positive electrode with the second cutting blade 42.
  • the three corners 125p-b, 125p-c, and 125p-d of the electrode region 35p (the portion that will later become the electrode portion 20p) of the second electrode substrate piece 31p-2 shown in FIG. 17 are represented by broken lines 146b, 146c, It cut off into circular arc shape along 146d. Dashed lines 146b, 146c, and 146d indicate corner cutting blades used for cutting the corners 125p-b, 125p-c, and 125p-d, and the cutting blade shapes are shown in FIGS. 21B, 21C, and 21D. Each of the corner cutting blades 146b, 146c, and 146d had an arc shape with a radius R of 20 mm and a central angle ⁇ c of 90 degrees.
  • Example 1 and 2 the same corner cutting blades 146b, 146c, and 146d were used.
  • the corner cutting blades 146b and 146c are the same as the corner cutting blades 146b and 146c (see FIG. 12) used when cutting the corner portions 125n-b and 125n-c of the second electrode base material piece 31n-2 for negative electrode. It is.
  • the corner cutting blades 146b, 146c, and 146d were fixed to the same lifting member of the punching device.
  • the mounting positions of the corner cutting blades 146b, 146c, and 146d with respect to the lifting member are changed between the first and second embodiments in accordance with the positions of the corners 125p-b, 125p-c, and 125p-d.
  • 19A, 19B, and 19C are enlarged plan views of portions 19A, 19B, and 19C of FIG. 18 including the three corners 125p-b, 125p-c, and 125p-d of the electrode portion 20p.
  • the width direction dimension Wa of the arc defined by the central angle ⁇ a of the arcs 126p-b, 126p-c, 126p-d formed at the corners 125p-b, 125p-c, 125p-d and both ends of the arc.
  • the values of the longitudinal dimension La are also shown in FIGS. 19A, 19B, and 19C. These are the same in Example 1 and Example 2.
  • Example 1 and Example 2 the dimensions of the prepared sheet-like electrode 1p are different from each other.
  • the first cutting blade 41p, the second cutting blade 42, and the corner cutting blades 146b, 146c, and 146d used in the process of manufacturing the sheet-like electrode 1p of Example 1 and the sheet-like electrode 1p of Example 2 are the same. there were.
  • the same cutting blade is used, and the size of the first and second embodiments is different only by changing the mounting position of the cutting blade with respect to the lifting member according to the size of the sheet-like electrode 1p.
  • the sheet-like electrode 1p was able to be manufactured.
  • the negative electrode terminal and the positive electrode terminal were connected to the negative electrode tab portion 27n and the positive electrode tab portion 27p of the electrode laminate 70 by a known method.
  • the electrode laminate 70 was housed in a bag-like laminate sheet together with the electrolytic solution and sealed to obtain laminated lithium ion secondary batteries of Examples 1 and 2.
  • the second cutting blade 42 and the corner cutting blades 146b and 146c can be used in common in the manufacture of the negative electrode sheet electrode 1n and the positive electrode sheet electrode 1p. Therefore, the number of types of cutting blades can be reduced.
  • the application field of the present invention is not particularly limited, and can be particularly preferably used in the field of secondary batteries in which sheet-like positive electrodes and sheet-like negative electrodes are alternately arranged via separators.
  • it is suitable for secondary batteries that require various sizes.
  • Electrode part 21 First side 22 of electrode part Second side 23 of electrode part First side edge 24 of electrode part Second side edge 25a, 25b, 25c, 25d of electrode part Corner portion 26 Arc 27 formed by corner cutting blades Tab portion 30 Electrode substrate 35 Electrode region 37 Non-electrode region 41 First cutting blade 42 Second cutting blade 43 Third cutting blade 44 Fourth cutting blades 46a, 46b, 46c , 46d Corner cutting blade 60 Lithium ion secondary battery 61p Positive electrode (sheet electrode for positive electrode) 61n Negative electrode (sheet electrode for negative electrode) 62p Tab portion of positive electrode 62n Tab portion of negative electrode 66 Separator 68 Exterior material (laminate sheet)

Abstract

The purpose of the invention is to fabricate a sheet-shaped electrode (1) by cutting an elongated electrode substrate (30) having an electrode mixture layer (35) intermittently formed on at least one surface of a collector, the sheet-shaped electrode comprising a substantially rectangular electrode portion (20) on which the electrode mixture layer is formed and a tab portion (27) including a region in which the electrode mixture layer is not formed. A method for fabricating the sheet-shaped electrode includes: a step of forming the tab portion of the sheet-shaped electrode and a first side (21) from which the tab portion projects by using a first cutting blade (41) having a cuttable width (W41) wider than the width of the electrode substrate; and a step of forming a second side (22) facing the first side of the sheet-shaped electrode by using a second cutting blade (42) having a cuttable width (W42) wider than the width of the electrode substrate. This makes it possible to efficiently fabricate sheet-shaped electrodes having different sizes at low cost by using the same cutting blades.

Description

シート状電極の製造方法、シート状電極、及びリチウムイオン二次電池Sheet electrode manufacturing method, sheet electrode, and lithium ion secondary battery
 本発明は、シート状電極の製造方法に関する。また、本発明は、当該製造方法を用いて製造されたシート状電極、及び当該シート状電極を備えたリチウムイオン二次電池に関する。 The present invention relates to a method for manufacturing a sheet-like electrode. Moreover, this invention relates to the lithium ion secondary battery provided with the sheet-like electrode manufactured using the said manufacturing method, and the said sheet-like electrode.
 リチウムイオン二次電池に代表される非水電解質電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューター等の携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン二次電池の更なる高容量化が進められている。エネルギー密度を更に向上させるため、アルミニウム箔等の金属箔を芯材とし、その内側面に接着層として熱融着性樹脂フィルムを積層した、可撓性を有するラミネートシートで外装したラミネート形リチウムイオン二次電池が多く使用されている。 Non-aqueous electrolyte batteries represented by lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. With higher performance of portable devices, further increase in capacity of lithium ion secondary batteries is being promoted. In order to further improve the energy density, a laminated lithium ion sheathed with a flexible laminate sheet in which a metal foil such as an aluminum foil is used as a core material and a heat-fusible resin film is laminated as an adhesive layer on its inner surface Secondary batteries are often used.
 ラミネート形リチウムイオン二次電池に内蔵される電極積層体としては、例えば袋状のセパレータ内に収納したシート状の正極電極と、シート状の負極電極とを交互に重ねたものや(特許文献1参照)、セパレータをジグザクに折り曲げ、シート状の正極電極およびシート状の負極電極をセパレータを介して交互に積層したもの(特許文献2参照)等が知られている。 As an electrode laminated body incorporated in a laminated lithium ion secondary battery, for example, a sheet-like positive electrode housed in a bag-like separator and a sheet-like negative electrode are alternately stacked (Patent Document 1). And a separator in which a separator is folded in a zigzag manner, and sheet-like positive electrodes and sheet-like negative electrodes are alternately stacked via separators (see Patent Document 2).
 これらの電極積層体に使用される正極及び負極のシート状電極は、一般に、集電体としての金属箔に活物質を含む電極合剤層が塗布された矩形状の電極部と、この矩形状の電極部の一辺から突出し且つ電極合剤層が塗布されていないタブ部とを備えている。このようなシート状電極は、帯状の集電体に電極合剤層を間欠的に塗布した電極基材を、所望するシート状電極の形状に一致する切断刃形状を有する金型で一度に打ち抜くことで製造される(特許文献3参照)。 The sheet-like electrodes of the positive electrode and the negative electrode used in these electrode laminates are generally a rectangular electrode portion in which an electrode mixture layer containing an active material is applied to a metal foil as a current collector, and the rectangular shape. And a tab portion that protrudes from one side of the electrode portion and is not coated with an electrode mixture layer. In such a sheet-like electrode, an electrode base material in which an electrode mixture layer is intermittently applied to a strip-shaped current collector is punched at once with a die having a cutting blade shape that matches the shape of the desired sheet-like electrode. (See Patent Document 3).
特開平7-302616号公報JP 7-302616 A 国際公開第06/120959号パンフレットWO 06/120959 pamphlet 特開2002-231230号公報JP 2002-231230 A
 一般に、ラミネート形リチウムイオン二次電池は、これを内蔵する機器の形状に応じたサイズ変更の自由度に優れるという利点を有している。ところが、当該リチウムイオン二次電池に内蔵されるシート状電極のサイズを変更するためには、シート状電極を打ち抜くための金型をシート状電極のサイズごとにあらかじめ準備しておき、生産しようとするシート状電極のサイズ変更のたびに金型を交換する必要がある。これは、多種類の金型を作成し保管しておくことによるコスト上昇や、金型交換による作業効率及び生産性の低下を招く。この問題は、シート状電極のサイズの種類数が増えれば増えるほど深刻である。従って、シート状電極の多品種生産は現実には困難である。 Generally, a laminate-type lithium ion secondary battery has an advantage that it is excellent in the degree of freedom of size change according to the shape of the device in which it is built. However, in order to change the size of the sheet-like electrode incorporated in the lithium ion secondary battery, a mold for punching the sheet-like electrode is prepared in advance for each size of the sheet-like electrode, and production is attempted. It is necessary to exchange the mold every time the size of the sheet electrode to be changed. This leads to an increase in cost due to creation and storage of various types of molds, and a reduction in work efficiency and productivity due to mold replacement. This problem becomes more serious as the number of types of sheet electrode sizes increases. Therefore, it is actually difficult to produce a variety of sheet-like electrodes.
 本発明は、上記の従来の問題を解決するものであり、同一の切断刃を用いて、サイズが異なるシート状電極を効率よく低コストで製造することができる、ユニバーサルなシート状電極の製造方法を提供することを目的とする。また、本発明は、安価なシート状電極及びリチウムイオン二次電池を提供することを目的とする。 The present invention solves the above-described conventional problems, and can use the same cutting blade to efficiently manufacture sheet-shaped electrodes having different sizes at low cost, and a universal sheet-shaped electrode manufacturing method. The purpose is to provide. Another object of the present invention is to provide an inexpensive sheet electrode and a lithium ion secondary battery.
 本発明のシート状電極の製造方法では、活物質を含む電極合剤層が帯状の集電体の少なくとも片面に前記集電体の長手方向に間欠的に形成された長尺の電極基材を切断して、前記電極合剤層が形成された略矩形状の電極部と、前記電極部の一辺から突出し且つ前記電極合剤層が形成されていない領域を含むタブ部とを備えたシート状電極を製造する。前記製造方法は、前記シート状電極の前記タブ部及び前記タブ部が突出した第1辺を、前記電極基材の幅よりも長い切断可能幅を有する第1切断刃を用いて形成する工程と、前記シート状電極の前記第1辺に対向する第2辺を、前記電極基材の幅よりも長い切断可能幅を有する第2切断刃を用いて形成する工程とを備える。 In the method for producing a sheet-like electrode according to the present invention, a long electrode base material in which an electrode mixture layer containing an active material is intermittently formed on at least one surface of a belt-like current collector in the longitudinal direction of the current collector. A sheet-like shape having a substantially rectangular electrode portion that is cut and formed with the electrode mixture layer, and a tab portion that includes a region that protrudes from one side of the electrode portion and is not formed with the electrode mixture layer An electrode is manufactured. The manufacturing method includes the step of forming the tab portion of the sheet-like electrode and the first side from which the tab portion protrudes using a first cutting blade having a cuttable width longer than the width of the electrode base material. Forming a second side opposite to the first side of the sheet-like electrode using a second cutting blade having a cuttable width longer than the width of the electrode base material.
 本発明のシート状電極は、上記のシート状電極の製造方法を用いて製造される。 The sheet-like electrode of the present invention is produced using the above-described method for producing a sheet-like electrode.
 本発明のリチウムイオン二次電池は、前記シート状電極を備える。 The lithium ion secondary battery of the present invention includes the sheet-like electrode.
 本発明によれば、電極基材の幅よりも長い切断可能幅を有する第1切断刃及び第2切断刃を用いて電極基材を切断する。従って、第1切断刃及び第2切断刃の電極基材に対する幅方向及び長手方向の位置を適宜変更することにより、同じ第1切断刃及び第2切断刃を用いてサイズが異なるシート状電極を製造することができる。その結果、サイズが異なる多種類のシート状電極を効率よく低コストで製造することができる。 According to the present invention, the electrode substrate is cut using the first cutting blade and the second cutting blade having a cuttable width longer than the width of the electrode substrate. Accordingly, by appropriately changing the positions of the first cutting blade and the second cutting blade in the width direction and the longitudinal direction with respect to the electrode substrate, sheet-like electrodes having different sizes using the same first cutting blade and second cutting blade can be obtained. Can be manufactured. As a result, many types of sheet-like electrodes having different sizes can be efficiently manufactured at low cost.
 更に、本発明によれば、安価なシート状電極及びリチウムイオン二次電池を実現することができる。 Furthermore, according to the present invention, an inexpensive sheet electrode and a lithium ion secondary battery can be realized.
図1は、本発明の実施形態1にかかるシート状電極の平面図である。FIG. 1 is a plan view of a sheet-like electrode according to Embodiment 1 of the present invention. 図2は、本発明の実施形態1にかかるシート状電極を製造するための電極基材の平面図である。FIG. 2 is a plan view of an electrode base material for manufacturing the sheet electrode according to the first embodiment of the present invention. 図3は、本発明の実施形態1にかかるシート状電極の製造方法において、電極基材に対する第1切断刃及び第2切断刃による切断位置を示した平面図である。FIG. 3 is a plan view showing a cutting position by the first cutting blade and the second cutting blade with respect to the electrode base material in the sheet-like electrode manufacturing method according to Embodiment 1 of the present invention. 図4Aは、本発明の実施形態1にかかるシート状電極の製造方法において、電極基材を第1切断刃及び第2切断刃により切断して得られた電極基材片の平面図である。図4Bは、本発明の実施形態1にかかるシート状電極の製造方法によって形成されるシート状電極の第1隅部の拡大平面図である。FIG. 4A is a plan view of an electrode substrate piece obtained by cutting an electrode substrate with a first cutting blade and a second cutting blade in the method for manufacturing a sheet-like electrode according to Embodiment 1 of the present invention. FIG. 4B is an enlarged plan view of a first corner portion of the sheet-like electrode formed by the sheet-like electrode manufacturing method according to Embodiment 1 of the present invention. 図5は、本発明の実施形態2にかかるシート状電極の平面図である。FIG. 5 is a plan view of a sheet-like electrode according to Embodiment 2 of the present invention. 図6は、本発明の実施形態2にかかるシート状電極の製造方法において、電極基材を第1切断刃及び第2切断刃により切断して得られた第1電極基材片の平面図である。FIG. 6 is a plan view of a first electrode base material piece obtained by cutting an electrode base material with a first cutting blade and a second cutting blade in the sheet-like electrode manufacturing method according to Embodiment 2 of the present invention. is there. 図7は、本発明の実施形態2にかかるシート状電極の製造方法において、電極基材を第1~第4切断刃により切断して得られた第2電極基材片の平面図である。FIG. 7 is a plan view of a second electrode substrate piece obtained by cutting an electrode substrate with first to fourth cutting blades in the method for producing a sheet-like electrode according to Embodiment 2 of the present invention. 図8は、本発明の実施形態3にかかるリチウムイオン二次電池の概略構成を示した透視平面図である。FIG. 8 is a perspective plan view showing a schematic configuration of a lithium ion secondary battery according to Embodiment 3 of the present invention. 図9は、本発明の実施形態3にかかるリチウムイオン二次電池を構成する電極積層体の構成を示した斜視図である。FIG. 9 is a perspective view showing a configuration of an electrode laminate constituting the lithium ion secondary battery according to Embodiment 3 of the present invention. 図10Aは、本発明の実施例1,2において使用した負極用の電極基材のパンケーキを示した斜視図である。図10Bは、図10Aに示した負極用の電極基材の一部の平面図である。FIG. 10A is a perspective view showing a pancake of an electrode substrate for a negative electrode used in Examples 1 and 2 of the present invention. FIG. 10B is a plan view of a part of the electrode substrate for a negative electrode shown in FIG. 10A. 図11は、本発明の実施例1,2において、負極用の電極基材を負極用の第1切断刃で一定ピッチで切断して得た負極用の第1電極基材片の平面図である。FIG. 11 is a plan view of a first electrode substrate piece for negative electrode obtained by cutting an electrode substrate for negative electrode at a constant pitch with a first cutting blade for negative electrode in Examples 1 and 2 of the present invention. is there. 図12は、本発明の実施例1,2において、負極用の第1電極基材片を第2切断刃で切断して得た負極用の第2電極基材片の平面図である。FIG. 12 is a plan view of a second electrode substrate piece for negative electrode obtained by cutting a first electrode substrate piece for negative electrode with a second cutting blade in Examples 1 and 2 of the present invention. 図13は、本発明の実施例1,2において得た負極用のシート状電極の平面図である。FIG. 13 is a plan view of a negative electrode sheet electrode obtained in Examples 1 and 2 of the present invention. 図14A、図14B、図14Cは、図13の部分14A,14B,14Cの部分拡大平面図である。14A, 14B, and 14C are partially enlarged plan views of the portions 14A, 14B, and 14C of FIG. 図15Aは、本発明の実施例1,2において使用した正極用の電極基材のパンケーキを示した斜視図である。図15Bは、図15Aに示した正極用の電極基材の一部の平面図である。FIG. 15A is a perspective view showing a pancake of an electrode base material for a positive electrode used in Examples 1 and 2 of the present invention. FIG. 15B is a plan view of a part of the electrode substrate for a positive electrode shown in FIG. 15A. 図16は、本発明の実施例1,2において、正極用の電極基材を正極用の第1切断刃で一定ピッチで切断して得た正極用の第1電極基材片の平面図である。FIG. 16 is a plan view of the first electrode substrate piece for positive electrode obtained by cutting the electrode substrate for positive electrode at a constant pitch with the first cutting blade for positive electrode in Examples 1 and 2 of the present invention. is there. 図17は、本発明の実施例1,2において、正極用の第1電極基材片を第2切断刃で切断して得た正極用の第2電極基材片の平面図である。FIG. 17 is a plan view of a second electrode substrate piece for a positive electrode obtained by cutting a first electrode substrate piece for a positive electrode with a second cutting blade in Examples 1 and 2 of the present invention. 図18は、本発明の実施例1,2において得た正極用のシート状電極の平面図である。FIG. 18 is a plan view of a positive electrode sheet electrode obtained in Examples 1 and 2 of the present invention. 図19A、図19B、図19Cは、図18の部分19A,19B,19Cの部分拡大平面図である。19A, 19B, and 19C are partially enlarged plan views of the portions 19A, 19B, and 19C of FIG. 図20Aは、本発明の実施例1,2において使用した負極用の第1切断刃の切断刃形状を示した平面図である。図20Bは、本発明の実施例1,2において使用した負極用及び正極用のの第2切断刃の切断刃形状を示した平面図である。図20Cは、本発明の実施例1,2において使用した正極用の第1切断刃の切断刃形状を示した平面図である。FIG. 20A is a plan view showing the cutting blade shape of the first cutting blade for a negative electrode used in Examples 1 and 2 of the present invention. FIG. 20B is a plan view showing the cutting blade shape of the second cutting blade for negative electrode and positive electrode used in Examples 1 and 2 of the present invention. FIG. 20C is a plan view showing the cutting blade shape of the first cutting blade for positive electrode used in Examples 1 and 2 of the present invention. 図21A~図21Dは、本発明の実施例1,2において使用したコーナー切断刃の切断刃形状を示した平面図である。FIGS. 21A to 21D are plan views showing the cutting blade shapes of the corner cutting blades used in Examples 1 and 2 of the present invention. 図22は、本発明の実施例1,2において得た電極積層体の平面図である。FIG. 22 is a plan view of the electrode laminate obtained in Examples 1 and 2 of the present invention.
 本発明のシート状電極の製造方法では、活物質を含む電極合剤層が帯状の集電体の少なくとも片面に前記集電体の長手方向に間欠的に形成された長尺の電極基材を切断して、前記電極合剤層が形成された略矩形状の電極部と、前記電極部の一辺から突出し且つ前記電極合剤層が形成されていない領域を含むタブ部とを備えたシート状電極を製造する。前記製造方法は、前記シート状電極の前記タブ部及び前記タブ部が突出した第1辺を、前記電極基材の幅よりも長い切断可能幅を有する第1切断刃を用いて形成する工程と、前記シート状電極の前記第1辺に対向する第2辺を、前記電極基材の幅よりも長い切断可能幅を有する第2切断刃を用いて形成する工程とを備える。 In the method for producing a sheet-like electrode according to the present invention, a long electrode base material in which an electrode mixture layer containing an active material is intermittently formed on at least one surface of a belt-like current collector in the longitudinal direction of the current collector. A sheet-like shape having a substantially rectangular electrode portion that is cut and formed with the electrode mixture layer, and a tab portion that includes a region that protrudes from one side of the electrode portion and is not formed with the electrode mixture layer An electrode is manufactured. The manufacturing method includes the step of forming the tab portion of the sheet-like electrode and the first side from which the tab portion protrudes using a first cutting blade having a cuttable width longer than the width of the electrode base material. Forming a second side opposite to the first side of the sheet-like electrode using a second cutting blade having a cuttable width longer than the width of the electrode base material.
 上記の本発明の製造方法が、前記第1切断刃の、前記電極基材の長手方向及び幅方向の位置を調整する工程を更に備えることが好ましい。これにより、タブ部の幅やシート状電極の長さが異なるシート状電極を同一の第1切断刃を用いて製造することができる。 It is preferable that the manufacturing method of the present invention further includes a step of adjusting the positions of the first cutting blade in the longitudinal direction and the width direction of the electrode base material. Thereby, the sheet-like electrode from which the width | variety of a tab part and the length of a sheet-like electrode can differ can be manufactured using the same 1st cutting blade.
 上記の本発明の製造方法が、前記第2切断刃の、前記電極基材の長手方向の位置を調整する工程を更に備えていてもよい。これにより、長さが異なるシート状電極を同一の第2切断刃を用いて製造することができる。 The manufacturing method of the present invention may further include a step of adjusting the position of the second cutting blade in the longitudinal direction of the electrode base material. Thereby, the sheet-like electrode from which length differs can be manufactured using the same 2nd cutting blade.
 前記電極基材の幅は、前記シート状電極の幅と同じであることが好ましい。これにより、所望するシート状電極の幅に一致するように電極基材の側辺を切断する工程が不要になるので、シート状電極の製造工程を簡単化することができる。 The width of the electrode substrate is preferably the same as the width of the sheet-like electrode. Thereby, since the process of cutting the side of the electrode base material so as to match the desired width of the sheet-like electrode is not required, the manufacturing process of the sheet-like electrode can be simplified.
 上記の本発明の製造方法が、前記シート状電極の四隅の少なくとも一つを、前記第1切断刃及び前記第2切断刃とは別の円弧状のコーナー切断刃を用いて円弧状に形成する工程を更に備えることが好ましい。これにより、シート状電極の四隅の少なくとも一つを円弧状に形成することができる。更に、シート状電極のサイズが異なっても、四隅のそれぞれを同じコーナー切断刃を用いて円弧状にそれぞれ形成することができる。 In the manufacturing method of the present invention, at least one of the four corners of the sheet-like electrode is formed in an arc shape using an arc-shaped corner cutting blade different from the first cutting blade and the second cutting blade. It is preferable to further include a step. Thereby, at least one of the four corners of the sheet-like electrode can be formed in an arc shape. Furthermore, even if the size of the sheet-like electrode is different, each of the four corners can be formed in an arc shape by using the same corner cutting blade.
 前記シート状電極の四隅の少なくとも一つに形成する円弧の中心角が90°未満であることが好ましい。これにより、コーナー切断刃の位置決め精度を緩和することができる。 It is preferable that the central angle of the arc formed at at least one of the four corners of the sheet-like electrode is less than 90 °. Thereby, the positioning accuracy of the corner cutting blade can be relaxed.
 前記コーナー切断刃の弧長が、このコーナー切断刃によって前記シート状電極の隅に形成された円弧の弧長より長いことが好ましい。これにより、コーナー切断刃の位置決め精度を緩和することができる。 The arc length of the corner cutting blade is preferably longer than the arc length of the arc formed at the corner of the sheet-like electrode by the corner cutting blade. Thereby, the positioning accuracy of the corner cutting blade can be relaxed.
 前記シート状電極が負極用のシート状電極であることが好ましい。一般に、負極用のシート状電極は正極用のシート状電極より大きい。従って、負極用のシート状電極の四隅の少なくとも一つを円弧状に形成することにより、負極用シート状電極と正極用シート状電極とをセパレータを介して積層した電極積層体の取り扱い性が顕著に向上する。 It is preferable that the sheet electrode is a negative electrode sheet electrode. In general, the negative electrode sheet electrode is larger than the positive electrode sheet electrode. Therefore, by forming at least one of the four corners of the negative electrode sheet electrode in an arc shape, the handleability of the electrode laminate in which the negative electrode sheet electrode and the positive electrode sheet electrode are stacked via the separator is remarkable. To improve.
 上記の本発明の製造方法が、前記コーナー切断刃の、前記第1辺方向及びこれと直交する方向の位置を調整する工程を更に備えることが好ましい。これにより、四隅の位置が異なる(即ち、サイズが異なる)シート状電極の四隅のそれぞれを同一のコーナー切断刃を用いて円弧状に形成することができる。 It is preferable that the manufacturing method of the present invention further includes a step of adjusting the position of the corner cutting blade in the first side direction and the direction orthogonal thereto. Thereby, each of the four corners of the sheet-like electrode having different four corner positions (that is, different sizes) can be formed in an arc shape using the same corner cutting blade.
 上記の本発明の製造方法が、前記シート状電極の前記第1辺及び前記第2辺を除く一対の側辺の少なくとも一方を、前記第1切断刃及び前記第2切断刃とは別の第3切断刃を用いて形成する工程を更に備えることが好ましい。これにより、同一の電極基材から、幅が異なるシート状電極を容易に製造することができる。 In the manufacturing method of the present invention, at least one of the pair of side edges excluding the first side and the second side of the sheet-like electrode is separated from the first cutting blade and the second cutting blade. It is preferable to further include a step of forming using three cutting blades. Thereby, the sheet-like electrode from which a width | variety differs can be easily manufactured from the same electrode base material.
 前記第3切断刃の切断可能幅が、前記一対の側辺の前記少なくとも一方の長さより長いことが好ましい。これにより、長さが異なるシート状電極を、同一の第3切断刃を用いて製造することができる。 It is preferable that a cuttable width of the third cutting blade is longer than the length of at least one of the pair of side edges. Thereby, the sheet-like electrode from which length differs can be manufactured using the same 3rd cutting blade.
 上記の本発明の製造方法が、前記第3切断刃の、前記第1辺方向の位置を調整する工程を更に備えることが好ましい。これにより、幅が異なるシート状電極を同一の第3切断刃を用いて製造することができる。 It is preferable that the manufacturing method of the present invention further includes a step of adjusting the position of the third cutting blade in the first side direction. Thereby, the sheet-like electrode from which width differs can be manufactured using the same 3rd cutting blade.
 前記一対の側辺のうちの一方を前記第3切断刃を用いて形成し、他方を前記第1切断刃、前記第2切断刃、及び前記第3切断刃とは別の第4切断刃を用いて切断することが好ましい。これにより、同一の電極基材から製造可能なシート状電極のサイズの種類数が更に増大する。 One of the pair of side edges is formed using the third cutting blade, and the other is a fourth cutting blade different from the first cutting blade, the second cutting blade, and the third cutting blade. It is preferable to use and cut. This further increases the number of types of sheet-like electrodes that can be manufactured from the same electrode substrate.
 以下に、本発明を好適な実施形態を示しながら詳細に説明する。但し、本発明は以下の実施形態に限定されないことはいうまでもない。以下の説明において参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明は以下の各図に示されていない任意の構成部材を備え得る。また、以下の各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。 Hereinafter, the present invention will be described in detail while showing preferred embodiments. However, it goes without saying that the present invention is not limited to the following embodiments. For convenience of explanation, the drawings referred to in the following description show only the main members necessary for explaining the present invention in a simplified manner among the constituent members of the embodiment of the present invention. Therefore, the present invention can include arbitrary components not shown in the following drawings. In addition, the dimensions of the members in the following drawings do not faithfully represent the actual dimensions of the constituent members and the dimensional ratios of the members.
 (実施形態1)
 図1は、本発明の実施形態1にかかるシート状電極1の平面図である。このシート状電極1は、金属箔等からなる集電体の片面又は両面に活物質を含む電極合剤層が形成された略矩形状の電極部20と、電極部20の一辺から突出したタブ部27とを備える。タブ部27の全部又はその先端側(電極部20とは反対側)の少なくとも一部には電極合剤層は形成されておらず、集電体が露出している。図1において、電極合剤層が形成された領域には多数のドットを付している。
(Embodiment 1)
FIG. 1 is a plan view of a sheet-like electrode 1 according to Embodiment 1 of the present invention. The sheet-like electrode 1 includes a substantially rectangular electrode part 20 in which an electrode mixture layer containing an active material is formed on one or both sides of a current collector made of metal foil or the like, and a tab protruding from one side of the electrode part 20 Part 27. The electrode mixture layer is not formed on the entire tab part 27 or at least a part of the front end side (the side opposite to the electrode part 20), and the current collector is exposed. In FIG. 1, a large number of dots are attached to the region where the electrode mixture layer is formed.
 シート状電極1は、正極及び負極のいずれにも使用することができる。但し、シート状電極1の極性に応じて、タブ部27の位置、シート状電極1の寸法、集電体や電極合剤層の材料などが適宜変更される。 The sheet electrode 1 can be used for both the positive electrode and the negative electrode. However, according to the polarity of the sheet-like electrode 1, the position of the tab part 27, the dimension of the sheet-like electrode 1, the material of a collector or an electrode mixture layer, etc. are changed suitably.
 以下の説明の便宜のため、略矩形状の電極部20を取り囲む4辺のうち、タブ部27が形成された辺を第1辺21、第1辺21と対向する辺を第2辺22、第1辺21及び第2辺22以外の互いに対向する2辺を第1側辺23及び第2側辺24と呼ぶことにする。本例では、タブ部27は第2側辺24に沿って形成されている。第1辺21と第2辺22とは互いに平行であり、第1側辺23と第2側辺24とは互いに平行である。第1辺21及び第2辺22と第1側辺23及び第2側辺24とは直交する。また、第1側辺23の両端のうち第1辺21側の端にあるコーナーを第1隅部25a、第2辺22側の端にあるコーナーを第2隅部25b、第2側辺24の両端のうち第2辺22側の端にあるコーナーを第3隅部25c、第1辺21側の端にあるコーナーを第4隅部25dと呼ぶ。図1の例では、第4隅部25dは、タブ部27上に位置している。第1~第4隅部25a~25dの端縁は円弧状に形成されている。 For convenience of the following description, of the four sides surrounding the substantially rectangular electrode portion 20, the side on which the tab portion 27 is formed is the first side 21, the side facing the first side 21 is the second side 22, Two opposite sides other than the first side 21 and the second side 22 are referred to as a first side 23 and a second side 24. In this example, the tab portion 27 is formed along the second side 24. The first side 21 and the second side 22 are parallel to each other, and the first side 23 and the second side 24 are parallel to each other. The first side 21 and the second side 22 are orthogonal to the first side 23 and the second side 24. Of the two ends of the first side 23, the corner at the end on the first side 21 side is the first corner 25 a, the corner at the end on the second side 22 is the second corner 25 b, and the second side 24. Of these two ends, the corner at the end on the second side 22 side is called the third corner portion 25c, and the corner at the end on the first side 21 side is called the fourth corner portion 25d. In the example of FIG. 1, the fourth corner portion 25 d is located on the tab portion 27. The edges of the first to fourth corner portions 25a to 25d are formed in an arc shape.
 図1では、タブ部27は、第1辺21の第2側辺24側の端に第2側辺24に沿って形成されているが、第1側辺23の側の端に第1側辺23に沿って形成されていてもよく、あるいは、第1側辺23及び第2側辺24のいずれからも離れた第1辺21上の位置に形成されていてもよい。また、図1では、タブ部27は略形状の電極部20の短辺上に形成されているが、長辺上に形成されていてもよい。 In FIG. 1, the tab portion 27 is formed along the second side 24 at the end on the second side 24 side of the first side 21, but on the first side at the end on the first side 23 side. It may be formed along the side 23, or may be formed at a position on the first side 21 away from both the first side 23 and the second side 24. In FIG. 1, the tab portion 27 is formed on the short side of the substantially shaped electrode portion 20, but may be formed on the long side.
 第1側辺23と第2側辺24とが対向する方向(図1の左右方向)を「幅方向」と呼び、第1辺21と第2辺22とが対向する方向(図1の上下方向)を「長手方向」と呼ぶ。なお、シート状電極1の「長手方向」は「幅方向」に対する便宜的な名称であって、シート状電極1の「長手方向」がシート状電極1の「長軸方向」を意味するものではない。 The direction in which the first side edge 23 and the second side edge 24 face each other (the left-right direction in FIG. 1) is referred to as the “width direction”, and the direction in which the first edge 21 and the second edge 22 face each other (up and down in FIG. Direction) is called “longitudinal direction”. The “longitudinal direction” of the sheet-like electrode 1 is a convenient name for the “width direction”, and the “longitudinal direction” of the sheet-like electrode 1 does not mean the “major axis direction” of the sheet-like electrode 1. Absent.
 次に、図1に示されたシート状電極1の製造方法を説明する。 Next, a method for manufacturing the sheet-like electrode 1 shown in FIG. 1 will be described.
 最初に、図2に示すような長尺の電極基材30を作成する。この電極基材30は、図2の紙面の上下方向に延びた帯状の集電体を含む。図2において、ドットを付した領域は、基材としての集電体の片面又は両面に、活物質を含む電極合剤層を形成した電極領域35である。ドットを付していない領域は、電極合剤層が形成されておらず、集電体が露出した非電極領域37である。電極領域35と非電極領域37とが、集電体の長手方向(図2の紙面の上下方向)に、一定ピッチで交互に規則的に配置されている。集電体の両面に電極領域35を形成する場合には、電極領域35及び非電極領域37の位置は両面で一致している。電極基材30の幅(図2の紙面において電極基材30の左右方向の寸法)W30は、製造しようとするシート状電極1の幅W1(図1参照)と同じである。電極基材30の作成方法は、特に制限はない。例えば、走行する帯状の集電体の表面に、印刷ロールを用いて電極合剤層の材料を転写形成することができる。 First, a long electrode substrate 30 as shown in FIG. 2 is prepared. The electrode substrate 30 includes a strip-shaped current collector extending in the vertical direction of the paper surface of FIG. In FIG. 2, the area | region which attached | subjected the dot is the electrode area | region 35 which formed the electrode mixture layer containing an active material in the single side | surface or both surfaces of the collector as a base material. The area | region which has not attached | subjected the dot is the non-electrode area | region 37 where the electrode mixture layer was not formed but the electrical power collector was exposed. The electrode regions 35 and the non-electrode regions 37 are regularly and alternately arranged at a constant pitch in the longitudinal direction of the current collector (up and down direction on the paper surface of FIG. 2). When the electrode regions 35 are formed on both surfaces of the current collector, the positions of the electrode region 35 and the non-electrode region 37 are the same on both surfaces. The width W30 of the electrode base material 30 (the dimension in the left-right direction of the electrode base material 30 in FIG. 2) is the same as the width W1 (see FIG. 1) of the sheet-like electrode 1 to be manufactured. There is no restriction | limiting in particular in the preparation methods of the electrode base material 30. FIG. For example, the material of the electrode mixture layer can be transferred and formed on the surface of a traveling belt-like current collector using a printing roll.
 次に、図3に示すように、破線41,42に沿って電極基材30を幅方向に横切るように切断する。 Next, as shown in FIG. 3, the electrode base material 30 is cut along the broken lines 41 and 42 so as to cross the width direction.
 破線41は、第1切断刃(より正確には、第1切断刃の切断刃形状)を示している。この第1切断刃41は、図1に示したシート状電極1のタブ部27とこのタブ部27が突出した第1辺21の輪郭線と同じ階段形状を有している。図3から容易に理解できるように、電極基材30の幅方向における第1切断刃41の寸法(即ち、第1切断刃41の切断可能幅)W41は、電極基材30の幅W30よりも十分に大きい。 The broken line 41 indicates the first cutting blade (more precisely, the cutting blade shape of the first cutting blade). The first cutting blade 41 has the same stepped shape as the outline of the tab portion 27 of the sheet-like electrode 1 shown in FIG. 1 and the first side 21 from which the tab portion 27 protrudes. As can be easily understood from FIG. 3, the dimension of the first cutting blade 41 in the width direction of the electrode base material 30 (that is, the cuttable width of the first cutting blade 41) W41 is larger than the width W30 of the electrode base material 30. Big enough.
 破線42は、上記の第1切断刃とは別個独立の第2切断刃(より正確には、第2切断刃の切断刃形状)を示している。この第2切断刃42は、電極基材30の幅方向と平行な直線形状を有している。図3から容易に理解できるように、電極基材30の幅方向における第2切断刃42の寸法(即ち、第2切断刃42の切断可能幅)W42は、電極基材30の幅W30よりも十分に大きい。 The broken line 42 indicates a second cutting blade independent of the first cutting blade (more precisely, the cutting blade shape of the second cutting blade). The second cutting blade 42 has a linear shape parallel to the width direction of the electrode substrate 30. As can be easily understood from FIG. 3, the dimension of the second cutting blade 42 in the width direction of the electrode base material 30 (that is, the severable width of the second cutting blade 42) W42 is larger than the width W30 of the electrode base material 30. Big enough.
 例えば、ロール上に巻回された長尺の電極基材30を間欠的に巻き出しながら、最初に、第1切断刃41を用いて電極基材30を切断する。次いで、第2切断刃42を用いて電極基材30を切断する。これとは逆に、第2切断刃42を用いて切断した後、第1切断刃41を用いて切断してもよい。あるいは、第1切断刃41と第2切断刃42とを同時に用いて切断してもよい。 For example, the electrode substrate 30 is first cut using the first cutting blade 41 while intermittently unwinding the long electrode substrate 30 wound on a roll. Next, the electrode substrate 30 is cut using the second cutting blade 42. On the contrary, after cutting using the second cutting blade 42, the first cutting blade 41 may be used for cutting. Or you may cut | disconnect using the 1st cutting blade 41 and the 2nd cutting blade 42 simultaneously.
 第1切断刃41及び第2切断刃42は、例えば打ち抜き装置の昇降する部材(以下、「昇降部材」という)に取り付けることができる。第1切断刃41及び第2切断刃42を、同じ昇降部材に取り付けてもよいし、異なる2つの昇降部材にそれぞれ取り付けてもよい。第1切断刃41及び第2切断刃42の昇降部材に対する取り付け位置を変えることで、第1切断刃41及び第2切断刃42による切断位置を変更することができる。 1st cutting blade 41 and 2nd cutting blade 42 can be attached to the member (henceforth "elevating member") which raises / lowers a punching apparatus, for example. The 1st cutting blade 41 and the 2nd cutting blade 42 may be attached to the same raising / lowering member, and may be attached to two different raising / lowering members, respectively. The cutting positions of the first cutting blade 41 and the second cutting blade 42 can be changed by changing the mounting positions of the first cutting blade 41 and the second cutting blade 42 with respect to the lifting member.
 電極基材30に対する第1切断刃41の幅方向(図3の紙面左右方向)及び長手方向(図3の紙面上下方向)の位置は、形成しようとするシート状電極1のサイズに応じて設定される。例えば、第1切断刃41の幅方向の位置は、形成しようとするタブ部27の幅W27(図1参照)等を考慮して設定することができる。また、第1切断刃41の長手方向の切断位置は、電極領域35と非電極領域37との境界位置と、形成しようとするタブ部27との関係等を考慮して設定することができる。 The positions of the first cutting blade 41 in the width direction (left and right direction in FIG. 3) and the longitudinal direction (up and down direction in FIG. 3) with respect to the electrode substrate 30 are set according to the size of the sheet-like electrode 1 to be formed. Is done. For example, the position of the first cutting blade 41 in the width direction can be set in consideration of the width W27 (see FIG. 1) of the tab portion 27 to be formed. The cutting position in the longitudinal direction of the first cutting blade 41 can be set in consideration of the relationship between the boundary position between the electrode region 35 and the non-electrode region 37 and the tab portion 27 to be formed.
 電極基材30に対する第2切断刃42の長手方向(図3の紙面上下方向)の位置は、形成しようとするシート状電極1のサイズに応じて設定される。具体的には、第1切断刃41の切断位置と第2切断刃42の切断位置とが形成しようとするシート状電極1の長手方向の寸法に一致するように、第2切断刃42の長手方向の切断位置を設定することができる。 The position of the second cutting blade 42 in the longitudinal direction (vertical direction in FIG. 3) with respect to the electrode substrate 30 is set according to the size of the sheet electrode 1 to be formed. Specifically, the length of the second cutting blade 42 is set such that the cutting position of the first cutting blade 41 and the cutting position of the second cutting blade 42 coincide with the longitudinal dimension of the sheet-like electrode 1 to be formed. The cutting position in the direction can be set.
 図4Aは、長尺の電極基材30を図3に示した第1切断刃41及び第2切断刃42により切断して得られた電極基材片31の平面図である。この電極基材片31の四隅を、図4Aに示すように、破線46a,46b,46c,46dに沿って切り落とす。破線46a,46b,46c,46dは、順に、第1~第4コーナー切断刃(より正確には、第1~第4コーナー切断刃の切断刃形状)を示している。第1コーナー切断刃46a,第2コーナー切断刃46b,第3コーナー切断刃46c,第4コーナー切断刃46dは、互いに別個独立している。 FIG. 4A is a plan view of the electrode substrate piece 31 obtained by cutting the long electrode substrate 30 with the first cutting blade 41 and the second cutting blade 42 shown in FIG. As shown in FIG. 4A, the four corners of the electrode base piece 31 are cut off along broken lines 46a, 46b, 46c, and 46d. Broken lines 46a, 46b, 46c and 46d indicate the first to fourth corner cutting blades (more precisely, the cutting blade shapes of the first to fourth corner cutting blades) in order. The first corner cutting blade 46a, the second corner cutting blade 46b, the third corner cutting blade 46c, and the fourth corner cutting blade 46d are independent from each other.
 第1~第4コーナー切断刃46a~46dは、図1に示した第1~第4隅部25a~25dに形成された円弧とそれぞれ同じ曲率を有する円弧形状を有している。図4Aから容易に理解できるように、第1~第4コーナー切断刃46a~46dの円弧の弧長(即ち、第1~第4コーナー切断刃46a~46dの切断可能長さ)は、図1に示した第1~第4隅部25a~25dに形成される円弧の弧長よりも十分に長い。第1~第4コーナー切断刃46a~46dの円弧の中心角は、90°以下の範囲内で、可能な限り大きい方が好ましい。 The first to fourth corner cutting blades 46a to 46d have arc shapes having the same curvature as the arcs formed in the first to fourth corner portions 25a to 25d shown in FIG. As can be easily understood from FIG. 4A, the arc lengths of the arcs of the first to fourth corner cutting blades 46a to 46d (that is, the cutable lengths of the first to fourth corner cutting blades 46a to 46d) are as shown in FIG. It is sufficiently longer than the arc length of the arc formed in the first to fourth corner portions 25a to 25d shown in FIG. The central angle of the arcs of the first to fourth corner cutting blades 46a to 46d is preferably as large as possible within a range of 90 ° or less.
 第1~第4コーナー切断刃46a~46dを用いた切断の順序は任意である。これら4つの切断刃46a~46dを、1つずつ順に用いて切断してもよいし、2以上を(もちろん4つ全てを)同時に用いて切断してもよい。 The order of cutting using the first to fourth corner cutting blades 46a to 46d is arbitrary. These four cutting blades 46a to 46d may be cut using one by one in order, or two or more (of course, all four) may be used simultaneously for cutting.
 第1~第4コーナー切断刃46a~46dは、例えば打ち抜き装置の昇降部材に取り付けることができる。第1~第4コーナー切断刃46a~46dを、同じ昇降部材に取り付けてもよいし、異なる2つ以上の昇降部材に別々に取り付けてもよい。第1~第4コーナー切断刃46a~46dの昇降部材に対する取り付け位置を変えることで、第1~第4コーナー切断刃46a~46dによる切断位置を変更することができる。具体的には、第1~第4コーナー切断刃46a~46dの幅方向(図3の紙面左右方向)及び長手方向(図3の紙面上下方向)の各位置は、形成しようとするシート状電極1のサイズ(即ち、第1~第4隅部25a~25dの位置)に応じて設定することができる。 The first to fourth corner cutting blades 46a to 46d can be attached to elevating members of a punching device, for example. The first to fourth corner cutting blades 46a to 46d may be attached to the same elevating member, or may be separately attached to two or more different elevating members. By changing the mounting positions of the first to fourth corner cutting blades 46a to 46d with respect to the elevating member, the cutting positions by the first to fourth corner cutting blades 46a to 46d can be changed. Specifically, the positions of the first to fourth corner cutting blades 46a to 46d in the width direction (left and right direction in FIG. 3) and the longitudinal direction (up and down direction in FIG. 3) are the sheet-like electrodes to be formed. 1 can be set according to the size of 1 (that is, the positions of the first to fourth corners 25a to 25d).
 かくして、図1に示したシート状電極1が得られる。 Thus, the sheet electrode 1 shown in FIG. 1 is obtained.
 以上のように、本実施形態1のシート状電極1の製造方法では、長尺の電極基材30の幅W30よりも長い切断可能幅を有する第1切断刃41及び第2切断刃42を用いて電極基材30を幅方向に横切るように切断して、タブ部27及び第1辺21と、第2辺22とを形成する。従って、電極基材30の幅W30、即ち、最終的に得ようとするシート状電極1の幅W1が変化する場合であっても、幅W30(または幅W1)が第1切断刃41の切断可能幅W41及び第2切断刃42の切断可能幅W42より大きくなければ、第1切断刃41及び第2切断刃42を交換する必要はなく、同じ第1切断刃41及び第2切断刃42を用いて切断することができる。 As described above, in the manufacturing method of the sheet-like electrode 1 according to the first embodiment, the first cutting blade 41 and the second cutting blade 42 having a cuttable width longer than the width W30 of the long electrode substrate 30 are used. Then, the electrode base material 30 is cut so as to cross the width direction, and the tab portion 27, the first side 21, and the second side 22 are formed. Therefore, even when the width W30 of the electrode base material 30, that is, the width W1 of the sheet-like electrode 1 to be finally obtained is changed, the width W30 (or the width W1) is cut by the first cutting blade 41. If it is not larger than the possible width W41 and the cuttable width W42 of the second cutting blade 42, it is not necessary to replace the first cutting blade 41 and the second cutting blade 42, and the same first cutting blade 41 and second cutting blade 42 are used. Can be used to cut.
 シート状電極1のタブ部27の幅W27(図1参照)を変更する場合には、電極基材30に対する第1切断刃41の幅方向の相対的位置を変更すればよい。また、シート状電極1の電極部20の長さL20(図1参照)を変更する場合には、電極基材30に対する第1切断刃41及び/又は第2切断刃42の長手方向の相対的位置を変更すればよい。 When the width W27 (see FIG. 1) of the tab portion 27 of the sheet-like electrode 1 is changed, the relative position in the width direction of the first cutting blade 41 with respect to the electrode base material 30 may be changed. Moreover, when changing the length L20 (refer FIG. 1) of the electrode part 20 of the sheet-like electrode 1, relative to the longitudinal direction of the 1st cutting blade 41 and / or the 2nd cutting blade 42 with respect to the electrode base material 30. FIG. What is necessary is just to change a position.
 第1~第4隅部25a~25dの端縁は、第1切断刃41及び第2切断刃42とは別個独立した第1~第4コーナー切断刃46a~46dを用いて円弧状に形成する。従って、製造しようとするシート状電極1のサイズ変更にともない電極基材30に対する第1切断刃41及び/又は第2切断刃42の相対的位置を変更した場合であっても、第1~第4コーナー切断刃46a~46dを交換する必要はなく、第1~第4コーナー切断刃46a~46dの電極基材片31に対する相対的位置をそれぞれ変更すればよい。 End edges of the first to fourth corner portions 25a to 25d are formed in an arc shape by using first to fourth corner cutting blades 46a to 46d that are independent from the first cutting blade 41 and the second cutting blade 42. . Therefore, even if the relative position of the first cutting blade 41 and / or the second cutting blade 42 with respect to the electrode base material 30 is changed in accordance with the size change of the sheet-like electrode 1 to be manufactured, the first to second It is not necessary to replace the four corner cutting blades 46a to 46d, and the relative positions of the first to fourth corner cutting blades 46a to 46d with respect to the electrode base piece 31 may be changed.
 図4Bは、本実施形態1の製造方法によって得られたシート状電極1の第1隅部25aの拡大平面図である。第1隅部25aには、第1コーナー切断刃46aの一部のみを使用して円弧26が形成されている。従って、円弧26の両端26a,26bと円弧26の中心26cとで定義される円弧26の中心角θは、一般に90°未満になる。また、円弧26の両端26a,26bでの円弧26の接線27a,27bは、一般に第1辺21及び第1側辺23と一致しない。第1コーナー切断刃46aを使用して第1隅部25aにこのような円弧26を形成することにより、第1コーナー切断刃46aの電極基材片31に対する相対的位置決め精度を緩和することができる。図4Bでは、第1隅部25aについて説明したが、第2~第4隅部25b~25dについても同様である。 FIG. 4B is an enlarged plan view of the first corner 25a of the sheet-like electrode 1 obtained by the manufacturing method of the first embodiment. An arc 26 is formed in the first corner 25a using only a part of the first corner cutting blade 46a. Therefore, the central angle θ of the circular arc 26 defined by both ends 26a and 26b of the circular arc 26 and the center 26c of the circular arc 26 is generally less than 90 °. In addition, the tangent lines 27 a and 27 b of the arc 26 at both ends 26 a and 26 b of the arc 26 generally do not coincide with the first side 21 and the first side 23. By forming such an arc 26 in the first corner 25a using the first corner cutting blade 46a, the relative positioning accuracy of the first corner cutting blade 46a with respect to the electrode substrate piece 31 can be relaxed. . In FIG. 4B, the first corner 25a has been described, but the same applies to the second to fourth corners 25b to 25d.
 従って、本実施形態1によれば、サイズが異なるシート状電極1を、第1切断刃41、第2切断刃42、第1~第4コーナー切断刃46a~46dを交換することなく、それらによる切断位置を変更するだけで製造することができる。よって、サイズが異なる多種類のシート状電極1を効率よく低コストで製造することができる。 Therefore, according to the first embodiment, the sheet-like electrodes 1 having different sizes can be obtained without replacing the first cutting blade 41, the second cutting blade 42, and the first to fourth corner cutting blades 46a to 46d. Manufacture can be performed simply by changing the cutting position. Therefore, many types of sheet-like electrodes 1 having different sizes can be manufactured efficiently and at low cost.
 上述した製造方法では、第1及び第2切断刃41,42による切断の後に、第1~第4コーナー切断刃46a~46dによる切断を行ったが、これらの切断の順序はこれに限定されない。例えば、第1切断刃41の切断の後に第1及び第4コーナー切断刃46a,46dによる切断を行い、第2切断刃42の切断の後に第2及び第3コーナー切断刃46b,46cによる切断を行ってもよい。あるいは、第1切断刃41及び第2切断刃42による切断の前に、第1~第4コーナー切断刃46a~46dによる切断を行ってもよい。 In the above-described manufacturing method, the first and fourth corner cutting blades 46a to 46d are cut after the first and second cutting blades 41 and 42, but the order of these cuttings is not limited to this. For example, after the first cutting blade 41 is cut, the first and fourth corner cutting blades 46a and 46d are cut, and after the second cutting blade 42 is cut, the second and third corner cutting blades 46b and 46c are cut. You may go. Alternatively, the cutting with the first to fourth corner cutting blades 46a to 46d may be performed before the cutting with the first cutting blade 41 and the second cutting blade 42.
 また、第1~第4コーナー切断刃46a~46dによる切断のうちの一部又は全部を省略することができる。第1~第4隅部25a~25dを円弧状に形成する理由の1つは、リチウムイオン二次電池の製造過程において、シート状電極1の隅部が他の部材に引っかかることにより、歩留まりや生産性が低下するのを防ぐことにある。一般に、正極用のシート状電極は、負極用のシート状電極より小さい。従って、シート状電極の隅部が他の部材に引っかかる可能性は、正極用シート状電極より負極用シート電極の方が高い。よって、第1~第4コーナー切断刃46a~46dによる切断を、正極用シート状電極では省略し、負極用シート状電極についてのみ行うことも可能である。これにより、正極用シート状電極の製造工数を少なくすることができる。あるいは、後述する実施例1,2のように、タブ部27上の第4隅部25dを円弧状に形成するのを省略することもできる。 Also, some or all of the cutting by the first to fourth corner cutting blades 46a to 46d can be omitted. One of the reasons for forming the first to fourth corner portions 25a to 25d in an arc shape is that the corner portion of the sheet-like electrode 1 is caught by other members in the manufacturing process of the lithium ion secondary battery, so that the yield and The purpose is to prevent the productivity from decreasing. In general, the positive electrode sheet electrode is smaller than the negative electrode sheet electrode. Therefore, the possibility that the corner of the sheet electrode is caught by another member is higher in the negative electrode sheet than in the positive electrode sheet. Therefore, the cutting by the first to fourth corner cutting blades 46a to 46d can be omitted for the positive electrode sheet-like electrode and performed only for the negative electrode sheet-like electrode. Thereby, the manufacturing man-hour of the sheet-like electrode for positive electrodes can be decreased. Alternatively, as in Examples 1 and 2 to be described later, it is possible to omit forming the fourth corner portion 25d on the tab portion 27 in an arc shape.
 第1切断刃41、第2切断刃42、第1~第4コーナー切断刃46a~46dの構成は任意である。例えば、2つの刃で被切断物(電極基材30、電極基材片31)を挟んで被切断物内にせん断変形を生じさせて切断するせん断刃(例えば打ち抜き刃やハサミのようなもの)であってもよいし、被切断物に対して一方の側に配置された刃を被切断物に押し付けて切断するトムソン刃やこれに類似したものであってもよいし、これら以外の任意の切断刃であってもよい。 The configurations of the first cutting blade 41, the second cutting blade 42, and the first to fourth corner cutting blades 46a to 46d are arbitrary. For example, a shearing blade (such as a punching blade or scissors) that cuts the object to be cut between the two objects by sandwiching the object to be cut (electrode base material 30 and electrode base material piece 31). It may be a Thomson blade or a similar one that cuts by pressing a blade arranged on one side of the workpiece against the workpiece, or any other than these A cutting blade may be used.
 被切断物(電極基材30、電極基材片31)と切断刃との相対的位置決めは、被切断物及び切断刃のいずれか一方のみを移動させてもよいし、両方を移動させてもよい。 The relative positioning of the object to be cut (the electrode base material 30, the electrode base material piece 31) and the cutting blade may move only one of the object to be cut and the cutting blade, or may move both. Good.
 (実施形態2)
 実施形態1では、幅W30(図2参照)を有する電極基材30を用いて、これと同一幅のシート状電極1を製造した。これに対して、本実施形態2では、電極基材30より狭幅のシート状電極2を製造する。
(Embodiment 2)
In Embodiment 1, the sheet-like electrode 1 having the same width as this was manufactured using the electrode base material 30 having the width W30 (see FIG. 2). On the other hand, in this Embodiment 2, the sheet-like electrode 2 narrower than the electrode base material 30 is manufactured.
 以下の説明において、実施形態1に示した要素と同一の要素には同一の符号を付して,それらの説明を省略する。以下、実施形態1と異なる点を中心に、本実施形態2を説明する。 In the following description, the same elements as those shown in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, the second embodiment will be described with a focus on differences from the first embodiment.
 図5は、本発明の実施形態2にかかるシート状電極2の平面図である。このシート状電極2は、実施形態1のシート状電極1の幅W1よりも狭い幅W2を有する点で実施形態1のシート状電極1と異なる。これを除いて、本実施形態2のシート状電極2は実施形態1のシート状電極1と同じである。 FIG. 5 is a plan view of the sheet-like electrode 2 according to the second embodiment of the present invention. This sheet-like electrode 2 differs from the sheet-like electrode 1 of the first embodiment in that it has a width W2 that is narrower than the width W1 of the sheet-like electrode 1 of the first embodiment. Except for this, the sheet electrode 2 of the second embodiment is the same as the sheet electrode 1 of the first embodiment.
 図5に示されたシート状電極5の製造方法を説明する。 A method for manufacturing the sheet-like electrode 5 shown in FIG. 5 will be described.
 最初に、実施形態1と同様に、図2に示す長尺の電極基材30を作成する。電極基材30の幅W30は、製造しようとするシート状電極2の幅W2(図5参照)より大きい。 First, similarly to the first embodiment, a long electrode substrate 30 shown in FIG. 2 is prepared. The width W30 of the electrode substrate 30 is larger than the width W2 (see FIG. 5) of the sheet-like electrode 2 to be manufactured.
 次に、実施形態1と同様に、第1切断刃41及び第2切断刃42を用いて電極基材30を幅方向に横切るように切断して(図3参照)、図6に示す第1電極基材片31aを得る。 Next, similarly to the first embodiment, the electrode substrate 30 is cut across the width direction using the first cutting blade 41 and the second cutting blade 42 (see FIG. 3), and the first shown in FIG. The electrode substrate piece 31a is obtained.
 この第1電極基材片31aの両側辺を、図6に示すように、破線43,44に沿って切り落とす。 The both sides of the first electrode base piece 31a are cut off along the broken lines 43 and 44 as shown in FIG.
 破線43は第3切断刃(より正確には、第3切断刃の切断刃形状)を示しており、破線44は第4切断刃(より正確には、第4切断刃の切断刃形状)を示している。第3切断刃43と第4切断刃44とは互いに別個独立している。第3切断刃43及び第4切断刃44は、第1電極基材片31aの長手方向(即ち、図6の紙面の上下方向。これは、図3に示した電極基材30の長手方向と一致する)と平行な直線形状を有している。図6から容易に理解できるように、第1電極基材片31aの長手方向における第3切断刃43の寸法(切断可能幅)W43及び同方向における第4切断刃44の寸法(切断可能幅)W44は、製造しようとするシート状電極2の第1側辺23の長さL23及び第2側辺24の長さL24(図5参照)より十分に長い。 The broken line 43 indicates the third cutting blade (more precisely, the cutting blade shape of the third cutting blade), and the broken line 44 indicates the fourth cutting blade (more precisely, the cutting blade shape of the fourth cutting blade). Show. The third cutting blade 43 and the fourth cutting blade 44 are independent from each other. The 3rd cutting blade 43 and the 4th cutting blade 44 are the longitudinal directions of the 1st electrode base-material piece 31a (namely, the up-down direction of the paper surface of FIG. 6. This is the longitudinal direction of the electrode base material 30 shown in FIG. And a straight line shape parallel to. As can be easily understood from FIG. 6, the dimension (cuttable width) W43 of the third cutting blade 43 in the longitudinal direction of the first electrode base piece 31a and the dimension (cuttable width) of the fourth cutting blade 44 in the same direction. W44 is sufficiently longer than the length L23 of the first side 23 and the length L24 (see FIG. 5) of the second side 24 of the sheet electrode 2 to be manufactured.
 第3切断刃43及び第4切断刃44は、例えば打ち抜き装置の昇降部材に取り付けることができる。第3切断刃43及び第4切断刃44を、同じ昇降部材に取り付けてもよいし、異なる2つの昇降部材にそれぞれ取り付けてもよい。第3切断刃43及び第4切断刃44の昇降部材に対する取り付け位置を変えることで、第3切断刃43及び第4切断刃44による切断位置を変更することができる。 The 3rd cutting blade 43 and the 4th cutting blade 44 can be attached to the raising / lowering member of a punching apparatus, for example. The 3rd cutting blade 43 and the 4th cutting blade 44 may be attached to the same raising / lowering member, and may be attached to two different raising / lowering members, respectively. The cutting position by the third cutting blade 43 and the fourth cutting blade 44 can be changed by changing the attachment position of the third cutting blade 43 and the fourth cutting blade 44 to the lifting member.
 第1電極基材片31aに対する第3切断刃43及び第4切断刃44の幅方向(図6の紙面左右方向)の位置は、形成しようとするシート状電極1のサイズに応じて設定される。例えば、第4切断刃44の幅方向の切断位置は、所望する幅W27(図5参照)のタブ部27が得られるように設定することができる。また、第3切断刃43及び第4切断刃44の幅方向の切断位置は、第3切断刃43の切断位置と第4切断刃44の切断位置との間隔が、形成しようとするシート状電極2の幅W2に一致するように設定することができる。 The positions of the third cutting blade 43 and the fourth cutting blade 44 in the width direction (left and right direction in FIG. 6) with respect to the first electrode substrate piece 31a are set according to the size of the sheet electrode 1 to be formed. . For example, the cutting position in the width direction of the fourth cutting blade 44 can be set so that the tab portion 27 having a desired width W27 (see FIG. 5) can be obtained. In addition, the cutting position in the width direction of the third cutting blade 43 and the fourth cutting blade 44 is such that the interval between the cutting position of the third cutting blade 43 and the cutting position of the fourth cutting blade 44 is to be formed. It can be set to match the width W2 of 2.
 第3切断刃43による切断と第4切断刃44による切断との順序は任意である。第3切断刃43による切断と第4切断刃44による切断とを同時に行うこともできる。 The order of the cutting by the third cutting blade 43 and the cutting by the fourth cutting blade 44 is arbitrary. The cutting with the third cutting blade 43 and the cutting with the fourth cutting blade 44 can be performed simultaneously.
 図7は、第1電極基材片31aを図6に示した第3切断刃43及び第4切断刃44により切断して得られた第2電極基材片31bの平面図である。この第2電極基材片31bの四隅を、実施形態1の図4Aで説明したのと同様に、図7に破線で示した第1コーナー切断刃46a,第2コーナー切断刃46b,第3コーナー切断刃46c,第4コーナー切断刃46dで切り落とす。 FIG. 7 is a plan view of the second electrode substrate piece 31b obtained by cutting the first electrode substrate piece 31a with the third cutting blade 43 and the fourth cutting blade 44 shown in FIG. The four corners of the second electrode base material piece 31b are the same as described in FIG. 4A of the first embodiment, and the first corner cutting blade 46a, the second corner cutting blade 46b, and the third corner shown by broken lines in FIG. Cut off with the cutting blade 46c and the fourth corner cutting blade 46d.
 かくして、図5に示したシート状電極2が得られる。 Thus, the sheet electrode 2 shown in FIG. 5 is obtained.
 以上のように、本実施形態2のシート状電極2の製造方法では、実施形態1のシート状電極1の製造方法に加えて、第1電極基材片31aの両側辺を第3切断刃43及び第4切断刃44で切り落として第1側辺23及び第2側辺24を形成する工程を有する。従って、最終的に得ようとするシート状電極2の幅W2が電極基材片30の幅W30よりも小さい場合であっても、第3切断刃43及び第4切断刃44による切断工程を追加する以外は、実施形態1で使用した第1及び第2切断刃41,42、第1~第4コーナー切断刃46a~46dを交換する必要はなく、本実施形態2でもこれらを実施形態1と同様に使用することができる。 As described above, in the manufacturing method of the sheet-like electrode 2 according to the second embodiment, in addition to the manufacturing method of the sheet-like electrode 1 according to the first embodiment, the both sides of the first electrode base material piece 31a are connected to the third cutting blade 43. And a step of forming the first side edge 23 and the second side edge 24 by cutting off with the fourth cutting blade 44. Therefore, even if the width W2 of the sheet-like electrode 2 to be finally obtained is smaller than the width W30 of the electrode base piece 30, a cutting process by the third cutting blade 43 and the fourth cutting blade 44 is added. Except for the above, it is not necessary to replace the first and second cutting blades 41 and 42 and the first to fourth corner cutting blades 46a to 46d used in the first embodiment. It can be used as well.
 シート状電極2の幅W2を変更する場合には、第3切断刃43及び第4切断刃44の幅方向の切断位置を変更すればよい。また、シート状電極2のタブ部27の幅W27(図5、図6参照)を変更する場合には、第1切断刃41及び/又は第4切断刃44の幅方向の位置を変更すればよい。 When changing the width W2 of the sheet-like electrode 2, the cutting position in the width direction of the third cutting blade 43 and the fourth cutting blade 44 may be changed. Moreover, when changing the width W27 (refer FIG. 5, FIG. 6) of the tab part 27 of the sheet-like electrode 2, if the position of the width direction of the 1st cutting blade 41 and / or the 4th cutting blade 44 is changed. Good.
 最終的に得ようとするシート状電極2の第1側辺23の長さL23及び第2側辺24の長さL24が変化する場合であっても、第1側辺23の長さL23が第3切断刃43の切断可能幅W43より大きくなければ第3切断刃43を交換する必要はなく、また、第2側辺24の長さL24が第4切断刃44の切断可能幅W44より大きくなければ第4切断刃44を交換する必要はない。従って、同じ第3切断刃43及び第4切断刃44を用いて切断することができる。 Even when the length L23 of the first side 23 and the length L24 of the second side 24 of the sheet-like electrode 2 to be finally obtained are changed, the length L23 of the first side 23 is If it is not larger than the cuttable width W43 of the third cutting blade 43, it is not necessary to replace the third cutting blade 43, and the length L24 of the second side 24 is larger than the cuttable width W44 of the fourth cutting blade 44. Otherwise, it is not necessary to replace the fourth cutting blade 44. Accordingly, the same third cutting blade 43 and fourth cutting blade 44 can be used for cutting.
 上記以外は、実施形態1で説明したように、シート状電極2のサイズに応じて第1切断刃41、第2切断刃42、第1~第4コーナー切断刃46a~46dの切断位置を変更すればよい。 Other than the above, as described in the first embodiment, the cutting positions of the first cutting blade 41, the second cutting blade 42, and the first to fourth corner cutting blades 46a to 46d are changed according to the size of the sheet-like electrode 2. do it.
 従って、本実施形態2によれば、サイズが異なるシート状電極2を、第1~第4切断刃41~44、第1~第4コーナー切断刃46a~46dを交換することなく、それらによる切断位置を変更するだけで製造することができる。よって、サイズが異なる多種類のシート状電極2を効率よく低コストで製造することができる。 Therefore, according to the second embodiment, the sheet-like electrodes 2 having different sizes can be cut without replacing the first to fourth cutting blades 41 to 44 and the first to fourth corner cutting blades 46a to 46d. It can be manufactured simply by changing the position. Therefore, many types of sheet-like electrodes 2 having different sizes can be efficiently manufactured at low cost.
 また、実施形態1と異なり、本実施形態2では、シート状電極2を製造するために、シート状電極2の幅W2より広幅の電極基材30を用いることができるので、シート状電極の幅に応じた電極基材30を製造する必要がない。この点も、サイズが異なる多種類のシート状電極の効率よい低コストの製造に有利である。 Further, unlike Embodiment 1, in Embodiment 2, since the electrode substrate 30 wider than the width W2 of the sheet electrode 2 can be used to manufacture the sheet electrode 2, the width of the sheet electrode can be used. There is no need to manufacture the electrode substrate 30 according to the above. This is also advantageous for efficient and low-cost production of various types of sheet-like electrodes having different sizes.
 上述した製造方法では、互い別個独立した第3切断刃43及び第4切断刃44を使用したが、いずれか一方の切断刃を省略してもよい。即ち、第3切断刃43(又は第4切断刃44)のみを用いて、これを幅方向に移動させてシート状電極2の第1及び第2側辺23,24の両方を形成してもよい。 In the above-described manufacturing method, the third cutting blade 43 and the fourth cutting blade 44 that are independent from each other are used, but either one of the cutting blades may be omitted. That is, even when only the third cutting blade 43 (or the fourth cutting blade 44) is used and moved in the width direction, both the first and second side edges 23 and 24 of the sheet-like electrode 2 are formed. Good.
 また、上述した製造方法では、幅W2を有するシート状電極2を得るために、第3切断刃43による切断と第4切断刃44による切断とを行ったが、これらのうちのいずれか一方の切断を省略することができる。即ち、図2に示した長尺の電極基材30の幅方向の両側辺のうちの一方を、シート状電極2の第1及び第2側辺23,24のうちの一方とすることができる。これにより、シート状電極2の製造工程を簡単化することができる。 Moreover, in the manufacturing method mentioned above, in order to obtain the sheet-like electrode 2 having the width W2, the cutting with the third cutting blade 43 and the cutting with the fourth cutting blade 44 were performed. Cutting can be omitted. That is, one of the both sides in the width direction of the long electrode substrate 30 shown in FIG. 2 can be set as one of the first and second sides 23 and 24 of the sheet-like electrode 2. . Thereby, the manufacturing process of the sheet-like electrode 2 can be simplified.
 上述した製造方法では、第1及び第2切断刃41,42による切断、第3及び第4切断刃43,44による切断、第1~第4コーナー切断刃46a~46dによる切断をこの順に行ったが、これらの切断の順序はこれに限定されない。例えば、第3及び第4切断刃43,44による切断を行った後に、第1及び第2切断刃41,42による切断を行ってもよい。あるいは、第1~第4コーナー切断刃46a~46dによる切断を最初に行ってもよい。更には、最初に第1及び第2切断刃41,42による切断を行い、その後、第3切断刃43による切断の後に第1及び第2コーナー切断刃46a,46bによる切断を行い、第4切断刃44の切断の後に第3及び第4コーナー切断刃46c,46dによる切断を行ってもよい。これら以外にも、各切断刃による切断順序を任意に並び替えることができる。 In the manufacturing method described above, cutting with the first and second cutting blades 41 and 42, cutting with the third and fourth cutting blades 43 and 44, and cutting with the first to fourth corner cutting blades 46a to 46d were performed in this order. However, the order of these cuts is not limited to this. For example, after cutting with the third and fourth cutting blades 43 and 44, the cutting with the first and second cutting blades 41 and 42 may be performed. Alternatively, the cutting with the first to fourth corner cutting blades 46a to 46d may be performed first. Further, the first and second cutting blades 41 and 42 are first cut, and then the third and fourth corner cutting blades 46a and 46b are cut after the third cutting blade 43, and the fourth cutting is performed. After the cutting of the blade 44, cutting by the third and fourth corner cutting blades 46c and 46d may be performed. In addition to these, the cutting order by each cutting blade can be rearranged arbitrarily.
 第3及び第4切断刃43,44の構成は任意であり、実施形態1で説明した第1及び第2切断刃41,42、第1~第4コーナー切断刃46a~46dと同様に、せん断刃やトムソン刃等、公知の切断刃を用いることができる。 The configurations of the third and fourth cutting blades 43 and 44 are arbitrary, and in the same way as the first and second cutting blades 41 and 42 and the first to fourth corner cutting blades 46a to 46d described in the first embodiment, shearing is performed. Known cutting blades such as blades and Thomson blades can be used.
 被切断物(電極基材30、第1及び第2電極基材片31a,31b)と切断刃との相対的位置決めは、被切断物及び切断刃のいずれか一方のみを移動させてもよいし、両方を移動させてもよい。 The relative positioning of the workpiece (electrode substrate 30, first and second electrode substrate pieces 31a, 31b) and the cutting blade may be such that only one of the workpiece and the cutting blade is moved. , You may move both.
 本実施形態2は、上記を除いて実施形態1と同じである。実施形態1の説明が、そのまま又は適宜変更して本実施形態2に適用される。 The second embodiment is the same as the first embodiment except for the above. The description of the first embodiment is applied to the second embodiment as it is or after being appropriately changed.
 (実施形態3)
 本実施形態3では、本発明のシート状電極を備えたラミネート形リチウムイオン二次電池について説明する。
(Embodiment 3)
In the third embodiment, a laminated lithium ion secondary battery provided with the sheet electrode of the present invention will be described.
 図8は、本発明の実施形態3にかかるリチウムイオン二次電池60の概略構成を示した透視平面図である。 FIG. 8 is a perspective plan view showing a schematic configuration of a lithium ion secondary battery 60 according to Embodiment 3 of the present invention.
 図8において、61pは正極電極、61nは負極電極であり、これら正極電極61p及び負極電極61nは、実施形態1又は実施形態2で説明した方法にしたがって製造された本発明のシート状電極である。実施形態1,2で説明したように、正極電極61p及び負極電極61nは、略矩形状の電極部と、電極部の一辺から突出したタブ部とを備える。62pは正極電極61pのタブ部、62nは負極電極61nのタブ部である。63pは正極リード体、63nは負極リード体、64pは正極端子、64nは負極端子である。正極リード体63pの一端は正極タブ部62pに接続され、その他端は正極端子64pに接続されている。負極リード体63nの一端は負極タブ部62nに接続され、その他端は負極端子64nに接続されている。66は正極電極61pと負極電極61nとの間に配されたセパレータ、68はリチウムイオン二次電池60のラミネートシート(外装材)である。ラミネートシート68の外周端縁に沿った領域69は表裏のラミネートシート68が熱融着されたヒートシール部である。 In FIG. 8, 61p is a positive electrode, 61n is a negative electrode, and these positive electrode 61p and negative electrode 61n are the sheet-like electrodes of the present invention manufactured according to the method described in the first or second embodiment. . As described in the first and second embodiments, the positive electrode 61p and the negative electrode 61n include a substantially rectangular electrode portion and a tab portion protruding from one side of the electrode portion. 62p is a tab portion of the positive electrode 61p, and 62n is a tab portion of the negative electrode 61n. 63p is a positive electrode lead body, 63n is a negative electrode lead body, 64p is a positive electrode terminal, and 64n is a negative electrode terminal. One end of the positive electrode lead body 63p is connected to the positive electrode tab portion 62p, and the other end is connected to the positive electrode terminal 64p. One end of the negative electrode lead body 63n is connected to the negative electrode tab portion 62n, and the other end is connected to the negative electrode terminal 64n. 66 is a separator disposed between the positive electrode 61p and the negative electrode 61n, and 68 is a laminate sheet (exterior material) of the lithium ion secondary battery 60. A region 69 along the outer peripheral edge of the laminate sheet 68 is a heat seal portion where the front and back laminate sheets 68 are heat-sealed.
 正極電極61pは、例えば、正極活物質、導電助剤、及びバインダ等を含有する正極合剤からなる層(正極合剤層)を集電体の片面または両面に形成した構造を有する。 The positive electrode 61p has, for example, a structure in which a layer (positive electrode mixture layer) made of a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder and the like is formed on one side or both sides of the current collector.
 正極活物質は、リチウムイオンを吸蔵・放出できる活物質からなる。このような正極活物質は、例えば、Li1+xMO2(-0.1<x<0.1、M:Co,Ni,Mn,Al,Mg等)で表される層状構造のリチウム含有遷移金属酸化物、LiMn24、元素の一部を他の元素で置き換えたスピネル構造のリチウムマンガン酸化物、およびLiMPO4(M:Co,Ni,Mn,Fe等)で表されるオリビン型化合物等のいずれかからなることが好ましい。 A positive electrode active material consists of an active material which can occlude / release lithium ion. Such a positive electrode active material includes, for example, lithium having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc.) Transition metal oxide, LiMn 2 O 4 , lithium manganese oxide having a spinel structure in which part of the element is replaced with another element, and olivine type represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) It preferably consists of any one of compounds.
 上記の層状構造のリチウム含有遷移金属酸化物は、例えば、LiCoO2、LiNi1-xCox-yAly2(0.1≦x≦0.3,0.01≦y≦0.2)、および少なくともCo,NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/32,LiMn5/12Ni5/12Co1/62,LiNi3/5Mn1/5Co1/52,LiNi0.5Co0.2Mn0.3)のいずれかからなることが好ましい。 Lithium-containing transition metal oxide of the above layered structure, for example, LiCoO 2, LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3,0.01 ≦ y ≦ 0.2), And an oxide containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3/5 Mn 1/5 Co 1/5 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 ) is preferable.
 正極電極61pの集電体は、例えば、アルミニウム箔、およびアルミニウム合金箔のいずれかからなることが好ましい。集電体の厚みは、電池の大きさおよび容量によって異なるが、例えば0.01~0.02mmであることが好ましい。 The current collector of the positive electrode 61p is preferably made of, for example, an aluminum foil or an aluminum alloy foil. The thickness of the current collector varies depending on the size and capacity of the battery, but is preferably 0.01 to 0.02 mm, for example.
 正極電極61pは、次の方法によって作製される。上述した正極活物質と、黒鉛、アセチレンブラック、カーボンブラック、および繊維状炭素等の導電助剤と、ポリフッ化ビニリデン(PVDF)等のバインダとを含む正極合剤を、N-メチル-2-ピロリドン(NMP)等の溶剤を用いて均一に分散させたペースト状またはスラリー状の組成物を調整する(バインダは、溶剤に溶解していてもよい)。この組成物を帯状の集電体上に間欠的に塗布して乾燥し、必要に応じてプレス処理により正極合剤層の厚みを調整する。このようにして得た長尺の正極基材(電極基材)を、上述した実施形態1,2の方法により所定形状に切断して正極電極61pが得られる。 The positive electrode 61p is manufactured by the following method. A positive electrode mixture containing the above-described positive electrode active material, a conductive additive such as graphite, acetylene black, carbon black, and fibrous carbon, and a binder such as polyvinylidene fluoride (PVDF) is used as N-methyl-2-pyrrolidone. A paste-like or slurry-like composition uniformly dispersed using a solvent such as (NMP) is prepared (the binder may be dissolved in the solvent). This composition is intermittently applied onto a strip-shaped current collector and dried, and the thickness of the positive electrode mixture layer is adjusted by pressing as necessary. The long positive electrode substrate (electrode substrate) thus obtained is cut into a predetermined shape by the method of Embodiments 1 and 2 described above to obtain the positive electrode 61p.
 正極電極61pにおける正極合剤層の厚みは、片面当たり、30~100μmであることが好ましい。また、正極合剤層における各構成成分の含有量は、正極活物質:90~98質量%、導電助剤:1~5質量%、バインダ:1~5質量%であることが好ましい。 The thickness of the positive electrode mixture layer in the positive electrode 61p is preferably 30 to 100 μm per side. In addition, the content of each component in the positive electrode mixture layer is preferably positive electrode active material: 90 to 98% by mass, conductive assistant: 1 to 5% by mass, and binder: 1 to 5% by mass.
 正極リード体63pは、アルミニウムまたはアルミニウム合金からなることが好ましい。正極リード体63pの厚みは、20~300μmであることが好ましい。 The positive electrode lead body 63p is preferably made of aluminum or an aluminum alloy. The thickness of the positive electrode lead body 63p is preferably 20 to 300 μm.
 正極端子64pの材料は、電池60を使用する機器との接続を容易にする等の観点から決定される。例えば、アルミニウムまたはアルミニウム合金などを用いることができる。 The material of the positive electrode terminal 64p is determined from the viewpoint of facilitating connection with a device using the battery 60. For example, aluminum or an aluminum alloy can be used.
 正極端子64pの厚みは、50~300μmであることが好ましい。正極端子64pの厚みが50μm以上であることによって、正極端子64pの溶接時に正極端子64pが切断されるのを防止できるとともに、正極端子64pが引っ張りおよび折り曲げによって断裂するのを防止できる。また、正極端子64pの厚みが300μm以下であることによって、ラミネートシート68のヒートシール部69に、正極端子64pとラミネートシート68との間に隙間が生じるのを防止できる。 The thickness of the positive electrode terminal 64p is preferably 50 to 300 μm. When the thickness of the positive electrode terminal 64p is 50 μm or more, the positive electrode terminal 64p can be prevented from being cut during welding of the positive electrode terminal 64p, and the positive electrode terminal 64p can be prevented from being broken by being pulled and bent. Moreover, when the thickness of the positive electrode terminal 64p is 300 μm or less, it is possible to prevent a gap from being generated between the positive electrode terminal 64p and the laminate sheet 68 in the heat seal portion 69 of the laminate sheet 68.
 正極端子64pとラミネートシート68との接着強度を高めるために、正極端子64pのヒートシール部69に位置することが予定される領域に、予め、樹脂製の接着層(例えば、ラミネートシート68が備える熱融着性樹脂層と同種の樹脂からなる接着層)を設けてもよい。 In order to increase the adhesive strength between the positive electrode terminal 64p and the laminate sheet 68, a resin adhesive layer (for example, the laminate sheet 68) is provided in advance in a region that is expected to be located in the heat seal portion 69 of the positive electrode terminal 64p. An adhesive layer made of the same kind of resin as the heat-fusible resin layer may be provided.
 正極タブ部62pと正極リード体63pとの接続方法、及び、正極リード体63pと正極端子64pとの接続方法は、例えば、抵抗溶接、超音波溶接、レーザー溶接、カシメ、導電性接着剤による接着等、各種の方法を採用することができる。これらの中では、超音波溶接が好ましい。 The connection method between the positive electrode tab portion 62p and the positive electrode lead body 63p and the connection method between the positive electrode lead body 63p and the positive electrode terminal 64p are, for example, resistance welding, ultrasonic welding, laser welding, caulking, adhesion by a conductive adhesive. Various methods can be employed. Among these, ultrasonic welding is preferable.
 負極電極61nは、例えば、リチウムイオンを吸蔵・放出できる負極活物質を含有する層(負極合剤層)を集電体の片面または両面に形成した構造を有する。 The negative electrode 61n has, for example, a structure in which a layer containing a negative electrode active material capable of inserting and extracting lithium ions (negative electrode mixture layer) is formed on one side or both sides of a current collector.
 負極活物質は、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、および炭素繊維等のリチウムイオンを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物からなることが好ましい。 Negative electrode active materials include graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon that can occlude and release lithium ions such as carbon fibers. It is preferable that it consists of 1 type, or 2 or more types of mixtures of system material.
 あるいは、負極活物質は、Si,Sn,Ge,Bi,Sb,In等の元素、Si,Sn,Ge,Bi,Sb,Inの合金、リチウム含有窒化物、およびリチウム酸化物等のリチウム金属に近い低電圧で充放電できる化合物(LiTi312等)、リチウム金属、およびリチウム/アルミニウム合金のいずれかからなることが好ましい。 Alternatively, the negative electrode active material may be an element such as Si, Sn, Ge, Bi, Sb, or In, an alloy of Si, Sn, Ge, Bi, Sb, or In, a lithium-containing nitride, or a lithium metal such as lithium oxide. It is preferably made of any of a compound (LiTi 3 O 12 or the like) that can be charged and discharged at a near low voltage, lithium metal, and a lithium / aluminum alloy.
 負極電極61nの集電体としては、銅箔が好適である。集電体の厚みは、電池の大きさまたは容量によって異なるが、例えば、0.005~0.02mmであることが好ましい。 As the current collector of the negative electrode 61n, copper foil is suitable. The thickness of the current collector varies depending on the size or capacity of the battery, but is preferably 0.005 to 0.02 mm, for example.
 負極電極61nは、次の方法によって作製される。上述した負極活物質と、バインダ(PVDF、スチレンブタジエンゴム(SBR)のようなゴム系バインダとカルボキシメチルセルロース(CMC)との混合バインダ等)と、必要に応じて黒鉛、アセチレンブラック、カーボンブラック等の導電助剤等とを含む負極合剤を、NMPや水等の溶剤を用いて均一に分散させたペースト状またはスラリー状の組成物を調整する(バインダは、溶剤に溶解していてもよい)。この組成物を帯状の集電体上に間欠的に塗布して得た長尺の負極基材(電極基材)を、上述した実施形態1,2の方法により所定形状に切断して負極電極61nが得られる。必要に応じてプレス処理により負極合剤層の厚みまたは密度を調整してもよい。 The negative electrode 61n is manufactured by the following method. The negative electrode active material described above, a binder (such as a mixed binder of rubber binder such as PVDF or styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC)), and graphite, acetylene black, carbon black, etc. A paste-like or slurry-like composition in which a negative electrode mixture containing a conductive aid or the like is uniformly dispersed using a solvent such as NMP or water is prepared (the binder may be dissolved in the solvent). . A long negative electrode base material (electrode base material) obtained by intermittently applying this composition onto a strip-shaped current collector is cut into a predetermined shape by the method of Embodiments 1 and 2, and the negative electrode is obtained. 61n are obtained. You may adjust the thickness or density of a negative mix layer by press processing as needed.
 負極電極61nにおける負極合剤層の厚みは、片面当たり、30~100μmであることが好ましい。また、負極合剤層における各構成成分の含有量は、負極活物質:90~98質量%、バインダ:1~5質量%であることが好ましい。また、導電助剤を用いる場合には、負極合剤層中の導電助剤の含有量は、1~5質量%であることが好ましい。 The thickness of the negative electrode mixture layer in the negative electrode 61n is preferably 30 to 100 μm per side. The content of each component in the negative electrode mixture layer is preferably negative electrode active material: 90 to 98% by mass and binder: 1 to 5% by mass. In the case where a conductive assistant is used, the content of the conductive assistant in the negative electrode mixture layer is preferably 1 to 5% by mass.
 負極リード体63nは、銅からなることが好ましい。負極リード体63nの厚みは、20~300μmであることが好ましい。 The negative electrode lead body 63n is preferably made of copper. The thickness of the negative electrode lead body 63n is preferably 20 to 300 μm.
 負極端子64nの材料は、電池60を使用する機器との接続を容易にする等の観点から決定される。例えば、ニッケル、ニッケルメッキをした銅、およびニッケル-銅クラッドなどを用いることができる。 The material of the negative electrode terminal 64n is determined from the viewpoint of facilitating connection with a device using the battery 60. For example, nickel, nickel-plated copper, nickel-copper clad, and the like can be used.
 負極端子64nの厚みは、正極端子64pと同様に、50~300μmであることが好ましい。負極端子64nの厚みが50μm以上であることによって、負極端子64nの溶接時に負極端子64nが切断されるのを防止できるとともに、負極端子64nが引っ張りおよび折り曲げによって断裂するのを防止できる。また、負極端子64nの厚みが300μm以下であることによって、ラミネートシート68のヒートシール部69に、負極端子64nとラミネートシート68との間に隙間が生じるのを防止できる。 The thickness of the negative electrode terminal 64n is preferably 50 to 300 μm, like the positive electrode terminal 64p. When the thickness of the negative electrode terminal 64n is 50 μm or more, the negative electrode terminal 64n can be prevented from being cut during welding of the negative electrode terminal 64n, and the negative electrode terminal 64n can be prevented from being broken by being pulled and bent. Moreover, when the thickness of the negative electrode terminal 64n is 300 μm or less, it is possible to prevent a gap from being generated between the negative electrode terminal 64n and the laminate sheet 68 in the heat seal portion 69 of the laminate sheet 68.
 負極端子64nとラミネートシート68との接着強度を高めるために、負極端子64nのヒートシール部69に位置することが予定される領域に、予め、樹脂製の接着層(例えば、ラミネートシート68が備える熱融着性樹脂層と同種の樹脂からなる接着層)を設けてもよい。 In order to increase the adhesive strength between the negative electrode terminal 64n and the laminate sheet 68, a resin adhesive layer (for example, the laminate sheet 68) is provided in advance in a region that is planned to be located in the heat seal portion 69 of the negative electrode terminal 64n. An adhesive layer made of the same kind of resin as the heat-fusible resin layer may be provided.
 負極タブ部62nと負極リード体63nとの接続方法、及び、負極リード体63nと負極端子64nとの接続方法は、例えば、抵抗溶接、超音波溶接、レーザー溶接、カシメ、導電性接着剤による接着等、各種の方法を採用することができる。これらの中では、超音波溶接が好ましい。 The connection method between the negative electrode tab 62n and the negative electrode lead body 63n, and the connection method between the negative electrode lead body 63n and the negative electrode terminal 64n are, for example, resistance welding, ultrasonic welding, laser welding, caulking, and adhesion using a conductive adhesive. Various methods can be employed. Among these, ultrasonic welding is preferable.
 セパレータ66は、正極電極61pと負極電極61nとを分離するとともにリチウムイオンを透過させる多孔質フィルムを含む。セパレータ66は、電池60が異常発熱して高温(例えば100~140℃)に達したときに溶融して孔が塞がる安全機構(シャットダウン特性)を有していることが好ましい。このような観点から、多孔質フィルムは、融点が80~140℃程度の熱可塑性樹脂からなることが好ましく、具体的にはポリプロピレン、ポリエチレンなどのポリオレフィン系ポリマーからなることが好ましい。多孔質フィルムの厚みは、特に制限はないが、10~50μmであることが好ましい。 The separator 66 includes a porous film that separates the positive electrode 61p and the negative electrode 61n and transmits lithium ions. The separator 66 preferably has a safety mechanism (shutdown characteristic) that melts and closes the hole when the battery 60 abnormally generates heat and reaches a high temperature (for example, 100 to 140 ° C.). From such a viewpoint, the porous film is preferably made of a thermoplastic resin having a melting point of about 80 to 140 ° C., and specifically, preferably made of a polyolefin polymer such as polypropylene or polyethylene. The thickness of the porous film is not particularly limited, but is preferably 10 to 50 μm.
 セパレータ66は、上記の多孔質フィルム上に板状の無機微粒子層をコーティングにより形成したものであってもよい。これにより、異常発熱時のセパレータ66の熱収縮を抑制して安全性を向上させることができる。 The separator 66 may be formed by coating a plate-like inorganic fine particle layer on the porous film. Thereby, the thermal contraction of the separator 66 at the time of abnormal heat generation can be suppressed, and safety can be improved.
 あるいは、セパレータ66は、上記の多孔質フィルムと耐熱性多孔質基体との積層構造を有していてもよい。耐熱性多孔質基体として、例えば耐熱温度が150℃以上の繊維状物を用いることができる。繊維状物は、セルロース及びその変成体、ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリエステル、ポリアクリロニトリル、アラミド、ポリアミドイミドおよびポリイミドよりなる群から選択される少なくとも1種の材料で形成することができる。具体的には上記材料からなる不織布からなることが好ましい。 Alternatively, the separator 66 may have a laminated structure of the porous film and the heat-resistant porous substrate. As the heat resistant porous substrate, for example, a fibrous material having a heat resistant temperature of 150 ° C. or higher can be used. The fibrous material may be formed of at least one material selected from the group consisting of cellulose and its modified products, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyester, polyacrylonitrile, aramid, polyamideimide, and polyimide. it can. Specifically, it is preferably made of a nonwoven fabric made of the above materials.
 多孔質基体の「耐熱性」は、軟化等による実質的な寸法変化が生じないことを意味する。具体的には、多孔質基体の室温での長さに対する収縮の割合(収縮率)が5%以下を維持することができる上限温度(耐熱温度)が、セパレータのシャットダウン温度よりも十分に高いか否かで耐熱性を評価する。シャットダウン後のラミネート形電池の安全性を高めるために、多孔質基体は、シャットダウン温度よりも20℃以上高い耐熱温度を有することが望ましく、より具体的には、多孔質基体の耐熱温度は、150℃以上であることが好ましく、180℃以上であることがより好ましい。 “Heat resistance” of a porous substrate means that substantial dimensional change due to softening or the like does not occur. Specifically, is the upper limit temperature (heat resistant temperature) at which the rate of shrinkage (shrinkage ratio) with respect to the length of the porous substrate at room temperature maintained at 5% or less is sufficiently higher than the shutdown temperature of the separator? The heat resistance is evaluated based on the result. In order to increase the safety of the laminated battery after shutdown, it is desirable that the porous substrate has a heat resistance higher by 20 ° C. than the shutdown temperature. More specifically, the heat resistance temperature of the porous substrate is 150 ° C. It is preferable that the temperature is higher than or equal to ° C, and more preferable that the temperature is higher than or equal to 180 ° C.
 電解液として、例えば、高誘電率溶媒または有機溶媒にLiPF6,LiBF4等の溶質を溶解した溶液(非水電解液)を用いることができる。高誘電率溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびγ-ブチロラクトン(BL)のいずれかを用いることができる。有機溶媒としては、直鎖状のジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(EMC)等の低粘度溶媒を用いることができる。 As the electrolytic solution, for example, a solution (nonaqueous electrolytic solution) in which a solute such as LiPF 6 or LiBF 4 is dissolved in a high dielectric constant solvent or an organic solvent can be used. As the high dielectric constant solvent, any of ethylene carbonate (EC), propylene carbonate (PC), and γ-butyrolactone (BL) can be used. As the organic solvent, a low viscosity solvent such as linear dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (EMC) can be used.
 電解液の溶媒としては、上述した高誘電率溶媒と低粘度溶媒との混合溶媒を使用することが好ましい。また、上述した溶液に、PVDF、ゴム系の材料、脂環エポキシ、およびオキセタン系の三次元架橋構造を有する材料等を混合して固化し、ポリマー電解液としてもよい。 As the solvent for the electrolytic solution, it is preferable to use a mixed solvent of the above-described high dielectric constant solvent and low viscosity solvent. Alternatively, PVDF, a rubber-based material, an alicyclic epoxy, a material having an oxetane-based three-dimensional crosslinked structure, and the like may be mixed and solidified into the above-described solution to form a polymer electrolyte.
 正極電極61pと負極電極61nとの間にセパレータ66を介在させて、正極電極61pと負極電極61nとを交互に積層して電極積層体を作成する。 The separator 66 is interposed between the positive electrode 61p and the negative electrode 61n, and the positive electrode 61p and the negative electrode 61n are alternately stacked to form an electrode laminate.
 電極積層体の作成方法は、特に制限はない。例えば、図9に示すように、セパレータ66を一定間隔で山折りと谷折りとを交互に繰り返すことでジグザグ状に折り曲げ、セパレータ66の一方の面側から各谷折り部分に正極電極61pを挟み込み、他方の面側から各谷折り部分に負極電極61nを挟み込む。このとき、正極タブ部62p及び負極タブ部62nは、セパレータ66の同じ辺から外にはみ出す。あるいは、セパレータ66で矩形の複数の袋を形成し、セパレータ66からなる各袋内に正極電極61pを挿入したものを、負極電極61nと交互に積層してもよい。 The method for producing the electrode laminate is not particularly limited. For example, as shown in FIG. 9, the separator 66 is folded zigzag by alternately repeating a mountain fold and a valley fold at regular intervals, and the positive electrode 61p is sandwiched between each surface of the separator 66 from each side. The negative electrode 61n is sandwiched between the other surface side and each valley fold. At this time, the positive electrode tab portion 62p and the negative electrode tab portion 62n protrude outside from the same side of the separator 66. Alternatively, a plurality of rectangular bags formed by the separators 66 and the positive electrodes 61p inserted into the respective bags made of the separators 66 may be alternately stacked with the negative electrodes 61n.
 かくして得られた電極積層体からはみ出した複数の正極電極61pの正極タブ部62pに正極リード体63pを接続し、正極リード体63pに正極端子64pを接続する。同様に、電極積層体からはみ出した複数の負極電極61nの負極タブ部62nに負極リード体63nを接続し、負極リード体63nに負極端子64nを接続する。 The positive electrode lead body 63p is connected to the positive electrode tab portions 62p of the plurality of positive electrode electrodes 61p protruding from the electrode laminate thus obtained, and the positive electrode terminal 64p is connected to the positive electrode lead body 63p. Similarly, the negative electrode lead body 63n is connected to the negative electrode tab portions 62n of the plurality of negative electrode electrodes 61n protruding from the electrode laminate, and the negative electrode terminal 64n is connected to the negative electrode lead body 63n.
 このようにして得た電極積層体の上下に略矩形の2枚のラミネートシート68を配置し、正極端子64p及び負極端子64nが形成された辺を除く3辺に沿って2枚のラミネートシート68を熱融着してラミネートシート68を袋状に形成する。2枚のラミネートシートを用いるのではなく、1枚の長方形のラミネートシートを電極積層体を挟むように折り曲げて重ね合わせ、重ね合わされたラミネートシート68を2辺に沿って熱融着してラミネートシート68を袋状に形成してもよい。その後、ラミネートシート68の袋内に電解液を注入する。最後に、熱融着していない辺に沿って、正極及び負極のリード体63p,63nの一部及び正極及び負極の端子64p,64nの一部とともにラミネートシート68を熱融着して、リチウムイオン二次電池60が得られる。 Two substantially rectangular laminate sheets 68 are arranged above and below the electrode laminate thus obtained, and two laminate sheets 68 are formed along three sides excluding the sides where the positive electrode terminal 64p and the negative electrode terminal 64n are formed. The laminate sheet 68 is formed into a bag shape by heat sealing. Rather than using two laminate sheets, one rectangular laminate sheet is folded and overlapped so as to sandwich the electrode laminate, and the laminated sheet 68 is heat-sealed along two sides and laminated sheet 68 may be formed in a bag shape. Thereafter, an electrolytic solution is injected into the bag of the laminate sheet 68. Finally, the laminate sheet 68 is heat-sealed together with a part of the positive and negative electrode lead bodies 63p and 63n and a part of the positive and negative electrode terminals 64p and 64n along the non-heat-bonded side. An ion secondary battery 60 is obtained.
 ラミネートシート68の構成は、特に制限はなく、例えばラミネート形リチウムイオン二次電池の外装材として使用されている公知のラミネートシートを用いることができる。例えば、アルミニウムからなる基層の片面に熱融着性樹脂層として変性ポリオレフィン層が積層された多層シートを用いることができる。 The configuration of the laminate sheet 68 is not particularly limited, and for example, a known laminate sheet that is used as an exterior material of a laminated lithium ion secondary battery can be used. For example, a multilayer sheet in which a modified polyolefin layer is laminated as a heat-fusible resin layer on one side of a base layer made of aluminum can be used.
 上記のリチウムイオン二次電池60は例示に過ぎず、本発明の正極用シート状電極及び負極用シート状電極を用いたリチウムイオン二次電池は上記に限定されない。例えば、公知のリチウムイオン二次電池に本発明の正極用シート状電極及び負極用シート状電極を適用することができる。 The above lithium ion secondary battery 60 is merely an example, and the lithium ion secondary battery using the positive electrode sheet electrode and the negative electrode sheet electrode of the present invention is not limited to the above. For example, the positive electrode sheet electrode and the negative electrode sheet electrode of the present invention can be applied to a known lithium ion secondary battery.
 上記の例では、正極端子64p及び負極端子64nが、略矩形のラミネートシート68の同じ短辺から引き出されているが、異なる辺から引き出されていてもよい。 In the above example, the positive terminal 64p and the negative terminal 64n are drawn from the same short side of the substantially rectangular laminate sheet 68, but may be drawn from different sides.
 上記では、ラミネート形のリチウムイオン二次電池の例を説明したが、本発明のシート状電極は、ラミネート形以外のリチウムイオン二次電池に利用することができる。 In the above, an example of a laminated lithium ion secondary battery has been described. However, the sheet-like electrode of the present invention can be used for a lithium ion secondary battery other than the laminated type.
 (実施例1,2)
 寸法のみが異なる実施例1,2に係るラミネート形リチウムイオン二次電池を以下のように製造した。
(Examples 1 and 2)
Laminated lithium ion secondary batteries according to Examples 1 and 2 having different dimensions only were manufactured as follows.
 <負極用のシート状電極の製造>
 負極用のシート状電極を以下のようにして製造した。
<Manufacture of sheet electrode for negative electrode>
A sheet-like electrode for the negative electrode was produced as follows.
 銅箔からなる帯状の集電体の両面の対応する領域に、負極活物質を含む電極合剤を一定ピッチで間欠的に塗布して、電極領域及び非電極領域が交互に形成された長尺の負極用の電極基材30nを作成した。図10Aは電極基材30nを巻き取ったパンケーキの斜視図、図10Bは負極用の電極基材30nの一部の平面図である。実施例1,2に係る電極基材30nの幅W30n、負極合剤層が形成された電極領域35nの電極基材30nの長手方向の長さL35n、非電極領域37nの電極基材30nの長手方向の長さL37nの各値を図10Bに併せて示す。実施例1と実施例2とは、電極基材30nの幅W30nのみが異なる。 A long length in which electrode regions and non-electrode regions are alternately formed by intermittently applying an electrode mixture containing a negative electrode active material at a constant pitch to corresponding regions on both sides of a strip-shaped current collector made of copper foil An electrode substrate 30n for the negative electrode was prepared. FIG. 10A is a perspective view of a pancake around which the electrode substrate 30n is wound, and FIG. 10B is a plan view of a part of the electrode substrate 30n for the negative electrode. The width W30n of the electrode substrate 30n according to Examples 1 and 2, the length L35n of the electrode substrate 30n in the longitudinal direction of the electrode region 35n where the negative electrode mixture layer is formed, and the length of the electrode substrate 30n of the non-electrode region 37n Each value of the direction length L37n is also shown in FIG. 10B. Example 1 and Example 2 differ only in the width W30n of the electrode base material 30n.
 図10A及び図10Bに示した長尺の電極基材30nをパンケーキから断続的に巻き出しながら、図10Bの破線41nに沿って電極基材30nを一定ピッチで切断した。破線41nは負極用の第1切断刃を示しており、その切断刃形状を図20Aに示す。図20Aに示されているように、第1切断刃41nは階段状の切断刃形状を有していた。第1切断刃41nの段差Hn、及びその切断可能幅W41nの各値を図20Aに併せて示す。実施例1,2では、同じ第1切断刃41nを用いた。第1切断刃41nは、打ち抜き装置の昇降部材に固定した。電極基材30nに対する第1切断刃41nの幅方向の相対的位置は、最終的に得ようとする実施例1,2の負極用シート状電極のタブ部27nの幅W27n(後述する図11、図13参照)を考慮して設定した。実施例1と実施例2とで幅W27nが異なるので、第1切断刃41nの昇降部材に対する取り付け位置を実施例1と実施例2とで変更した。 10A and 10B, the electrode substrate 30n was cut at a constant pitch along the broken line 41n in FIG. 10B while intermittently unwinding the long electrode substrate 30n shown in FIG. 10B from the pancake. A broken line 41n indicates the first cutting blade for the negative electrode, and the shape of the cutting blade is shown in FIG. 20A. As shown in FIG. 20A, the first cutting blade 41n had a stepped cutting blade shape. Each value of the level difference Hn of the first cutting blade 41n and the cuttable width W41n is also shown in FIG. 20A. In Examples 1 and 2, the same first cutting blade 41n was used. The first cutting blade 41n was fixed to the lifting member of the punching device. The relative position in the width direction of the first cutting blade 41n with respect to the electrode substrate 30n is the width W27n of the tab portion 27n of the negative electrode sheet electrode of Examples 1 and 2 to be finally obtained (FIG. 11, which will be described later). (See FIG. 13). Since the width W27n is different between the first embodiment and the second embodiment, the mounting position of the first cutting blade 41n with respect to the lifting member is changed between the first embodiment and the second embodiment.
 図11は、負極用の電極基材30nを負極用の第1切断刃41nでピッチPnで切断して得た負極用の第1電極基材片31n-1の平面図である。各部の寸法を図11に併せて示す。実施例1と実施例2とは、タブ部の幅W27nが異なる。 FIG. 11 is a plan view of the first electrode substrate piece 31n-1 for negative electrode obtained by cutting the electrode substrate 30n for negative electrode with the first cutting blade 41n for negative electrode at a pitch Pn. The dimensions of each part are also shown in FIG. Example 1 and Example 2 differ in the width W27n of the tab portion.
 第1電極基材片31n-1を、図11に示す破線42に沿って切断した。破線42は第2切断刃を示しており、その切断刃形状を図20Bに示す。図20Bに示されているように、第2切断刃42は直線状の切断刃形状を有していた。第2切断刃42の切断可能幅W42の値を図20Bに併せて示す。実施例1,2では、同じ第2切断刃42を用いた。第2切断刃42nは、打ち抜き装置の昇降部材に固定した。第1電極基材片31n-1に対する第2切断刃42の長手方向の位置は、最終的に得ようとする実施例1,2の負極用シート状電極の電極部20nの長さL20n(後述する図13を参照)を考慮して設定した。実施例1と実施例2とで長さL20nが異なるので、第2切断刃42nの昇降部材に対する取り付け位置を実施例1と実施例2とで変更した。 The first electrode substrate piece 31n-1 was cut along the broken line 42 shown in FIG. The broken line 42 indicates the second cutting blade, and the shape of the cutting blade is shown in FIG. 20B. As shown in FIG. 20B, the second cutting blade 42 had a linear cutting blade shape. The value of the cuttable width W42 of the second cutting blade 42 is also shown in FIG. 20B. In Examples 1 and 2, the same second cutting blade 42 was used. The second cutting blade 42n was fixed to the lifting member of the punching device. The position of the second cutting blade 42 in the longitudinal direction relative to the first electrode substrate piece 31n-1 is the length L20n of the electrode portion 20n of the negative electrode sheet electrode of Examples 1 and 2 to be finally obtained (described later) (See FIG. 13). Since the length L20n is different between the first embodiment and the second embodiment, the mounting position of the second cutting blade 42n with respect to the lifting member is changed between the first embodiment and the second embodiment.
 図12は、負極用の第1電極基材片31n-1を第2切断刃42で切断して得た負極用の第2電極基材片31n-2の平面図である。 FIG. 12 is a plan view of the second electrode substrate piece 31n-2 for negative electrode obtained by cutting the first electrode substrate piece 31n-1 for negative electrode with the second cutting blade 42. FIG.
 次いで、図12に示す第2電極基材片31n-2の電極領域35n(後に電極部20nとなる部分)の3つの隅部125n-a,125n-b,125n-cを破線146a,146b,146cに沿って円弧形状に切り落とした。破線146a,146b,146cは、隅部125n-a,125n-b,125n-cの切断に用いたコーナー切断刃を示しており、その切断刃形状を図21A、図21B、図21Cに示す。コーナー切断刃146a,146b,146cは、いずれも半径Rが20mm、中心角θcが90度の円弧形状を有していた。実施例1,2では、同じコーナー切断刃146a,146b,146cを用いた。コーナー切断刃146a,146b,146cは、打ち抜き装置の同じ昇降部材に固定した。隅部125n-a,125n-b,125n-cの位置に応じて、コーナー切断刃146a,146b,146cの昇降部材に対する取り付け位置を実施例1と実施例2とで変更した。 Next, the three corners 125n-a, 125n-b, and 125n-c of the electrode region 35n of the second electrode substrate piece 31n-2 shown in FIG. 12 (the portion that will later become the electrode portion 20n) are represented by broken lines 146a, 146b, It cut off into circular arc shape along 146c. Dashed lines 146a, 146b, and 146c indicate corner cutting blades used for cutting the corners 125n-a, 125n-b, and 125n-c, and the shapes of the cutting blades are shown in FIGS. 21A, 21B, and 21C. Each of the corner cutting blades 146a, 146b, and 146c had an arc shape with a radius R of 20 mm and a central angle θc of 90 degrees. In Examples 1 and 2, the same corner cutting blades 146a, 146b, and 146c were used. The corner cutting blades 146a, 146b, 146c were fixed to the same lifting member of the punching device. The mounting positions of the corner cutting blades 146a, 146b, and 146c with respect to the lifting member are changed between the first and second embodiments in accordance with the positions of the corners 125n-a, 125n-b, and 125n-c.
 かくして、図13に示す負極用のシート状電極(負極電極)1nを得た。実施例1,2のシート状電極1nの各部の寸法を図13に併せて示す。 Thus, a negative electrode sheet electrode (negative electrode) 1n shown in FIG. 13 was obtained. The dimension of each part of the sheet-like electrode 1n of Examples 1 and 2 is shown together in FIG.
 図14A、図14B、図14Cは、電極部20nの3つの隅部125n-a,125n-b,125n-cを含む図13の部分14A,14B,14Cの拡大平面図である。隅部125n-a,125n-b,125n-cに形成された円弧126n-a,126n-b,126n-cの中心角θa、及び当該円弧の両端によって定義される、円弧の幅方向寸法Wa及び長手方向寸法Laの値を図14A、図14B、図14Cに併せて示す。これらは、実施例1と実施例2とで同じである。 14A, 14B, and 14C are enlarged plan views of the portions 14A, 14B, and 14C of FIG. 13 including the three corner portions 125n-a, 125n-b, and 125n-c of the electrode portion 20n. The width direction dimension Wa of the arc defined by the central angle θa of the arcs 126n-a, 126n-b, 126n-c formed at the corners 125n-a, 125n-b, 125n-c, and both ends of the arc. The values of the longitudinal dimension La are also shown in FIGS. 14A, 14B, and 14C. These are the same in Example 1 and Example 2.
 上記の実施例1と実施例2とでは、作成したシート状電極1nの寸法は互いに異なる。しかしながら、実施例1のシート状電極1n及び実施例2のシート状電極1nをそれぞれ製造する過程で使用した第1切断刃41n、第2切断刃42、コーナー切断刃146a,146b,146cは同じであった。このように、実施例1,2では、同じ切断刃を用いて、シート状電極1nのサイズに応じて切断刃の昇降部材に対する取り付け位置を変更するだけで、サイズが異なる実施例1,2のシート状電極1nを製造することができた。 In the above-described Example 1 and Example 2, the dimensions of the prepared sheet-like electrode 1n are different from each other. However, the first cutting blade 41n, the second cutting blade 42, and the corner cutting blades 146a, 146b, and 146c used in the process of manufacturing the sheet electrode 1n of Example 1 and the sheet electrode 1n of Example 2 are the same. there were. As described above, in the first and second embodiments, the same cutting blade is used, and the size of the first and second embodiments is different only by changing the mounting position of the cutting blade with respect to the lifting member according to the size of the sheet-like electrode 1n. The sheet-like electrode 1n was able to be manufactured.
 <正極用のシート状電極の製造>
 正極用のシート状電極を以下のようにして製造した。
<Manufacture of sheet-like electrode for positive electrode>
A sheet-like electrode for a positive electrode was produced as follows.
 アルミニウム箔からなる帯状の集電体の両面の対応する領域に、正極活物質を含む電極合剤を一定ピッチで間欠的に塗布して、電極領域及び非電極領域が交互に形成された長尺の正極用の電極基材30pを作成した。図15Aは電極基材30pを巻き取ったパンケーキの斜視図、図15Bは正極用の電極基材30pの一部の平面図である。実施例1,2に係る電極基材30pの幅W30p、正極合剤層が形成された電極領域35pの電極基材30pの長手方向の長さL35p、非電極領域37nの電極基材30pの長手方向の長さL37pの各値を図15Bに併せて示す。実施例1と実施例2とは、電極基材30pの幅W30pのみが異なる。 A long length in which electrode regions and non-electrode regions are alternately formed by intermittently applying an electrode mixture containing a positive electrode active material at a constant pitch to corresponding regions on both sides of a strip-shaped current collector made of aluminum foil An electrode substrate 30p for the positive electrode was prepared. FIG. 15A is a perspective view of a pancake around which the electrode substrate 30p is wound, and FIG. 15B is a plan view of a part of the electrode substrate 30p for positive electrode. The width W30p of the electrode base material 30p according to Examples 1 and 2, the length L35p in the longitudinal direction of the electrode base material 30p in the electrode region 35p on which the positive electrode mixture layer is formed, and the length of the electrode base material 30p in the non-electrode region 37n Each value of the direction length L37p is also shown in FIG. 15B. Example 1 and Example 2 differ only in the width W30p of the electrode base material 30p.
 図15A及び図15Bに示した長尺の電極基材30pをパンケーキから断続的に巻き出しながら、図15Bの破線41pに沿って電極基材30pを一定ピッチで切断した。破線41pは正極用の第1切断刃を示しており、その切断刃形状を図20Cに示す。図20Cに示されているように、第1切断刃41pは階段状の切断刃形状を有していた。第1切断刃41pの段差Hp、及びその切断可能幅W41pの各値を図20Cに併せて示す。実施例1,2では、同じ第1切断刃41pを用いた。第1切断刃41pは、打ち抜き装置の昇降部材に固定した。電極基材30pに対する第1切断刃41pの幅方向の相対的位置は、最終的に得ようとする実施例1,2の正極用シート状電極のタブ部27pの幅W27p(後述する図16、図18参照)を考慮して設定した。実施例1と実施例2とで幅W27pが異なるので、第1切断刃41pの昇降部材に対する取り付け位置を実施例1と実施例2とで変更した。 The electrode substrate 30p was cut at a constant pitch along the broken line 41p in FIG. 15B while intermittently unwinding the long electrode substrate 30p shown in FIGS. 15A and 15B from the pancake. The broken line 41p shows the first cutting blade for the positive electrode, and the shape of the cutting blade is shown in FIG. 20C. As shown in FIG. 20C, the first cutting blade 41p had a stepped cutting blade shape. Each value of the level difference Hp of the first cutting blade 41p and the cuttable width W41p is also shown in FIG. 20C. In Examples 1 and 2, the same first cutting blade 41p was used. The 1st cutting blade 41p was fixed to the raising / lowering member of the punching apparatus. The relative position in the width direction of the first cutting blade 41p with respect to the electrode substrate 30p is the width W27p of the tab portion 27p of the positive electrode sheet-like electrode of Examples 1 and 2 to be finally obtained (FIG. (See FIG. 18). Since the width W27p is different between the first embodiment and the second embodiment, the mounting position of the first cutting blade 41p with respect to the lifting member is changed between the first embodiment and the second embodiment.
 図16は、正極用の電極基材30pを正極用の第1切断刃41pでピッチPpで切断して得た正極用の第1電極基材片31p-1の平面図である。各部の寸法を図16に併せて示す。実施例1と実施例2とは、タブ部の幅W27pが異なる。 FIG. 16 is a plan view of the first electrode substrate piece 31p-1 for positive electrode obtained by cutting the electrode substrate 30p for positive electrode with the first cutting blade 41p for positive electrode at the pitch Pp. The dimensions of each part are also shown in FIG. Example 1 and Example 2 differ in the tab portion width W27p.
 第1電極基材片31p-1を、図16に示す破線42に沿って切断した。破線42は第2切断刃を示しており、その切断刃形状を図20Bに示す。実施例1,2では、同じ第2切断刃42を用いた。第2切断刃42は、負極用の第1電極基材片31n-1を切断する際に用いた第2切断刃42(図11参照)と同じである。第2切断刃42pは、打ち抜き装置の昇降部材に固定した。第1電極基材片31p-1に対する第2切断刃42の長手方向の位置は、最終的に得ようとする実施例1,2の正極用シート状電極の電極部20pの長さL20p(後述する図18を参照)を考慮して設定した。実施例1と実施例2とで長さL20pが異なるので、第2切断刃42pの昇降部材に対する取り付け位置を実施例1と実施例2とで変更した。 The first electrode substrate piece 31p-1 was cut along the broken line 42 shown in FIG. The broken line 42 indicates the second cutting blade, and the shape of the cutting blade is shown in FIG. 20B. In Examples 1 and 2, the same second cutting blade 42 was used. The second cutting blade 42 is the same as the second cutting blade 42 (see FIG. 11) used when cutting the first electrode substrate piece 31n-1 for negative electrode. The 2nd cutting blade 42p was fixed to the raising / lowering member of the punching apparatus. The position of the second cutting blade 42 in the longitudinal direction relative to the first electrode substrate piece 31p-1 is the length L20p of the electrode portion 20p of the positive electrode sheet-like electrode of Examples 1 and 2 to be finally obtained (described later). (See FIG. 18). Since the length L20p is different between the first embodiment and the second embodiment, the mounting position of the second cutting blade 42p with respect to the lifting member is changed between the first embodiment and the second embodiment.
 図17は、正極用の第1電極基材片31p-1を第2切断刃42で切断して得た正極用の第2電極基材片31p-2の平面図である。 FIG. 17 is a plan view of the second electrode substrate piece 31p-2 for positive electrode obtained by cutting the first electrode substrate piece 31p-1 for positive electrode with the second cutting blade 42. FIG.
 次いで、図17に示す第2電極基材片31p-2の電極領域35p(後に電極部20pとなる部分)の3つの隅部125p-b,125p-c,125p-dを破線146b,146c,146dに沿って円弧形状に切り落とした。破線146b,146c,146dは、隅部125p-b,125p-c,125p-dの切断に用いたコーナー切断刃を示しており、その切断刃形状を図21B、図21C、図21Dに示す。コーナー切断刃146b,146c,146dは、いずれも半径Rが20mm、中心角θcが90度の円弧形状を有していた。実施例1,2では、同じコーナー切断刃146b,146c,146dを用いた。コーナー切断刃146b,146cは、負極用の第2電極基材片31n-2の隅部125n-b,125n-cを切断する際に用いたコーナー切断刃146b,146c(図12参照)と同じである。コーナー切断刃146b,146c,146dは、打ち抜き装置の同じ昇降部材に固定した。隅部125p-b,125p-c,125p-dの位置に応じて、コーナー切断刃146b,146c,146dの昇降部材に対する取り付け位置を実施例1と実施例2とで変更した。 Next, the three corners 125p-b, 125p-c, and 125p-d of the electrode region 35p (the portion that will later become the electrode portion 20p) of the second electrode substrate piece 31p-2 shown in FIG. 17 are represented by broken lines 146b, 146c, It cut off into circular arc shape along 146d. Dashed lines 146b, 146c, and 146d indicate corner cutting blades used for cutting the corners 125p-b, 125p-c, and 125p-d, and the cutting blade shapes are shown in FIGS. 21B, 21C, and 21D. Each of the corner cutting blades 146b, 146c, and 146d had an arc shape with a radius R of 20 mm and a central angle θc of 90 degrees. In Examples 1 and 2, the same corner cutting blades 146b, 146c, and 146d were used. The corner cutting blades 146b and 146c are the same as the corner cutting blades 146b and 146c (see FIG. 12) used when cutting the corner portions 125n-b and 125n-c of the second electrode base material piece 31n-2 for negative electrode. It is. The corner cutting blades 146b, 146c, and 146d were fixed to the same lifting member of the punching device. The mounting positions of the corner cutting blades 146b, 146c, and 146d with respect to the lifting member are changed between the first and second embodiments in accordance with the positions of the corners 125p-b, 125p-c, and 125p-d.
 かくして、図18に示す正極用のシート状電極(正極電極)1pを得た。実施例1,2のシート状電極1pの各部の寸法を図18に併せて示す。 Thus, a positive electrode sheet electrode (positive electrode) 1p shown in FIG. 18 was obtained. The dimension of each part of the sheet-like electrode 1p of Examples 1 and 2 is shown together in FIG.
 図19A、図19B、図19Cは、電極部20pの3つの隅部125p-b,125p-c,125p-dを含む図18の部分19A,19B,19Cの拡大平面図である。隅部125p-b,125p-c,125p-dに形成された円弧126p-b,126p-c,126p-dの中心角θa、及び当該円弧の両端によって定義される、円弧の幅方向寸法Wa及び長手方向寸法Laの値を図19A、図19B、図19Cに併せて示す。これらは、実施例1と実施例2とで同じである。 19A, 19B, and 19C are enlarged plan views of portions 19A, 19B, and 19C of FIG. 18 including the three corners 125p-b, 125p-c, and 125p-d of the electrode portion 20p. The width direction dimension Wa of the arc defined by the central angle θa of the arcs 126p-b, 126p-c, 126p-d formed at the corners 125p-b, 125p-c, 125p-d and both ends of the arc. The values of the longitudinal dimension La are also shown in FIGS. 19A, 19B, and 19C. These are the same in Example 1 and Example 2.
 上記の実施例1と実施例2とでは、作成したシート状電極1pの寸法は互いに異なる。しかしながら、実施例1のシート状電極1p及び実施例2のシート状電極1pをそれぞれ製造する過程で使用した第1切断刃41p、第2切断刃42、コーナー切断刃146b,146c,146dは同じであった。このように、実施例1,2では、同じ切断刃を用いて、シート状電極1pのサイズに応じて切断刃の昇降部材に対する取り付け位置を変更するだけで、サイズが異なる実施例1,2のシート状電極1pを製造することができた。 In the above-described Example 1 and Example 2, the dimensions of the prepared sheet-like electrode 1p are different from each other. However, the first cutting blade 41p, the second cutting blade 42, and the corner cutting blades 146b, 146c, and 146d used in the process of manufacturing the sheet-like electrode 1p of Example 1 and the sheet-like electrode 1p of Example 2 are the same. there were. As described above, in the first and second embodiments, the same cutting blade is used, and the size of the first and second embodiments is different only by changing the mounting position of the cutting blade with respect to the lifting member according to the size of the sheet-like electrode 1p. The sheet-like electrode 1p was able to be manufactured.
 <ラミネート形リチウムイオン二次電池の製造>
 図9で説明したように、ジグザグ状に折り曲げたセパレータ66の一方の面側の各谷折り部分に上記の負極用シート状電極1nを挟み込み、他方の面側の各谷折り部分に上記の正極用シート状電極1pを挟み込んで、図22に示す電極積層体70を得た。図22において、72は、電極積層体70の4辺をそれぞれ固定するテープである。
<Manufacture of laminated lithium ion secondary batteries>
As described with reference to FIG. 9, the negative electrode sheet-like electrode 1n is sandwiched in each valley folded portion on one surface side of the separator 66 folded in a zigzag shape, and the above positive electrode is disposed in each valley folded portion on the other surface side. An electrode laminate 70 shown in FIG. 22 was obtained by sandwiching the sheet-like electrode 1p. In FIG. 22, reference numeral 72 denotes a tape for fixing each of the four sides of the electrode laminate 70.
 電極積層体70の負極タブ部27n及び正極タブ部27pに、公知の方法で負極端子及び正極端子を接続した。次いで、電極積層体70を、電解液とともに、袋状のラミネートシート内に収納し、密閉して、実施例1,2のラミネート形リチウムイオン二次電池を得た。 The negative electrode terminal and the positive electrode terminal were connected to the negative electrode tab portion 27n and the positive electrode tab portion 27p of the electrode laminate 70 by a known method. Next, the electrode laminate 70 was housed in a bag-like laminate sheet together with the electrolytic solution and sealed to obtain laminated lithium ion secondary batteries of Examples 1 and 2.
 上述したように、実施例1と実施例2とで同じ切断刃を用いてサイズが異なるシート状電極を製造することができた。 As described above, it was possible to manufacture sheet-like electrodes having different sizes using the same cutting blades in Example 1 and Example 2.
 更に、実施例1,2では、負極用のシート状電極1n及び正極用のシート状電極1pの製造において、第2切断刃42、コーナー切断刃146b,146cを共通化することができる。従って、切断刃の種類数を低減することが可能である。 Furthermore, in the first and second embodiments, the second cutting blade 42 and the corner cutting blades 146b and 146c can be used in common in the manufacture of the negative electrode sheet electrode 1n and the positive electrode sheet electrode 1p. Therefore, the number of types of cutting blades can be reduced.
 以上に説明した実施形態及び実施例は、いずれもあくまでも本発明の技術的内容を明らかにする意図のものであって、本発明はこのような具体例にのみ限定して解釈されるものではなく、その発明の精神と請求の範囲に記載する範囲内でいろいろと変更して実施することができ、本発明を広義に解釈すべきである。 The embodiments and examples described above are intended to clarify the technical contents of the present invention, and the present invention is not construed as being limited to such specific examples. Various modifications can be made within the spirit and scope of the present invention, and the present invention should be interpreted broadly.
 本発明の利用分野は特に制限はなく、シート状正極電極とシート状負極電極とがセパレータを介して交互に配置される二次電池の分野において特に好ましく利用することができる。特に、多様なサイズが要求される二次電池に好適である。 The application field of the present invention is not particularly limited, and can be particularly preferably used in the field of secondary batteries in which sheet-like positive electrodes and sheet-like negative electrodes are alternately arranged via separators. In particular, it is suitable for secondary batteries that require various sizes.
1,2 シート状電極
20 電極部
21 電極部の第1辺
22 電極部の第2辺
23 電極部の第1側辺
24 電極部の第2側辺
25a,25b,25c,25d シート状電極の隅部
26 コーナー切断刃によって形成された円弧
27 タブ部
30 電極基材
35 電極領域
37 非電極領域
41 第1切断刃
42 第2切断刃
43 第3切断刃
44 第4切断刃
46a,46b,46c,46d コーナー切断刃
60 リチウムイオン二次電池
61p 正極電極(正極用シート状電極)
61n 負極電極(負極用シート状電極)
62p 正極電極のタブ部
62n 負極電極のタブ部
66 セパレータ
68 外装材(ラミネートシート)
DESCRIPTION OF SYMBOLS 1, 2 Sheet-like electrode 20 Electrode part 21 First side 22 of electrode part Second side 23 of electrode part First side edge 24 of electrode part Second side edge 25a, 25b, 25c, 25d of electrode part Corner portion 26 Arc 27 formed by corner cutting blades Tab portion 30 Electrode substrate 35 Electrode region 37 Non-electrode region 41 First cutting blade 42 Second cutting blade 43 Third cutting blade 44 Fourth cutting blades 46a, 46b, 46c , 46d Corner cutting blade 60 Lithium ion secondary battery 61p Positive electrode (sheet electrode for positive electrode)
61n Negative electrode (sheet electrode for negative electrode)
62p Tab portion of positive electrode 62n Tab portion of negative electrode 66 Separator 68 Exterior material (laminate sheet)

Claims (16)

  1.  活物質を含む電極合剤層が帯状の集電体の少なくとも片面に前記集電体の長手方向に間欠的に形成された長尺の電極基材を切断して、前記電極合剤層が形成された略矩形状の電極部と、前記電極部の一辺から突出し且つ前記電極合剤層が形成されていない領域を含むタブ部とを備えたシート状電極を製造する方法であって、
     前記シート状電極の前記タブ部及び前記タブ部が突出した第1辺を、前記電極基材の幅よりも長い切断可能幅を有する第1切断刃を用いて形成する工程と、
     前記シート状電極の前記第1辺に対向する第2辺を、前記電極基材の幅よりも長い切断可能幅を有する第2切断刃を用いて形成する工程と
     を備えることを特徴とするシート状電極の製造方法。
    An electrode mixture layer containing an active material is formed by cutting a long electrode base material formed intermittently in the longitudinal direction of the current collector on at least one surface of a strip-shaped current collector to form the electrode mixture layer A substantially rectangular electrode part, and a method of manufacturing a sheet-like electrode provided with a tab part including a region protruding from one side of the electrode part and not including the electrode mixture layer,
    Forming the tab portion of the sheet-like electrode and the first side from which the tab portion protrudes using a first cutting blade having a cuttable width longer than the width of the electrode substrate;
    Forming a second side opposite to the first side of the sheet-like electrode using a second cutting blade having a cutable width longer than the width of the electrode base material. Manufacturing method of the electrode.
  2.  前記第1切断刃の、前記電極基材の長手方向及び幅方向の位置を調整する工程を更に備える請求項1に記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to claim 1, further comprising a step of adjusting the positions of the first cutting blade in the longitudinal direction and the width direction of the electrode base material.
  3.  前記第2切断刃の、前記電極基材の長手方向の位置を調整する工程を更に備える請求項1又は2に記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to claim 1 or 2, further comprising a step of adjusting the position of the second cutting blade in the longitudinal direction of the electrode base material.
  4.  前記電極基材の幅は、前記シート状電極の幅と同じである請求項1~3のいずれかに記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to any one of claims 1 to 3, wherein the width of the electrode substrate is the same as the width of the sheet-like electrode.
  5.  前記シート状電極の四隅の少なくとも一つを、前記第1切断刃及び前記第2切断刃とは別の円弧状のコーナー切断刃を用いて円弧状に形成する工程を更に備える請求項1~4のいずれかに記載のシート状電極の製造方法。 The method further comprises the step of forming at least one of the four corners of the sheet-like electrode in an arc shape using an arc-shaped corner cutting blade different from the first cutting blade and the second cutting blade. The manufacturing method of the sheet-like electrode in any one of.
  6.  前記シート状電極の四隅の少なくとも一つに形成する円弧の中心角が90°未満である請求項5に記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to claim 5, wherein a central angle of an arc formed at at least one of the four corners of the sheet-like electrode is less than 90 °.
  7.  前記コーナー切断刃の弧長が、このコーナー切断刃によって前記シート状電極の隅に形成された円弧の弧長より長い請求項5又は6に記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to claim 5 or 6, wherein an arc length of the corner cutting blade is longer than an arc length of an arc formed at a corner of the sheet-like electrode by the corner cutting blade.
  8.  前記シート状電極が負極用のシート状電極である請求項5~7のいずれかに記載のシート状電極の製造方法。 The method for producing a sheet electrode according to any one of claims 5 to 7, wherein the sheet electrode is a sheet electrode for a negative electrode.
  9.  前記コーナー切断刃の、前記第1辺方向及びこれと直交する方向の位置を調整する工程を更に備える請求項5~8のいずれかに記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to any one of claims 5 to 8, further comprising a step of adjusting a position of the corner cutting blade in the first side direction and a direction orthogonal thereto.
  10.  前記シート状電極の前記第1辺及び前記第2辺を除く一対の側辺の少なくとも一方を、前記第1切断刃及び前記第2切断刃とは別の第3切断刃を用いて形成する工程を更に備える請求項1~9のいずれかに記載のシート状電極の製造方法。 Forming at least one of the pair of side edges excluding the first side and the second side of the sheet-like electrode using a third cutting blade different from the first cutting blade and the second cutting blade; The method for producing a sheet-like electrode according to any one of claims 1 to 9, further comprising:
  11.  前記第3切断刃の切断可能幅が、前記一対の側辺の前記少なくとも一方の長さより長い請求項10に記載のシート状電極の製造方法。 The sheet-like electrode manufacturing method according to claim 10, wherein a cuttable width of the third cutting blade is longer than the length of the at least one of the pair of side edges.
  12.  前記第3切断刃の、前記第1辺方向の位置を調整する工程を更に備える請求項10又は11に記載のシート状電極の製造方法。 The method for producing a sheet-like electrode according to claim 10 or 11, further comprising a step of adjusting the position of the third cutting blade in the first side direction.
  13.  前記一対の側辺のうちの一方を前記第3切断刃を用いて形成し、他方を前記第1切断刃、前記第2切断刃、及び前記第3切断刃とは別の第4切断刃を用いて切断する請求項10~12のいずれかに記載のシート状電極の製造方法。 One of the pair of side edges is formed using the third cutting blade, and the other is a fourth cutting blade different from the first cutting blade, the second cutting blade, and the third cutting blade. The method for producing a sheet-like electrode according to any one of claims 10 to 12, wherein the method is used for cutting.
  14.  請求項1~13のいずれかに記載のシート状電極の製造方法を用いて製造されたシート状電極。 A sheet electrode manufactured using the method for manufacturing a sheet electrode according to any one of claims 1 to 13.
  15.  請求項14に記載された前記シート状電極を備えたリチウムイオン二次電池。 A lithium ion secondary battery comprising the sheet-like electrode according to claim 14.
  16.  ラミネート形である請求項15に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 15, which is a laminate type.
PCT/JP2012/071036 2011-10-14 2012-08-21 Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery WO2013054593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013538467A JP5768137B2 (en) 2011-10-14 2012-08-21 Manufacturing method of sheet electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011226881 2011-10-14
JP2011-226881 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054593A1 true WO2013054593A1 (en) 2013-04-18

Family

ID=48081653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071036 WO2013054593A1 (en) 2011-10-14 2012-08-21 Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP5768137B2 (en)
WO (1) WO2013054593A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146232A (en) * 2014-01-31 2015-08-13 株式会社豊田自動織機 Method for manufacturing electrode, and electrode
WO2016006420A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 Method of manufacturing power storage device and method of manufacturing electrode
JP2016502742A (en) * 2013-03-08 2016-01-28 エルジー・ケム・リミテッド Electrode assembly including round corners
KR20160023072A (en) * 2014-08-21 2016-03-03 주식회사 엘지화학 Method for manufacturing electrode assembly and electrode assembly manufactured using the same
US9478773B2 (en) 2012-03-16 2016-10-25 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9548517B2 (en) 2012-04-05 2017-01-17 Lg Chem, Ltd. Battery cell of stair-like structure
US9620789B2 (en) 2012-03-08 2017-04-11 Lg Chem, Ltd. Battery pack of the stair-like structure
US9685679B2 (en) 2012-05-29 2017-06-20 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
US10026994B2 (en) 2012-11-13 2018-07-17 Lg Chem, Ltd. Stepped electrode assembly
CN108565387A (en) * 2018-03-21 2018-09-21 中航锂电技术研究院有限公司 A kind of lithium ion battery cell lug laser formation technique
JP2020149921A (en) * 2019-03-15 2020-09-17 Tdk株式会社 Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery employing the same
US11114652B2 (en) 2017-03-13 2021-09-07 Lg Chem, Ltd. Method for manufacturing secondary battery electrode, and secondary battery electrode manufactured thereby
US11271212B1 (en) * 2021-04-02 2022-03-08 Ses Holdings Pte. Ltd. Anode fabrication by pattern lamination, anodes made thereby, and electrochemical devices incorporating such anodes
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270014A (en) * 1997-03-27 1998-10-09 Fuji Film Selltec Kk Sheet electrode and battery using it
JP2009181876A (en) * 2008-01-31 2009-08-13 Ohara Inc Method of manufacturing laminate for lithium ion secondary battery
JP2011034918A (en) * 2009-08-05 2011-02-17 Murata Mfg Co Ltd Method for manufacturing electrode plate for laminated secondary battery, and electrode plate material for laminated secondary battery
JP2011086505A (en) * 2009-10-15 2011-04-28 Komatsu Ntc Ltd Electrode material for laminated battery, and the laminated battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783811B2 (en) * 1988-08-20 1998-08-06 三洋電機株式会社 Method for producing battery and electrode plate thereof
JP2001160397A (en) * 1999-12-02 2001-06-12 Sony Corp Molding method and apparatus for current collector for card-type solid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270014A (en) * 1997-03-27 1998-10-09 Fuji Film Selltec Kk Sheet electrode and battery using it
JP2009181876A (en) * 2008-01-31 2009-08-13 Ohara Inc Method of manufacturing laminate for lithium ion secondary battery
JP2011034918A (en) * 2009-08-05 2011-02-17 Murata Mfg Co Ltd Method for manufacturing electrode plate for laminated secondary battery, and electrode plate material for laminated secondary battery
JP2011086505A (en) * 2009-10-15 2011-04-28 Komatsu Ntc Ltd Electrode material for laminated battery, and the laminated battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620789B2 (en) 2012-03-08 2017-04-11 Lg Chem, Ltd. Battery pack of the stair-like structure
US9478773B2 (en) 2012-03-16 2016-10-25 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same
US9548517B2 (en) 2012-04-05 2017-01-17 Lg Chem, Ltd. Battery cell of stair-like structure
US9685679B2 (en) 2012-05-29 2017-06-20 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
US10026994B2 (en) 2012-11-13 2018-07-17 Lg Chem, Ltd. Stepped electrode assembly
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
JP2016502742A (en) * 2013-03-08 2016-01-28 エルジー・ケム・リミテッド Electrode assembly including round corners
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
JP2015146232A (en) * 2014-01-31 2015-08-13 株式会社豊田自動織機 Method for manufacturing electrode, and electrode
JPWO2016006420A1 (en) * 2014-07-10 2017-05-25 株式会社村田製作所 Storage device manufacturing method and electrode manufacturing method
JP2017152395A (en) * 2014-07-10 2017-08-31 株式会社村田製作所 Method of manufacturing power storage device, and method of manufacturing electrode
WO2016006420A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 Method of manufacturing power storage device and method of manufacturing electrode
KR20160023072A (en) * 2014-08-21 2016-03-03 주식회사 엘지화학 Method for manufacturing electrode assembly and electrode assembly manufactured using the same
KR101664945B1 (en) 2014-08-21 2016-10-11 주식회사 엘지화학 Method for manufacturing electrode assembly and electrode assembly manufactured using the same
US11114652B2 (en) 2017-03-13 2021-09-07 Lg Chem, Ltd. Method for manufacturing secondary battery electrode, and secondary battery electrode manufactured thereby
CN108565387A (en) * 2018-03-21 2018-09-21 中航锂电技术研究院有限公司 A kind of lithium ion battery cell lug laser formation technique
CN111697196A (en) * 2019-03-15 2020-09-22 Tdk株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2020149921A (en) * 2019-03-15 2020-09-17 Tdk株式会社 Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery employing the same
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element
US11271212B1 (en) * 2021-04-02 2022-03-08 Ses Holdings Pte. Ltd. Anode fabrication by pattern lamination, anodes made thereby, and electrochemical devices incorporating such anodes
SE2130311A1 (en) * 2021-04-02 2022-10-03 Ses Holdings Pte Ltd Anode fabrication by pattern lamination, anodes made thereby, and electrochemical devices incorporating such anodes
JP2022158857A (en) * 2021-04-02 2022-10-17 エスイーエス ホールディングス ピーティーイー リミテッド Anode fabrication method by pattern lamination, anode fabricated by the method, and electrochemical device incorporating such anode
SE545847C2 (en) * 2021-04-02 2024-02-20 Ses Holdings Pte Ltd Anode fabrication by pattern lamination

Also Published As

Publication number Publication date
JP5768137B2 (en) 2015-08-26
JPWO2013054593A1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5768137B2 (en) Manufacturing method of sheet electrode
JP6504158B2 (en) Stacked battery and method of manufacturing the same
US20110244304A1 (en) Stack type battery
EP2772978A1 (en) Electrode assembly and electrochemical device comprising same
WO2018154989A1 (en) Secondary battery and method for producing same
US20140170451A1 (en) Electrode
JP5552398B2 (en) Lithium ion battery
JP2012221804A (en) Battery pack
WO2011002064A1 (en) Laminated battery
US11522227B2 (en) Secondary battery and comb-type electrode
KR102085637B1 (en) Cutting Device Using Laser
US10431846B2 (en) Energy storage device
WO2014141640A1 (en) Laminate exterior cell
JP2011258439A (en) Secondary battery
JP2011048967A (en) Laminated secondary battery and manufacturing method
JP2012151036A (en) Laminated battery
WO2013105362A1 (en) Method for producing battery
JP5624507B2 (en) Assembled battery
JP2008140551A (en) Nonaqueous electrolyte secondary battery
JP2002157997A (en) Method of manufacturing collapsible lithium battery
JP2012164476A (en) Laminate type battery and lamination layer type battery with it
JP2011048991A (en) Lithium ion secondary battery
JP5704251B2 (en) Assembled battery and method of manufacturing the assembled battery
JP2009110812A (en) Battery and method of manufacturing the same
JP2012146551A (en) Nonaqueous electrolyte battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839848

Country of ref document: EP

Kind code of ref document: A1