JP2011034918A - Method for manufacturing electrode plate for laminated secondary battery, and electrode plate material for laminated secondary battery - Google Patents

Method for manufacturing electrode plate for laminated secondary battery, and electrode plate material for laminated secondary battery Download PDF

Info

Publication number
JP2011034918A
JP2011034918A JP2009182551A JP2009182551A JP2011034918A JP 2011034918 A JP2011034918 A JP 2011034918A JP 2009182551 A JP2009182551 A JP 2009182551A JP 2009182551 A JP2009182551 A JP 2009182551A JP 2011034918 A JP2011034918 A JP 2011034918A
Authority
JP
Japan
Prior art keywords
electrode plate
secondary battery
region
length
coating region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009182551A
Other languages
Japanese (ja)
Other versions
JP5625279B2 (en
Inventor
Daisuke Otsuka
大輔 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009182551A priority Critical patent/JP5625279B2/en
Publication of JP2011034918A publication Critical patent/JP2011034918A/en
Application granted granted Critical
Publication of JP5625279B2 publication Critical patent/JP5625279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode plate for a laminated secondary battery in which yield and productivity are improved, and an electrode plate material for the laminated secondary battery. <P>SOLUTION: In the electrode plate material 1000 composed of a belt-like material in which a coating region 1100 of a coated mixture containing an active material and a non-coating region 1200 of the non-coated mixture are arranged alternately and continuously in a length direction, the coating region 1100 is cut at the center part of the length direction and the non-coating region 1200 is cut at the center part of the length direction. A length (2a) of the coating region 1100 is nearly twice a length (a) of a part of the coating region 1100 that constitutes a single electrode plate 1 to constitute the lamination layer type secondary battery. A length (2b) of the non-coating region 1200 is nearly twice a length (b) of a part of the non-coating region 1200 that constitutes a single electrode plate 1 to constitute the lamination layer type secondary battery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、一般的には積層型二次電池用極板の製造方法と積層型二次電池用極板材料に関し、特定的には集電体としての金属基材の表面に活物質を含む合材が塗布されて構成される積層型二次電池用極板の製造方法と積層型二次電池用極板材料に関する。   TECHNICAL FIELD The present invention generally relates to a method of manufacturing a laminated secondary battery electrode plate and a laminated secondary battery electrode material, and specifically includes an active material on the surface of a metal substrate as a current collector. The present invention relates to a method for producing a laminated secondary battery electrode plate formed by applying a composite material, and a laminated secondary battery electrode plate material.

近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池、特に二次電池が用いられている。二次電池の一例としてリチウムイオン二次電池は、相対的に大きなエネルギー密度を有することが知られている。   In recent years, batteries, particularly secondary batteries, have been used as power sources for portable electronic devices such as mobile phones and portable personal computers. As an example of a secondary battery, a lithium ion secondary battery is known to have a relatively large energy density.

たとえば、特開2005−116482号公報(特許文献1)には、リチウムイオン二次電池として薄型電池の構成が記載されている。この薄型電池では、セパレータの間に交互に積層された正極板と負極板を有する発電要素が外装部材に収容されて封止され、複数の集電部を介して発電要素に接続された正極端子と負極端子が外装部材の外周縁から互いに対向した方向に導出している。このような積層型二次電池では、外装部材内において複数の正極板と負極板がセパレータを間に介在して交互に積層されている。   For example, Japanese Patent Laying-Open No. 2005-116482 (Patent Document 1) describes a configuration of a thin battery as a lithium ion secondary battery. In this thin battery, a positive electrode terminal in which a power generation element having a positive electrode plate and a negative electrode plate alternately stacked between separators is accommodated in an exterior member and sealed and connected to the power generation element via a plurality of current collectors And the negative terminal are led out from the outer peripheral edge of the exterior member in a direction facing each other. In such a stacked secondary battery, a plurality of positive plates and negative plates are alternately stacked in the exterior member with separators interposed therebetween.

このような積層型二次電池の極板の製造方法が、たとえば、特開2001−155717号公報(特許文献2)に記載されている。この極板の製造方法では、まず、正極活物質をアルミニウム金属基材の両面に塗布し、乾燥させることにより、正極板材料が製造される。また、負極活物質を銅金属基材の両面に塗布し、乾燥させることにより、負極板材料が製造される。さらに、PETフィルム基材の片面上に絶縁層を塗布し、乾燥させることにより、セパレータ材料が製造される。次に、正極板材料、負極板材料およびセパレータ材料のそれぞれを所定の電池セル形状に打ち抜くことにより、正極板、負極板およびセパレータが製造される。得られた正極板、セパレータおよび負極板を順次重ね合わせて加熱、加圧することにより、機械的に接合して、積層型二次電池の電池要素を製造する。   A method for manufacturing such an electrode plate of a laminated secondary battery is described in, for example, Japanese Patent Application Laid-Open No. 2001-155717 (Patent Document 2). In this electrode plate manufacturing method, first, a positive electrode active material is applied to both surfaces of an aluminum metal base material and dried to manufacture a positive electrode plate material. Moreover, a negative electrode active material is apply | coated on both surfaces of a copper metal base material, and a negative electrode plate material is manufactured by making it dry. Furthermore, a separator material is manufactured by apply | coating an insulating layer on the single side | surface of a PET film base material, and making it dry. Next, each of the positive electrode plate material, the negative electrode plate material, and the separator material is punched into a predetermined battery cell shape, whereby the positive electrode plate, the negative electrode plate, and the separator are manufactured. The obtained positive electrode plate, separator, and negative electrode plate are sequentially stacked and heated and pressurized to mechanically join to manufacture a battery element of a stacked secondary battery.

特開2005−116482号公報JP-A-2005-116482 特開2001−155717号公報JP 2001-155717 A

図7は、従来の積層型二次電池の極板材料を示す部分平面図である。図7に示す帯状の極板材料500は、正極端子と負極端子が外装部材の外周縁から互いに対向した方向に導出しているタイプの積層型二次電池に用いられる正極板材料または負極板材料である。   FIG. 7 is a partial plan view showing an electrode plate material of a conventional stacked secondary battery. The strip-shaped electrode plate material 500 shown in FIG. 7 is a positive electrode plate material or a negative electrode plate material used for a stacked type secondary battery of a type in which a positive electrode terminal and a negative electrode terminal are led out from the outer peripheral edge of the exterior member to each other. It is.

図7に示すように、極板材料500には、活物質を含む合材が塗工された塗工領域510と、合材が塗工されていない非塗工領域520とが交互に長さ方向に連続して配置されている。この極板材料500を、特開2001−155717号公報(特許文献2)に記載されているように、所定の電池セル形状に打ち抜くことによって極板51とし、さらに正負極の極板51をセパレータを介して交互に積層することにより、積層型二次電池の電池要素が形成される。   As shown in FIG. 7, in the electrode plate material 500, a coating region 510 in which a composite material containing an active material is coated and a non-coating region 520 in which the composite material is not coated are alternately long. It is arranged continuously in the direction. As described in JP-A-2001-155717 (Patent Document 2), this electrode plate material 500 is punched into a predetermined battery cell shape to form an electrode plate 51, and the positive and negative electrode plates 51 are further separated into separators. The battery elements of the stacked type secondary battery are formed by alternately stacking the layers.

しかしながら、各極板51を構成する非塗工領域520(図7の左側に示される非塗工領域520)の一部分の端部に合材が付着すると、外部端子との接合不良が生じるという問題がある。また、各極板51を構成する塗工領域510の一部分に非塗工部分があれば、電池の特性不良が生じるという問題がある。   However, if the composite material adheres to an end portion of a part of the non-coating region 520 (non-coating region 520 shown on the left side of FIG. 7) constituting each electrode plate 51, a problem of poor bonding with the external terminal occurs. There is. Further, if there is a non-coated portion in a part of the coating region 510 constituting each electrode plate 51, there is a problem that the battery characteristics are poor.

これらの問題を解消するために、図7に示すように、極板材料500を形成する際には、極板材料500において交互に配置される塗工領域510と非塗工領域520のそれぞれを所定の電池セル形状に必要な長さよりも長く形成する。そして、図7に示すように、まず、切断線C10とC30で極板材料500を順次切断する。次に、余分な箇所を切り落とすために切断線C20で切断する。このようにして各極板51を形成する。あるいは、図7に示す各極板51を極板材料500から打ち抜く。   In order to solve these problems, as shown in FIG. 7, when the electrode plate material 500 is formed, each of the coating regions 510 and the non-coating regions 520 that are alternately arranged in the electrode plate material 500 is formed. It is formed longer than the length required for a predetermined battery cell shape. Then, as shown in FIG. 7, first, the electrode plate material 500 is sequentially cut along cutting lines C10 and C30. Next, in order to cut off an excessive part, it cut | disconnects with the cutting line C20. In this way, each electrode plate 51 is formed. Alternatively, each electrode plate 51 shown in FIG. 7 is punched from the electrode plate material 500.

この方法では、捨て代部の集電体としての金属箔と活物質を含む合材とが無駄になり、歩留まりが低下するので、材料コストが高くなるという問題がある。また、打ち抜きで極板を形成する際には問題ないが、カット刃などにより切断する場合は、極板を一枚得るために二回切断する必要があるので生産性が低いという問題がある。   In this method, the metal foil as the current collector for the discarding portion and the composite material containing the active material are wasted and the yield is lowered, so that there is a problem that the material cost is increased. Moreover, there is no problem when the electrode plate is formed by punching. However, when cutting with a cutting blade or the like, there is a problem that productivity is low because it is necessary to cut twice to obtain one electrode plate.

そこで、この発明の目的は、極板を製造するための歩留まりと生産性を向上させることが可能な積層型二次電池用極板の製造方法と積層型二次電池用極板材料を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a laminated secondary battery electrode plate and a laminated secondary battery electrode material capable of improving the yield and productivity for producing the electrode plate. That is.

この発明に従った積層型二次電池用極板の製造方法は、活物質を含む合材が塗工された塗工領域と、合材が塗工されていない非塗工領域とが交互に長さ方向に連続して配置された帯状材を切断することにより極板を製造する積層型二次電池用極板の製造方法において以下のステップを備えることを特徴とする。   In the manufacturing method of the electrode plate for a stacked type secondary battery according to the present invention, the coating region where the composite material containing the active material is coated and the non-coating region where the composite material is not coated are alternately formed. In the manufacturing method of the electrode plate for laminated secondary batteries which manufactures an electrode plate by cut | disconnecting the strip | belt-shaped material continuously arrange | positioned in the length direction, it is provided with the following steps.

(a)塗工領域の長さ方向の中央部を切断するステップ。   (A) The step which cut | disconnects the center part of the length direction of a coating area | region.

(b)非塗工領域の長さ方向の中央部を切断するステップ。   (B) The step which cut | disconnects the center part of the length direction of a non-coating area | region.

この発明の積層型二次電池用極板の製造方法では、塗工領域と非塗工領域のそれぞれの長さ方向の中央部を切断することにより、帯状材の捨て代部が存在しないように、塗工領域の半分と非塗工領域の半分とから構成される各極板を、帯状材から順次切断することによって、製造することができる。このため、極板を製造するための歩留まりを向上させることができる。また、帯状材を順次一回切断することにより、一枚の極板を得ることができるので、生産性を向上させることができる。   In the manufacturing method of the electrode plate for a stacked type secondary battery according to the present invention, by cutting the central portion in the length direction of each of the coated region and the non-coated region, there is no disposal portion of the strip material. Each electrode plate composed of a half of the coating region and a half of the non-coating region can be manufactured by sequentially cutting the strip. For this reason, the yield for manufacturing an electrode plate can be improved. Further, by cutting the strip material once in sequence, a single electrode plate can be obtained, so that productivity can be improved.

この発明の積層型二次電池用極板の製造方法において、帯状材の塗工領域の長さが、切断後の塗工領域の長さのほぼ2倍であることが好ましい。   In the manufacturing method of the electrode plate for a laminated secondary battery according to the present invention, it is preferable that the length of the coating region of the strip-shaped material is approximately twice the length of the coating region after cutting.

また、この発明の積層型二次電池用極板の製造方法において、帯状材の非塗工領域の長さが、切断後の非塗工領域の長さのほぼ2倍であることが好ましい。   Moreover, in the manufacturing method of the electrode plate for laminated type secondary batteries of this invention, it is preferable that the length of the non-coating area | region of a strip | belt-shaped material is about twice the length of the non-coating area | region after a cutting | disconnection.

この発明に従った積層型二次電池用極板材料は、活物質を含む合材が塗工された塗工領域と、合材が塗工されていない非塗工領域とが交互に長さ方向に連続して配置された帯状材からなる積層型二次電池用極板材料において、次の特徴を有する。帯状材の塗工領域の長さが、積層型二次電池を構成する単一極板における塗工領域の長さのほぼ2倍である。   The electrode plate material for a laminated type secondary battery according to the present invention has a length in which a coating region in which a composite material containing an active material is coated and a non-coating region in which the composite material is not coated are alternately formed. An electrode plate material for a laminated secondary battery made of a strip-like material continuously arranged in the direction has the following characteristics. The length of the coating region of the strip-shaped material is approximately twice the length of the coating region in the single electrode plate constituting the laminated secondary battery.

この発明の積層型二次電池用極板材料では、帯状材の非塗工領域の長さが、積層型二次電池を構成する単一極板における非塗工領域の長さのほぼ2倍であることが好ましい。   In the electrode plate material for a laminated secondary battery according to the present invention, the length of the non-coated region of the strip is approximately twice the length of the non-coated region in the single electrode plate constituting the laminated secondary battery. It is preferable that

この発明によれば、極板を製造するための歩留まりと生産性を向上させることが可能となる。   According to the present invention, it is possible to improve the yield and productivity for manufacturing the electrode plate.

本発明の積層型二次電池用極板の製造方法によって製造される極板を用いて構成される積層型二次電池の一例を示す概略的な平面図である。It is a schematic plan view which shows an example of the laminated secondary battery comprised using the electrode plate manufactured by the manufacturing method of the electrode plate for laminated secondary batteries of this invention. 図1のII−II線に沿った方向から見た断面を拡大して示す部分断面図である。It is a fragmentary sectional view which expands and shows the cross section seen from the direction along the II-II line of FIG. 図1のIII−III線に沿った方向から見た断面を拡大して示す部分断面図である。It is a fragmentary sectional view which expands and shows the cross section seen from the direction along the III-III line of FIG. 本発明の一つの実施の形態として積層型二次電池の極板材料を示す部分平面図である。It is a fragmentary top view which shows the electrode plate material of a laminated type secondary battery as one embodiment of this invention. 本発明のもう一つの実施の形態として積層型二次電池の極板材料を示す部分平面図である。It is a fragmentary top view which shows the electrode plate material of a laminated type secondary battery as another embodiment of this invention. 本発明のさらにもう一つの実施の形態として積層型二次電池の極板材料を示す部分平面図である。It is a fragmentary top view which shows the electrode plate material of a laminated type secondary battery as another embodiment of this invention. 従来の積層型二次電池の極板材料を示す部分平面図である。It is a fragmentary top view which shows the electrode plate material of the conventional laminated type secondary battery.

以下、この発明の一つの実施の形態を図面に基づいて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、積層型二次電池100は、電池要素10と、電池要素10を収容して封止する外装部材20と、複数の集電部を介して電池要素10に接続されて外装部材20の外周縁から互いに対向する方向に導出された正極端子30および負極端子40とから構成される。   As shown in FIG. 1, the stacked secondary battery 100 is connected to the battery element 10 through a battery element 10, an exterior member 20 that houses and seals the battery element 10, and a plurality of current collectors. It is comprised from the positive electrode terminal 30 and the negative electrode terminal 40 which were derived | led-out from the outer periphery of the exterior member 20 in the direction which mutually opposes.

図2と図3に示すように、電池要素10は、複数の正極板11と、複数の負極板12と、各々が複数の正極板11の各々と複数の負極板12の各々との間に介在するように配置された複数のセパレータ13と、図示しない非水電解液とを含む。複数の正極板11の各々と複数の負極板12の各々が複数のセパレータ13の各々を間に介在して交互に積層されている。正極板11、負極板12およびセパレータ13は、板状、フィルム状、箔状などに形成される。たとえば、複数のフィルム状の正極板11と負極板12がセパレータ13を介して密着状態で積層された積層体が、アルミニウムラミネートフィルムからなる外装部材20の内部に充填されている。図3に示すように、複数の負極板12は複数の集電部41(非塗工領域)を介して負極端子40に接続されている。図示されていないが、複数の正極板11も同様に正極端子30(図1)に接続されている。   As shown in FIG. 2 and FIG. 3, the battery element 10 includes a plurality of positive plates 11, a plurality of negative plates 12, each between a plurality of positive plates 11 and a plurality of negative plates 12. It includes a plurality of separators 13 disposed so as to intervene and a non-aqueous electrolyte solution (not shown). Each of the plurality of positive electrode plates 11 and each of the plurality of negative electrode plates 12 are alternately stacked with each of the plurality of separators 13 interposed therebetween. The positive electrode plate 11, the negative electrode plate 12, and the separator 13 are formed in a plate shape, a film shape, a foil shape, or the like. For example, a laminated body in which a plurality of film-like positive electrode plates 11 and negative electrode plates 12 are laminated in close contact via separators 13 is filled in an exterior member 20 made of an aluminum laminate film. As shown in FIG. 3, the plurality of negative plates 12 are connected to the negative terminal 40 via a plurality of current collectors 41 (non-coating regions). Although not shown in figure, the some positive electrode plate 11 is similarly connected to the positive electrode terminal 30 (FIG. 1).

正極板11の塗工領域は、正極活物質を含む正極合材層が集電体の両面上に形成されることによって構成される。負極板12の塗工領域は、負極活物質を含む負極合材層が集電体の両面上に形成されることによって構成される。   The coating region of the positive electrode plate 11 is configured by forming a positive electrode mixture layer containing a positive electrode active material on both surfaces of a current collector. The coating region of the negative electrode plate 12 is configured by forming a negative electrode mixture layer containing a negative electrode active material on both surfaces of the current collector.

たとえば、正極板11の塗工領域は、正極活物質と結着剤と導電助剤とを含有する正極合材を、アルミニウム箔からなる集電体の両面上に塗布し、乾燥して、正極合材層を集電体の両面上に形成することにより作製される。   For example, the coating region of the positive electrode plate 11 is formed by applying a positive electrode mixture containing a positive electrode active material, a binder, and a conductive additive on both surfaces of a current collector made of aluminum foil, and drying the positive electrode mixture. It is produced by forming a composite material layer on both sides of the current collector.

一般的に正極活物質としては、目的とする電池の種類に応じて金属酸化物、金属硫化物または特定の高分子を用いることができる。   In general, as the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the target battery.

リチウムイオン二次電池を構成する場合、正極活物質としては、TiS、MoS、NbSe、V等の金属硫化物または酸化物を使用することができる。また、リチウムイオン二次電池の正極活物質としてLiM(化学式中、Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05以上、1.10以下である)を主体とするリチウム複合酸化物等を使用することができる。このリチウム複合酸化物を構成する遷移金属Mとしては、Co、Ni、Mn等が好ましい。このようなリチウム複合酸化物の具体例としてはLiCoO、LiNiO、LiNiCo1−y(化学式中、0<y<1である)、Li1+a(NiCoMn)O2−b(化学式中、−0.1<a<0.2、x+y+z=1、−0.1<b<0.1)、LiMn等を挙げることができる。これらのリチウム複合酸化物は、高電圧を発生でき、エネルギー密度が優れた正極活物質となる。正極板11を作製するために、これらの正極活物質の複数種をあわせて使用してもよい。 When a lithium ion secondary battery is configured, a metal sulfide or oxide such as TiS 2 , MoS 2 , NbSe 2 , or V 2 O 5 can be used as the positive electrode active material. In addition, LiM x O 2 (in the chemical formula, M represents one or more transition metals, x varies depending on the charge / discharge state of the battery, and is usually 0.05 or more and 1.10 or less as a positive electrode active material of a lithium ion secondary battery Lithium composite oxide mainly composed of As the transition metal M constituting this lithium composite oxide, Co, Ni, Mn and the like are preferable. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (where 0 <y <1), and Li 1 + a (Ni x Co y Mn z ) O. 2-b (in the chemical formula, −0.1 <a <0.2, x + y + z = 1, −0.1 <b <0.1), LiMn 2 O 4 and the like. These lithium composite oxides can generate a high voltage and become a positive electrode active material having an excellent energy density. In order to produce the positive electrode plate 11, a plurality of these positive electrode active materials may be used in combination.

また、上記の正極合材に含有される結着剤としては、通常、電池の正極合材に用いられている公知の結着剤を用いることができ、上記の正極合材には、導電剤等、公知の添加剤を添加することができる。   Moreover, as a binder contained in said positive electrode mixture, the well-known binder normally used for the positive electrode mixture of a battery can be used, A conductive agent is used for said positive electrode mixture. For example, known additives can be added.

たとえば、負極板12は、負極活物質と結着剤とを含有する負極合材を、銅箔からなる集電体の両面上に均一に塗布し、乾燥して、負極合材層を集電体の両面上に形成することにより作製される。   For example, the negative electrode plate 12 is formed by uniformly applying a negative electrode mixture containing a negative electrode active material and a binder onto both surfaces of a current collector made of copper foil, and drying the negative electrode mixture layer. It is made by forming on both sides of the body.

リチウムイオン二次電池を構成する場合、負極活物質としては、リチウムをドープ、脱ドープできる材料を使用することが好ましい。リチウムをドープ、脱ドープできる材料としては、たとえば、難黒鉛化炭素系材料やグラファイト系材料等の炭素材料を使用することができる。具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素繊維、有機高分子化合物焼成体、炭素繊維、活性炭等の炭素材料を使用することができる。上記のコークス類には、ピッチコークス、ニート゛ルコークス、石油コークス等がある。また、上記の有機高分子化合物焼成体とは、フェノール樹脂、フラン樹脂等を適当な温度で焼成して炭素化したものをいう。上述した炭素材料のほか、リチウムをドープ、脱ドープできる材料としては、ポリアセチレン、ポリピロール等の高分子やSnOやLiTi12(チタン酸リチウム)等の酸化物を使用することもできる。 When constituting a lithium ion secondary battery, it is preferable to use the material which can dope and dedope lithium as a negative electrode active material. As a material that can be doped or dedoped with lithium, for example, a carbon material such as a non-graphitizable carbon material or a graphite material can be used. Specifically, carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, organic polymer compound fired bodies, carbon fibers, and activated carbon can be used. Examples of the above cokes include pitch coke, needle coke, and petroleum coke. Moreover, said organic polymer compound fired body means what carbonized by baking a phenol resin, furan resin, etc. at a suitable temperature. In addition to the carbon material described above, as a material that can be doped or dedoped with lithium, a polymer such as polyacetylene or polypyrrole, or an oxide such as SnO 2 or Li 4 Ti 5 O 12 (lithium titanate) can also be used. .

また、上記の負極合材に含有される結着剤としては、通常、リチウムイオン電池の負極合材に用いられている公知の結着剤を用いることができ、上記の負極合材には、公知の添加剤等を添加することができる。   Moreover, as a binder contained in said negative electrode compound material, the well-known binder normally used for the negative electrode compound material of a lithium ion battery can be used, In said negative electrode compound material, Known additives and the like can be added.

非水電解液は、電解質を非水溶媒に溶解して調製される。電解質としては、たとえば、非水溶媒中にLiPFを1.0mol/Lの濃度で溶解したものが使用される。LiPF以外の電解質としては、LiBF、LiAsF、LiClO、LiCFSO、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiF等のリチウム塩を挙げることができる。これらの中でも、電解質として特にLiPF、LiBFを用いることが酸化安定性の点から望ましい。このような電解質は、非水溶媒中に、0.1mol/L〜3.0mol/Lの濃度で溶解されて用いられることが好ましく、0.5mol/L〜2.0mol/Lの濃度で溶解されて用いられることがさらに好ましい。非水溶媒としては、たとえば、炭酸プロピレンと炭酸エチレンと炭酸ジエチルとを体積比で5〜20:20〜30:60〜70の割合で混合したものが使用される。その他の非水溶媒としては、炭酸プロピレン、炭酸エチレン等の環状炭酸エステル;炭酸ジエチル、炭酸ジメチル等の鎖状炭酸エステル;プロピオン酸メチル、酪酸メチル等のカルボン酸エステル;γ−ブチルラクトン、スルホラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル類等を使用することができる。これらの非水溶媒は単独で使用してもよく、複数種を混合して使用してもよい。これらの中でも、非水溶媒として特に炭酸エステルを用いることが酸化安定性の点から好ましい。 The nonaqueous electrolytic solution is prepared by dissolving an electrolyte in a nonaqueous solvent. As the electrolyte, for example, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a non-aqueous solvent is used. As an electrolyte other than LiPF 6 , lithium salts such as LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 are used. Can be mentioned. Among these, it is desirable from the viewpoint of oxidation stability that LiPF 6 or LiBF 4 is particularly used as the electrolyte. Such an electrolyte is preferably used by being dissolved in a non-aqueous solvent at a concentration of 0.1 mol / L to 3.0 mol / L, and dissolved at a concentration of 0.5 mol / L to 2.0 mol / L. More preferably, it is used. As the non-aqueous solvent, for example, a mixture of propylene carbonate, ethylene carbonate, and diethyl carbonate at a volume ratio of 5-20: 20-30: 60-70 is used. Other non-aqueous solvents include: cyclic carbonates such as propylene carbonate and ethylene carbonate; chain carbonates such as diethyl carbonate and dimethyl carbonate; carboxylic acid esters such as methyl propionate and methyl butyrate; γ-butyllactone, sulfolane, Ethers such as 2-methyltetrahydrofuran and dimethoxyethane can be used. These non-aqueous solvents may be used alone or in combination of two or more. Among these, it is preferable from the point of oxidation stability to use carbonate ester as a non-aqueous solvent.

なお、上記の積層型二次電池の例では、正極板と負極板との間に一枚のセパレータを介在させているが、複数枚のセパレータを介在させてもよい。複数枚のセパレータの材質は同種でも異種でもよい。また、正極板と負極板との間に長尺状のセパレータを九十九折りにして介在させてもよい。   In the example of the laminated secondary battery described above, one separator is interposed between the positive electrode plate and the negative electrode plate, but a plurality of separators may be interposed. The material of the plurality of separators may be the same or different. Further, a long separator may be interposed between the positive electrode plate and the negative electrode plate in a ninety-nine fold.

次に、上述のように構成される積層型二次電池の極板、すなわち正極板11または負極板12の製造方法について説明する。   Next, a method for manufacturing the electrode plate of the stacked secondary battery configured as described above, that is, the positive electrode plate 11 or the negative electrode plate 12 will be described.

図4に示すように、正極板または負極板の材料としての極板材料1000は、活物質を含む合材が塗工された塗工領域1100と、合材が塗工されていない非塗工領域1200とが交互に長さ方向に連続して配置された帯状材からなる。極板材料1000における塗工領域1100の長さ(2a)は、積層型二次電池を構成する単一極板1、すなわち正極板111または負極板121を構成する塗工領域1100の一部の長さ(a)のほぼ2倍である。また、極板材料1000における非塗工領域1200の長さ(2b)は、積層型二次電池を構成する単一の極板1、すなわち正極板111または負極板121を構成する非塗工領域1200の一部の長さ(b)のほぼ2倍である。   As shown in FIG. 4, an electrode plate material 1000 as a material of a positive electrode plate or a negative electrode plate includes a coating region 1100 where a composite material containing an active material is applied, and a non-coating where no composite material is applied. The region 1200 is made of a strip-like material alternately arranged continuously in the length direction. The length (2a) of the coating region 1100 in the electrode plate material 1000 is a part of the coating region 1100 constituting the single electrode plate 1 constituting the laminated secondary battery, that is, the positive electrode plate 111 or the negative electrode plate 121. It is almost twice the length (a). Further, the length (2b) of the non-coated region 1200 in the electrode plate material 1000 is a single electrode plate 1 constituting the stacked secondary battery, that is, the non-coated region constituting the positive electrode plate 111 or the negative electrode plate 121. It is almost twice the length (b) of a part of 1200.

このように構成された極板材料1000から各極板1を製造する工程について説明する。まず、図4に示す切断線C1(右側の切断線C1)において塗工領域1100の長さ方向の中央部を切断する。次に、切断線C2において非塗工領域1200の長さ方向の中央部を切断する。そして、切断線C1(左側の切断線C1)において塗工領域1100の長さ方向の中央部を切断する。このようにして極板材料1000を順次、切断することによって、各極板1が形成される。   A process of manufacturing each electrode plate 1 from the electrode plate material 1000 configured as described above will be described. First, the central portion in the length direction of the coating region 1100 is cut at the cutting line C1 (right cutting line C1) shown in FIG. Next, the central part of the length direction of the non-coating area | region 1200 is cut | disconnected in the cutting line C2. And the center part of the length direction of the coating area | region 1100 is cut | disconnected in the cutting line C1 (left side cutting line C1). Thus, each electrode plate 1 is formed by sequentially cutting the electrode plate material 1000.

以上のようにして、塗工領域1100と非塗工領域1200のそれぞれの長さ方向の中央部を切断することにより、帯状材の捨て代部が存在しないように、塗工領域1100の半分と非塗工領域1200の半分とから構成される各極板1を、帯状材から順次切断することによって、製造することができる。このため、極板1を製造するための歩留まりを向上させることができる。また、帯状材からなる極板材料1000を順次一回切断することにより、一枚の極板1を得ることができるので、生産性を向上させることができる。   As described above, by cutting the central portions of the coating region 1100 and the non-coating region 1200 in the length direction, half of the coating region 1100 is formed so that there is no stripped portion of the strip material. Each electrode plate 1 composed of half of the non-coating region 1200 can be manufactured by sequentially cutting from a strip-shaped material. For this reason, the yield for manufacturing the electrode plate 1 can be improved. Moreover, since the electrode plate 1 of 1 sheet can be obtained by cut | disconnecting the electrode plate material 1000 which consists of strip | belt-shaped materials once in order, productivity can be improved.

図5に示すように、本発明のもう一つの実施の形態では、切断線C3(右側の切断線C3)において塗工領域1100の長さ方向の中央部を切断する。次に、切断線C4に沿ってT字状に切断面を形成して、非塗工領域1200の長さ方向の中央部を切断する。この場合、各極板2を構成する非塗工領域1200の長さだけでなく、幅もほぼ半分になるように非塗工領域部分1210を切り落とす。そして、切断線C3(左側の切断線C3)において塗工領域1100の長さ方向の中央部を切断する。このようにして極板材料1000を順次、切断することによって、各極板2が形成される。このようにすることにより、幅の狭い非塗工領域を各極板2の端部に形成することができる。なお、極板2は、図1に示すように正極端子30と負極端子40が互いに反対方向に導出された積層型二次電池100だけでなく、正極端子30と負極端子40が同一方向に導出された積層型二次電池にも適用可能である。   As shown in FIG. 5, in another embodiment of the present invention, the central portion in the length direction of the coating region 1100 is cut along the cutting line C3 (right cutting line C3). Next, a cut surface is formed in a T shape along the cutting line C4, and the central portion in the length direction of the non-coated region 1200 is cut. In this case, not only the length of the non-coating area | region 1200 which comprises each electrode plate 2, but the non-coating area | region part 1210 is cut off so that a width | variety may become substantially half. And the center part of the length direction of the coating area | region 1100 is cut | disconnected in the cutting line C3 (left side cutting line C3). In this way, each electrode plate 2 is formed by sequentially cutting the electrode plate material 1000. By doing in this way, a narrow non-coating area | region can be formed in the edge part of each electrode plate 2. FIG. In addition, as shown in FIG. 1, the electrode plate 2 has not only the stacked secondary battery 100 in which the positive electrode terminal 30 and the negative electrode terminal 40 are led out in opposite directions, but also the positive electrode terminal 30 and the negative electrode terminal 40 in the same direction. The present invention can also be applied to a stacked type secondary battery.

また、図6に示すように、本発明のもう一つの実施の形態では、切断線C5(右側の切断線C5)において塗工領域1100の長さ方向の中央部を切断する。次に、切断線C6に沿って幅方向の中央部で段差が形成されるように切断面を形成して、非塗工領域1200の長さ方向の中央部を切断する。この場合、各極板3を構成する非塗工領域1200の端面において、長さb1とb2の差分だけ幅方向の中央部に段差が形成される。そして、切断線C5(左側の切断線C5)において塗工領域1100の長さ方向の中央部を切断する。このようにして極板材料1000を順次、切断することによって、各極板3が形成される。このようにすることにより、段差のある非塗工領域を各極板3の端部に形成することができる。なお、極板3は、図5に示すように形成された極板2と同様に、正極端子30と負極端子40が同一方向に導出された積層型二次電池にも適用可能になるとともに、この極板3を用いると、複数の極板の端部(非塗工領域)を端子に溶接しやすくなる。   As shown in FIG. 6, in another embodiment of the present invention, the central portion in the length direction of the coating region 1100 is cut along the cutting line C5 (the cutting line C5 on the right side). Next, a cut surface is formed so that a step is formed at the central portion in the width direction along the cutting line C6, and the central portion in the length direction of the non-coating region 1200 is cut. In this case, a step is formed in the central portion in the width direction by the difference between the lengths b1 and b2 on the end face of the non-coated region 1200 constituting each electrode plate 3. And the center part of the length direction of the coating area | region 1100 is cut | disconnected in the cutting line C5 (left side cutting line C5). In this way, each electrode plate 3 is formed by sequentially cutting the electrode plate material 1000. By doing in this way, the non-coating area | region with a level | step difference can be formed in the edge part of each electrode plate 3. FIG. The electrode plate 3 can be applied to a stacked secondary battery in which the positive electrode terminal 30 and the negative electrode terminal 40 are led out in the same direction as the electrode plate 2 formed as shown in FIG. If this electrode plate 3 is used, it will become easy to weld the edge part (non-coating area | region) of a some electrode plate to a terminal.

以下、本発明の積層型二次電池用極板を作製した実施例について説明する。   Hereinafter, the Example which produced the electrode plate for laminated type secondary batteries of this invention is described.

図4に示すように、正極板111の材料である極板材料1000として、アルミニウム箔の両面に正極活物質(リチウム含有酸化物)を含む合材が塗工された塗工領域1100と、合材が塗工されていない非塗工領域1200とが交互に長さ方向に連続して配置されるように間欠塗工した帯状材を作製した。図4において長さ(a)を100mm、長さ(b)を10mmに設定した。   As shown in FIG. 4, as an electrode plate material 1000 that is a material of the positive electrode plate 111, a coating region 1100 in which a composite material containing a positive electrode active material (lithium-containing oxide) is coated on both surfaces of an aluminum foil, A strip-shaped material was produced that was intermittently coated such that non-coated regions 1200 on which the material was not coated were alternately arranged continuously in the length direction. In FIG. 4, the length (a) was set to 100 mm, and the length (b) was set to 10 mm.

また、図4に示すように、負極板121の材料である極板材料1000として、銅箔の両面に負極活物質(カーボン系)を含む合材が塗工された塗工領域1100と、合材が塗工されていない非塗工領域1200とが交互に長さ方向に連続して配置されるように間欠塗工した帯状材を作製した。図4において長さ(a)を110mm、長さ(b)を5mmに設定した。   Further, as shown in FIG. 4, as an electrode plate material 1000 that is a material of the negative electrode plate 121, a coating region 1100 in which a composite material including a negative electrode active material (carbon-based) is coated on both surfaces of a copper foil, A strip-shaped material was produced that was intermittently coated such that non-coated regions 1200 on which the material was not coated were alternately arranged continuously in the length direction. In FIG. 4, the length (a) was set to 110 mm, and the length (b) was set to 5 mm.

このようにして準備された正極と負極のそれぞれの極板材料1000の塗工領域1100と非塗工領域1200のそれぞれの中央部を、図4に示す切断線C1とC2に沿ってギロチン方式により切断することにより、各極板を作製した。その後、図1〜図3に示すように、複数の正極板11の各々と複数の負極板12の各々が複数のセパレータ13の各々を間に介在して交互に積層されるように配置し、複数の正極板11の端部(非塗工領域)を正極端子30に溶接し、複数の負極板12の端部(非塗工領域)を負極端子40に溶接した後、外装部材20内に封入し、非水電解液を注入し、初充電することにより、積層型二次電池100を作製した。   The central portions of the coating region 1100 and the non-coating region 1200 of each of the positive electrode material 1000 and the negative electrode material 1000 prepared in this way are guillotine along the cutting lines C1 and C2 shown in FIG. Each electrode plate was produced by cutting. Thereafter, as shown in FIG. 1 to FIG. 3, each of the plurality of positive plates 11 and each of the plurality of negative plates 12 are arranged so as to be alternately stacked with each of the plurality of separators 13 interposed therebetween, After the end portions (non-coated region) of the plurality of positive electrode plates 11 are welded to the positive electrode terminal 30 and the end portions (non-coated region) of the plurality of negative electrode plates 12 are welded to the negative electrode terminal 40, By encapsulating, injecting a non-aqueous electrolyte, and charging for the first time, the stacked secondary battery 100 was produced.

その結果、帯状材からなる極板材料1000から極板1を作製する際に、捨て代が不要となり、製造歩留まりを向上させることができ、材料コストを低減することができた。また、図7に示すように従来の極板材料500では極板51を一枚形成するための切断回数は二回であったのに対し、図4に示すように切断一回で極板1を一枚形成することができ、生産性が向上した。   As a result, when producing the electrode plate 1 from the electrode plate material 1000 made of a strip-like material, no disposal cost is required, the production yield can be improved, and the material cost can be reduced. Further, in the conventional electrode plate material 500 as shown in FIG. 7, the number of times of cutting for forming one electrode plate 51 is two, whereas as shown in FIG. Can be formed, and the productivity has been improved.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

本発明の積層型二次電池用極板の製造方法と積層型二次電池用極板材料は、高い製造歩留まりと生産性を有するので、たとえば、リチウムイオン二次電池の製造に適用することができる。   Since the manufacturing method of the electrode plate for a laminated secondary battery and the electrode plate material for the laminated type secondary battery of the present invention have a high production yield and productivity, it can be applied, for example, to the production of a lithium ion secondary battery. it can.

1,2,3:極板、100:積層型二次電池、1000:極板材料、1100:塗工領域、1200:非塗工領域。   1, 2, 3: electrode plate, 100: stacked secondary battery, 1000: electrode plate material, 1100: coating region, 1200: non-coating region.

Claims (5)

活物質を含む合材が塗工された塗工領域と、合材が塗工されていない非塗工領域とが交互に長さ方向に連続して配置された帯状材を切断することにより極板を製造する積層型二次電池用極板の製造方法において、
前記塗工領域の長さ方向の中央部を切断するステップと、
前記非塗工領域の長さ方向の中央部を切断するステップとを備えたことを特徴とする、積層型二次電池用極板の製造方法。
By cutting a band-shaped material in which a coating region where a composite material containing an active material is coated and a non-coating region where a composite material is not coated are alternately arranged in the length direction. In the manufacturing method of the electrode plate for the laminated type secondary battery for manufacturing the plate,
Cutting the central portion in the length direction of the coating region;
And a step of cutting a central portion in the length direction of the non-coating region.
前記帯状材の塗工領域の長さが、切断後の前記塗工領域の長さのほぼ2倍である、請求項1に記載の積層型二次電池用極板の製造方法。   The method for producing an electrode plate for a stacked secondary battery according to claim 1, wherein the length of the coating region of the strip-shaped material is approximately twice the length of the coating region after cutting. 前記帯状材の非塗工領域の長さが、切断後の前記非塗工領域の長さのほぼ2倍である、請求項1または請求項2に記載の積層型二次電池用極板の製造方法。   The length of the non-coating area | region of the said strip | belt-shaped material is the double of the length of the said non-coating area | region after a cutting | disconnection, The electrode plate for multilayer secondary batteries of Claim 1 or Claim 2 Production method. 活物質を含む合材が塗工された塗工領域と、合材が塗工されていない非塗工領域とが交互に長さ方向に連続して配置された帯状材からなる積層型二次電池用極板材料において、 前記帯状材の塗工領域の長さが、積層型二次電池を構成する単一極板における塗工領域の長さのほぼ2倍であることを特徴とする、積層型二次電池用極板材料。   Laminate type secondary material composed of a strip-like material in which a coating region coated with a composite material containing an active material and a non-coated region not coated with a composite material are alternately arranged in the length direction. In the electrode plate material for a battery, the length of the coating region of the strip-shaped material is approximately twice the length of the coating region in the single electrode plate constituting the laminated secondary battery, Electrode plate material for laminated secondary batteries. 前記帯状材の非塗工領域の長さが、積層型二次電池を構成する単一極板における非塗工領域の長さのほぼ2倍である、請求項4に記載の積層型二次電池用極板材料。
The length of the non-coating area | region of the said strip | belt-shaped material is a lamination | stacking type | mold secondary of Claim 4 which is substantially twice the length of the non-coating area | region in the single electrode board which comprises a lamination | stacking secondary battery. Battery plate material.
JP2009182551A 2009-08-05 2009-08-05 Manufacturing method of laminated secondary battery electrode plate and laminated secondary battery electrode plate material Active JP5625279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182551A JP5625279B2 (en) 2009-08-05 2009-08-05 Manufacturing method of laminated secondary battery electrode plate and laminated secondary battery electrode plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182551A JP5625279B2 (en) 2009-08-05 2009-08-05 Manufacturing method of laminated secondary battery electrode plate and laminated secondary battery electrode plate material

Publications (2)

Publication Number Publication Date
JP2011034918A true JP2011034918A (en) 2011-02-17
JP5625279B2 JP5625279B2 (en) 2014-11-19

Family

ID=43763769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182551A Active JP5625279B2 (en) 2009-08-05 2009-08-05 Manufacturing method of laminated secondary battery electrode plate and laminated secondary battery electrode plate material

Country Status (1)

Country Link
JP (1) JP5625279B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031889A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Method for manufacturing cell electrode
WO2013054593A1 (en) * 2011-10-14 2013-04-18 日立マクセルエナジー株式会社 Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery
WO2015197427A1 (en) * 2014-06-23 2015-12-30 Evonik Litarion Gmbh Method for producing electrode precursors for a battery
WO2016006420A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 Method of manufacturing power storage device and method of manufacturing electrode
WO2018169213A1 (en) * 2017-03-13 2018-09-20 주식회사 엘지화학 Method for manufacturing secondary battery electrode, and secondary battery electrode manufactured thereby
CN109155397A (en) * 2016-05-31 2019-01-04 株式会社村田制作所 The manufacturing method of secondary cell
US11271212B1 (en) * 2021-04-02 2022-03-08 Ses Holdings Pte. Ltd. Anode fabrication by pattern lamination, anodes made thereby, and electrochemical devices incorporating such anodes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219107B2 (en) 2019-02-12 2023-02-07 シチズン時計株式会社 electronic clock
DE102019206124A1 (en) * 2019-04-29 2020-10-29 Volkswagen Aktiengesellschaft Method and device for the production of electrodes for a lithium-ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155717A (en) * 1999-11-26 2001-06-08 Matsushita Electric Ind Co Ltd Method of fabricating electric battery electrode plate
JP2006179221A (en) * 2004-12-21 2006-07-06 Aisin Seiki Co Ltd Fuel cell and manufacturing method of fuel cell
JP2007329050A (en) * 2006-06-08 2007-12-20 Mitsubishi Cable Ind Ltd Sheet type battery and its manufacturing method
JP2008304486A (en) * 2008-09-26 2008-12-18 National Institute Of Advanced Industrial & Technology Method of manufacturing biosensor connection sheet
JP2009038387A (en) * 2001-11-01 2009-02-19 Maxwell Technologies Inc Electrochemical double layer capacitor having carbon powder electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155717A (en) * 1999-11-26 2001-06-08 Matsushita Electric Ind Co Ltd Method of fabricating electric battery electrode plate
JP2009038387A (en) * 2001-11-01 2009-02-19 Maxwell Technologies Inc Electrochemical double layer capacitor having carbon powder electrode
JP2006179221A (en) * 2004-12-21 2006-07-06 Aisin Seiki Co Ltd Fuel cell and manufacturing method of fuel cell
JP2007329050A (en) * 2006-06-08 2007-12-20 Mitsubishi Cable Ind Ltd Sheet type battery and its manufacturing method
JP2008304486A (en) * 2008-09-26 2008-12-18 National Institute Of Advanced Industrial & Technology Method of manufacturing biosensor connection sheet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502712B2 (en) 2011-08-31 2016-11-22 Nec Energy Devices, Ltd. Method of manufacturing battery electrode
WO2013031889A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Method for manufacturing cell electrode
WO2013054593A1 (en) * 2011-10-14 2013-04-18 日立マクセルエナジー株式会社 Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery
JPWO2013054593A1 (en) * 2011-10-14 2015-03-30 日立マクセル株式会社 Sheet electrode manufacturing method, sheet electrode, and lithium ion secondary battery
WO2015197427A1 (en) * 2014-06-23 2015-12-30 Evonik Litarion Gmbh Method for producing electrode precursors for a battery
JP2017152395A (en) * 2014-07-10 2017-08-31 株式会社村田製作所 Method of manufacturing power storage device, and method of manufacturing electrode
US20170110713A1 (en) * 2014-07-10 2017-04-20 Murata Manufacturing Co., Ltd. Method of manufacturing electrical storage device and method of manufacturing electrode
JPWO2016006420A1 (en) * 2014-07-10 2017-05-25 株式会社村田製作所 Storage device manufacturing method and electrode manufacturing method
WO2016006420A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 Method of manufacturing power storage device and method of manufacturing electrode
CN109155397A (en) * 2016-05-31 2019-01-04 株式会社村田制作所 The manufacturing method of secondary cell
US11329273B2 (en) * 2016-05-31 2022-05-10 Murata Manufacturing Co., Ltd. Method for manufacturing secondary battery
WO2018169213A1 (en) * 2017-03-13 2018-09-20 주식회사 엘지화학 Method for manufacturing secondary battery electrode, and secondary battery electrode manufactured thereby
US11114652B2 (en) 2017-03-13 2021-09-07 Lg Chem, Ltd. Method for manufacturing secondary battery electrode, and secondary battery electrode manufactured thereby
US11271212B1 (en) * 2021-04-02 2022-03-08 Ses Holdings Pte. Ltd. Anode fabrication by pattern lamination, anodes made thereby, and electrochemical devices incorporating such anodes
SE2130311A1 (en) * 2021-04-02 2022-10-03 Ses Holdings Pte Ltd Anode fabrication by pattern lamination, anodes made thereby, and electrochemical devices incorporating such anodes
JP2022158857A (en) * 2021-04-02 2022-10-17 エスイーエス ホールディングス ピーティーイー リミテッド Anode fabrication method by pattern lamination, anode fabricated by the method, and electrochemical device incorporating such anode
SE545847C2 (en) * 2021-04-02 2024-02-20 Ses Holdings Pte Ltd Anode fabrication by pattern lamination

Also Published As

Publication number Publication date
JP5625279B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5625279B2 (en) Manufacturing method of laminated secondary battery electrode plate and laminated secondary battery electrode plate material
JP4644899B2 (en) Electrode and battery, and manufacturing method thereof
KR100742109B1 (en) Nonaqueous-electrolyte secondary battery and method of manufacturing the same
KR101843577B1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing the same
JP2007329050A (en) Sheet type battery and its manufacturing method
KR20140009497A (en) Bipolar all-solid-state battery
JP6936670B2 (en) Separator for lithium-ion batteries
JP2011508956A (en) Pouch-type lithium secondary battery
JP2006260904A (en) Winding type battery and its manufacturing method
WO2022061562A1 (en) Electrochemical device and electronic device
JP4604306B2 (en) Solid electrolyte battery and manufacturing method thereof
KR101519372B1 (en) Manufacture Device of Battery Cell
US10431846B2 (en) Energy storage device
WO2012147425A1 (en) Cylindrical lithium ion secondary battery and manufacturing method therefor
JP5648896B2 (en) Method for manufacturing bipolar electrode for secondary battery and bipolar secondary battery
WO2011070918A1 (en) Electrical storage device and method for manufacturing same
JP5869354B2 (en) Exterior can for prismatic lithium ion secondary battery and prismatic lithium ion secondary battery
JP4735556B2 (en) Method for producing solid electrolyte battery
JP2011060564A (en) Method of manufacturing power storage device
JP5755870B2 (en) Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery
JP4055234B2 (en) Solid electrolyte battery
CN113517501A (en) Battery and power consumption device containing same
US20150340690A1 (en) Energy storage device
JP5278989B2 (en) Lithium ion secondary battery
JP2010244725A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150