JP2013182677A - Laminate type power storage device - Google Patents

Laminate type power storage device Download PDF

Info

Publication number
JP2013182677A
JP2013182677A JP2012043659A JP2012043659A JP2013182677A JP 2013182677 A JP2013182677 A JP 2013182677A JP 2012043659 A JP2012043659 A JP 2012043659A JP 2012043659 A JP2012043659 A JP 2012043659A JP 2013182677 A JP2013182677 A JP 2013182677A
Authority
JP
Japan
Prior art keywords
positive electrode
tab assembly
negative electrode
lead
assembly portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012043659A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012043659A priority Critical patent/JP2013182677A/en
Publication of JP2013182677A publication Critical patent/JP2013182677A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate type power storage device in which a tab assembly part and a lead are firmly joined, and in which breakage of an outer package can be reduced even when a laminate film low in strength is used for the outer package.SOLUTION: The laminate type power storage device comprises: an electrode group 15 consisting of a plurality of tabular positive electrodes 11P and negative electrodes 11N which are alternately laminated via separators 12; a laminate film which is an outer package 1 in which the electrode group 15 is housed; and an electrolyte. A positive electrode terminal 2P and a negative electrode terminal are joined inside the outer package 1 to a tab assembly part 5P by a lead 3P. A portion at which the tab assembly part 5P is joined to the lead 3P is bent in the laminated direction of the electrode group 15, and the lead 3P is joined so as to cover at least a face of the tab assembly part 5P opposite to the electrode group 15 and a tip portion thereof.

Description

本発明は、ラミネートフィルムを外装体とする積層型蓄電デバイスに関するものである。   The present invention relates to a laminated electricity storage device having a laminate film as an outer package.

近年、二次電池は、携帯電話やノートPCといった可搬型電子機器の電源だけでなく、電気自動車用蓄電池としてもその用途を広げており、その用途に応じて様々な形状、サイズのものが提案されている。また、電池の外装体についても各種金属ケースやラミネートフィルムが提案されている。   In recent years, secondary batteries are used not only as power sources for portable electronic devices such as mobile phones and notebook PCs, but also as storage batteries for electric vehicles, and various types and sizes are proposed according to their use. Has been. Various metal cases and laminate films have also been proposed for battery outer bodies.

特に、平板状電極とラミネートフィルム外装体を組み合わせた積層型電池は、積層枚数を調整することで容易に容量設計でき、同じ容量でも面積や形状を変更することで任意のサイズや形状の電池を作製できるなど、形状やサイズの自由度の高さから注目を集めている。   In particular, a laminated battery combining a flat electrode and a laminate film outer package can be easily designed for capacity by adjusting the number of laminated sheets, and a battery of any size and shape can be obtained by changing the area and shape even with the same capacity. It is attracting attention because of its high degree of freedom in shape and size, such as its ability to be manufactured.

その一方、ラミネートフィルム外装体は、アルミ合金などの金属製外装体に比べ強度が低く、引っかきや突き刺しといった機械的衝撃によって欠陥が生じやすいという欠点を有している。特に、外部から圧力がかかった際に電池内部に突起や異物が存在すると、これらの突起や異物によりラミネートフィルムが破損することが懸念される。このような突起や異物は、電池内部の極群と外部機器とを電気的に接続する端子電極と、電極のタブとの接合部に形成され易いため、特許文献1ではタブ集合部とリードの接合部の端面を円弧状とすることにより、タブ集合部とリードの接合部の端面における鋭利な突起の形成を防ぐことが提案されている。   On the other hand, the laminate film exterior body has a drawback that it has a lower strength than a metal exterior body such as an aluminum alloy, and defects are easily generated by mechanical impact such as scratching or piercing. In particular, if protrusions or foreign matter exist inside the battery when pressure is applied from the outside, there is a concern that the laminate film may be damaged by these protrusions or foreign matter. Since such protrusions and foreign matters are easily formed at the joint between the electrode electrode and the tab of the electrode, and the electrode tab in the battery, in Patent Document 1, the tab assembly portion and the lead It has been proposed to prevent the formation of sharp protrusions on the end surface of the joint portion between the tab assembly portion and the lead by making the end surface of the joint portion have an arc shape.

特開2004−241328号公報JP 2004-241328 A

しかしながら、特許文献1に記載された構造では、タブ集合部とリードの接合部を、正極と負極を積層した極群の厚み方向に折り曲げる際に、接合部にT型剥離と同様な力が加わり、接合部が剥離する懸念があった。また、電極の積層数が少なく、タブ集合部とリードの接合部の厚さが薄い場合には、接合部が薄い刃物状となり、それが外装体であるラミネートフィルムと接触して、ラミネートフィルム外装体を破損する懸念があった。   However, in the structure described in Patent Document 1, when the tab joint portion and the lead joint portion are bent in the thickness direction of the pole group in which the positive electrode and the negative electrode are laminated, a force similar to that of T-type peeling is applied to the joint portion. There was a concern that the joint would peel off. In addition, when the number of stacked electrodes is small and the thickness of the joint between the tab assembly and the lead is thin, the joint becomes a thin blade, which comes into contact with the laminate film as the exterior body, and the laminate film exterior There was concern about damaging the body.

本発明はこのような課題に鑑み考案されたもので、積層型蓄電デバイスにおいて、タブ集合部とリードの接合部を特定の構造とすることにより、タブ集合部とリードを確実に接合するとともに、強度の低いラミネートフィルムを外装体として用いた場合でも、外装体の破損を低減できる積層型蓄電デバイスを提供することを目的とする。   The present invention has been devised in view of such a problem, and in the stacked power storage device, by making the joint portion of the tab assembly portion and the lead a specific structure, the tab assembly portion and the lead are reliably joined, It is an object of the present invention to provide a stacked electricity storage device that can reduce damage to an exterior body even when a low-strength laminate film is used as the exterior body.

本発明の積層型蓄電デバイスは、複数の平板状の正極と負極とがセパレータを介して交互に積層された極群と、複数の前記正極および前記負極にそれぞれ接続された正極端子および負極端子と、前記極群を収納する外装体であるラミネートフィルムと、電解質と、を備え、前記正極端子は、前記外装体の内部において正極リードにより、前記正極に設けられた正極タブを集合させた正極タブ集合部と接合されており、前記負極端子は、前記外装
体の内部において負極リードにより、前記負極に設けられた負極タブを集合させた負極タブ集合部と接合されており、前記正極タブ集合部および前記負極タブ集合部の前記正極リードおよび前記負極リードに接合される部分が、前記極群の積層方向に屈曲しているとともに、前記正極リードおよび前記負極リードが、少なくとも前記正極タブ集合部および前記負極タブ集合部の前記極群と相対する面およびその先端部を覆うように接合されていることを特徴とする。
The stacked electricity storage device of the present invention includes a group of electrodes in which a plurality of plate-like positive electrodes and negative electrodes are alternately stacked via separators, and a plurality of the positive electrodes and the negative electrodes respectively connected to the positive electrodes and the negative electrodes. A positive electrode tab in which the positive electrode terminal is assembled with positive electrode tabs provided on the positive electrode by a positive electrode lead inside the outer package body. The negative electrode terminal is bonded to a negative electrode tab aggregate portion in which negative electrode tabs provided on the negative electrode are aggregated by a negative electrode lead inside the exterior body, and the positive electrode tab aggregate portion is bonded to the aggregate portion. And a portion of the negative electrode tab assembly portion joined to the positive electrode lead and the negative electrode lead is bent in the stacking direction of the electrode group, and the positive electrode lead and the front Negative electrode lead, characterized in that it is joined to cover at least the opposite surface and the positive electrode tab set part and the electrode group of the negative electrode tab collecting part its distal end.

本発明によれば、タブ集合部とリードを確実に接合できるとともに、強度の低いラミネートフィルムを外装体として用いた場合でも、外装体の破損を低減できる積層型蓄電デバイスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to join a tab assembly part and a lead reliably, even when a low intensity | strength laminated film is used as an exterior body, the lamination type electrical storage device which can reduce the failure | damage of an exterior body can be provided.

本発明の一実施形態である積層型蓄電デバイスを模式的に示した斜視図である。It is the perspective view which showed typically the lamination type electrical storage device which is one Embodiment of this invention. 図1のタブ集合部とリードの接合部付近のA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ in the vicinity of a joint portion between the tab assembly portion and the lead in FIG. 1. 本発明の別の実施形態におけるタブ集合部とリードの接合部付近の断面図である。It is sectional drawing of the junction part of a tab assembly part and lead | read | reed in another embodiment of this invention. 従来の積層型蓄電デバイスにおけるタブ集合部とリードの接合部付近の断面図である。It is sectional drawing of the junction part of a tab assembly part and a lead | read | reed in the conventional laminated | stacked electrical storage device.

本発明の一実施形態である積層型蓄電デバイスについて、図1および図2に基づいて説明する。本実施形態の積層型蓄電デバイスは、外装体1の内部に、複数の平板状の正極11Pと負極11Nとをセパレータ12を介して交互に積層した極群15を備えている。外装体1の内部に収納された極群15と、外部回路とは、外装体1の封止部から露出した端子電極2によって電気的に接続される構造となっている。   A stacked electricity storage device according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The stacked electricity storage device of the present embodiment includes a pole group 15 in which a plurality of plate-like positive electrodes 11P and negative electrodes 11N are alternately stacked via separators 12 inside the outer package 1. The pole group 15 housed inside the exterior body 1 and the external circuit are electrically connected by the terminal electrode 2 exposed from the sealing portion of the exterior body 1.

外装体1は、ラミネートフィルムと呼ばれる水分やガスを通さない柔軟なフィルムであり、一般的にはポリエチレンテレフタレート(PET)フィルムとアルミ箔と封止樹脂層とを、この順序で積層することにより形成されている。本実施形態において用いるラミネートフィルムとしては、食品用や電池用に市販されている一般的なアルミラミネートフィルムを使用することができ、さらに最終的な積層型蓄電デバイスの用途や電池形状などを考慮して材質を選定すればよい。   The outer package 1 is a flexible film that does not allow moisture or gas to pass, which is called a laminate film, and is generally formed by laminating a polyethylene terephthalate (PET) film, an aluminum foil, and a sealing resin layer in this order. Has been. As the laminate film used in the present embodiment, a general aluminum laminate film marketed for foods and batteries can be used, and further, considering the use of the final laminated power storage device, battery shape, and the like. Select the material.

端子電極2の材料としては、正極用としてはアルミニウムを、負極用としては銅やニッケルを用いることができる。端子電極2の厚みや幅については、正極用、負極用のいずれの場合も、蓄電デバイスの容量や使用電流値などを考慮して、通電時に発熱などの不具合が発生しない厚みや幅を選定すればよい。なお、厚い端子電極2を用いる場合には、端子電極2とラミネートフィルムからなる外装体1との接着不良による気密不良を防ぐため、外装体1であるラミネートフィルムの封止樹脂層を厚くしたり、予め端子電極2に別途封止用の樹脂を接着してもよい。   As the material of the terminal electrode 2, aluminum can be used for the positive electrode, and copper or nickel can be used for the negative electrode. As for the thickness and width of the terminal electrode 2, in either case of the positive electrode or the negative electrode, take into consideration the capacity of the power storage device, the current value used, etc. That's fine. In addition, when using the thick terminal electrode 2, in order to prevent the airtight defect by the adhesion failure with the exterior body 1 which consists of a terminal electrode 2 and a laminate film, the sealing resin layer of the laminate film which is the exterior body 1 is made thick. Alternatively, a sealing resin may be separately bonded to the terminal electrode 2 in advance.

本実施形態におけるタブとリードの接続構造について、図2を用いて説明する。なお、図2では、正極11Pと負極11Nとがセパレータ12を介して4組積層された構成を示しているが、正極11Pと負極11Nの組数は、1〜3組でも、5組以上でも構わない。このように正極11Pおよび負極11Nとセパレータ12が積層されたものを極群15とする。なお、極群15には、正極集電体10Pおよび負極集電体10Nを含む場合もある。また、正極集電体10Pと正極11Pとを合わせて正極11P、負極集電体10Nと負極11Nとを合わせて負極11Nという場合もある。積層された極群15の最外層部に位
置する電極としては、正極11Pが配置されており、その正極11Pは正極集電体10Pの一方の主面のみに正極11Pが形成されたものである。極群15の最外層部に位置する正極11P以外の電極はいずれも、正極集電体10Pの両主面に正極11Pが形成されたもの、または負極集電体10Nの両主面に負極11Nが形成されたものである。
The connection structure between the tab and the lead in this embodiment will be described with reference to FIG. 2 shows a configuration in which four pairs of the positive electrode 11P and the negative electrode 11N are stacked via the separator 12, the number of the positive electrode 11P and the negative electrode 11N may be 1 to 3, or 5 or more. I do not care. The electrode group 15 is formed by stacking the positive electrode 11P, the negative electrode 11N, and the separator 12 in this manner. The pole group 15 may include a positive electrode current collector 10P and a negative electrode current collector 10N. Further, the positive electrode current collector 10P and the positive electrode 11P may be collectively referred to as a positive electrode 11P, and the negative electrode current collector 10N and the negative electrode 11N may be referred to as a negative electrode 11N. A positive electrode 11P is disposed as an electrode located in the outermost layer portion of the stacked electrode group 15, and the positive electrode 11P is formed by forming the positive electrode 11P only on one main surface of the positive electrode current collector 10P. . Any electrode other than the positive electrode 11P located in the outermost layer portion of the pole group 15 is one in which the positive electrode 11P is formed on both main surfaces of the positive electrode current collector 10P or the negative electrode 11N on both main surfaces of the negative electrode current collector 10N. Is formed.

そして、極群15は、蓄電デバイスとしての機能を発現するために電解質(図示せず)を含んでいる。   And the pole group 15 contains electrolyte (not shown) in order to express the function as an electrical storage device.

集電体には、いずれも端子電極2のリードを電気的に接続するためのタブが設けられている。図2では、正極集電体10Pに設けられた正極タブ4Pについて示している。複数の正極集電体10Pに設けられた複数の正極タブ4Pは、正極タブ集合部5Pにおいてひとつに束ねられている。正極リード3Pの一端は、正極タブ集合部5Pに電気的に接続されており、正極リード3Pの他端は外装体1の封止部を通じて外装体1の外部に引き出され、正極端子2Pとなっている。   Each of the current collectors is provided with a tab for electrically connecting the leads of the terminal electrode 2. FIG. 2 shows the positive electrode tab 4P provided on the positive electrode current collector 10P. The plurality of positive electrode tabs 4P provided on the plurality of positive electrode current collectors 10P are bundled together in the positive electrode tab assembly portion 5P. One end of the positive electrode lead 3P is electrically connected to the positive electrode tab assembly portion 5P, and the other end of the positive electrode lead 3P is drawn out of the exterior body 1 through the sealing portion of the exterior body 1 and becomes a positive electrode terminal 2P. ing.

図4は、従来の積層型蓄電デバイスの正極タブ集合部5Pと正極リード3Pの接合部付近の断面について、その一例を模式的に示したものである。従来の積層型蓄電デバイスでは、正極タブ集合部5Pが極群15の積層方向に屈曲しており、正極リード3Pは、屈曲した正極タブ集合部5Pの極群15と相対する面の反対側の面に接合されている。そのため、接合された正極タブ集合部5Pと正極リード3Pの端部が、所望の長さに切断されたままの鋭利な状態で、ラミネートフィルムからなる外装体1に直接接触する構造となっている。   FIG. 4 schematically shows an example of a cross section in the vicinity of the junction between the positive electrode tab assembly 5P and the positive electrode lead 3P of the conventional stacked type electricity storage device. In the conventional stacked-type electricity storage device, the positive electrode tab assembly portion 5P is bent in the stacking direction of the pole group 15, and the positive electrode lead 3P is on the opposite side of the surface of the bent positive electrode tab assembly portion 5P facing the electrode group 15. It is joined to the surface. Therefore, the joined positive electrode tab assembly portion 5P and the end portion of the positive electrode lead 3P are in direct contact with the exterior body 1 made of a laminate film in a sharp state that is cut to a desired length. .

一方、本実施形態においては、図2に示すように、正極タブ集合部5Pが極群15の積層方向に屈曲しており、正極リード3Pは、屈曲した正極タブ集合部5Pの極群15と相対する面に、正極タブ集合部5Pの屈曲部に正極リード3Pの一端が位置するように接合され、さらに正極タブ集合部5Pの極群15の積層方向に向く先端部を覆うように折り曲げられている。このように、正極リード3Pが正極タブ集合部5Pの先端部を覆うことにより、正極リード3Pと正極タブ集合部5Pとを、互いの先端部が一致するように接合した場合と比較して、接合強度を高めることができ、接合部の先端により外装体1が破損する可能性を低減できる。なお、本実施形態においては、正極リード3Pは、屈曲した正極タブ集合部5Pの極群15と相対する面に接合されていればよいが、さらに正極タブ集合部5Pの極群15の積層方向に向く先端部とも接合されていることが好ましい。   On the other hand, in the present embodiment, as shown in FIG. 2, the positive electrode tab assembly portion 5P is bent in the stacking direction of the pole group 15, and the positive electrode lead 3P is connected to the pole group 15 of the bent positive electrode tab assembly portion 5P. It is joined to the opposite surface so that one end of the positive electrode lead 3P is located at the bent portion of the positive electrode tab assembly portion 5P, and is further bent so as to cover the tip portion of the positive electrode tab assembly portion 5P facing the stacking direction of the pole group 15. ing. Thus, compared with the case where the positive electrode lead 3P and the positive electrode tab assembly portion 5P are joined so that the front end portions of the positive electrode lead 3P and the positive electrode tab assembly portion 5P coincide with each other by covering the front end portion of the positive electrode tab assembly portion 5P, The bonding strength can be increased, and the possibility that the exterior body 1 is damaged by the tip of the bonding portion can be reduced. In the present embodiment, the positive electrode lead 3P only needs to be bonded to the surface facing the pole group 15 of the bent positive electrode tab assembly portion 5P, but further, the stacking direction of the pole group 15 of the positive electrode tab assembly portion 5P. It is preferable that the front-end | tip part which faces is also joined.

さらに、正極リード3Pは、図3に示すように、正極タブ集合部5Pの積層方向に向く先端部を覆うように折り返され、正極タブ集合部5Pの極群15と相対する面およびそれと反対側の面を覆うように配置されることが好ましい。このように正極リード3Pが折り返されていることにより、正極タブ集合部5Pの先端部がラミネートフィルムからなる外装体1に接触することをより確実に防ぐことができる。このとき、正極リード3Pは、正極タブ集合部5Pの極群15と相対する面およびそれと反対側の面の両方に接合されていることが好ましい。また、正極リード3Pの折り返し部は、必ずしも正極タブ集合部5Pの先端部と接合または接触していなくても構わない。   Further, as shown in FIG. 3, the positive electrode lead 3P is folded back so as to cover the front end portion of the positive electrode tab assembly portion 5P facing the stacking direction, and the surface opposite to the electrode group 15 of the positive electrode tab assembly portion 5P and the opposite side thereof. It is preferable to arrange so as to cover the surface. By thus folding back the positive electrode lead 3P, it is possible to more reliably prevent the front end portion of the positive electrode tab assembly portion 5P from coming into contact with the exterior body 1 made of a laminate film. At this time, the positive electrode lead 3P is preferably bonded to both the surface facing the electrode group 15 of the positive electrode tab assembly portion 5P and the surface on the opposite side thereof. Further, the folded portion of the positive electrode lead 3P does not necessarily have to be joined or in contact with the tip portion of the positive electrode tab assembly portion 5P.

正極リード3Pの幅は、正極タブ集合部5Pの幅よりも大きくすることで、極群15の積層方向に向く正極タブ集合部5Pの先端部に隣接する側端部についても、ラミネートフィルムからなる外装体1に接触することを防止でき、好ましい。さらには、正極タブ集合部5P全体、すなわち正極タブ集合部5Pの極群15と相対する面およびそれと反対側の面、極群15の積層方向に向く先端部に加え、先端部に隣接する側端部をも、正極リード3Pが覆うように配置されていることが好ましい。このような構造とするには、正極リード3Pの一端を、正極タブ集合部5Pを収納する袋状に形成したり、十字状に形成してそ
の部分で正極タブ集合部5Pの先端部および側端部を覆うように折りたためばよい。
The width of the positive electrode lead 3P is larger than the width of the positive electrode tab assembly portion 5P, so that the side end portion adjacent to the front end portion of the positive electrode tab assembly portion 5P facing the stacking direction of the electrode group 15 is also made of a laminate film. Contact with the outer package 1 can be prevented, which is preferable. Further, in addition to the entire positive electrode tab assembly portion 5P, that is, the surface facing the electrode group 15 of the positive electrode tab assembly portion 5P and the opposite surface thereof, the tip portion facing the stacking direction of the electrode group 15, the side adjacent to the tip portion It is preferable that the end portion is also disposed so as to cover the positive electrode lead 3P. In order to obtain such a structure, one end of the positive electrode lead 3P is formed in a bag shape that accommodates the positive electrode tab assembly portion 5P, or is formed in a cross shape so that the tip portion and the side of the positive electrode tab assembly portion 5P are formed at that portion. Folded to cover the end.

また、正極リード3Pの周縁部が面取りされていることが好ましい。正極リード3Pをプレスやシャーリングなどの切断方法で加工した場合、切断方法や条件によっては、切断面にかえりやバリが形成されることがあり、それらがラミネートフィルムを突き破らないまでも封止樹脂層を貫通して金属箔に達し、さらにそれが正極側と負極側とで同時に発生すると、ショートして発熱や発火の危険を招く可能性があるが、正極リード3Pを切断した後、面取り加工することによって、ラミネートフィルムを傷つける可能性があるかえりやバリを除去することで、さらに効果的に不具合の発生を防ぐことができる。   Moreover, it is preferable that the peripheral part of the positive electrode lead 3P is chamfered. When the positive electrode lead 3P is processed by a cutting method such as pressing or shearing, burr and burr may be formed on the cut surface depending on the cutting method and conditions, and the sealing resin does not break through the laminate film. If the metal foil penetrates through the layers and occurs simultaneously on the positive electrode side and the negative electrode side, there is a possibility of short-circuiting and causing the risk of heat generation or ignition. By removing burr and burrs that may damage the laminate film, it is possible to more effectively prevent the occurrence of defects.

以上、本実施形態における正極側のタブとリードの接続構造について述べたが、これは正極側に限るものではなく、負極側のタブとリードの接続構造についても同様な構造が適用できる。   The positive side tab and lead connection structure in the present embodiment has been described above, but this is not limited to the positive side, and the same structure can be applied to the negative side tab and lead connection structure.

正極集電体10Pには、一般的にアルミ箔が使用されるが、ステンレスやチタンからなる金属箔も使用可能である。正極集電体10Pの厚さは、アルミ箔の場合10〜40μmの範囲であることが、柔軟性と強度を兼ね備えるという点から好適である。他の金属箔の場合も、柔軟性と強度などから生産工程上差し支えない範囲で適宜選定すればよい。   Although the aluminum foil is generally used for the positive electrode current collector 10P, a metal foil made of stainless steel or titanium can also be used. In the case of an aluminum foil, the thickness of the positive electrode current collector 10P is preferably in the range of 10 to 40 μm from the viewpoint of combining flexibility and strength. In the case of other metal foils, the metal foil may be appropriately selected from the viewpoint of flexibility and strength in the production process.

正極タブ4Pは、一般的に正極集電体10Pと一体で形成されることから、正極集電体10Pと同じ材質および厚さとなる。正極タブ4Pの幅は、蓄電デバイスの容量、使用条件などに応じて、発熱などの不具合が起こらない程度に大きく、かつ負極タブ4Nや負極リード3Nと接触して短絡を起こさない程度に設計すればよい。   Since the positive electrode tab 4P is generally formed integrally with the positive electrode current collector 10P, it has the same material and thickness as the positive electrode current collector 10P. The width of the positive electrode tab 4P is designed to be large enough not to cause a problem such as heat generation according to the capacity and use conditions of the power storage device, and not to cause a short circuit due to contact with the negative electrode tab 4N or the negative electrode lead 3N. That's fine.

一端が外装体1の外部に引き出され正極端子2Pとなる正極リード3Pには、基本的に正極集電体10Pと同じ材質を使用すればよい。具体的には、アルミニウムがコストや柔軟性、強度などの点から好適に用いられ、チタンやステンレスも使用可能である。外装体1の内部に位置する正極リード3P部分と、外装体1の外部に位置する正極端子2P部分の幅は、基本的に同じでよいが、必要に応じて変更しても差し支えない。また、正極リード3Pの幅は、正極タブ集合部5Pの幅よりも広いことが好ましいが、正極リード3Pが、特にラミネートフィルムからなる外装体1の破損の原因となる正極タブ集合部5Pの先端部を覆うことにより、ラミネートフィルムからなる外装体1の破損を低減できることから、特に限定はしない。また、正極リード3Pの厚さは、正極タブ集合部5Pとの接合や、その先端部における折り曲げ加工、またさらに正極端子2Pと外部回路との接続などを考慮して適宜選定すればよく、特に限定はしないが、たとえば0.1mm程度が適当である。   The same material as that of the positive electrode current collector 10P may be basically used for the positive electrode lead 3P whose one end is drawn out of the exterior body 1 and becomes the positive electrode terminal 2P. Specifically, aluminum is suitably used in terms of cost, flexibility, strength, etc., and titanium and stainless steel can also be used. The widths of the positive electrode lead 3P portion located inside the outer package 1 and the positive electrode terminal 2P portion located outside the outer package 1 may be basically the same, but may be changed as necessary. Further, the width of the positive electrode lead 3P is preferably wider than the width of the positive electrode tab assembly portion 5P, but the positive electrode lead 3P particularly has a tip of the positive electrode tab assembly portion 5P that causes damage to the outer package 1 made of a laminate film. Since the damage of the exterior body 1 made of a laminate film can be reduced by covering the portion, there is no particular limitation. Further, the thickness of the positive electrode lead 3P may be appropriately selected in consideration of the bonding with the positive electrode tab assembly portion 5P, the bending process at the tip portion, and the connection between the positive electrode terminal 2P and an external circuit. Although not limited, for example, about 0.1 mm is appropriate.

一方、負極集電体10Nには、一般的に銅箔が使用されるが、ステンレスやニッケルからなる金属箔も使用可能である。特に、リチウムイオン電池など電解質にLi塩を用いる蓄電デバイスでは、リチウムイオンと合金化しない金属箔を用いることが好ましい。負極集電体10Nの厚さは、銅箔の場合5〜20μmの範囲であることが、柔軟性と強度を兼ね備えるという点から好適である。他の金属箔の場合も、柔軟性と強度などから生産工程上差し支えない範囲で適宜選定すればよい。   On the other hand, a copper foil is generally used for the negative electrode current collector 10N, but a metal foil made of stainless steel or nickel can also be used. In particular, in an electricity storage device using an Li salt as an electrolyte, such as a lithium ion battery, it is preferable to use a metal foil that is not alloyed with lithium ions. In the case of copper foil, the thickness of the negative electrode current collector 10N is preferably in the range of 5 to 20 μm from the viewpoint of having both flexibility and strength. In the case of other metal foils, the metal foil may be appropriately selected from the viewpoint of flexibility and strength in the production process.

負極タブ4N(図示せず)は、正極タブ4Pの場合と同様に、負極集電体10Nと一体で形成されることから、負極集電体10Nと同じ材質および厚さとなる。負極タブ4Nの幅も、正極タブ4Pと同様に、蓄電デバイスの容量、使用条件などに応じて、発熱などの不具合が起こらない程度に大きく、かつ正極タブ4Pや正極リード3Pと接触して短絡を起こさない程度に設計すればよい。   Since the negative electrode tab 4N (not shown) is formed integrally with the negative electrode current collector 10N as in the case of the positive electrode tab 4P, it has the same material and thickness as the negative electrode current collector 10N. Similarly to the positive electrode tab 4P, the width of the negative electrode tab 4N is large enough not to cause problems such as heat generation according to the capacity of the power storage device and usage conditions, and short-circuited in contact with the positive electrode tab 4P and the positive electrode lead 3P. Design to the extent that does not occur.

一端が外装体1の外部に引き出され負極端子2N(図示せず)となる負極リード3N(図示せず)には、基本的に負極集電体10Nと同じ材質を使用すればよい。具体的には、銅やニッケル、ステンレスなどが挙げられるが、銅にニッケルをコートしたものや、異種金属を貼り合わせたクラッド材なども使用可能である。外装体1の内部に位置する負極リード3N部分と、外装体1の外部に位置する負極端子2N部分の幅は、基本的に同じでよいが、必要に応じて変更しても差し支えない。また、負極リード3Nの幅は、負極タブ集合部5Nの幅よりも広いことが好ましいが、負極リード3Nが、特にラミネートフィルムからなる外装体1の破損の原因となる負極タブ集合部5Nの先端部を覆うことにより、ラミネートフィルムからなる外装体1の破損を低減できることから、特に限定はしない。また、負極リード3Nの厚さは、負極タブ集合部5Nとの接合や、その先端部における折り曲げ加工、またさらに負極端子2Nと外部回路との接続などを考慮して適宜選定すればよく、特に限定はしないが、たとえば0.1mm程度が適当である。   The same material as that of the negative electrode current collector 10N may be basically used for the negative electrode lead 3N (not shown) whose one end is drawn out of the exterior body 1 and becomes the negative electrode terminal 2N (not shown). Specific examples include copper, nickel, and stainless steel, but it is also possible to use a copper-coated nickel or a clad material bonded with a dissimilar metal. The width of the negative electrode lead 3N portion located inside the exterior body 1 and the width of the negative electrode terminal 2N portion located outside the exterior body 1 may be basically the same, but may be changed as necessary. Further, the width of the negative electrode lead 3N is preferably wider than the width of the negative electrode tab assembly portion 5N, but the negative electrode lead 3N particularly causes the tip of the negative electrode tab assembly portion 5N to cause damage to the outer package 1 made of a laminate film. Since the damage of the exterior body 1 made of a laminate film can be reduced by covering the portion, there is no particular limitation. Further, the thickness of the negative electrode lead 3N may be appropriately selected in consideration of the bonding with the negative electrode tab assembly portion 5N, the bending process at the tip portion, and the connection between the negative electrode terminal 2N and an external circuit. Although not limited, for example, about 0.1 mm is appropriate.

次に、本実施形態の極群15の構成について、リチウムイオン電池を代表例として説明する。極群15は、正極集電体10P上に形成された正極11Pと、負極集電体10N上に形成された負極11Nとが、セパレータ12を介して交互に積層された構造となっている。   Next, the configuration of the pole group 15 of the present embodiment will be described using a lithium ion battery as a representative example. The pole group 15 has a structure in which the positive electrode 11P formed on the positive electrode current collector 10P and the negative electrode 11N formed on the negative electrode current collector 10N are alternately stacked via the separator 12.

正極11Pに用いる活物質としては、リチウムイオン電池に適用可能な正極活物質を使用すればよい。このような正極活物質は、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムバナジウム複合酸化物、二酸化マンガン、酸化バナジウムなどが挙げられる。特に、リチウムコバルト複合酸化物とリチウムニッケルマンガン複合酸化物は、充放電電位が高く、充放電容量も大きいことから活物質として使用した場合にエネルギー密度の大きな電池を構築でき、好適である。   As the active material used for the positive electrode 11P, a positive electrode active material applicable to a lithium ion battery may be used. Such positive electrode active materials include, for example, lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium nickel cobalt manganese composite oxide, lithium nickel manganese composite oxide, Examples thereof include lithium vanadium composite oxide, manganese dioxide, and vanadium oxide. In particular, a lithium cobalt composite oxide and a lithium nickel manganese composite oxide are preferable because they have a high charge / discharge potential and a large charge / discharge capacity, so that a battery having a large energy density can be constructed when used as an active material.

正極11Pは、溶媒に正極活物質と導電剤や結着剤などを分散したスラリーを、正極集電体10Pとなる金属箔に直接塗布して乾燥し、必要に応じてプレスするなどして形成する方法や、溶媒を用いずに、正極活物質を導電剤や結着剤などと混合した混合物を正極集電体10Pと共にプレス成形により形成する方法、正極活物質を主成分とする焼結体を正極集電体10Pに導電性接着剤を用いて接着する方法などで作製することができ、その製法は特に限定しない。   The positive electrode 11P is formed by directly applying a slurry in which a positive electrode active material, a conductive agent, a binder, and the like are dispersed in a solvent to a metal foil serving as the positive electrode current collector 10P, drying, and pressing as necessary. A method of forming a mixture in which a positive electrode active material is mixed with a conductive agent or a binder without using a solvent together with the positive electrode current collector 10P, and a sintered body mainly composed of the positive electrode active material Can be manufactured by a method of bonding the positive electrode current collector 10P to the positive electrode current collector 10P using a conductive adhesive, and the manufacturing method thereof is not particularly limited.

以下、正極11Pの製法の一例として、活物質としてリチウムコバルト複合酸化物(LiCoO)を主成分とする焼結体を正極11Pとする場合の製法を詳細に説明する。 Hereinafter, as an example of the manufacturing method of the positive electrode 11P, a manufacturing method in the case where the sintered body mainly including lithium cobalt composite oxide (LiCoO 2 ) as an active material is used as the positive electrode 11P will be described in detail.

焼結体の製造には、下記の(1)から(3)のいずれを用いても良い。
(1) 活物質を、成形助剤、必要に応じて分散剤、可塑剤を加えた水もしくは溶剤と混合してスラリーを調整し、このスラリーを基材フィルムに塗布、乾燥した後、基材フィルムから剥離させ、焼結させる。
(2) 活物質を直接もしくは造粒したものを金型に投入し、プレス機で加圧成形した後、焼結させる。
(3) 造粒した活物質をロールプレス機で加圧成形してシート状に加工し、焼結させる。
(2)及び(3)の造粒については、(1)の方法で述べたスラリーから造粒する湿式造粒であっても乾式造粒であってもよい。
Any of the following (1) to (3) may be used for the production of the sintered body.
(1) The active material is mixed with a molding aid, water or a solvent to which a dispersant and a plasticizer are added if necessary to prepare a slurry, and the slurry is applied to a substrate film, dried, and then dried. Peel from the film and sinter.
(2) A material obtained by directly or granulating an active material is put into a mold, pressed with a press machine, and then sintered.
(3) The granulated active material is pressure-formed with a roll press machine, processed into a sheet, and sintered.
The granulation of (2) and (3) may be either wet granulation or dry granulation from the slurry described in the method (1).

正極活物質であるLiCoOの原料粉末としては、比表面積1m/g以上、一次粒径3μm以下の微粉末を用いるのが好ましい。このような微粉末を用いることで、比較的
低温での緻密化が可能となり、異相のない緻密な焼結体が得られる。なお、ここでは緻密な焼結体とは空隙率15%以下の焼結体をさしており、このような焼結体を得るための焼成温度は、原料粉末の焼結性に応じて、800〜1000℃の範囲で適宜選択すればよい。
As a raw material powder of LiCoO 2 which is a positive electrode active material, it is preferable to use a fine powder having a specific surface area of 1 m 2 / g or more and a primary particle size of 3 μm or less. By using such a fine powder, densification at a relatively low temperature is possible, and a dense sintered body free from different phases can be obtained. Here, the dense sintered body refers to a sintered body having a porosity of 15% or less, and the firing temperature for obtaining such a sintered body depends on the sinterability of the raw material powder. What is necessary is just to select suitably in the range of 1000 degreeC.

成形助剤としては、例えばポリアクリル酸、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリビニルアルコール、ジアセチルセルロース、ヒドロキシプロピルセルロース、ポリビニルクロライド、ポリビニルピロリドン、ブチラールなどの1種もしくは2種以上の混合物が挙げられる。中でもバインダーはブチラール系バインダーが好ましい。ブチラール系バインダーは強度が高いため添加量を削減でき、高密度の焼結体が得られる。バインダー量は、原料粉末である活物質に対し10体積%以下とすることが好ましい。   Examples of the molding aid include one or a mixture of two or more of polyacrylic acid, carboxymethyl cellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, butyral, and the like. Of these, a butyral binder is preferred as the binder. Since the butyral binder has high strength, the amount added can be reduced, and a high-density sintered body can be obtained. The amount of the binder is preferably 10% by volume or less with respect to the active material as the raw material powder.

基材フィルムとしては、たとえばポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、テトラフルオロエチレン等の樹脂フィルムを用いることができる。   As a base film, resin films, such as a polyethylene terephthalate, a polypropylene, polyethylene, a tetrafluoroethylene, can be used, for example.

得られた正極活物質の焼結体を正極集電体10Pに接着するための導電性接着剤には、炭素材料や金、銀、銅、白金、金コート粒子などをフィラーとした導電性接着剤を用いるのが適当である。正極側では特に、充電時にフィラーが溶出することがないよう炭素材料をフィラーとしたカーボン系導電性接着剤が好適であり、例えば、スリーボンド社製の3315Eを使用することができる。   The conductive adhesive for bonding the obtained sintered body of the positive electrode active material to the positive electrode current collector 10P includes conductive bonding using a carbon material, gold, silver, copper, platinum, gold coated particles, or the like as a filler. It is appropriate to use an agent. On the positive electrode side, a carbon-based conductive adhesive using a carbon material as a filler is particularly suitable so that the filler does not elute during charging. For example, 3315E manufactured by ThreeBond can be used.

一方、負極11Nに用いる活物質としては、金属リチウムや、リチウムイオンを吸蔵・放出可能な合金、炭素材料、金属材料、酸化物およびリチウム含有複合酸化物など、リチウムイオン電池に適用可能な負極活物質を使用すればよい。このような負極活物質は、例えば、合金ではSi系合金、Sn系合金が、炭素材料では黒鉛やハードカーボンが、金属材料ではAlやIn、Siが、酸化物ではチタン酸化物、タングステン酸化物、モリブデン酸化物、ニオブ酸化物、バナジウム酸化物、鉄酸化物等、およびこれらの酸化物とリチウムからなるリチウム複合酸化物などが挙げられる。特にチタン酸リチウム(LiTiおよびその類縁活物質)は、充放電電位が1.5V付近と負極活物質の中では高いことから、充放電時における金属リチウムの負極表面への析出がなく、安全性の高い電池とすることができ、好適である。 On the other hand, examples of the active material used for the negative electrode 11N include negative electrode active materials applicable to lithium ion batteries, such as metal lithium, alloys capable of inserting and extracting lithium ions, carbon materials, metal materials, oxides, and lithium-containing composite oxides. Substances can be used. Examples of such negative electrode active materials include Si alloys and Sn alloys for alloys, graphite and hard carbon for carbon materials, Al, In, and Si for metal materials, and titanium oxide and tungsten oxide for oxides. , Molybdenum oxide, niobium oxide, vanadium oxide, iron oxide, and the like, and lithium composite oxides composed of these oxides and lithium. In particular, lithium titanate (Li 2 Ti 3 O 7 and its related active materials) has a high charge / discharge potential in the vicinity of 1.5 V and the negative electrode active material, so that deposition of metallic lithium on the negative electrode surface during charge / discharge is performed. Therefore, a highly safe battery can be obtained, which is preferable.

負極11Nは、正極11Pと同様な方法で作製できる。特に、酸化物やリチウム複合酸化物を負極活物質として用いる場合は、焼結体として用いることによりエネルギー密度の高い電池を構築できる。   The negative electrode 11N can be manufactured by the same method as the positive electrode 11P. In particular, when an oxide or a lithium composite oxide is used as the negative electrode active material, a battery having a high energy density can be constructed by using it as a sintered body.

セパレータ12としては、例えばポリオレフィン繊維性の不織布やポリオレフィン製の微多孔膜、セラミックの多孔質材料を用いることができる。ここで、ポリオレフィンとしてはポリエチレン、ポリプロピレンを挙げることができ、一般的にリチウムイオン電池に用いられるセパレータが適用可能である。   As the separator 12, for example, a polyolefin fibrous nonwoven fabric, a microporous membrane made of polyolefin, or a ceramic porous material can be used. Here, examples of the polyolefin include polyethylene and polypropylene, and a separator generally used for a lithium ion battery is applicable.

極群15に含まれる電解質としては、有機電解液、高分子固体電解質、無機固体電解質、イオン液体等のいずれも用いることができる。有機電解液は、有機溶媒と電解質塩によって構成され、必要に応じて、電極表面への被膜形成、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げ
られる。電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。
As the electrolyte contained in the electrode group 15, any of organic electrolyte solution, polymer solid electrolyte, inorganic solid electrolyte, ionic liquid, and the like can be used. The organic electrolyte is composed of an organic solvent and an electrolyte salt, and an additive for the purpose of forming a film on the electrode surface, preventing overcharge, imparting flame retardancy, or the like may be added as necessary. As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are suitably used. Examples of such materials include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, Examples thereof include a solvent in which one or two or more selected from 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methylethyl carbonate, dimethyl carbonate, and diethyl carbonate are mixed. Examples of the electrolyte salt include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .

また、電解質として、高分子固体電解質、無機固体電解質を用いる場合は、セパレータ12にかえてこれらの電解質を配置してもよい。   Further, when a polymer solid electrolyte or an inorganic solid electrolyte is used as the electrolyte, these electrolytes may be disposed in place of the separator 12.

次に、本実施形態におけるタブとリードの接続部を形成する方法について説明する。   Next, a method for forming the tab-lead connecting portion in this embodiment will be described.

図2に示すとおり、複数の正極集電体10Pに設けられた複数の正極タブ4Pをひとつに束ねて正極タブ集合部5Pを形成する。このとき、正極タブ4Pは、所望によりそれぞれ異なる長さとしてもよい。形成した正極タブ集合部5Pを、極群15の積層方向に折り曲げた際に、正極タブ集合部5Pの先端部を、その先端部が向く極群15の面の最外部(図2においては、極群15の最上層に位置する正極集電体10P)よりも突出しないように、適当な位置で切り揃える。   As shown in FIG. 2, a plurality of positive electrode tabs 4P provided on a plurality of positive electrode current collectors 10P are bundled together to form a positive electrode tab assembly portion 5P. At this time, the positive electrode tabs 4P may have different lengths as desired. When the formed positive electrode tab assembly portion 5P is bent in the stacking direction of the pole group 15, the tip of the positive electrode tab assembly portion 5P is the outermost part of the surface of the pole group 15 facing the tip portion (in FIG. It cuts and arranges at an appropriate position so as not to protrude from the positive electrode current collector 10P) located in the uppermost layer of the pole group 15.

正極タブ集合部5Pを極群15の積層方向に折り曲げた際に極群15と相対する面(図2においては、極群15の最上層に位置する正極集電体10Pにつながる正極タブ4P)に、正極リード3Pの一端を重ね合わせ、超音波接合もしくはレーザー溶接などの手法を用いて、正極タブ集合部5Pおよび正極リード3Pを接合する。このとき、正極タブ集合部5Pの屈曲部に正極リード3Pの一端が位置するように配置する。   The surface facing the electrode group 15 when the electrode tab assembly 5P is bent in the stacking direction of the electrode group 15 (in FIG. 2, the electrode tab 4P connected to the electrode current collector 10P located at the uppermost layer of the electrode group 15) Further, one end of the positive electrode lead 3P is overlapped, and the positive electrode tab assembly portion 5P and the positive electrode lead 3P are bonded using a technique such as ultrasonic bonding or laser welding. At this time, it arrange | positions so that the end of the positive electrode lead 3P may be located in the bending part of the positive electrode tab assembly part 5P.

その後、正極タブ集合部5Pと正極リード3Pの接合部を、極群15の積層方向に屈曲させるとともに、正極リード3Pを、正極タブ集合部5Pの先端が内側になるように折り曲げればよい。このとき、正極リード3Pを、正極タブ集合部5Pの先端部近傍で極群15の積層面に沿うように折り曲げることにより、図2のような構造が形成できる。また、図3のような構造を形成するには、さらに正極タブ集合部5Pに沿うように折り畳む、または、正極タブ集合部5Pを挟むように正極リード3Pを折り畳んだ後に超音波接合もしくはレーザー溶接などの手法を用いて、正極タブ集合部5Pおよび正極リード3Pを接合すればよい。なお、負極側のタブとリードの接続部も、同様にして形成すればよい。   Thereafter, the joint between the positive electrode tab assembly 5P and the positive electrode lead 3P is bent in the stacking direction of the pole group 15, and the positive electrode lead 3P may be bent so that the tip of the positive electrode tab assembly 5P is on the inside. At this time, the structure as shown in FIG. 2 can be formed by bending the positive electrode lead 3P along the laminated surface of the electrode group 15 in the vicinity of the tip of the positive electrode tab assembly 5P. In order to form the structure as shown in FIG. 3, it is further folded along the positive electrode tab assembly portion 5P, or after the positive electrode lead 3P is folded so as to sandwich the positive electrode tab assembly portion 5P, ultrasonic bonding or laser welding is performed. The positive electrode tab assembly 5P and the positive electrode lead 3P may be joined using a technique such as the above. The connecting portion between the negative electrode tab and the lead may be formed in the same manner.

このようにしてタブとリードの接続部を形成した極群15を、外装体1であるラミネートフィルムに挟み、リードのタブと接続されていない他端が端子電極2として外装体1の外部に引き出されるようにして、外装体1の開口部を封止することで、リチウムイオン電池を形成することができる。外装体1の封止は、ラミネートフィルムの封止樹脂層側を内側として極群15を挟み、開口部を熱圧着するなどして、封止樹脂層同士を接着すればよい。また電解質として電解液を用いる場合は、まず、ラミネートフィルムの電解液を注入する部分以外を接着し、接着していない部分から電解液を注入した後、開口部を熱圧着すればよい。   The pole group 15 in which the tab and lead connection portions are formed in this manner is sandwiched between the laminate films as the outer package 1, and the other end not connected to the lead tab is pulled out of the outer package 1 as the terminal electrode 2. Thus, a lithium ion battery can be formed by sealing the opening of the outer package 1. Sealing of the outer package 1 may be performed by adhering the sealing resin layers by sandwiching the pole group 15 with the sealing resin layer side of the laminate film as an inner side and thermocompression-bonding the opening. Moreover, when using electrolyte solution as electrolyte, after adhering except the part which inject | pours the electrolyte solution of a laminate film, after inject | pouring electrolyte solution from the part which has not adhere | attached, an opening part should just be thermocompression-bonded.

以上、本実施形態について、一例としてリチウムイオン電池を取り上げて詳述したが、本発明はこれに限定されるものではなく、鉛電池やニッケルカドミウム電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタなど各種二次電池やキャパシタ、その他類似の積層型蓄電デバイスにも適用可能である。   As described above, the present embodiment has been described in detail by taking a lithium ion battery as an example, but the present invention is not limited to this, and a lead battery, a nickel cadmium battery, a nickel hydrogen battery, an electric double layer capacitor, a lithium ion The present invention can also be applied to various secondary batteries such as capacitors, capacitors, and other similar stacked electric storage devices.

1・・・・外装体
2・・・・端子電極
2P・・・正極端子
3P・・・正極リード
4P・・・正極タブ
5P・・・正極タブ集合部
10P・・正極集電体
10N・・負極集電体
11P・・正極
11N・・負極
12・・・セパレータ
15・・・極群
DESCRIPTION OF SYMBOLS 1 ... Exterior body 2 ... Terminal electrode 2P ... Positive electrode terminal 3P ... Positive electrode lead 4P ... Positive electrode tab 5P ... Positive electrode tab assembly part 10P ... Positive electrode current collector 10N ... Negative electrode current collector 11P ·· Positive electrode 11N ·· Negative electrode 12 ... Separator 15 ... Pole group

Claims (5)

複数の平板状の正極と負極とがセパレータを介して交互に積層された極群と、
複数の前記正極および前記負極にそれぞれ接続された正極端子および負極端子と、
前記極群を収納する外装体であるラミネートフィルムと、電解質と、を備え、
前記正極端子は、前記外装体の内部において正極リードにより、前記正極に設けられた正極タブを集合させた正極タブ集合部と接合されており、
前記負極端子は、前記外装体の内部において負極リードにより、前記負極に設けられた負極タブを集合させた負極タブ集合部と接合されており、
前記正極タブ集合部および前記負極タブ集合部の前記正極リードおよび前記負極リードに接合される部分が、前記極群の積層方向に屈曲しているとともに、前記正極リードおよび前記負極リードが、少なくとも前記正極タブ集合部および前記負極タブ集合部の前記極群と相対する面およびその先端部を覆うように接合されていることを特徴とする積層型蓄電デバイス。
A group of poles in which a plurality of plate-like positive electrodes and negative electrodes are alternately laminated via separators;
A positive terminal and a negative terminal connected to a plurality of the positive and negative electrodes, respectively;
A laminate film that is an exterior body that houses the electrode group, and an electrolyte,
The positive electrode terminal is joined to a positive electrode tab assembly portion in which positive electrode tabs provided on the positive electrode are assembled by a positive electrode lead in the exterior body,
The negative electrode terminal is joined to a negative electrode tab assembly portion in which negative electrode tabs provided on the negative electrode are assembled by a negative electrode lead in the exterior body,
Portions joined to the positive electrode lead and the negative electrode lead of the positive electrode tab assembly portion and the negative electrode tab assembly portion are bent in the stacking direction of the electrode group, and the positive electrode lead and the negative electrode lead are at least the A laminated power storage device, wherein the positive electrode tab assembly portion and the negative electrode tab assembly portion are joined so as to cover a surface of the negative electrode tab assembly portion facing the electrode group and a tip portion thereof.
前記正極リードおよび前記負極リードが、さらに前記正極タブ集合部および前記負極タブ集合部の前記極群と相対する面とは反対の面をそれぞれ覆うように配置されていることを特徴とする請求項1に記載の積層型蓄電デバイス。   The positive electrode lead and the negative electrode lead are further disposed so as to cover surfaces of the positive electrode tab assembly portion and the negative electrode tab assembly portion opposite to the surface facing the electrode group, respectively. 2. The stacked electricity storage device according to 1. 前記正極リードおよび前記負極リードの幅が、それぞれ前記正極タブ集合部および前記負極タブ集合部の幅よりも大きいことを特徴とする請求項1または2に記載の積層型蓄電デバイス。   3. The stacked electricity storage device according to claim 1, wherein widths of the positive electrode lead and the negative electrode lead are larger than widths of the positive electrode tab assembly portion and the negative electrode tab assembly portion, respectively. 前記正極リードおよび前記負極リードが、さらに前記正極タブ集合部および前記負極タブ集合部全体をそれぞれ覆うように配置されていることを特徴とする請求項3に記載の積層型蓄電デバイス。   4. The stacked electricity storage device according to claim 3, wherein the positive electrode lead and the negative electrode lead are disposed so as to further cover the positive electrode tab assembly portion and the entire negative electrode tab assembly portion, respectively. 前記正極リードおよび前記負極リードの周縁部が面取りされていることを特徴とする請求項1乃至4のいずれかに記載の積層型蓄電デバイス。   The multilayer electrical storage device according to any one of claims 1 to 4, wherein peripheral edges of the positive electrode lead and the negative electrode lead are chamfered.
JP2012043659A 2012-02-29 2012-02-29 Laminate type power storage device Pending JP2013182677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043659A JP2013182677A (en) 2012-02-29 2012-02-29 Laminate type power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043659A JP2013182677A (en) 2012-02-29 2012-02-29 Laminate type power storage device

Publications (1)

Publication Number Publication Date
JP2013182677A true JP2013182677A (en) 2013-09-12

Family

ID=49273231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043659A Pending JP2013182677A (en) 2012-02-29 2012-02-29 Laminate type power storage device

Country Status (1)

Country Link
JP (1) JP2013182677A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147177A (en) * 2016-02-19 2017-08-24 積水化学工業株式会社 Secondary battery and method of manufacturing the same
WO2019186849A1 (en) * 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object
CN110892555A (en) * 2018-01-09 2020-03-17 株式会社Lg化学 Electrode assembly including plastic member applied to electrode tab-lead coupling part and secondary battery including the same
WO2020085815A1 (en) * 2018-10-26 2020-04-30 주식회사 엘지화학 Battery module having structure capable of preventing battery cell damage, and battery pack and vehicle comprising battery module
JP2020170635A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Method of manufacturing power storage element
JP2020170634A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Power storage element
CN113097660A (en) * 2021-03-30 2021-07-09 东莞新能安科技有限公司 Electrochemical device and power utilization device using same
US11908990B2 (en) 2015-04-23 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
WO2024048974A1 (en) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Battery cell, battery module comprising battery cell, and battery pack comprising battery module
WO2024203838A1 (en) * 2023-03-30 2024-10-03 日本碍子株式会社 Lithium secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908990B2 (en) 2015-04-23 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
JP2017147177A (en) * 2016-02-19 2017-08-24 積水化学工業株式会社 Secondary battery and method of manufacturing the same
CN110892555A (en) * 2018-01-09 2020-03-17 株式会社Lg化学 Electrode assembly including plastic member applied to electrode tab-lead coupling part and secondary battery including the same
JP2020518963A (en) * 2018-01-09 2020-06-25 エルジー・ケム・リミテッド Electrode assembly including a plastic member applied to an electrode tab lead joint and a secondary battery including the same
CN110892555B (en) * 2018-01-09 2022-12-23 株式会社Lg新能源 Electrode assembly, method of manufacturing the same, and secondary battery including the same
JP7134543B2 (en) 2018-01-09 2022-09-12 エルジー エナジー ソリューション リミテッド Electrode assembly including plastic member applied to electrode tab lead connection and secondary battery including the same
CN111886715A (en) * 2018-03-28 2020-11-03 株式会社东芝 Battery, battery pack, power storage device, vehicle, and flying object
WO2019186849A1 (en) * 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object
CN111886715B (en) * 2018-03-28 2023-02-17 株式会社东芝 Battery, battery pack, power storage device, vehicle, and flying object
KR20200047402A (en) * 2018-10-26 2020-05-07 주식회사 엘지화학 Battery module having a structure of capable of preventing battery cell damage, Battery pack and vehicle comprising the same
KR102359798B1 (en) 2018-10-26 2022-02-08 주식회사 엘지에너지솔루션 Battery module having a structure of capable of preventing battery cell damage, Battery pack and vehicle comprising the same
CN111630689A (en) * 2018-10-26 2020-09-04 株式会社Lg化学 Battery module having structure capable of preventing damage of battery cells, and battery pack and vehicle including the same
WO2020085815A1 (en) * 2018-10-26 2020-04-30 주식회사 엘지화학 Battery module having structure capable of preventing battery cell damage, and battery pack and vehicle comprising battery module
JP2020170634A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Power storage element
JP2020170635A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Method of manufacturing power storage element
CN113097660A (en) * 2021-03-30 2021-07-09 东莞新能安科技有限公司 Electrochemical device and power utilization device using same
WO2024048974A1 (en) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Battery cell, battery module comprising battery cell, and battery pack comprising battery module
WO2024203838A1 (en) * 2023-03-30 2024-10-03 日本碍子株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP2013182677A (en) Laminate type power storage device
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP4293501B2 (en) Electrochemical devices
JP5776446B2 (en) Battery electrode manufacturing method and battery electrode
JP2017532715A (en) Square battery cell including two or more case members
JP2007329050A (en) Sheet type battery and its manufacturing method
JP2002298825A (en) Method of producing electrochemical device and the electrochemical device
JP6020437B2 (en) Folding battery
JP2015504591A (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
JP7220617B2 (en) ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP2019021805A (en) Electrode body and electric storage device
CN105190945B (en) Thin battery
JP2017069207A (en) Lithium ion secondary battery and manufacturing method for the same
CN105324877A (en) Secondary battery having jelly roll-type electrode assembly having intermittent blank portion formed on positive electrode collector
JP2017120764A (en) Secondary battery
CN107851768A (en) The manufacture method of electrochemical device
CN110192300A (en) Laminated secondary cell and its manufacturing method and apparatus
JP4149349B2 (en) Secondary battery and manufacturing method thereof
JP2010086813A (en) Nonaqueous electrolyte secondary battery
JP2011129446A (en) Laminated type battery
JP2012028187A (en) Power generation element and secondary battery
CN111029634A (en) Method for manufacturing solid battery
JP2010244865A (en) Laminated battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP5812884B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006