WO2021006161A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2021006161A1
WO2021006161A1 PCT/JP2020/025909 JP2020025909W WO2021006161A1 WO 2021006161 A1 WO2021006161 A1 WO 2021006161A1 JP 2020025909 W JP2020025909 W JP 2020025909W WO 2021006161 A1 WO2021006161 A1 WO 2021006161A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
negative electrode
secondary battery
connecting portion
Prior art date
Application number
PCT/JP2020/025909
Other languages
French (fr)
Japanese (ja)
Inventor
健太 江口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021006161A1 publication Critical patent/WO2021006161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones and notebook computers.
  • the secondary battery generally has a structure in which the electrode assembly is housed inside the exterior.
  • the inventor of the present application noticed that there was a problem to be overcome with the conventional secondary battery, and found that it was necessary to take measures for that purpose. Specifically, the inventor of the present application has found that there are the following problems.
  • a secondary battery generally has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator between the electrodes is enclosed in an outer body.
  • the meanderingly bent electrode is connected to the electrode terminal only via a current collector provided at the electrode end (for example, Patent Document 1). That is, assuming a state in which the electrodes of the electrode assembly are expanded into a non-bent state, current collection is performed from only one end of the electrode, which has a short dimension.
  • the secondary battery 400 generally includes an electrode assembly 200 including a positive electrode 10A, a negative electrode 10B, and a separator 20 arranged between the positive electrode 10A and the negative electrode 10B, and an electrolyte. It has a structure enclosed in the exterior body 300.
  • the positive electrode 10A is composed of a positive electrode current collector 1A and a positive electrode material 2A.
  • the negative electrode 10B is composed of a negative electrode current collector 1B and a negative electrode material 2B.
  • Positive 10A and the negative electrode 10B are electrode through a current collector of the electrode end that is positioned an upper major surface and a lower major surface of the electrode assembly 200 1A E and 1B E respectively only terminals (i.e., outer package 300A and 300B) Is connected to.
  • the secondary battery 400 having such a configuration, in both of the positive electrode and the negative electrode also, electron transfer is performed through each folded current collector positioned at the outermost end of the electrode 1A E and 1B E only Therefore, the conduction distance is long and the electric resistance may increase.
  • a main object of the present invention is to provide a secondary battery having a lower resistance while maintaining a high battery capacity.
  • the present invention is a secondary battery comprising an electrode assembly including a positive electrode, a negative electrode and a separator arranged between the positive electrode and the negative electrode, wherein the electrodes of the positive electrode and the negative electrode are placed on a current collector. It has an electrode layer on which an electrode material is formed and a current collector layer in which the current collector is exposed, and at least one of the positive electrode and the negative electrode has a plurality of electrode layers facing the other electrode and the plurality of electrode layers. It includes an electrode unit including a connecting portion that electrically connects the electrode layers, the connecting portion is positioned to the side of the other electrode in a cross-sectional view of the secondary battery, and the positive electrode and the negative electrode are close to the electrode layer.
  • the present invention relates to a secondary battery that collects electricity in the current collecting layer.
  • the secondary battery according to the present invention has a structure having a lower resistance while maintaining a high battery capacity.
  • a secondary battery having a structure in which a plurality of electrode layers are connected to each other at at least one electrode of a positive electrode and a negative electrode has a structure in which current is collected by a current collecting layer close to the electrode layer. More specifically, the current may be collected from the current collecting layer adjacent to each of the plurality of electrode layers connected to each other at the electrode. Therefore, in the secondary battery according to the present invention, the conduction distance can be shortened. Therefore, it is possible to realize a secondary battery having a lower resistance while maintaining a high battery capacity.
  • FIG. 1A to 1D are schematic plan views showing various embodiments of electrodes in a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the movement of electrons in the electrode unit.
  • 3A and 3B are schematic plan views showing an embodiment of an electrode unit in which the electrode layer has various shapes (FIG. 3A: substantially circular shape, FIG. 3B: substantially square shape).
  • FIG. 4 is a schematic plan view showing an embodiment of a positive / negative electrode body including the electrode unit shown in FIG. 3A.
  • 5A and 5B are schematic plan views showing an embodiment of an electrode unit and a positive electrode body having a connecting portion provided in a single shape so as to straddle each of the electrode layers (FIG. 5A: substantially circular). Shape, FIG. 5B: substantially square shape).
  • FIG. 6A and 6B are schematic plan views showing an embodiment of an electrode unit and a positive electrode body having a structure for collecting current at a portion other than the connecting portion (FIG. 6A: substantially circular shape, FIG. FIG. 6B: substantially square shape).
  • 7A and 7B are schematic plan views showing an embodiment of a plurality of electrode units in which the electrode layers have various shapes (FIG. 7A: substantially circular shape, FIG. 7B: substantially square shape).
  • FIG. 8 is a schematic plan view showing an embodiment of a positive / negative electrode body including the electrode unit shown in FIG. 7A.
  • FIG. 9 is a schematic plan perspective view showing an embodiment of the secondary battery using the positive and negative electrodes of FIG. 4.
  • 10A and 10B are schematic cross-sectional views of the secondary battery shown in FIG.
  • FIG. 10A cross section along line aa'
  • FIG. 10B cross section along line bb'
  • 11A and 11B are schematic cross-sectional views showing another embodiment of the secondary battery shown in FIG. 9 (FIG. 11A: cross section along line aa', FIG. 11B: line bb'. Cross section along).
  • FIG. 12 is a schematic plan perspective view showing another embodiment of the secondary battery using the positive electrode body of FIG. 4.
  • 13A and 13B are schematic cross-sectional views of the secondary battery shown in FIG. 12 (FIG. 13A: cross section along line aa', FIG. 13B: cross section along line bb').
  • FIG. 14 is a schematic plan perspective view showing a secondary battery using the positive and negative electrodes of FIG. 8.
  • FIG. 15A and 15B are schematic cross-sectional views of the secondary battery shown in FIG. 14 (FIG. 15A: cross section along line aa', FIG. 15B: cross section along line bb').
  • FIG. 16 is a schematic cross-sectional view showing a secondary battery according to the prior art.
  • the secondary battery according to the present invention is a secondary battery having a configuration in which a plurality of electrode layers are connected to each other at at least one electrode of a positive electrode and a negative electrode, and is characterized in that it has a structure for collecting electricity at the electrodes. ..
  • the positive electrode and the negative electrode of the present invention each have an electrode layer in which an electrode material is formed on the current collector and a current collector layer in which the current collector is exposed.
  • the electrode layer and the current collector layer are positioned close to each other.
  • At least one of the positive electrode and the negative electrode has an electrode unit including a plurality of electrode layers facing the other electrode and a connecting portion for electrically connecting the plurality of electrode layers to each other.
  • each electrode of the positive electrode and the negative electrode has a structure in which current is collected by a current collecting layer close to the electrode layer. More specifically, for example, in each electrode of the positive electrode and the negative electrode, current collection may be performed via a current collector layer adjacent to each of the plurality of electrode layers. That is, in a plan view in which the positive electrode and negative electrode electrodes are expanded, current collection may be performed so that each current collecting layer adjacent to each of the plurality of electrode layers serves as an output tab (see FIG. 2 to be referred to later). ).
  • the “secondary battery” in the present specification refers to a battery that can be repeatedly charged and discharged.
  • the “secondary battery” is not overly bound by its name and may include, for example, a “storage device”.
  • electrode layer in the present specification refers to a layer formed by forming an electrode material on a current collector in an electrode.
  • the “electrode layer” refers to a layer of an electrode containing a current collector and an electrode material formed on the current collector.
  • Such an electrode layer corresponds to a layer that functions as an electrode (that is, a layer that contributes to the transfer of ions and electrons).
  • the "current collector layer” in the present specification refers to a portion of the electrode where the current collector is exposed.
  • the “current collector layer” refers to a portion of the electrode where no electrode material is formed on the current collector. Therefore, in the present invention, the current collector layer can also be referred to as a current collector.
  • the "thickness" direction described directly or indirectly in the present specification is based on the direction in which the electrode materials constituting the secondary battery are stacked (or the direction in which they are stacked).
  • the stacking direction of the electrode material corresponds to the thickness direction.
  • the thickness direction corresponds to the plate thickness direction of the secondary battery.
  • planar view referred to in the present specification is based on a form in which an object is viewed from above or below along the thickness direction. In short, it is based on the planar form of the object shown in FIG.
  • cross-sectional view is a form when the object is captured from a direction substantially perpendicular to the thickness direction (in other words, a form when the object is cut out on a plane parallel to the thickness direction). Is based on. In short, it is based on the shape of the cross section of the object shown in FIG.
  • the secondary battery of the present invention houses the electrode assembly and the electrolyte inside the exterior.
  • the electrode assembly is formed by alternately stacking positive electrodes and negative electrodes via separators.
  • the electrodes of the positive electrode and the negative electrode each have an electrode layer in which an electrode material is formed on the current collector and a current collector layer in which the current collector is exposed.
  • the electrode layer and the current collector layer are positioned close to each other.
  • at least one of the electrodes has an electrode unit including a plurality of electrode layers and a connecting portion for electrically connecting the plurality of electrode layers to each other.
  • the positive electrode 10A includes a positive electrode layer 11A in which a positive electrode material (not shown) is formed on the positive electrode current collector 1A, and a positive electrode current collector layer 12A in which the positive electrode current collector 1A is exposed.
  • the positive electrode current collector layer 12A may be provided by partially exposing the positive electrode current collector 1A contained in the positive electrode layer 11A so as to protrude from the positive electrode layer 11A.
  • the negative electrode 10B includes a negative electrode unit 10B U comprising a negative electrode connecting portion 13B for electrically connecting the plurality of negative electrode layer 11B and the plurality of negative electrode layer 11B. More specifically, for example, in the negative electrode 10B, with respect to the plurality of negative electrode layers 11B, the negative electrode layers adjacent to each other or adjacent to each other are directly connected by the connecting portion 13B. In other words, the negative electrode unit 10B U, each of the plurality of negative electrode layer 11B is thereto provided with a negative electrode connecting portion for directly connecting. As can be seen from the exemplary embodiment shown in FIG. 1, the negative electrode current collector layer 12B obtained by partially exposing the negative electrode current collector 1B may form the connecting portion 13B.
  • Such a connecting portion is a portion that connects the electrode layers adjacent to each other.
  • the connecting portion is composed of current collectors of electrode layers adjacent to each other, and the portion where the polar material layer is not provided, that is, the uncoated portion in which the polar material material is not applied to the current collector. May correspond to.
  • the connecting portion may be provided so as to be directly connected to the electrode layers adjacent to each other. That is, the connecting portion may be shared by the connecting portion extending from one of the electrode layers adjacent to each other and the connecting portion extending from the other of the electrode layers adjacent to each other.
  • the connecting portion may be, for example, a portion positioned between two electrode layers adjacent to each other (see FIGS. 1 and 3 and the like). That is, in a plan view in which the electrode unit is developed, a connecting portion (for example, composed of a current collector of each electrode layer and not provided with a polar material layer) provided between two electrode layers adjacent to each other is provided.
  • the connecting portion) to be formed may be positioned so as to project directly from the electrode layer from one of the two electrode layers toward the other.
  • the connecting portion may be a portion provided in a single shape so as to straddle each of the two or more or three or more electrode layers (see FIG. 5). That is, in a plan view in which the electrode unit is developed, it is provided because it is composed of a connecting portion (for example, a current collector of each electrode layer and is not provided with a polar material layer) provided between electrode layers adjacent to each other.
  • the connecting portion may be continuously provided not only between the electrode layers but also in a plan view as shown in FIG. 5 so as to partially overlap the electrode layer.
  • the connecting portions may be aligned or extended in a straight line. That is, the plurality of connecting portions 13A or 13B provided on the electrode unit as shown in FIG. 3 may be arranged along a straight line with each other, and the electrode unit as shown in FIG. 5 may be arranged.
  • the single connecting portion 13A or 13B may extend linearly as a whole.
  • such connecting portions may be linearly aligned or extended at positions deviated from the center of each of the electrode layer or the plurality of electrode layers.
  • the linearly aligned or extending connecting portions contribute to more uniform current collection as a whole and contribute to the realization of a more suitable secondary battery.
  • the width direction dimension of the connecting portion is smaller than the maximum width direction dimension of the electrode layer in contact with the connecting portion.
  • the negative electrode unit 10B U, the width dimension J W of the negative electrode connecting portion 13B, rather than the maximum width dimension E W of the negative electrode layer 11B in contact with the negative electrode connecting portion 13B It's getting smaller.
  • the connecting portion does not have to have an electrode material formed.
  • the connecting portion may consist of a current collector layer. That is, the connecting portion may be, for example, a portion substantially composed of only the current collector layer.
  • the connecting portion may be formed with an electrode material.
  • the negative electrode connecting portion 13B is comprised only the anode current collector layer 12B. That is, in this case, the connecting portion and the current collecting layer are substantially synonymous.
  • no electrode material is formed on the connecting portion so that the structure can collect current at the connecting portion. Further, from the viewpoint of facilitating the manufacturing process, it is preferable that no electrode material is formed on the connecting portion.
  • the electrode unit may include at least two electrode layers and may include three or more electrode layers. In the case of three or more electrode layers, the electrode unit may include a plurality of connecting portions between the electrode layers. From the viewpoint of increasing energy density and the like, the number of electrode layers in the electrode unit is preferably four or more.
  • the number of electrode layers in the electrode unit is the number per one side of the current collector.
  • the electrode unit includes two or more electrode layers formed via a connecting portion on both sides of the current collector. In this case, the number, arrangement and dimensions of the electrode layers on the front and back of the current collector are usually the same.
  • each electrode layer on the other surface is formed directly below or directly above the region where each electrode layer on one surface of the current collector is formed via the current collector. All of the electrode layers of one electrode unit have the same polarity.
  • the electrode may include at least one electrode unit having two electrode layers and a connecting portion between them, and thus may include a plurality of such electrode units.
  • the positive electrode includes an electrode unit
  • the unit on the positive electrode side may be provided as a plurality of electrode units.
  • the unit on the negative electrode side may be provided as a plurality of electrode units.
  • the negative electrode 10B is a negative electrode unit 10B U with two negative electrode layer 11B may include one (see FIG. 1A), (see FIG. 1B) may not more contain three It may contain a negative electrode unit 10B U having the above negative electrode layer 11B (see FIG. 1C).
  • the electrode layer in the electrode unit may have a circular shape (see FIGS. 1A to 1C), a quadrangular shape (see FIG. 1D), or another irregular shape in a plan view.
  • the "circular shape” here is not limited to a perfect circle, but means a shape that can be included in the concept of a circle in the broadest sense, including an ellipse or an oval shape (in short, a circle is a circle). It may be shaped as if it were formed primarily or mostly based on a curve).
  • the term "quadrangle” as used herein means a substantially quadrangle, and is therefore broadly interpreted to include squares, rectangles, parallelograms, trapezoids, and the like.
  • the positive electrode and the negative electrode have a structure in which current is collected by a current collecting layer close to the electrode layer.
  • the electrode when the electrode includes an electrode unit, it has a structure in which current is collected by a current collecting layer adjacent to at least two electrode layers. That is, when the positive electrode has an electrode unit, current collection is performed via a current collecting layer (for example, a connecting portion) adjacent to each of the at least two positive electrode layers, and when the negative electrode has an electrode unit, at least two negative electrode layers are collected. The current is collected through the current collecting layer (for example, the connecting portion) adjacent to each of the above.
  • a current collecting layer for example, a connecting portion
  • collecting current in an adjacent current collecting layer means that each of the electrode layers included in the electrode unit collects electricity from an adjacent current collecting layer directly connected to the electrode unit. It means that it will be done.
  • collecting current in an adjacent current collecting layer means that, in a plan view of the electrode unit shown in FIG. 2, it is directly applied to each of the plurality of electrode layers included in the unit. It means that the current is collected through each current collecting layer which is provided and adjacent to each of the electrode layers. That is, in the electrode unit shown in FIG. 2, there are a plurality of places where current is collected, not a single place. More specifically, the electrode unit 10 u shown in FIG.
  • FIG. 2 has a structure in which current is collected by a current collecting layer 12 (that is, a connecting portion 13) adjacent to each of the electrode layers 11.
  • the arrows in FIG. 2 schematically show the flow of electrons. That is, in such an electrode unit, if there are N electrode layers included in the unit in a plan view, current collection may be performed from a plurality of N-1 locations.
  • each connecting portion located between the electrode layers adjacent to each other may form an output tab. That is, in the electrode unit including the plurality of electrode layers, the current may be collected from the positions of the connecting portions located between the electrode layers adjacent to each other to output to the outside.
  • the location of each connecting portion located between the electrode layers adjacent to each other may correspond to a bent portion in the electrode assembly. Therefore, current collection may be performed from each of the bent portions.
  • the connecting portions located between such adjacent electrode layers may be welded together. This is because the degree of freedom in designing the output to the outside can be improved.
  • the positive electrode and negative electrode can collect current through the current collecting layer as close as possible to the electrode layer, and the conduction distance can be shortened. Thereby, it is possible to obtain a secondary battery having a lower resistance while maintaining a high battery capacity. More specifically, as can be seen from the exemplary embodiment shown in FIG. 2, the distance through which electrons flow can be shortened, and low resistance is likely to be brought about during high-speed charging.
  • the electrodes are provided with three or more electrode layers, current collection is performed in each current collector layer close to each electrode layer, so that the occurrence of current concentration can be prevented.
  • both the positive and negative electrodes include electrode units.
  • the positive electrode 10A includes a positive electrode units 10A U including a plurality of positive electrode connecting portion 13A for connecting a plurality of the positive electrode layer 11A and the plurality of positive electrode layer 11A electrically to each other.
  • the negative electrode 10B includes a negative electrode unit 10B U provided with a plurality of negative electrode connecting portion 13B which connects a plurality of negative electrode layer 11B and the plurality of negative electrode layer 11B electrically to each other.
  • the positive and negative electrodes are prepared by laminating the positive electrode and the negative electrode as described above via a separator. More specifically, a positive electrode body in which a positive electrode layer in a positive electrode and a negative electrode layer in a negative electrode are laminated via a separator is prepared.
  • a positive electrode body is a precursor of an electrode assembly capable of forming an electrode assembly by self-bending (particularly, bending of one or more current collector layers / connecting portions), and is one or more electrodes. Includes units. That is, the positive electrode body may include one or more of the positive electrode unit and the negative electrode unit.
  • bending includes bending in a bay shape (or bow shape) (that is, bending in a substantially curved line) and bending at an acute angle (that is, bending in a substantially straight line).
  • the bending is particularly intended to bend the current collector layer / connecting portion.
  • the electrode layer of one electrode is superposed on the electrode layer of the other electrode via a separator.
  • the positive electrode layer 11A 1 is superposed on one of the opposing surfaces of the negative electrode layer 11B 1 via a separator, and the positive electrode layer 11A 2 is adjacent to the negative electrode layer 11B 1 in the longitudinal direction L. It is superposed on the other facing surface of the negative electrode layer 11B 2 arranged so as to be interposed via a separator.
  • the positive electrode layer 11A 3 and the negative electrode layer 11B 3 and the positive electrode layer 11A 4 and the negative electrode layer 11B 4 are also superposed in the same manner.
  • both the positive electrode and the negative electrode have electrode units (see FIG. 4 and the like), the positive electrode layer and the negative electrode layer in each electrode unit are superposed so as to be alternately overlapped with each other via a separator. That is, the electrode units are entirely overlapped with each other so that the positive electrode layers of the electrode unit on the positive electrode side and the negative electrode layers of the electrode unit on the negative electrode side are overlapped with each other via the separators.
  • the positive and negative electrode body 100 includes a positive electrode units 10A u and the negative electrode unit 10B u shown in FIG. 3A.
  • the positive electrode unit 10A u has four positive electrode layer 11A (i.e., 11A 1, 11A 2, 11A 3 and 11A 4). Each positive electrode layer 11A is electrically connected by three positive electrode connecting portions 13A (that is, 13A 1 , 13A 2 and 13A 3 ), respectively.
  • the negative electrode unit 10B u has four negative electrode layer 11B (i.e., 11B 1, 11B 2, 11B 3 and 11B 4). Each negative electrode layer 11B is electrically connected by three negative electrode connecting portions 13B (that is, 13B 1 , 13B 2 and 13B 3 ), respectively.
  • the positive electrode layers 11A and the negative electrode layers 11B are overlapped with each other so as to be alternately overlapped with each other via a separator.
  • the separator between the electrode layers is omitted.
  • the positive and negative electrode bodies 100 include both the positive and negative electrode units, so that the alignment between the positive electrode layer 11A and the negative electrode layer 11B can be facilitated. Specifically, since the positive electrode layers 11A and the negative electrode layers 11B can be alternately overlapped with each other, the movement between the electrode layers can be mutually suppressed. Therefore, the positional deviation between the electrode layers can be prevented.
  • the positive electrode connecting portion 13A is deviated to one side with respect to the central axis of the positive electrode body 100. More specifically, in the plan view of the positive electrode body 100, the positive electrode connecting portion 13A is positioned at a position away from the central axis xx'of the positive electrode body 100. In the plan view shown in FIG. 4, it can be said that the plurality of positive electrode connecting portions 13A are linearly aligned at positions separated from the central axis xx'.
  • the negative electrode connecting portion 13B is deviated from the central axis of the positive electrode body 100 to the side opposite to the positive electrode connecting portion 13A. More specifically, in the plan view of the positive and negative electrode body 100, the negative electrode connecting portion 13B is positioned at a position away from the central axis xx'of the positive and negative electrode body 100 and on the side opposite to the positive electrode connecting portion 13A. ing. In the plan view shown in FIG. 4, it can be said that the plurality of negative electrode connecting portions 13B are linearly aligned at positions separated from the central axis xx'.
  • an electrode having at least one of the positive electrode and the negative electrode provided in a single shape so as to straddle each of three or more electrode layers and the electrode layers.
  • Includes units see Figure 5).
  • single form means that the connecting portion consists of one region that is not separated by the electrode layer.
  • the positive electrode connecting portion 13A of the positive electrode unit 10A u ' is provided in a single shape so as to extend to one end of the periphery of the plurality of positive electrode layer 11A. It can be said that the single positive electrode connecting portion 13A extends long along one end of the peripheral edge of the plurality of positive electrode layers 11A.
  • the negative electrode unit 10B u ' the negative electrode connecting portion 13B in the anode unit 10B u 'is provided in a single shape so as to extend to one end of the periphery of the plurality of negative electrode layer 11B. It can be said that the single negative electrode connecting portion 13B extends long along one end of the peripheral edge of the plurality of negative electrode layers 11B.
  • the alignment between the electrode units becomes easier. Further, when the electrode layer is applied on the current collector, the number of times of application can be reduced. Thereby, the manufacturing process can be particularly facilitated.
  • the electrode unit collects current at the connecting portion, the contact area between each electrode layer and the connecting portion can be increased. Therefore, a secondary battery having a particularly low resistance can be easily realized.
  • the connecting portion may be provided in a single shape so as to straddle at least two electrode layers. From the viewpoint of facilitating the manufacturing process and reducing the resistance, it is preferable that the connecting portion is provided in a single shape so as to straddle all the electrode layers.
  • the current collector layer that collects current in the electrode unit forms a connecting portion as in the above-described embodiment (see FIGS. 4 and 5 and the like). That is, current collection may be performed from a current collector layer having the form of a connecting portion that connects the electrode layers adjacent to each other.
  • the positive electrode layer 11A 1 performs current collection at collector layer 12A 1 adjacent to the positive electrode layer 11A 1.
  • the positive electrode layer 11A 2 collects current in the current collecting layers 12A 1 and 12A 2 adjacent to the positive electrode layer 11A 2 .
  • the positive electrode layer 11A 3 collects current in the current collecting layers 12A 2 and 12A 3 adjacent to the positive electrode layer 11A 3 .
  • the positive electrode layer 11A 4 collects current in the current collecting layer 12A 3 close to the positive electrode layer 11A 4 .
  • Even in the negative electrode unit 10B u and 10B u ', is the same. In this way, current collection is performed via each current collector layer provided as a connecting portion adjacent to each electrode layer.
  • the number of members used for the electrode assembly can be minimized, and the secondary battery can easily bring about high energy density and / or space saving.
  • the current collecting layer for collecting current in the electrode unit is formed of a portion other than the connecting portion.
  • the positive electrode unit 10A u ′′ has the positive electrode current collector 1A and two or more positive electrode layers 11A formed on the positive electrode current collector 1A via the positive electrode connecting portion 13A. Have.
  • the positive electrode unit 10A u '' also has a positive electrode current collecting layer 12A in close proximity to the positive electrode layer 11A.
  • the positive electrode current collector layer 12A is provided as a positive electrode protruding portion 14A different from the connecting portion.
  • the positive electrode projecting portion 14A may project in a direction substantially orthogonal to the direction in which the plurality of positive electrode layers 11A are aligned in a plan view in which the electrode unit as shown in FIG. 6A is developed.
  • the positive electrode unit 10A u '' has a structure in which current is collected by the positive electrode current collecting layer 12A different from the connecting portion.
  • the negative electrode unit 10B u '' performs current collection at the negative electrode collector layer 12B provided as different negative electrode protrusion 14B and the connecting part. Even in the negative electrode unit 10B u '', the negative electrode protruding portion 14B protrudes in a direction substantially orthogonal to the direction in which the plurality of negative electrode layers 11B are aligned in a plan view in which the electrode unit is developed as shown in FIG. 6A. Good.
  • the positive electrode layer 11A 1, 11A 2, 11A 3 and 11A 4 are positive collector layer 12A 1 adjacent to their respective positive electrode layer of, 12A 2, 12A 3 and perform each collector at 12A 4.
  • the negative electrode unit 10B u '' the negative electrode layers 11B 1 , 11B 2 , 11B 3 and 11B 4 are formed in the negative electrode current collecting layers 12B 1 , 12B 2 , 12B 3 and 12B 4 adjacent to each of the negative electrode layers. Each collects electricity.
  • connection between the current collector layer and the electrode terminals can be made more flexible. Further, as compared with the structure in which the current is collected by the current collecting layer provided in the connecting portion, the separator is easily interposed between the positive electrode and the negative electrode, and the manufacturing process is particularly easy to be facilitated.
  • the electrode assembly can be constructed by bending the electrodes.
  • the electrode units 10A u ⁇ 10A u' negative polar body 100-100 'comprising an electrode has three or more electrode layers connecting portions 13A and 13B of the' and 10B u ⁇ 10B u '', bent by zigzag This constitutes the electrode assembly.
  • the electrode layers 11A and 11B of the electrode units 10A u ⁇ 10A u '' and 10B u ⁇ 10B u '' constitute each electrode as the electrode assembly.
  • spin turn refers to, for example, the following method (see FIG. 4 and the like).
  • the connecting portions 13A 2 and 13B 2 along the longitudinal direction L bent in the direction f 2 of the arrows.
  • the connecting portion 13A 3 and 13B 3 bent in the direction f 3 of the arrows along the longitudinal direction L.
  • the positive and negative electrodes including the electrode unit are first prepared and the electrode assembly is prepared using the positive and negative electrodes, a single electrode having only one electrode layer per side is used. Compared with the case where only the unit is used, the space of the secondary battery can be saved and the manufacturing process can be facilitated.
  • At least one of the electrodes includes a plurality of electrode units including two electrode layers and a connecting portion provided between the electrode layers.
  • the positive electrode unit 10A u '' in the positive electrode unit 10A u '', two positive electrode layers 11A including the positive electrode current collector 1A are connected via the positive electrode connecting portion 13A.
  • the positive electrode unit 10A u '''' also has a positive electrode current collecting layer 12A in close proximity to the positive electrode layer 11A.
  • the positive electrode current collector layer 12A is provided in the positive electrode connecting portion 13A.
  • the negative electrode unit 10B u '''' has a similar structure.
  • the positive and negative electrode bodies 100 ′′ ′′ include two positive electrode units 10A u ′′ and two negative electrode units 10B u ′′ ′′.
  • the positive electrode unit 10A u ′′ and the negative electrode unit 10B u ′′ are alternately superposed.
  • the separator between the electrodes is omitted.
  • the positive electrode connecting portion 13A is positioned at a position away from the central axis xx ′′ of the positive electrode body 100 ′′. Further, in the plan view of the positive and negative electrode body 100''', the negative electrode connecting portion 13B is located at a position away from the central axis xx'of the positive and negative electrode body 100''' and on the side opposite to the positive electrode connecting portion 13A. It is positioned.
  • each positive electrode unit 10A u' plurality of cathode units 10A u '' has a structure for collecting current in the positive current collector layer 12A provided as the connecting portion 13A in the ''.
  • each negative electrode unit 10B u' more negative electrode units 10B u '' has a structure for collecting current on the negative electrode collector layer 12B provided as a connecting portion 13B at the ''.
  • the electrode assembly is constructed.
  • the electrode layers 11A and 11B of the electrode units 10A u ′′ and 10B u ′′'' constitute each electrode.
  • the electrode assembly can be constructed by bending the connecting portion of each electrode unit only once, which makes the manufacturing process easier. Can be transformed into.
  • the electrode layer has a circular shape (see FIGS. 3A, 5A, 6A and 7A) and a quadrangular shape (see FIGS. 3B, 5B, 6B and 7B) in a plan view. , Or other irregular shapes.
  • the electrode assembly 200 composed of the positive and negative electrode bodies 100 and 100'shown in FIGS. 4 and 5 is housed in the exterior body 300 together with the electrolyte (not shown) to form the secondary battery 400 (FIG. 4). 9).
  • the exterior body 300 has a positive electrode conductive portion 300A and a negative electrode conductive portion 300B that are separated from each other by an insulating portion 300I in a plan view of the secondary battery 400.
  • the positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) and the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) in the electrode assembly 200 are in contact with the positive electrode conductive portion 300A and the negative electrode conductive portion 300B of the exterior body 300, respectively. ing.
  • the positive electrode 10A that is, the positive electrode current collector 1A and the positive electrode material 2A
  • the negative electrode 10B that is, the negative electrode current collector 1B and the negative electrode material 2B
  • the positive electrode layer formed by forming the positive electrode material 2A on the positive electrode current collector 1A and the negative electrode layer formed by forming the negative electrode material 2B on the negative electrode current collector 1B face each other. ing.
  • both the positive and negative electrodes include an electrode unit, and the connecting portion of the electrode unit is positioned to the side of the electrode of the opposite electrode in a cross-sectional view of the secondary battery. That is, when the positive electrode unit and the negative electrode unit are combined to form an electrode assembly with each other, the position of the connecting portion in one electrode unit is lateral to the electrode portion of the other electrode unit (particularly preferably). , The side opposite to the side where the connecting portion of the other electrode unit is provided) may be proximal. As a result, it becomes easy to construct the electrode assembly by the zigzag folding, and it becomes easy to provide the connecting portion as an output tab in the obtained electrode assembly.
  • each positive electrode layer is electrically connected by a positive electrode connecting portion 13A, and the positive electrode connecting portion 13A is connected to the negative electrode 10B (that is, that is, in a cross-sectional view of the secondary battery 400). It is positioned on the side of the negative electrode layer).
  • the "side” here can be regarded as a direction orthogonal to the electrode stacking direction of the electrode assembly in the cross-sectional view of the secondary battery.
  • the positive electrode connecting portion 13A is in contact with the positive electrode conductive portion 300A of the exterior body 300 (see FIG. 10A).
  • each negative electrode layer is electrically connected by the negative electrode connecting portion 13B, and the negative electrode connecting portion 13B is connected to the positive electrode 10A (that is, the positive electrode) in a cross-sectional view of the secondary battery 400. It is positioned on the side of the layer). Further, the negative electrode connecting portion 13B is in contact with the negative electrode conductive portion 300B in the exterior body 300 (see FIG. 10B).
  • the positive electrode 10A collects current at the positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) adjacent to the positive electrode layer. Further, the negative electrode 10B collects electricity at the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) close to the negative electrode layer.
  • the positive electrode protruding portion is in contact with the positive electrode conductive portion in the exterior body, and the negative electrode protruding portion is the negative electrode conductive portion in the exterior body. Is in contact with. That is, the positive electrode collects electricity at the positive electrode current collecting layer provided in the positive electrode protruding portion close to the positive electrode layer. Further, the negative electrode collects electricity from the negative electrode current collecting layer provided in the negative electrode protruding portion close to the negative electrode layer.
  • the electrode assembly 200 composed of the positive and negative electrode bodies 100 is preferably configured by sequentially folding an electrode unit having a plurality of connecting portions. Therefore, in the cross-sectional view of the secondary battery 400, the positive electrode connecting portions 13A 1 and 13A 3 and the positive electrode connecting portion 13A 2 are positioned on different sides of the negative electrode 10B (see FIG. 10A). Further, the negative electrode connecting portions 13B 1 and 13B 3 and the negative electrode connecting portion 13B 2 are positioned on different sides of the positive electrode 10A (see FIG. 10B).
  • the electrode assembly 200 made of the positive and negative electrode bodies 100' is formed by folding an electrode unit having a single connecting portion in a zigzag manner. Therefore, in the cross-sectional view of the secondary battery 400, the positive electrode connecting portions 13A 1 and 13A 3 and the positive electrode connecting portion 13A 2 extend so as to be positioned on different sides of the negative electrode 10B (see FIG. 10A). ). Further, the negative electrode connecting portions 13B 1 and 13B 3 and the negative electrode connecting portion 13B 2 extend so as to be positioned on different sides of the positive electrode 10A (see FIG. 10B).
  • adjacent current collector layers are adhered to each other in a cross-sectional view of the secondary battery.
  • adjacent positive electrode current collector layers that is, positive electrode connecting portions 13A 1 and 13A 3
  • adjacent negative electrode current collector layers that is, negative electrode connecting portions 13B 1 and 13B 3
  • adjacent current collector layers are individually folded and adhered to each other.
  • adheresion used in connection with the current collector layer / connecting portion means that the target current collecting layer / connecting portion is electrically connected to each other. , For example, various specific aspects such as welding and bonding.
  • adjacent current collector layers By adhering adjacent current collector layers to each other in a cross-sectional view of the secondary battery, electrical connection with the exterior body becomes easier. It is preferable that at least two of the adjacent current collector layers are adhered to each other, for example, all the adjacent current collector layers are adhered to each other.
  • the exterior body 300' in a cross-sectional view of the secondary battery 400, the exterior body 300'has a positive electrode conductive portion 300A'and a negative electrode conductive portion 300B' separated from each other by an insulating portion 300I'(FIG. 12 and FIG. 12 and See FIG. 13).
  • the positive electrode connecting portion 13A and the negative electrode connecting portion 13B in the electrode assembly 200 are in contact with the positive electrode conductive portion 300A'and the negative electrode conductive portion 300B' in the exterior body 300', respectively (see FIG. 13).
  • the positive electrode connecting portion 13A and the negative electrode connecting portion 13B are separated from the exterior body 300'(see FIG. 12).
  • Each positive electrode layer is electrically connected by the positive electrode connecting portion 13A, and the positive electrode connecting portion 13A is in contact with the positive electrode conductive portion 300A of the exterior body 300 (see FIG. 13A). Further, each negative electrode layer is electrically connected at the negative electrode connecting portion 13B, and the negative electrode connecting portion 13B is in contact with the negative electrode conductive portion 300B (see FIG. 13B).
  • the electrode assembly 200'consisting of the positive and negative electrode bodies 100'''shown in FIG. 8 is housed in the exterior body 300 together with the electrolyte (not shown) to form the secondary battery 400 (see FIG. 14). ).
  • the positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) and the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) in the electrode assembly 200'are attached to the positive electrode conductive portion 300A and the negative electrode conductive portion 300B in the exterior body 300, respectively. I'm in contact.
  • the positive electrode 10A that is, the positive electrode current collector 1A and the positive electrode material 2A
  • the negative electrode 10B that is, the negative electrode current collector 1B and the negative electrode material 2B
  • the two positive electrode layers in each positive electrode unit are electrically connected to each other by the positive electrode connecting portion 13A, and the positive electrode connecting portion 13A is the negative electrode 10B (that is, the negative electrode layer) in the cross-sectional view of the secondary battery 400. It is positioned on the side of. Further, the positive electrode connecting portion 13A is in contact with the positive electrode conductive portion 300A of the exterior body 300 (see FIG. 15A).
  • the two negative electrode layers in each negative electrode unit are electrically connected to each other by the negative electrode connecting portion 13B, and the negative electrode connecting portion 13B is the positive electrode 10A (that is, the positive electrode layer) in the cross-sectional view of the secondary battery 400. It is positioned on the side of. Further, the negative electrode connecting portion 13B is in contact with the negative electrode conductive portion 300B in the exterior body 300 (see FIG. 15B).
  • adjacent current collector layers are in contact with each other in a cross-sectional view of the secondary battery.
  • adjacent positive electrode current collector layers that is, positive electrode connecting portions 13A 1 and 13A 2
  • adjacent negative electrode current collector layers that is, negative electrode connecting portions 13B 1 and 13B 2
  • the positive electrode 10A current collection is performed by the positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) adjacent to the positive electrode layer. Further, in the negative electrode 10B, current collection is performed by the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) close to the negative electrode layer.
  • the positive electrode is composed of at least a positive electrode material and a positive electrode current collector.
  • the positive electrode material contains a positive electrode active material as an electrode active material.
  • the negative electrode is composed of at least a negative electrode material and a negative electrode current collector.
  • the negative electrode material contains a negative electrode active material as an electrode active material.
  • the electrode active materials contained in the positive electrode material and the negative electrode material are substances that are directly involved in the transfer of electrons in the secondary battery, and are mainly responsible for charge / discharge, that is, the battery reaction. It is a substance.
  • ions are brought to the electrolyte due to the "positive electrode active material” and the “negative electrode active material”, and such ions move between the positive electrode and the negative electrode to transfer electrons and fill the electrolyte. Discharge is done.
  • the positive electrode material and the negative electrode material contain an electrode active material capable of occluding and releasing lithium ions. That is, it is preferable to use a non-aqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte to charge and discharge the battery.
  • the secondary battery of the present invention corresponds to a so-called “lithium ion battery", and a positive electrode layer containing a positive electrode material and a negative electrode layer containing a negative electrode material can occlude and release lithium ions. Is.
  • the positive electrode active material is composed of particles, for example, and it is preferable that the positive electrode material contains a binder (also referred to as a "binding material") for more sufficient contact between particles and shape retention. Further, a conductive auxiliary agent may be contained in the positive electrode material in order to facilitate the transfer of electrons that promote the battery reaction.
  • a binder also referred to as a "binding material”
  • a conductive auxiliary agent may be contained in the positive electrode material in order to facilitate the transfer of electrons that promote the battery reaction.
  • the negative electrode active material is composed of, for example, granules
  • it preferably contains a binder for better contact between the particles and shape retention, and is conductive to facilitate the transfer of electrons that drive the battery reaction.
  • Auxiliary agent may be contained in the negative electrode material.
  • the positive electrode material and the negative electrode material can also be referred to as “positive electrode mixture” and “negative electrode mixture”, respectively, because of the form in which a plurality of components are contained.
  • the positive electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material of the secondary battery according to the present embodiment, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
  • the positive electrode active material is lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal.
  • Such a positive electrode active material may be contained as a single species, but may be contained in combination of two or more species.
  • the positive electrode active material contained in the positive electrode material is lithium cobalt oxide.
  • the binder that can be contained in the positive electrode material is not particularly limited, but is not particularly limited, such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polytetrafluoroethylene. At least one species selected from the group consisting of can be mentioned.
  • the conductive auxiliary agent that can be contained in the positive electrode material is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor-grown carbon.
  • At least one selected from carbon fibers such as fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
  • the binder of the positive electrode material is polyvinylidene fluoride
  • the conductive auxiliary agent of the positive electrode material is carbon black.
  • the binder and conductive aid of the positive electrode material are a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, lithium alloys, and the like.
  • Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, and diamond-like carbon.
  • graphite is preferable because it has high electron conductivity and excellent adhesion to a negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It is a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such oxides are preferably amorphous as their structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
  • the negative electrode active material is artificial graphite.
  • the binder that can be contained in the negative electrode material is not particularly limited, but at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin and polyamide-imide resin may be used. Can be mentioned.
  • the binder contained in the negative electrode material is styrene-butadiene rubber.
  • the conductive auxiliary agent that can be contained in the negative electrode material is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor-grown carbon.
  • the negative electrode material may contain a component derived from a thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
  • a thickener component for example, carboxylmethyl cellulose
  • the negative electrode active material and the binder in the negative electrode material are a combination of artificial graphite and styrene-butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated by the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a perforated or perforated form.
  • the current collector may be metal leaf, punching metal, mesh or expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and is, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably one made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and is, for example, a copper foil.
  • the separator is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte.
  • the separator can be said to be a member through which ions pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film morphology due to its small thickness.
  • a microporous polyolefin membrane may be used as the separator.
  • the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of a "microporous membrane made of PE” and a "microporous membrane made of PP".
  • the surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like.
  • the surface of the separator may have adhesiveness.
  • an electrode assembly including a positive electrode, a negative electrode and a separator is enclosed in an outer body together with an electrolyte.
  • the electrolyte assists the movement of metal ions released from the electrodes (positive electrode / negative electrode).
  • the electrolyte may be a "non-aqueous" electrolyte such as an organic electrolyte and an organic solvent, or it may be a "water-based” electrolyte containing water.
  • the secondary battery according to the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a "non-aqueous" solvent and a solute is used as the electrolyte.
  • the electrolyte may have a form such as liquid or gel (note that the "liquid" non-aqueous electrolyte is also referred to as "non-aqueous electrolyte solution" in the present specification).
  • carbonates may be cyclic carbonates and / or chain carbonates.
  • the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC).
  • a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate.
  • Li salts such as LiPF 6 and LiBF 4 are preferable.
  • the exterior body may be a hard case.
  • the hard case may consist of two members configured in combination with each other. That is, the exterior body has, for example, a two-part configuration of a first exterior body and a second exterior body.
  • One of the exterior bodies having a two-part structure may form a positive electrode conductive portion, and the other may form a negative electrode conductive portion.
  • the positive electrode conductive portion and the negative electrode conductive portion are sealed after accommodating the electrode assembly, the electrolyte, and optionally the electrode terminals.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • any material that can form a hard case type exterior body can be used in the field of the secondary battery.
  • a material may be a conductive material in which electron transfer can be achieved, or an insulating material in which electron transfer cannot be achieved.
  • the material of the exterior body is preferably a conductive material from the viewpoint of taking out the electrodes.
  • Examples of the conductive material include a metal material selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, stainless steel and the like.
  • Examples of the insulating material include insulating polymer materials selected from the group consisting of polyester (eg, polyethylene terephthalate), polyimide, polyamide, polyamide-imide, and polyolefin (eg, polyethylene, and polypropylene).
  • both the positive electrode conductive portion and the negative electrode conductive portion are made of stainless steel.
  • stainless steel is an alloy steel containing chromium or chromium and nickel, and generally has a chromium content of about 10.5% or more of the total. Refers to steel.
  • Examples of such stainless steels include stainless steels selected from the group consisting of martensite-based stainless steels, ferrite-based stainless steels, austenitic stainless steels, austenitic-ferrite-based stainless steels, and precipitation-hardened stainless steels.
  • the dimensions of the positive electrode conductive portion and the negative electrode conductive portion of the exterior body are mainly determined according to the dimensions of the electrode assembly. For example, when the electrode assembly is housed, the movement of the electrode assembly inside the exterior body is prevented. It is preferable to have dimensions. By preventing the electrode assembly from moving, damage to the electrode assembly due to impact or the like can be prevented, and the safety of the secondary battery can be improved.
  • the exterior body may be a flexible case such as a pouch made of a laminated film.
  • the laminated film has a structure in which at least a metal layer (for example, aluminum) and an adhesive layer (for example, polypropylene and polyethylene) are laminated, and an additional protective layer (for example, nylon and polyamide) is laminated. May be configured.
  • the secondary battery may be provided with an electrode terminal. That is, the secondary battery may be provided with a terminal for electrically connecting to the outside.
  • Such electrode terminals may be provided on at least one surface of the exterior body.
  • positive and negative electrode terminals may be provided on the same surface of the exterior body so as to be separated from each other.
  • positive and negative electrode terminals may be provided on different surfaces of the exterior body.
  • the material of the electrode terminal is not particularly limited, and at least one selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, and stainless steel can be mentioned.
  • the secondary battery of the present invention can be manufactured by a method including at least a manufacturing process of an electrode unit, a manufacturing process of a positive electrode body, and a manufacturing process of an electrode assembly.
  • the method for manufacturing a secondary battery of the present invention finally includes a sealing step.
  • each step will be briefly described, but the above-mentioned description of the secondary battery may be referred to as appropriate.
  • an electrode unit is obtained by cutting out from an electrode precursor provided with an electrode material on a current collector.
  • the electrode material paste is applied to a metal sheet material used as a current collector (for example, the positive electrode current collector is an aluminum foil and the negative electrode current collector is a copper foil) and rolled by a roll press machine. As a result, an electrode precursor is obtained.
  • a metal sheet material used as a current collector for example, the positive electrode current collector is an aluminum foil and the negative electrode current collector is a copper foil
  • the area to be applied is determined so that the desired electrode layer and current collector layer can be obtained.
  • the electrode material is provided with a certain gap so as to obtain a connecting portion as a current collecting layer having a desired length along any one direction of the metal sheet material. Apply the paste in a substantially circular shape.
  • the electrode unit is obtained by cutting out the region to which the electrode material paste is applied and the region to which the electrode material paste is not applied so as to correspond to the connecting portion of the electrode unit.
  • a desired connection is made along the outer edge of the region where the electrode material paste is applied in a substantially circular shape, and the region where the electrode material paste is not applied provided between the regions. Cut out so that it has the shape of the part.
  • the cutting out is just an example, but it may be a so-called "punching operation".
  • the positive electrode and the negative electrode are overlapped with each other via the separator.
  • the positive electrode body of FIG. 4 is manufactured, the positive electrode layer and the negative electrode layer in each electrode unit are superposed so as to be alternately overlapped with each other via a separator.
  • the separator may be inserted between the positive electrode layer and the negative electrode layer.
  • the separator may be a sheet cut and laminated, or may be laminated in a zigzag to cut the excess. Alternatively, the separator may individually package the electrode or the electrode unit.
  • Adhesion can be performed by a method using an adhesive separator as a separator, a method of applying an adhesive binder on the electrode layer, and / or a method of thermocompression bonding.
  • the connecting portions 13A and 13B of the electrode units 10A u and 10B u in the positive and negative polar body 100 by folding the serpentine, the electrode assembly is constructed.
  • the number of bends may be appropriately determined according to the number of electrode layers contained in one electrode unit.
  • Adhesion may be performed by adhering the electrode layers that come into contact with each other via the separator for the first time by bending.
  • the bonding method the same method as the bonding method that may be performed in the manufacturing process of the positive electrode body can be used.
  • adjacent current collector layers for example, positive electrode connecting portions 13A 1 and 13A 2 in FIG. 11A
  • Adhesion of adjacent current collector layers may be performed by, for example, heat welding, laser welding and ultrasonic welding, and a conductive adhesive.
  • a secondary battery can be obtained by encapsulating the electrode assembly together with the electrolyte in the exterior body.
  • the secondary battery according to the present invention can be used in various fields where storage is expected.
  • secondary batteries are used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, etc.) in which electric and electronic devices are used.
  • Wearable devices for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, etc.
  • RFID tags for example, RFID tags, card-type electronic money, smart watches, etc.
  • the secondary battery according to the present invention has a lower resistance while maintaining a high battery capacity. Therefore, the secondary battery according to the present invention can be particularly preferably used for a wearable device that requires high energy density and high-speed charge / discharge characteristics.
  • the wearable device refers to a device that can be used while being worn in the form of clothes or a wristwatch, such as a head-mounted display or a smart watch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Provided is a secondary battery comprising an electrode assembly including a positive electrode, a negative electrode and a separator disposed therebetween. The positive and negative electrodes of the secondary battery each have: an electrode layer in which an electrode material is formed on a current collector; and a current collection layer at which the current collector is exposed. At least one electrode from between the positive electrode and the negative electrode includes an electrode unit that comprises: multiple electrode layers facing the other electrode; and a connection part that electrically connects the multiple electrode layers. In a cross-sectional view of the secondary battery, the connection part is located on a side of the other electrode. The positive electrode and the negative electrode are configured to collect the current in the current collection layer which is close to the electrode layer.

Description

二次電池Rechargeable battery
 本発明は二次電池に関する。 The present invention relates to a secondary battery.
 二次電池は、いわゆる蓄電池ゆえ充電・放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Since the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones and notebook computers.
 二次電池は一般的に外装体内に電極組立体が収容された構造を有する。 The secondary battery generally has a structure in which the electrode assembly is housed inside the exterior.
特開2005-243455号公報Japanese Unexamined Patent Publication No. 2005-243455
 本願発明者は、従前の二次電池では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application noticed that there was a problem to be overcome with the conventional secondary battery, and found that it was necessary to take measures for that purpose. Specifically, the inventor of the present application has found that there are the following problems.
 二次電池は、一般的に、正極および負極、かかる電極との間のセパレータを含んだ電極組立体が外装体に封入された構造を有する。電極組立体においては、蛇行するように折り曲げられた電極は、その電極端に設けられた集電体のみを介して電極端子と接続される(例えば、特許文献1)。つまり、電極組立体の電極を非折り曲げ状態へと展開した状態を想定すると、その電極の短手寸法を成す一方の端部のみから集電が行われている。 A secondary battery generally has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator between the electrodes is enclosed in an outer body. In the electrode assembly, the meanderingly bent electrode is connected to the electrode terminal only via a current collector provided at the electrode end (for example, Patent Document 1). That is, assuming a state in which the electrodes of the electrode assembly are expanded into a non-bent state, current collection is performed from only one end of the electrode, which has a short dimension.
 図16に示す例示態様でいえば、二次電池400は、一般的に、正極10A、負極10Bおよび正極10Aと負極10Bとの間に配置されたセパレータ20を含む電極組立体200、ならびに電解質が外装体300に封入された構造を有する。正極10Aは正極集電体1Aおよび正極材2Aから成る。また、負極10Bは負極集電体1Bおよび負極材2Bから成る。正極10Aおよび負極10Bは、電極組立体200の上側主面および下側主面に位置付けられる電極端の集電体1Aおよび1Bのみをそれぞれ介して電極端子(すなわち、外装体300Aおよび300B)と接続されている。 In the exemplary embodiment shown in FIG. 16, the secondary battery 400 generally includes an electrode assembly 200 including a positive electrode 10A, a negative electrode 10B, and a separator 20 arranged between the positive electrode 10A and the negative electrode 10B, and an electrolyte. It has a structure enclosed in the exterior body 300. The positive electrode 10A is composed of a positive electrode current collector 1A and a positive electrode material 2A. Further, the negative electrode 10B is composed of a negative electrode current collector 1B and a negative electrode material 2B. Positive 10A and the negative electrode 10B are electrode through a current collector of the electrode end that is positioned an upper major surface and a lower major surface of the electrode assembly 200 1A E and 1B E respectively only terminals (i.e., outer package 300A and 300B) Is connected to.
 そのような構成を有する二次電池400では、正極および負極のいずれにおいても、折り曲げられた電極の最端部に位置する集電体1Aおよび1Bのみをそれぞれ介して電子の授受がなされるため、電導距離が長く、電気抵抗が大きくなる虞がある。 In the secondary battery 400 having such a configuration, in both of the positive electrode and the negative electrode also, electron transfer is performed through each folded current collector positioned at the outermost end of the electrode 1A E and 1B E only Therefore, the conduction distance is long and the electric resistance may increase.
 本発明はかかる課題に鑑みてなされたものである。すなわち、本発明の主たる目的は、高い電池容量を保持しつつ、より低い抵抗を有する二次電池を提供することである。 The present invention has been made in view of such a problem. That is, a main object of the present invention is to provide a secondary battery having a lower resistance while maintaining a high battery capacity.
 本発明は、正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体を有して成る二次電池であって、正極および負極の電極は、集電体上に電極材を形成した電極層と、当該集電体が露出した集電層とを有し、正極および負極の少なくともいずれか一方の電極は、他方の電極に対向する複数の電極層および当該複数の電極層を電気的に接続する連結部を備える電極ユニットを含み、当該連結部が二次電池の断面視にて他方の電極の側方に位置付けられており、正極および負極は、電極層に近接する集電層にて集電を行う二次電池に関する。 The present invention is a secondary battery comprising an electrode assembly including a positive electrode, a negative electrode and a separator arranged between the positive electrode and the negative electrode, wherein the electrodes of the positive electrode and the negative electrode are placed on a current collector. It has an electrode layer on which an electrode material is formed and a current collector layer in which the current collector is exposed, and at least one of the positive electrode and the negative electrode has a plurality of electrode layers facing the other electrode and the plurality of electrode layers. It includes an electrode unit including a connecting portion that electrically connects the electrode layers, the connecting portion is positioned to the side of the other electrode in a cross-sectional view of the secondary battery, and the positive electrode and the negative electrode are close to the electrode layer. The present invention relates to a secondary battery that collects electricity in the current collecting layer.
 本発明に係る二次電池は、高い電池容量を保持しつつ、より低い抵抗を有する構造を有する。 The secondary battery according to the present invention has a structure having a lower resistance while maintaining a high battery capacity.
 具体的には、正極および負極の少なくとも一方の電極にて複数の電極層が互いに連結する構成を有する二次電池において、電極層に近接する集電層にて集電を行う構造を有する。より具体的には、当該電極にて、互いに連結される複数の電極層の各々に近接する集電層から集電を行ってよい。従って、本発明に係る二次電池では、電導距離を短くすることができる。よって、高い電池容量を保持しつつ、より低い抵抗を有する二次電池を実現できる。 Specifically, a secondary battery having a structure in which a plurality of electrode layers are connected to each other at at least one electrode of a positive electrode and a negative electrode has a structure in which current is collected by a current collecting layer close to the electrode layer. More specifically, the current may be collected from the current collecting layer adjacent to each of the plurality of electrode layers connected to each other at the electrode. Therefore, in the secondary battery according to the present invention, the conduction distance can be shortened. Therefore, it is possible to realize a secondary battery having a lower resistance while maintaining a high battery capacity.
図1A~図1Dは、本発明の一実施形態に係る二次電池における電極の種々の実施形態を示す模式的平面図である。1A to 1D are schematic plan views showing various embodiments of electrodes in a secondary battery according to an embodiment of the present invention. 図2は、電極ユニットにおける電子の移動を示す模式的平面図である。FIG. 2 is a schematic plan view showing the movement of electrons in the electrode unit. 図3Aおよび図3Bは、電極層が種々の形状を有する電極ユニットの一実施形態を示す模式的平面図である(図3A:略円状、図3B:略四角形状)。3A and 3B are schematic plan views showing an embodiment of an electrode unit in which the electrode layer has various shapes (FIG. 3A: substantially circular shape, FIG. 3B: substantially square shape). 図4は、図3Aに示す電極ユニットを含む正負極体の一実施形態を示す模式的平面図である。FIG. 4 is a schematic plan view showing an embodiment of a positive / negative electrode body including the electrode unit shown in FIG. 3A. 図5Aおよび図5Bは、電極層の各々に跨るように単一状に設けられた連結部を備える電極ユニットおよび正負極体の一実施形態を示す模式的平面図である(図5A:略円状、図5B:略四角形状)。5A and 5B are schematic plan views showing an embodiment of an electrode unit and a positive electrode body having a connecting portion provided in a single shape so as to straddle each of the electrode layers (FIG. 5A: substantially circular). Shape, FIG. 5B: substantially square shape). 図6Aおよび図6Bは、連結部以外の部分にて集電を行う構造を有している電極ユニットおよび正負極体の一実施形態を示す模式的平面図である(図6A:略円状、図6B:略四角形状)。6A and 6B are schematic plan views showing an embodiment of an electrode unit and a positive electrode body having a structure for collecting current at a portion other than the connecting portion (FIG. 6A: substantially circular shape, FIG. FIG. 6B: substantially square shape). 図7Aおよび図7Bは、電極層が種々の形状を有する複数の電極ユニットの一実施形態を示す模式的平面図である(図7A:略円状、図7B:略四角形状)。7A and 7B are schematic plan views showing an embodiment of a plurality of electrode units in which the electrode layers have various shapes (FIG. 7A: substantially circular shape, FIG. 7B: substantially square shape). 図8は、図7Aに示す電極ユニットを含む正負極体の一実施形態を示す模式的平面図である。FIG. 8 is a schematic plan view showing an embodiment of a positive / negative electrode body including the electrode unit shown in FIG. 7A. 図9は、図4の正負極体を用いた二次電池の一実施形態を示す模式的平面透視図である。FIG. 9 is a schematic plan perspective view showing an embodiment of the secondary battery using the positive and negative electrodes of FIG. 4. 図10Aおよび図10Bは、図9に示す二次電池の模式的断面図である(図10A:a-a’線に沿った断面、図10B:b-b’線に沿った断面)。10A and 10B are schematic cross-sectional views of the secondary battery shown in FIG. 9 (FIG. 10A: cross section along line aa', FIG. 10B: cross section along line bb'). 図11Aおよび図11Bは、図9に示す二次電池の別の実施形態を示す模式的断面図である(図11A:a-a’線に沿った断面、図11B:b-b’線に沿った断面)。11A and 11B are schematic cross-sectional views showing another embodiment of the secondary battery shown in FIG. 9 (FIG. 11A: cross section along line aa', FIG. 11B: line bb'. Cross section along). 図12は、図4の正負極体を用いた二次電池の別の実施形態を示す模式的平面透視図である。FIG. 12 is a schematic plan perspective view showing another embodiment of the secondary battery using the positive electrode body of FIG. 4. 図13Aおよび図13Bは、図12に示す二次電池の模式的断面図である(図13A:a-a’線に沿った断面、図13B:b-b’線に沿った断面)。13A and 13B are schematic cross-sectional views of the secondary battery shown in FIG. 12 (FIG. 13A: cross section along line aa', FIG. 13B: cross section along line bb'). 図14は、図8の正負極体を用いた二次電池を示す模式的平面透視図である。FIG. 14 is a schematic plan perspective view showing a secondary battery using the positive and negative electrodes of FIG. 8. 図15Aおよび図15Bは、図14に示す二次電池の模式的断面図である(図15A:a-a’線に沿った断面、図15B:b-b’線に沿った断面)。15A and 15B are schematic cross-sectional views of the secondary battery shown in FIG. 14 (FIG. 15A: cross section along line aa', FIG. 15B: cross section along line bb'). 図16は、従来技術に係る二次電池を示す模式的断面図である。FIG. 16 is a schematic cross-sectional view showing a secondary battery according to the prior art.
[本発明に係る二次電池の特徴]
 本発明に係る二次電池は、正極および負極の少なくとも一方の電極にて複数の電極層が互いに連結する構成を有する二次電池であるところ、電極における集電を行う構造の点で特徴を有する。
[Characteristics of the secondary battery according to the present invention]
The secondary battery according to the present invention is a secondary battery having a configuration in which a plurality of electrode layers are connected to each other at at least one electrode of a positive electrode and a negative electrode, and is characterized in that it has a structure for collecting electricity at the electrodes. ..
 具体的には、本発明の二次電池において、正極および負極の電極はそれぞれ、集電体上に電極材を形成した電極層と、集電体が露出した集電層とを有する。ここで、電極層および集電層は互いに近接して位置付けられている。 Specifically, in the secondary battery of the present invention, the positive electrode and the negative electrode of the present invention each have an electrode layer in which an electrode material is formed on the current collector and a current collector layer in which the current collector is exposed. Here, the electrode layer and the current collector layer are positioned close to each other.
 正極および負極の少なくともいずれか一方の電極は、他方の電極に対向する複数の電極層および当該複数の電極層を互いに電気的に接続する連結部を備える電極ユニットを有する。 At least one of the positive electrode and the negative electrode has an electrode unit including a plurality of electrode layers facing the other electrode and a connecting portion for electrically connecting the plurality of electrode layers to each other.
 上述のような構成において、好ましくは、正極および負極の各電極は、電極層に近接する集電層にて集電を行う構造を有している。より具体的には、例えば、正極および負極の各電極において、複数の電極層の各々に近接する集電層を介して集電が行われてよい。つまり、正極および負極の各電極を展開した平面視において、複数の電極層の各々に隣接する各集電層が出力タブとなるように集電が行われてよい(後述で参照する図2参照)。 In the configuration as described above, preferably, each electrode of the positive electrode and the negative electrode has a structure in which current is collected by a current collecting layer close to the electrode layer. More specifically, for example, in each electrode of the positive electrode and the negative electrode, current collection may be performed via a current collector layer adjacent to each of the plurality of electrode layers. That is, in a plan view in which the positive electrode and negative electrode electrodes are expanded, current collection may be performed so that each current collecting layer adjacent to each of the plurality of electrode layers serves as an output tab (see FIG. 2 to be referred to later). ).
 電極層が互いに連結された電極ユニットが設けられることで二次電池の省スペース化がもたらされ易くなる。つまり、よりコンパクトな電極組立体を好ましくは得ることができ、二次電池の全体的な体積低減を図ることができる。また、折り曲げられて設けられる電極は、電極層に近接する集電層にて集電を行うことができるので電導距離を短くすることができる。よって、高い電池容量を保持しつつ、より低い抵抗を有する二次電池とすることができる。 By providing an electrode unit in which the electrode layers are connected to each other, it becomes easy to save space in the secondary battery. That is, a more compact electrode assembly can be preferably obtained, and the overall volume of the secondary battery can be reduced. Further, since the electrode provided by being bent can collect current in the current collecting layer close to the electrode layer, the conduction distance can be shortened. Therefore, it is possible to obtain a secondary battery having a lower resistance while maintaining a high battery capacity.
 本明細書における「二次電池」とは、充電・放電の繰り返しが可能な電池を指す。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。 The "secondary battery" in the present specification refers to a battery that can be repeatedly charged and discharged. The "secondary battery" is not overly bound by its name and may include, for example, a "storage device".
 本明細書における「電極層」とは、電極において、集電体上に電極材が形成されることで構成された層を指す。換言すれば、「電極層」とは、電極において、集電体および当該集電体上に形成された電極材を含む層を指す。このような電極層は、電極として機能する層(すなわち、イオンおよび電子の授受に寄与する層)に相当する。 The "electrode layer" in the present specification refers to a layer formed by forming an electrode material on a current collector in an electrode. In other words, the "electrode layer" refers to a layer of an electrode containing a current collector and an electrode material formed on the current collector. Such an electrode layer corresponds to a layer that functions as an electrode (that is, a layer that contributes to the transfer of ions and electrons).
 本明細書における「集電層」とは、電極において、集電体が露出した部分を指す。換言すれば、「集電層」とは、電極において、集電体上に電極材が形成されていない部分を指す。それゆえ、本発明では、集電層を集電部と称すこともできる。 The "current collector layer" in the present specification refers to a portion of the electrode where the current collector is exposed. In other words, the "current collector layer" refers to a portion of the electrode where no electrode material is formed on the current collector. Therefore, in the present invention, the current collector layer can also be referred to as a current collector.
[本発明に係る二次電池の構成]
 以下、本発明の二次電池について、幾つかの実施態様を示す図面を用いて詳しく説明するが、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および寸法比などは実物と異なり得る。
[Structure of a secondary battery according to the present invention]
Hereinafter, the secondary battery of the present invention will be described in detail with reference to drawings showing some embodiments, but various elements in the drawings are merely schematically and exemplified for the understanding of the present invention. However, the appearance and dimensional ratio may differ from the actual product.
 本明細書で直接的または間接的に説明される「厚み」方向は、二次電池を構成する電極材を重ねる方向(または、積層する方向)に基づいている。電極材の積層方向が当該厚み方向に相当する。例えば扁平状電池などの「板状に厚みを有する二次電池」でいえば、厚み方向は、かかる二次電池の板厚方向に相当する。 The "thickness" direction described directly or indirectly in the present specification is based on the direction in which the electrode materials constituting the secondary battery are stacked (or the direction in which they are stacked). The stacking direction of the electrode material corresponds to the thickness direction. For example, in the case of a "secondary battery having a plate-like thickness" such as a flat battery, the thickness direction corresponds to the plate thickness direction of the secondary battery.
 本明細書でいう「平面視」とは、厚み方向に沿って対象物を上側または下側から捉えた場合の形態に基づいている。端的にいえば、図1などに示される対象物の平面の形態に基づいている。 The "planar view" referred to in the present specification is based on a form in which an object is viewed from above or below along the thickness direction. In short, it is based on the planar form of the object shown in FIG.
 また、本明細書でいう「断面視」とは、厚み方向に対して略垂直な方向から対象物を捉えた場合の形態(換言すれば、厚み方向に平行な面で切り取った場合の形態)に基づいている。端的にいえば、図10などに示される対象物の断面の形態に基づいている。 Further, the "cross-sectional view" referred to in the present specification is a form when the object is captured from a direction substantially perpendicular to the thickness direction (in other words, a form when the object is cut out on a plane parallel to the thickness direction). Is based on. In short, it is based on the shape of the cross section of the object shown in FIG.
 本発明の二次電池は、電極組立体および電解質を外装体内に収容する。電極組立体は、正極と負極とがセパレータを介して交互に積層されて成る。 The secondary battery of the present invention houses the electrode assembly and the electrolyte inside the exterior. The electrode assembly is formed by alternately stacking positive electrodes and negative electrodes via separators.
 正極および負極の電極はそれぞれ、集電体上に電極材を形成した電極層と、集電体が露出した集電層とを有する。ここで、電極層および集電層は互いに近接して位置付けられている。また、少なくともいずれか一方の電極は、複数の電極層および当該複数の電極層を互いに電気的に接続する連結部を備える電極ユニットを有する。 The electrodes of the positive electrode and the negative electrode each have an electrode layer in which an electrode material is formed on the current collector and a current collector layer in which the current collector is exposed. Here, the electrode layer and the current collector layer are positioned close to each other. Further, at least one of the electrodes has an electrode unit including a plurality of electrode layers and a connecting portion for electrically connecting the plurality of electrode layers to each other.
 図1に示す例示態様でいえば、正極10Aは、正極集電体1A上に正極材(図示せず)を形成した正極層11Aと、正極集電体1Aが露出した正極集電層12Aとを有する。より具体的には、例えば、正極集電層12Aは、正極層11Aから突出するように正極層11Aに含まれる正極集電体1Aが部分的に露出することで設けられてよい。 In the exemplary embodiment shown in FIG. 1, the positive electrode 10A includes a positive electrode layer 11A in which a positive electrode material (not shown) is formed on the positive electrode current collector 1A, and a positive electrode current collector layer 12A in which the positive electrode current collector 1A is exposed. Has. More specifically, for example, the positive electrode current collector layer 12A may be provided by partially exposing the positive electrode current collector 1A contained in the positive electrode layer 11A so as to protrude from the positive electrode layer 11A.
 また、負極10Bは、複数の負極層11Bおよび当該複数の負極層11Bを電気的に接続する負極連結部13Bを備える負極ユニット10Bを含む。より具体的には、例えば、負極10Bでは、複数の負極層11Bにつき、互いに隣接する又は隣り合う負極層同士が連結部13Bにより直接的に連結されている。換言すれば、負極ユニット10Bにおいて、複数の負極層11Bの各々は、それに直接的に接続する負極連結部を備えている。図1に示す例示態様から分かるように、負極集電体1Bが部分的に露出してもたらされる負極集電層12Bが連結部13Bを成していてよい。 Moreover, the negative electrode 10B includes a negative electrode unit 10B U comprising a negative electrode connecting portion 13B for electrically connecting the plurality of negative electrode layer 11B and the plurality of negative electrode layer 11B. More specifically, for example, in the negative electrode 10B, with respect to the plurality of negative electrode layers 11B, the negative electrode layers adjacent to each other or adjacent to each other are directly connected by the connecting portion 13B. In other words, the negative electrode unit 10B U, each of the plurality of negative electrode layer 11B is thereto provided with a negative electrode connecting portion for directly connecting. As can be seen from the exemplary embodiment shown in FIG. 1, the negative electrode current collector layer 12B obtained by partially exposing the negative electrode current collector 1B may form the connecting portion 13B.
 このような連結部は、相互に隣り合う電極層を連結する部分である。連結部は、相互に隣り合う電極層の集電体から構成されるところ、極材層が設けられていない部分、すなわち、集電体に対して極材原料が塗布されていない未塗工部に相当してよい。 Such a connecting portion is a portion that connects the electrode layers adjacent to each other. The connecting portion is composed of current collectors of electrode layers adjacent to each other, and the portion where the polar material layer is not provided, that is, the uncoated portion in which the polar material material is not applied to the current collector. May correspond to.
 特に、電極ユニットにおいて、連結部は相互に隣り合う電極層に対して直接的に連結するように設けられていてよい。つまり、連結部は、相互に隣り合う電極層の一方から延在する連結部と、当該相互に隣り合う電極層の他方から延在する連結部とが互いに共有していてよい。当該連結部は、例えば、相互に隣り合う2つの電極層間に位置付けられる部分であってよい(図1および図3など参照)。つまり、電極ユニットを展開した平面視において、相互に隣り合う2つの電極層間に設けられる連結部(例えば、それぞれの電極層の集電体から構成され、極材層が設けられていないことで供される連結部)は、当該2つの電極層の一方から他方に向けて当該電極層から直接的に突出するように位置付けられていてよい。あるいは、連結部は、2つ以上あるいは3つ以上の電極層の各々に跨るように単一状に設けられる部分であってもよい(図5参照)。つまり、電極ユニットを展開した平面視において、相互に隣り合う電極層間に設けられる連結部(例えば、それぞれの電極層の集電体から構成され、極材層が設けられていないことで供される連結部)は、電極層間のみならず、図5に示すような平面視にて、当該電極層に部分的にオーバーラップするように連続的に設けられてよい。 In particular, in the electrode unit, the connecting portion may be provided so as to be directly connected to the electrode layers adjacent to each other. That is, the connecting portion may be shared by the connecting portion extending from one of the electrode layers adjacent to each other and the connecting portion extending from the other of the electrode layers adjacent to each other. The connecting portion may be, for example, a portion positioned between two electrode layers adjacent to each other (see FIGS. 1 and 3 and the like). That is, in a plan view in which the electrode unit is developed, a connecting portion (for example, composed of a current collector of each electrode layer and not provided with a polar material layer) provided between two electrode layers adjacent to each other is provided. The connecting portion) to be formed may be positioned so as to project directly from the electrode layer from one of the two electrode layers toward the other. Alternatively, the connecting portion may be a portion provided in a single shape so as to straddle each of the two or more or three or more electrode layers (see FIG. 5). That is, in a plan view in which the electrode unit is developed, it is provided because it is composed of a connecting portion (for example, a current collector of each electrode layer and is not provided with a polar material layer) provided between electrode layers adjacent to each other. The connecting portion) may be continuously provided not only between the electrode layers but also in a plan view as shown in FIG. 5 so as to partially overlap the electrode layer.
 電極ユニットを展開した平面視では、連結部は直線状に整列または延在していてよい。つまり、図3に示されるような電極ユニットに設けられた複数の連結部13Aまたは13Bは、互いにある直線上に沿うように配置されていてよく、また、図5に示されるような電極ユニットの単一状の連結部13Aまたは13Bは、全体として直線的に延在していてよい。図示されるように、電極ユニットを展開した平面視では、そのような連結部が、電極層または複数の電極層の各々の中心からずれた位置で直線状に整列または延在していてよい。このように、直線状に整列または延在する連結部は、全体としてより均一な集電に寄与し、より好適な二次電池の実現に資する。 In a plan view in which the electrode unit is deployed, the connecting portions may be aligned or extended in a straight line. That is, the plurality of connecting portions 13A or 13B provided on the electrode unit as shown in FIG. 3 may be arranged along a straight line with each other, and the electrode unit as shown in FIG. 5 may be arranged. The single connecting portion 13A or 13B may extend linearly as a whole. As shown, in the unfolded plan view of the electrode unit, such connecting portions may be linearly aligned or extended at positions deviated from the center of each of the electrode layer or the plurality of electrode layers. As described above, the linearly aligned or extending connecting portions contribute to more uniform current collection as a whole and contribute to the realization of a more suitable secondary battery.
 電極ユニットを展開した平面視において、連結部の幅方向寸法は、当該連結部と接する電極層の最大幅方向寸法よりも小さくなっている。図1Aおよび図1Dに示す例示態様でいえば、負極ユニット10Bにおいて、負極連結部13Bの幅方向寸法Jは、当該負極連結部13Bと接する負極層11Bの最大幅方向寸法Eよりも小さくなっている。 In the unfolded plan view of the electrode unit, the width direction dimension of the connecting portion is smaller than the maximum width direction dimension of the electrode layer in contact with the connecting portion. In terms of exemplary embodiments shown in FIGS. 1A and FIG. 1D, the negative electrode unit 10B U, the width dimension J W of the negative electrode connecting portion 13B, rather than the maximum width dimension E W of the negative electrode layer 11B in contact with the negative electrode connecting portion 13B It's getting smaller.
 連結部は、電極材が形成されていなくてよい。換言すれば、連結部が集電層から成っていてよい。つまり、連結部は、例えば実質的に集電層のみから構成された部分であってよい。代替的な態様として、連結部は、電極材が形成されていてもよい。図1Aに示す例示態様でいえば、負極ユニット10Bにおいて、負極連結部13Bは負極集電層12Bのみから成っている。つまり、この場合においては、連結部と集電層とは実質的に同義である。 The connecting portion does not have to have an electrode material formed. In other words, the connecting portion may consist of a current collector layer. That is, the connecting portion may be, for example, a portion substantially composed of only the current collector layer. As an alternative aspect, the connecting portion may be formed with an electrode material. Speaking in an illustrative embodiment shown in FIG. 1A, in the negative electrode unit 10B U, the negative electrode connecting portion 13B is comprised only the anode current collector layer 12B. That is, in this case, the connecting portion and the current collecting layer are substantially synonymous.
 連結部にて集電を行う構造にできるよう、連結部は電極材が形成されていないことが好ましい。また、製造工程の容易化の観点においても、連結部は電極材が形成されていないことが好ましい。 It is preferable that no electrode material is formed on the connecting portion so that the structure can collect current at the connecting portion. Further, from the viewpoint of facilitating the manufacturing process, it is preferable that no electrode material is formed on the connecting portion.
 電極ユニットは、少なくとも2つの電極層を備えていればよく、3つ以上の電極層を備えていてもよい。3つ以上の電極層の場合、電極ユニットは電極層間の連結部を複数備えていてよい。高エネルギー密度化などの観点から、電極ユニットにおける電極層の数は4つ以上であることが好ましい。 The electrode unit may include at least two electrode layers and may include three or more electrode layers. In the case of three or more electrode layers, the electrode unit may include a plurality of connecting portions between the electrode layers. From the viewpoint of increasing energy density and the like, the number of electrode layers in the electrode unit is preferably four or more.
 電極ユニットにおける電極層の数は、集電体の片面あたりの数である。電極ユニットは、集電体の両面それぞれに、連結部を介して形成された2つ以上の電極層を備える。この場合、集電体の表と裏において電極層の数、配置および寸法は通常、一致する。 The number of electrode layers in the electrode unit is the number per one side of the current collector. The electrode unit includes two or more electrode layers formed via a connecting portion on both sides of the current collector. In this case, the number, arrangement and dimensions of the electrode layers on the front and back of the current collector are usually the same.
 すなわち、集電体の一方の面の各電極層が形成されている領域の直下または直上に集電体を介して他方の面の各電極層が形成されている。なお、1つの電極ユニットが有する電極層の全ては同じ極性を有する。 That is, each electrode layer on the other surface is formed directly below or directly above the region where each electrode layer on one surface of the current collector is formed via the current collector. All of the electrode layers of one electrode unit have the same polarity.
 本発明の二次電池では、正極および負極の電極のうち、少なくともいずれか一方の電極が電極ユニットを含んでいる。かかる場合、電極は、2つの電極層およびそれらの間の連結部を備えた電極ユニットを少なくとも1つ含んでいてよく、よって、そのような電極ユニットを複数含んでいてもよい。例えば、正極が電極ユニットを含む場合、当該正極側のユニットは複数の電極ユニットとして供されてよい。同様にして、負極が電極ユニットを含む場合、当該負極側のユニットは複数の電極ユニットとして供されてよい。 In the secondary battery of the present invention, at least one of the positive electrode and the negative electrode contains an electrode unit. In such a case, the electrode may include at least one electrode unit having two electrode layers and a connecting portion between them, and thus may include a plurality of such electrode units. For example, when the positive electrode includes an electrode unit, the unit on the positive electrode side may be provided as a plurality of electrode units. Similarly, when the negative electrode includes an electrode unit, the unit on the negative electrode side may be provided as a plurality of electrode units.
 図示する例示態様でいえば、負極10Bは、2つの負極層11Bを備える負極ユニット10Bを1つ含んでいてよく(図1A参照)、複数含んでいてもよく(図1B参照)、3つ以上の負極層11Bを備える負極ユニット10Bを含んでいてもよい(図1C参照)。 In terms of exemplary embodiment illustrated, the negative electrode 10B is a negative electrode unit 10B U with two negative electrode layer 11B may include one (see FIG. 1A), (see FIG. 1B) may not more contain three It may contain a negative electrode unit 10B U having the above negative electrode layer 11B (see FIG. 1C).
 電極ユニットにおける電極層は、平面視において、円形状(図1A~図1C参照)、四角形状(図1D参照)またはその他の異形状を有していてよい。ここでいう「円形状」は、特に真円形に限らず、楕円形または卵形などを含め最も広義に円の概念に含めることができる形状を意味している(端的にいえば、円形は、主として又は大部分が曲線に基づいて形成されたような形状であってもよい)。同様に、ここでいう「四角形状」とは、略四角形を意味しており、それゆえ正方形、矩形、平行四辺形および台形などを含め広く解釈される。 The electrode layer in the electrode unit may have a circular shape (see FIGS. 1A to 1C), a quadrangular shape (see FIG. 1D), or another irregular shape in a plan view. The "circular shape" here is not limited to a perfect circle, but means a shape that can be included in the concept of a circle in the broadest sense, including an ellipse or an oval shape (in short, a circle is a circle). It may be shaped as if it were formed primarily or mostly based on a curve). Similarly, the term "quadrangle" as used herein means a substantially quadrangle, and is therefore broadly interpreted to include squares, rectangles, parallelograms, trapezoids, and the like.
 本発明に係る二次電池において、正極および負極の電極は、電極層に近接する集電層にて集電を行う構造を有する。また、電極が電極ユニットを含む場合、少なくとも2つの電極層にそれぞれ近接する集電層で集電を行う構造を有している。つまり、正極が電極ユニットを有する場合、少なくとも2つの正極層の各々に近接する集電層(例えば連結部)を介して集電が行われ、負極が電極ユニットを有する場合、少なくとも2つの負極層の各々に近接する集電層(例えば連結部)を介して集電が行われる。 In the secondary battery according to the present invention, the positive electrode and the negative electrode have a structure in which current is collected by a current collecting layer close to the electrode layer. Further, when the electrode includes an electrode unit, it has a structure in which current is collected by a current collecting layer adjacent to at least two electrode layers. That is, when the positive electrode has an electrode unit, current collection is performed via a current collecting layer (for example, a connecting portion) adjacent to each of the at least two positive electrode layers, and when the negative electrode has an electrode unit, at least two negative electrode layers are collected. The current is collected through the current collecting layer (for example, the connecting portion) adjacent to each of the above.
 本明細書でいう「近接する集電層にて集電を行う」とは、広義には、電極ユニットに含まれる電極層の各々が、それに直結されている隣接する集電層から集電が行われることを意味している。狭義には、「近接する集電層にて集電を行う」は、図2に示される電極ユニットを展開した平面視でいえば、そのユニットに含まれる複数の電極層の各々に直接的に設けられ、その電極層の各々に対して隣接する各集電層を介して集電が行われることを意味している。つまり、図2に示される電極ユニットでは、集電される箇所が単一ではなく、複数存在する。より具体的には、図2に示される電極ユニット10は、電極層11にそれぞれ近接する集電層12(すなわち、連結部13)にて集電を行う構造を有している。図2中の矢印は、電子の流れを模式的に示している。つまり、そのような電極ユニットでは、当該ユニットに含まれる電極層が平面視でN個存在すると、N-1個の複数の箇所から集電が行われてよい。 In the broad sense, "collecting current in an adjacent current collecting layer" as used herein means that each of the electrode layers included in the electrode unit collects electricity from an adjacent current collecting layer directly connected to the electrode unit. It means that it will be done. In a narrow sense, "collecting current in an adjacent current collecting layer" means that, in a plan view of the electrode unit shown in FIG. 2, it is directly applied to each of the plurality of electrode layers included in the unit. It means that the current is collected through each current collecting layer which is provided and adjacent to each of the electrode layers. That is, in the electrode unit shown in FIG. 2, there are a plurality of places where current is collected, not a single place. More specifically, the electrode unit 10 u shown in FIG. 2 has a structure in which current is collected by a current collecting layer 12 (that is, a connecting portion 13) adjacent to each of the electrode layers 11. The arrows in FIG. 2 schematically show the flow of electrons. That is, in such an electrode unit, if there are N electrode layers included in the unit in a plan view, current collection may be performed from a plurality of N-1 locations.
 図示する例示態様から分かるように、複数の電極層を含む電極ユニットでは、互いに隣接する電極層の間に位置する各連結部が出力タブを成してよい。つまり、複数の電極層を含む電極ユニットでは、互いに隣接する電極層の間に位置する各連結部の箇所から集電が行われることを通じて外部への出力が為されてよい。互いに隣接する電極層の間に位置する各連結部の箇所というものは、電極組立体において、折り曲げ部に相当し得る。よって、かかる各折曲げ部の箇所から集電が行われてよい。ある好適な態様では、そのような互いに隣接する電極層の間に位置する連結部は、それら同士が互いに溶着されていてもよい。外部への出力の設計自由度が向上し得るからである。 As can be seen from the illustrated embodiment, in the electrode unit including a plurality of electrode layers, each connecting portion located between the electrode layers adjacent to each other may form an output tab. That is, in the electrode unit including the plurality of electrode layers, the current may be collected from the positions of the connecting portions located between the electrode layers adjacent to each other to output to the outside. The location of each connecting portion located between the electrode layers adjacent to each other may correspond to a bent portion in the electrode assembly. Therefore, current collection may be performed from each of the bent portions. In some preferred embodiments, the connecting portions located between such adjacent electrode layers may be welded together. This is because the degree of freedom in designing the output to the outside can be improved.
 上述のような構成とすることで、正極および負極の電極は、電極層にできるだけ近い集電層を介して集電を行うことができ、電導距離を短くできる。それによって、高い電池容量を保持しつつ、より低い抵抗を有する二次電池とすることができる。より具体的には、図2に示す例示態様から分かるように、電子が横流れする距離を短くでき、高速充電時に低抵抗がもたらされ易い。 With the above configuration, the positive electrode and negative electrode can collect current through the current collecting layer as close as possible to the electrode layer, and the conduction distance can be shortened. Thereby, it is possible to obtain a secondary battery having a lower resistance while maintaining a high battery capacity. More specifically, as can be seen from the exemplary embodiment shown in FIG. 2, the distance through which electrons flow can be shortened, and low resistance is likely to be brought about during high-speed charging.
 また、電極が3つ以上の電極層を備える場合などを想定すると、各電極層に近接する各集電層にて集電を行うため、電流集中の発生を防止することもできる。 Further, assuming that the electrodes are provided with three or more electrode layers, current collection is performed in each current collector layer close to each electrode layer, so that the occurrence of current concentration can be prevented.
 一実施形態では、正極および負極の電極の両方が電極ユニットを含んでいる。図3に示す例示態様でいえば、正極10Aは、複数の正極層11Aおよび当該複数の正極層11Aを互いに電気的に接続する正極連結部13Aを複数備える正極ユニット10Aを含む。また、負極10Bは、複数の負極層11Bおよび当該複数の負極層11Bを互いに電気的に接続する負極連結部13Bを複数備える負極ユニット10Bを含む。 In one embodiment, both the positive and negative electrodes include electrode units. Speaking in an illustrative embodiment shown in FIG. 3, the positive electrode 10A includes a positive electrode units 10A U including a plurality of positive electrode connecting portion 13A for connecting a plurality of the positive electrode layer 11A and the plurality of positive electrode layer 11A electrically to each other. Moreover, the negative electrode 10B includes a negative electrode unit 10B U provided with a plurality of negative electrode connecting portion 13B which connects a plurality of negative electrode layer 11B and the plurality of negative electrode layer 11B electrically to each other.
 電極組立体の作成においては、まずは、上述のような正極と負極とをセパレータを介して積層させた正負極体を作成する。より具体的には、正極における正極層と負極における負極層とをセパレータを介して積層させた正負極体を作成する。 In the production of the electrode assembly, first, the positive and negative electrodes are prepared by laminating the positive electrode and the negative electrode as described above via a separator. More specifically, a positive electrode body in which a positive electrode layer in a positive electrode and a negative electrode layer in a negative electrode are laminated via a separator is prepared.
 正負極体は、自己の折り曲げ(特に、その1又はそれ以上の集電層/連結部の折り曲げ)により電極組立体を構成することができる電極組立体の前駆体であり、1つ以上の電極ユニットを含む。すなわち、正負極体は、正極ユニットおよび負極ユニットの1つ以上含んでいればよい。 A positive electrode body is a precursor of an electrode assembly capable of forming an electrode assembly by self-bending (particularly, bending of one or more current collector layers / connecting portions), and is one or more electrodes. Includes units. That is, the positive electrode body may include one or more of the positive electrode unit and the negative electrode unit.
 ここで「折り曲げ」とは、湾状(または弓状)に曲がること(すなわち略曲線的に曲がること)、および鋭角に折れ曲がること(すなわち略直線的に曲がること)を包含する。なお、本発明では、折り曲げは、特に集電層/連結部の折り曲げが意図される。 Here, "bending" includes bending in a bay shape (or bow shape) (that is, bending in a substantially curved line) and bending at an acute angle (that is, bending in a substantially straight line). In the present invention, the bending is particularly intended to bend the current collector layer / connecting portion.
 正極および負極の一方のみが電極ユニットを有する場合(図1参照)、一方の電極の電極層は、他方の電極の電極層にセパレータを介しつつ重ね合わせられる。 When only one of the positive electrode and the negative electrode has an electrode unit (see FIG. 1), the electrode layer of one electrode is superposed on the electrode layer of the other electrode via a separator.
 図1Cに示す例示態様でいえば、正極層11Aは負極層11Bの対向する一方の面にセパレータを介して重ね合わせられ、正極層11Aは当該負極層11Bの長手方向Lに隣り合わせて配置された負極層11Bの対向する他方の面にセパレータを介して重ね合わせられる。正極層11Aおよび負極層11B、ならびに正極層11Aおよび負極層11Bも同様にして重ね合わせられる。 In the exemplary embodiment shown in FIG. 1C, the positive electrode layer 11A 1 is superposed on one of the opposing surfaces of the negative electrode layer 11B 1 via a separator, and the positive electrode layer 11A 2 is adjacent to the negative electrode layer 11B 1 in the longitudinal direction L. It is superposed on the other facing surface of the negative electrode layer 11B 2 arranged so as to be interposed via a separator. The positive electrode layer 11A 3 and the negative electrode layer 11B 3 and the positive electrode layer 11A 4 and the negative electrode layer 11B 4 are also superposed in the same manner.
 正極および負極の両方が電極ユニットを有する場合(図4など参照)、各電極ユニットにおける正極層と負極層とは、セパレータを介しつつ互い違いに重なるように重ね合わせられる。つまり、正極側の電極ユニットの各正極層と負極側の電極ユニットの各負極層とが各セパレータを介して重ね合わされるように電極ユニット同士が全体的に重ね合わされる。 When both the positive electrode and the negative electrode have electrode units (see FIG. 4 and the like), the positive electrode layer and the negative electrode layer in each electrode unit are superposed so as to be alternately overlapped with each other via a separator. That is, the electrode units are entirely overlapped with each other so that the positive electrode layers of the electrode unit on the positive electrode side and the negative electrode layers of the electrode unit on the negative electrode side are overlapped with each other via the separators.
 図4に示す例示態様でいえば、正負極体100は、図3Aに示す正極ユニット10Aおよび負極ユニット10Bを含む。 Speaking in an illustrative embodiment shown in FIG. 4, the positive and negative electrode body 100 includes a positive electrode units 10A u and the negative electrode unit 10B u shown in FIG. 3A.
 正極ユニット10Aは、4つの正極層11A(すなわち、11A、11A、11Aおよび11A)を有する。各正極層11Aは、3つの正極連結部13A(すなわち、13A、13Aおよび13A)によってそれぞれ電気的に接続されている。 The positive electrode unit 10A u has four positive electrode layer 11A (i.e., 11A 1, 11A 2, 11A 3 and 11A 4). Each positive electrode layer 11A is electrically connected by three positive electrode connecting portions 13A (that is, 13A 1 , 13A 2 and 13A 3 ), respectively.
 同様に、負極ユニット10Bは、4つの負極層11B(すなわち、11B、11B、11Bおよび11B)を有する。各負極層11Bは、3つの負極連結部13B(すなわち、13B、13Bおよび13B)によってそれぞれ電気的に接続されている。 Similarly, the negative electrode unit 10B u has four negative electrode layer 11B (i.e., 11B 1, 11B 2, 11B 3 and 11B 4). Each negative electrode layer 11B is electrically connected by three negative electrode connecting portions 13B (that is, 13B 1 , 13B 2 and 13B 3 ), respectively.
 正負極体100において、各正極層11Aおよび各負極層11Bは、それぞれがセパレータを介して互い違いに重なるように重ね合わせられている。なお、図4では電極層間のセパレータは省略されている。 In the positive electrode body 100, the positive electrode layers 11A and the negative electrode layers 11B are overlapped with each other so as to be alternately overlapped with each other via a separator. In FIG. 4, the separator between the electrode layers is omitted.
 上述のように正負極体100が、正極および負極の両方の電極ユニットを含むことで、正極層11Aと負極層11Bとの位置合わせを容易化することができる。具体的には、各正極層11Aと各負極層11Bとを互い違いに重ね合わせることができるため、電極層間の移動が相互に抑制され得る。よって、電極層間の位置ズレを防止できる。 As described above, the positive and negative electrode bodies 100 include both the positive and negative electrode units, so that the alignment between the positive electrode layer 11A and the negative electrode layer 11B can be facilitated. Specifically, since the positive electrode layers 11A and the negative electrode layers 11B can be alternately overlapped with each other, the movement between the electrode layers can be mutually suppressed. Therefore, the positional deviation between the electrode layers can be prevented.
 正負極体100の幅方向Wにおいて、正極連結部13Aは正負極体100の中心軸に対して一方の側にずれている。より具体的には、正負極体100の平面視において、正極連結部13Aは、正負極体100の中心軸x-x’から離れた位置に位置付けられている。図4に示される平面視でいえば、複数の正極連結部13Aが中心軸x-x’から離れた位置において直線状に整列しているといえる。 In the width direction W of the positive electrode body 100, the positive electrode connecting portion 13A is deviated to one side with respect to the central axis of the positive electrode body 100. More specifically, in the plan view of the positive electrode body 100, the positive electrode connecting portion 13A is positioned at a position away from the central axis xx'of the positive electrode body 100. In the plan view shown in FIG. 4, it can be said that the plurality of positive electrode connecting portions 13A are linearly aligned at positions separated from the central axis xx'.
 また、正負極体100の幅方向Wにおいて、負極連結部13Bは正負極体100の中心軸に対して、正極連結部13Aとは逆の側にずれている。より具体的には、正負極体100の平面視において、負極連結部13Bは、正負極体100の中心軸x-x’から離れた位置に、正極連結部13Aとは逆の側に位置付けられている。図4に示される平面視でいえば、複数の負極連結部13Bが中心軸x-x’から離れた位置において直線状に整列しているといえる。 Further, in the width direction W of the positive electrode body 100, the negative electrode connecting portion 13B is deviated from the central axis of the positive electrode body 100 to the side opposite to the positive electrode connecting portion 13A. More specifically, in the plan view of the positive and negative electrode body 100, the negative electrode connecting portion 13B is positioned at a position away from the central axis xx'of the positive and negative electrode body 100 and on the side opposite to the positive electrode connecting portion 13A. ing. In the plan view shown in FIG. 4, it can be said that the plurality of negative electrode connecting portions 13B are linearly aligned at positions separated from the central axis xx'.
 一実施形態では、正負極体において、正極および負極の少なくともいずれか一方の電極が、3つ以上の電極層および当該電極層の各々に跨るように単一状に設けられた連結部を備える電極ユニットを含む(図5参照)。ここで「単一状」とは、連結部が電極層によって分離されていない1つの領域から成ることを指す。 In one embodiment, in a positive electrode body, an electrode having at least one of the positive electrode and the negative electrode provided in a single shape so as to straddle each of three or more electrode layers and the electrode layers. Includes units (see Figure 5). Here, "single form" means that the connecting portion consists of one region that is not separated by the electrode layer.
 図5Aに示す例示態様でいえば、正極ユニット10A’における正極連結部13Aが、複数の正極層11Aの周縁の一端に跨るように単一状に設けられている。単一の正極連結部13Aが複数の正極層11Aの周縁の一端に沿って長尺に延在しているともいえる。負極ユニット10B’も同様である。つまり、負極ユニット10B’における負極連結部13Bが、複数の負極層11Bの周縁の一端に跨るように単一状に設けられている。単一の負極連結部13Bが複数の負極層11Bの周縁の一端に沿って長尺に延在しているともいえる。 Speaking in an illustrative embodiment shown in FIG. 5A, the positive electrode connecting portion 13A of the positive electrode unit 10A u 'is provided in a single shape so as to extend to one end of the periphery of the plurality of positive electrode layer 11A. It can be said that the single positive electrode connecting portion 13A extends long along one end of the peripheral edge of the plurality of positive electrode layers 11A. The same applies to the negative electrode unit 10B u '. In other words, the negative electrode connecting portion 13B in the anode unit 10B u 'is provided in a single shape so as to extend to one end of the periphery of the plurality of negative electrode layer 11B. It can be said that the single negative electrode connecting portion 13B extends long along one end of the peripheral edge of the plurality of negative electrode layers 11B.
 上述のような構成とすることで、電極ユニット間の位置合わせがより容易になる。また、集電体上に電極層を塗工する場合、塗工回数を減ずることができる。それによって、製造工程を特に容易化することができる。 With the above configuration, the alignment between the electrode units becomes easier. Further, when the electrode layer is applied on the current collector, the number of times of application can be reduced. Thereby, the manufacturing process can be particularly facilitated.
 また、電極ユニットが連結部にて集電を行う場合、各電極層と連結部との接触面積を大きくとることができる。よって、特に低い抵抗を有する二次電池が実現され易くなる。 Further, when the electrode unit collects current at the connecting portion, the contact area between each electrode layer and the connecting portion can be increased. Therefore, a secondary battery having a particularly low resistance can be easily realized.
 本実施形態において、連結部は、少なくとも2つの電極層に跨るように単一状に設けられていればよい。製造工程の容易化および低抵抗化の観点をより重視すれば、連結部は、全ての電極層に跨るように単一状に設けられていることが好ましい。 In the present embodiment, the connecting portion may be provided in a single shape so as to straddle at least two electrode layers. From the viewpoint of facilitating the manufacturing process and reducing the resistance, it is preferable that the connecting portion is provided in a single shape so as to straddle all the electrode layers.
 一実施態様では、電極ユニットにおいて集電を行う集電層は、上述した態様のように連結部を成している(図4および図5など参照)。つまり、互いに隣接する電極層同士をつなぐ連結部の形態を有する集電層から集電が行われてよい。 In one embodiment, the current collector layer that collects current in the electrode unit forms a connecting portion as in the above-described embodiment (see FIGS. 4 and 5 and the like). That is, current collection may be performed from a current collector layer having the form of a connecting portion that connects the electrode layers adjacent to each other.
 より具体的には、図4および図5に示す正極ユニット10Aおよび10A’において、正極層11Aは、当該正極層11Aに近接する集電層12Aにて集電を行う。正極層11Aは、当該正極層11Aに近接する集電層12Aおよび12Aにて集電を行う。正極層11Aは、当該正極層11Aに近接する集電層12Aおよび12Aにて集電を行う。また、正極層11Aは、当該正極層11Aに近接する集電層12Aにて集電を行う。負極ユニット10Bおよび10B’においても、同様である。このように、各電極層に隣接する連結部として設けられた各集電層を介して集電が行われる。 More specifically, in the positive electrode units 10A u and 10A u 'shown in FIGS. 4 and 5, the positive electrode layer 11A 1 performs current collection at collector layer 12A 1 adjacent to the positive electrode layer 11A 1. The positive electrode layer 11A 2 collects current in the current collecting layers 12A 1 and 12A 2 adjacent to the positive electrode layer 11A 2 . The positive electrode layer 11A 3 collects current in the current collecting layers 12A 2 and 12A 3 adjacent to the positive electrode layer 11A 3 . Further, the positive electrode layer 11A 4 collects current in the current collecting layer 12A 3 close to the positive electrode layer 11A 4 . Even in the negative electrode unit 10B u and 10B u ', is the same. In this way, current collection is performed via each current collector layer provided as a connecting portion adjacent to each electrode layer.
 上述のような構成とすることで、電極組立体に用いる部材を最小限にでき、二次電池の高エネルギー密度化および/または省スペース化がもたらされ易くなる。 With the above-mentioned configuration, the number of members used for the electrode assembly can be minimized, and the secondary battery can easily bring about high energy density and / or space saving.
 別の実施態様では、電極ユニットにおいて集電を行う集電層は、連結部以外の部分が成している。図6Aに示す例示態様でいえば、正極ユニット10A’’は、正極集電体1Aおよび当該正極集電体1A上に正極連結部13Aを介して形成された2つ以上の正極層11Aを有する。 In another embodiment, the current collecting layer for collecting current in the electrode unit is formed of a portion other than the connecting portion. In the exemplary embodiment shown in FIG. 6A, the positive electrode unit 10A u ″ has the positive electrode current collector 1A and two or more positive electrode layers 11A formed on the positive electrode current collector 1A via the positive electrode connecting portion 13A. Have.
 正極ユニット10A’’はまた、正極層11Aに近接して正極集電層12Aを有している。ここで、正極集電層12Aは、連結部とは異なる正極突出部14Aとして設けられている。かかる正極突出部14Aは、図6Aに示されるような電極ユニットを展開した平面視において、複数の正極層11Aが整列する方向に対して略直交する方向に突出していてよい。正極ユニット10A’’は、かかる連結部とは異なる正極集電層12Aにて集電を行う構造を有している。同様に、負極ユニット10B’’は、連結部とは異なる負極突出部14Bとして設けられた負極集電層12Bで集電を行う。負極ユニット10B’’でも、負極突出部14Bは、図6Aに示されるような電極ユニットを展開した平面視において、複数の負極層11Bが整列する方向に対して略直交する方向に突出していてよい。 The positive electrode unit 10A u '' also has a positive electrode current collecting layer 12A in close proximity to the positive electrode layer 11A. Here, the positive electrode current collector layer 12A is provided as a positive electrode protruding portion 14A different from the connecting portion. The positive electrode projecting portion 14A may project in a direction substantially orthogonal to the direction in which the plurality of positive electrode layers 11A are aligned in a plan view in which the electrode unit as shown in FIG. 6A is developed. The positive electrode unit 10A u '' has a structure in which current is collected by the positive electrode current collecting layer 12A different from the connecting portion. Similarly, the negative electrode unit 10B u '' performs current collection at the negative electrode collector layer 12B provided as different negative electrode protrusion 14B and the connecting part. Even in the negative electrode unit 10B u '', the negative electrode protruding portion 14B protrudes in a direction substantially orthogonal to the direction in which the plurality of negative electrode layers 11B are aligned in a plan view in which the electrode unit is developed as shown in FIG. 6A. Good.
 より具体的には、正極ユニット10A’’において、正極層11A、11A、11Aおよび11Aは、それらの各正極層に近接する正極集電層12A、12A、12Aおよび12Aにてそれぞれ集電を行う。負極ユニット10B’’においても、同様である。つまり、負極ユニット10B’’において、負極層11B、11B、11Bおよび11Bは、それらの各負極層に近接する負極集電層12B、12B、12Bおよび12Bにてそれぞれ集電を行う。 More specifically, in the positive electrode unit 10A u '', the positive electrode layer 11A 1, 11A 2, 11A 3 and 11A 4 are positive collector layer 12A 1 adjacent to their respective positive electrode layer of, 12A 2, 12A 3 and perform each collector at 12A 4. The same applies to the negative electrode unit 10B u ''. That is, in the negative electrode unit 10B u '', the negative electrode layers 11B 1 , 11B 2 , 11B 3 and 11B 4 are formed in the negative electrode current collecting layers 12B 1 , 12B 2 , 12B 3 and 12B 4 adjacent to each of the negative electrode layers. Each collects electricity.
 上述のような構成とすることで、当該集電層と電極端子との接続をよりフレキシブルにすることができる。また、連結部に設けられた集電層にて集電を行う構造と比して、正極と負極との間にセパレータを介在させやすく、製造工程を特に容易化させやすい。 With the above configuration, the connection between the current collector layer and the electrode terminals can be made more flexible. Further, as compared with the structure in which the current is collected by the current collecting layer provided in the connecting portion, the separator is easily interposed between the positive electrode and the negative electrode, and the manufacturing process is particularly easy to be facilitated.
 本発明において、電極組立体は、電極を折り曲げることを通じて構成することができる。例えば、電極が3つ以上の電極層を備える正負極体100~100’’において、電極ユニット10A~10A’’および10B~10B’’の連結部13Aおよび13Bを、つづら折りによって折り曲げることで電極組立体は構成される。それによって、電極ユニット10A~10A’’および10B~10B’’の各電極層11Aおよび11Bが、電極組立体として各電極を構成する。 In the present invention, the electrode assembly can be constructed by bending the electrodes. For example, 'the electrode units 10A u ~ 10A u' negative polar body 100-100 'comprising an electrode has three or more electrode layers connecting portions 13A and 13B of the' and 10B u ~ 10B u '', bent by zigzag This constitutes the electrode assembly. Thereby, the electrode layers 11A and 11B of the electrode units 10A u ~ 10A u '' and 10B u ~ 10B u '' constitute each electrode as the electrode assembly.
 ここで、「つづら折り」とは、例えば以下の方法を指す(図4など参照)。
 ・電極ユニットの連結部13Aおよび13Bを、長手方向Lに沿って矢印の方向fに折り曲げる。
 ・次に、連結部13Aおよび13Bを、長手方向Lに沿って矢印の方向fに折り曲げる。
 ・最後に、連結部13Aおよび13Bを、長手方向Lに沿って矢印の方向fに折り曲げる。
Here, "spin turn" refers to, for example, the following method (see FIG. 4 and the like).
-Bend the connecting portions 13A 1 and 13B 1 of the electrode unit along the longitudinal direction L in the direction f 1 of the arrow.
· Next, the connecting portions 13A 2 and 13B 2, along the longitudinal direction L bent in the direction f 2 of the arrows.
- Finally, the connecting portion 13A 3 and 13B 3, bent in the direction f 3 of the arrows along the longitudinal direction L.
 本発明においては、このように電極ユニットを含む正負極体をまず作成し、この正負極体を用いて電極組立体を作成するため、電極層を片面あたり1つのみしか有さない電極単一ユニットのみを用いる場合と比較して、二次電池を省スペース化でき、また製造工程を容易化できる。 In the present invention, since the positive and negative electrodes including the electrode unit are first prepared and the electrode assembly is prepared using the positive and negative electrodes, a single electrode having only one electrode layer per side is used. Compared with the case where only the unit is used, the space of the secondary battery can be saved and the manufacturing process can be facilitated.
 一実施形態では、正負極体において、少なくともいずれか一方の電極が、2つの電極層および当該電極層間に設けられた連結部を備える複数の電極ユニットを含む。 In one embodiment, in the positive electrode body, at least one of the electrodes includes a plurality of electrode units including two electrode layers and a connecting portion provided between the electrode layers.
 図7Aに示す例示態様でいえば、正極ユニット10A’’’では、正極集電体1Aを含んで構成された2つの正極層11Aが正極連結部13Aを介して接続されている。正極ユニット10A’’’はまた、正極層11Aに近接して正極集電層12Aを有している。ここで、正極集電層12Aは正極連結部13Aに設けられている。負極ユニット10B’’’も同様の構造を有する。 In the exemplary embodiment shown in FIG. 7A, in the positive electrode unit 10A u '', two positive electrode layers 11A including the positive electrode current collector 1A are connected via the positive electrode connecting portion 13A. The positive electrode unit 10A u '''' also has a positive electrode current collecting layer 12A in close proximity to the positive electrode layer 11A. Here, the positive electrode current collector layer 12A is provided in the positive electrode connecting portion 13A. The negative electrode unit 10B u '''' has a similar structure.
 図8に示す例示態様でいえば、正負極体100’’’は、2つの正極ユニット10A’’’および2つの負極ユニット10B’’’を含む。正負極体100’’’において、正極ユニット10A’’’および負極ユニット10B’’’は、それぞれ交互に重ね合わせられている。なお、図8では電極間のセパレータは省略されている。 In the exemplary embodiment shown in FIG. 8, the positive and negative electrode bodies 100 ″ ″ include two positive electrode units 10A u ″ and two negative electrode units 10B u ″ ″. In the positive electrode body 100 ″, the positive electrode unit 10A u ″ and the negative electrode unit 10B u ″ are alternately superposed. In FIG. 8, the separator between the electrodes is omitted.
 正負極体100’’’の平面視において、正極連結部13Aは、正負極体100’’’の中心軸x-x’から離れた位置に位置付けられている。また、正負極体100’’’の平面視において、負極連結部13Bは、正負極体100’’’の中心軸x-x’から離れた位置に、正極連結部13Aとは逆の側に位置付けられている。 In the plan view of the positive electrode body 100 ″, the positive electrode connecting portion 13A is positioned at a position away from the central axis xx ″ of the positive electrode body 100 ″. Further, in the plan view of the positive and negative electrode body 100''', the negative electrode connecting portion 13B is located at a position away from the central axis xx'of the positive and negative electrode body 100''' and on the side opposite to the positive electrode connecting portion 13A. It is positioned.
 複数の正極ユニット10A’’’はそれぞれ、各正極ユニット10A’’’における連結部13Aとして設けられた正極集電層12Aで集電を行う構造を有している。同様に、複数の負極ユニット10B’’’はそれぞれ、各負極ユニット10B’’’における連結部13Bとして設けられた負極集電層12Bで集電を行う構造を有している。 'Respectively, each positive electrode unit 10A u' plurality of cathode units 10A u '' has a structure for collecting current in the positive current collector layer 12A provided as the connecting portion 13A in the ''. Similarly, 'respectively, each negative electrode unit 10B u' more negative electrode units 10B u '' has a structure for collecting current on the negative electrode collector layer 12B provided as a connecting portion 13B at the ''.
 正負極体100’’’における電極ユニット10A’’’および10B’’’の連結部13Aおよび13Bを1回折り曲げることによって、電極組立体は構成される。それによって、電極ユニット10A’’’および10B’’’の各電極層11Aおよび11Bが各電極を構成する。 By bending the coupling portion 13A and 13B of the positive and negative electrode body 100 '''electrode units 10A u in' '' and 10B u '' '1 times, the electrode assembly is constructed. As a result, the electrode layers 11A and 11B of the electrode units 10A u ″ and 10B u ″'' constitute each electrode.
 上述のように、正負極体が、正極および負極の電極ユニットを複数有する場合、各電極ユニットの連結部をそれぞれ1回のみ折り曲げることで電極組立体を構成することができ、製造工程をより容易化することができる。 As described above, when the positive and negative electrode bodies have a plurality of positive and negative electrode units, the electrode assembly can be constructed by bending the connecting portion of each electrode unit only once, which makes the manufacturing process easier. Can be transformed into.
 上述した正負極体の態様において、電極層は、平面視にて円形状(図3A、図5A、図6Aおよび図7A参照)、四角形状(図3B、図5B、図6Bおよび図7B参照)、またはその他の異形状を有していてよい。 In the aspect of the positive electrode body described above, the electrode layer has a circular shape (see FIGS. 3A, 5A, 6A and 7A) and a quadrangular shape (see FIGS. 3B, 5B, 6B and 7B) in a plan view. , Or other irregular shapes.
 一実施形態では、図4および図5に示す正負極体100および100’から成る電極組立体200は、電解質(図示せず)とともに外装体300に収容されて二次電池400を構成する(図9参照)。 In one embodiment, the electrode assembly 200 composed of the positive and negative electrode bodies 100 and 100'shown in FIGS. 4 and 5 is housed in the exterior body 300 together with the electrolyte (not shown) to form the secondary battery 400 (FIG. 4). 9).
 外装体300は、二次電池400の平面視にて絶縁部300Iによって互いに分離されている正極導電部300Aと負極導電部300Bとを有している。 The exterior body 300 has a positive electrode conductive portion 300A and a negative electrode conductive portion 300B that are separated from each other by an insulating portion 300I in a plan view of the secondary battery 400.
 電極組立体200における正極集電層12A(すなわち、正極連結部13A)および負極集電層12B(すなわち、負極連結部13B)は、外装体300における正極導電部300Aおよび負極導電部300Bにそれぞれ接している。 The positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) and the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) in the electrode assembly 200 are in contact with the positive electrode conductive portion 300A and the negative electrode conductive portion 300B of the exterior body 300, respectively. ing.
 図10Aおよび図10Bに例示する二次電池400の断面視に基づいて、より詳細に説明する。電極組立体200において、正極10A(すなわち、正極集電体1Aおよび正極材2A)と負極10B(すなわち、負極集電体1Bおよび負極材2B)とは、セパレータ20を介して交互に積層されている。 A more detailed description will be given based on the cross-sectional view of the secondary battery 400 illustrated in FIGS. 10A and 10B. In the electrode assembly 200, the positive electrode 10A (that is, the positive electrode current collector 1A and the positive electrode material 2A) and the negative electrode 10B (that is, the negative electrode current collector 1B and the negative electrode material 2B) are alternately laminated via the separator 20. There is.
 二次電池400の断面視において、正極集電体1A上に正極材2Aを形成して成る正極層と、負極集電体1B上に負極材2Bを形成して成る負極層とは互いに対向している。 In a cross-sectional view of the secondary battery 400, the positive electrode layer formed by forming the positive electrode material 2A on the positive electrode current collector 1A and the negative electrode layer formed by forming the negative electrode material 2B on the negative electrode current collector 1B face each other. ing.
 ある好適な態様では、正極および負極の両方の電極が電極ユニットを含み、当該電極ユニットにおける連結部が二次電池の断面視にて異極の電極の側方にそれぞれ位置付けられている。つまり、正極の電極ユニットと負極ユニットとが互いに電極組立体を構成すべく組み合わされた場合において、一方の電極ユニットにおける連結部の位置が、他方の電極ユニットの電極部の側方(特に好ましくは、その他方の電極ユニットの連結部が設けられている側方とは反対側の側方)に近位するようになっていてよい。これにより、つづら折りによる電極組立体を構成し易くなると共に、得られる電極組立体において連結部を出力タブとして設けやすくなる。 In one preferred embodiment, both the positive and negative electrodes include an electrode unit, and the connecting portion of the electrode unit is positioned to the side of the electrode of the opposite electrode in a cross-sectional view of the secondary battery. That is, when the positive electrode unit and the negative electrode unit are combined to form an electrode assembly with each other, the position of the connecting portion in one electrode unit is lateral to the electrode portion of the other electrode unit (particularly preferably). , The side opposite to the side where the connecting portion of the other electrode unit is provided) may be proximal. As a result, it becomes easy to construct the electrode assembly by the zigzag folding, and it becomes easy to provide the connecting portion as an output tab in the obtained electrode assembly.
 正極側の電極ユニットを例にとると、各正極層は正極連結部13Aにてそれぞれ電気的に接続されており、当該正極連結部13Aは二次電池400の断面視にて負極10B(すなわち、負極層)の側方に位置付けられている。ここでいう「側方」は、二次電池の断面視において電極組立体の電極積層方向に対して直交する方向と捉えることができる。また、正極連結部13Aは、外装体300における正極導電部300Aに接している(図10A参照)。 Taking the electrode unit on the positive electrode side as an example, each positive electrode layer is electrically connected by a positive electrode connecting portion 13A, and the positive electrode connecting portion 13A is connected to the negative electrode 10B (that is, that is, in a cross-sectional view of the secondary battery 400). It is positioned on the side of the negative electrode layer). The "side" here can be regarded as a direction orthogonal to the electrode stacking direction of the electrode assembly in the cross-sectional view of the secondary battery. Further, the positive electrode connecting portion 13A is in contact with the positive electrode conductive portion 300A of the exterior body 300 (see FIG. 10A).
 同様に、負極側の電極ユニットでは、各負極層は負極連結部13Bにてそれぞれ電気的に接続されており、当該負極連結部13Bは二次電池400の断面視にて正極10A(すなわち、正極層)の側方に位置付けられている。また、負極連結部13Bは、外装体300における負極導電部300Bに接している(図10B参照)。 Similarly, in the electrode unit on the negative electrode side, each negative electrode layer is electrically connected by the negative electrode connecting portion 13B, and the negative electrode connecting portion 13B is connected to the positive electrode 10A (that is, the positive electrode) in a cross-sectional view of the secondary battery 400. It is positioned on the side of the layer). Further, the negative electrode connecting portion 13B is in contact with the negative electrode conductive portion 300B in the exterior body 300 (see FIG. 10B).
 上述のように、正極10Aは、正極層に近接する正極集電層12A(すなわち、正極連結部13A)にて集電を行う。また、負極10Bは、負極層に近接する負極集電層12B(すなわち、負極連結部13B)にて集電を行う。 As described above, the positive electrode 10A collects current at the positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) adjacent to the positive electrode layer. Further, the negative electrode 10B collects electricity at the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) close to the negative electrode layer.
 図6に示す正負極体100’’から成る電極組立体を有する二次電池では、正極突出部が、外装体における正極導電部に接しており、また負極突出部が、外装体における負極導電部に接している。すなわち、正極は、正極層に近接する正極突出部に設けられた正極集電層にて集電を行う。また、負極は、負極層に近接する負極突出部に設けられた負極集電層にて集電を行う。 In the secondary battery having the electrode assembly composed of the positive electrode body 100 ″ shown in FIG. 6, the positive electrode protruding portion is in contact with the positive electrode conductive portion in the exterior body, and the negative electrode protruding portion is the negative electrode conductive portion in the exterior body. Is in contact with. That is, the positive electrode collects electricity at the positive electrode current collecting layer provided in the positive electrode protruding portion close to the positive electrode layer. Further, the negative electrode collects electricity from the negative electrode current collecting layer provided in the negative electrode protruding portion close to the negative electrode layer.
 正負極体100から成る電極組立体200は、好ましくは、複数の連結部を備える電極ユニットをつづら折りすることによって構成される。そのため、二次電池400の断面視において、正極連結部13Aおよび13Aと、正極連結部13Aとは、負極10Bにおける異なる側方にそれぞれ位置付けられる(図10A参照)。また、負極連結部13Bおよび13Bと、負極連結部13Bとは、正極10Aにおける異なる側方にそれぞれ位置付けられる(図10B参照)。 The electrode assembly 200 composed of the positive and negative electrode bodies 100 is preferably configured by sequentially folding an electrode unit having a plurality of connecting portions. Therefore, in the cross-sectional view of the secondary battery 400, the positive electrode connecting portions 13A 1 and 13A 3 and the positive electrode connecting portion 13A 2 are positioned on different sides of the negative electrode 10B (see FIG. 10A). Further, the negative electrode connecting portions 13B 1 and 13B 3 and the negative electrode connecting portion 13B 2 are positioned on different sides of the positive electrode 10A (see FIG. 10B).
 正負極体100’から成る電極組立体200は、単一状の連結部を備える電極ユニットをつづら折りすることによって構成される。そのため、二次電池400の断面視において、正極連結部13Aおよび13Aと、正極連結部13Aとは、負極10Bにおける異なる側方にそれぞれ位置付けられるように延在している(図10A参照)。また、負極連結部13Bおよび13Bと、負極連結部13Bとは、正極10Aにおける異なる側方にそれぞれ位置付けられるように延在している(図10B参照)。 The electrode assembly 200 made of the positive and negative electrode bodies 100'is formed by folding an electrode unit having a single connecting portion in a zigzag manner. Therefore, in the cross-sectional view of the secondary battery 400, the positive electrode connecting portions 13A 1 and 13A 3 and the positive electrode connecting portion 13A 2 extend so as to be positioned on different sides of the negative electrode 10B (see FIG. 10A). ). Further, the negative electrode connecting portions 13B 1 and 13B 3 and the negative electrode connecting portion 13B 2 extend so as to be positioned on different sides of the positive electrode 10A (see FIG. 10B).
 一実施形態では、二次電池の断面視において、隣り合う集電層が互いに接着されている。図示する例示態様でいえば、二次電池400の断面視において、隣り合う正極集電層(すなわち、正極連結部13Aおよび13A)が互いに接着されている(図11A参照)。また、隣り合う負極集電層(すなわち、負極連結部13Bおよび13B)が互いに接着されている(図11B参照)。図示されるように、隣り合う集電層は、個別に折り曲げられた状態で互いに接着している。なお、集電層/連結部に関連して用いる「接着」といった用語は、広義には、対象となる集電層/連結部が互いに電気的に接続された状態にあることを意味しており、例えば、溶着および接合など様々な具体的態様を包括する。 In one embodiment, adjacent current collector layers are adhered to each other in a cross-sectional view of the secondary battery. In the illustrated embodiment, in the cross-sectional view of the secondary battery 400, adjacent positive electrode current collector layers (that is, positive electrode connecting portions 13A 1 and 13A 3 ) are adhered to each other (see FIG. 11A). Further, adjacent negative electrode current collector layers (that is, negative electrode connecting portions 13B 1 and 13B 3 ) are adhered to each other (see FIG. 11B). As shown, adjacent current collector layers are individually folded and adhered to each other. In a broad sense, the term "adhesion" used in connection with the current collector layer / connecting portion means that the target current collecting layer / connecting portion is electrically connected to each other. , For example, various specific aspects such as welding and bonding.
 二次電池の断面視にて隣り合う集電層を互いに接着することで、外装体との電気的な接続がより容易となる。隣り合う集電層のうち、少なくとも2つが互いに接着されていることが好ましく、例えば隣り合う全ての集電層が互いに接着されている。 By adhering adjacent current collector layers to each other in a cross-sectional view of the secondary battery, electrical connection with the exterior body becomes easier. It is preferable that at least two of the adjacent current collector layers are adhered to each other, for example, all the adjacent current collector layers are adhered to each other.
 一実施形態では、二次電池400の断面視において、外装体300’は絶縁部300I’によって互いに分離されている正極導電部300A’と負極導電部300B’とを有している(図12および図13参照)。 In one embodiment, in a cross-sectional view of the secondary battery 400, the exterior body 300'has a positive electrode conductive portion 300A'and a negative electrode conductive portion 300B' separated from each other by an insulating portion 300I'(FIG. 12 and FIG. 12 and See FIG. 13).
 電極組立体200における正極連結部13Aおよび負極連結部13Bは、外装体300’における正極導電部300A’および負極導電部300B’にそれぞれ接している(図13参照)。本実施形態に係る二次電池400を平面視で捉えると、正極連結部13Aおよび負極連結部13Bは、外装体300’と離隔している(図12参照)。 The positive electrode connecting portion 13A and the negative electrode connecting portion 13B in the electrode assembly 200 are in contact with the positive electrode conductive portion 300A'and the negative electrode conductive portion 300B' in the exterior body 300', respectively (see FIG. 13). When the secondary battery 400 according to the present embodiment is viewed in a plan view, the positive electrode connecting portion 13A and the negative electrode connecting portion 13B are separated from the exterior body 300'(see FIG. 12).
 各正極層は正極連結部13Aにてそれぞれ電気的な接続が為されており、正極連結部13Aが外装体300における正極導電部300Aに接している(図13A参照)。また、各負極層は負極連結部13Bにてそれぞれ電気的な接続が為されており、負極連結部13Bが負極導電部300Bに接している(図13B参照)。 Each positive electrode layer is electrically connected by the positive electrode connecting portion 13A, and the positive electrode connecting portion 13A is in contact with the positive electrode conductive portion 300A of the exterior body 300 (see FIG. 13A). Further, each negative electrode layer is electrically connected at the negative electrode connecting portion 13B, and the negative electrode connecting portion 13B is in contact with the negative electrode conductive portion 300B (see FIG. 13B).
 一実施形態では、図8に示す正負極体100’’’から成る電極組立体200’は、電解質(図示せず)とともに外装体300に収容されて二次電池400を構成する(図14参照)。 In one embodiment, the electrode assembly 200'consisting of the positive and negative electrode bodies 100'''shown in FIG. 8 is housed in the exterior body 300 together with the electrolyte (not shown) to form the secondary battery 400 (see FIG. 14). ).
 電極組立体200’における正極集電層12A(すなわち、正極連結部13A)および負極集電層12B(すなわち、負極連結部13B)は、外装体300における正極導電部300Aおよび負極導電部300Bにそれぞれ接している。 The positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) and the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) in the electrode assembly 200'are attached to the positive electrode conductive portion 300A and the negative electrode conductive portion 300B in the exterior body 300, respectively. I'm in contact.
 図15Aおよび図15Bに例示する二次電池400の断面視に基づいて、より詳細に説明する。電極組立体200’において、正極10A(すなわち、正極集電体1Aおよび正極材2A)と負極10B(すなわち、負極集電体1Bおよび負極材2B)とは、セパレータ20を介して交互に積層されている。 A more detailed description will be given based on the cross-sectional view of the secondary battery 400 illustrated in FIGS. 15A and 15B. In the electrode assembly 200', the positive electrode 10A (that is, the positive electrode current collector 1A and the positive electrode material 2A) and the negative electrode 10B (that is, the negative electrode current collector 1B and the negative electrode material 2B) are alternately laminated via the separator 20. ing.
 二次電池400の断面視において、正極集電体1A上に正極材2Aを形成した正極層と、負極集電体1B上に負極材2Bを形成した負極層とは互いに対向している。 In a cross-sectional view of the secondary battery 400, the positive electrode layer in which the positive electrode material 2A is formed on the positive electrode current collector 1A and the negative electrode layer in which the negative electrode material 2B is formed on the negative electrode current collector 1B face each other.
 ここで、各正極ユニットにおける2つの正極層は正極連結部13Aにて互いに電気的に接続されており、当該正極連結部13Aは二次電池400の断面視にて負極10B(すなわち、負極層)の側方に位置付けられている。また、正極連結部13Aは、外装体300における正極導電部300Aに接している(図15A参照)。 Here, the two positive electrode layers in each positive electrode unit are electrically connected to each other by the positive electrode connecting portion 13A, and the positive electrode connecting portion 13A is the negative electrode 10B (that is, the negative electrode layer) in the cross-sectional view of the secondary battery 400. It is positioned on the side of. Further, the positive electrode connecting portion 13A is in contact with the positive electrode conductive portion 300A of the exterior body 300 (see FIG. 15A).
 同様に、各負極ユニットにおける2つの負極層は負極連結部13Bにて互いに電気的に接続されており、当該負極連結部13Bは二次電池400の断面視にて正極10A(すなわち、正極層)の側方に位置付けられている。また、負極連結部13Bは、外装体300における負極導電部300Bに接している(図15B参照)。 Similarly, the two negative electrode layers in each negative electrode unit are electrically connected to each other by the negative electrode connecting portion 13B, and the negative electrode connecting portion 13B is the positive electrode 10A (that is, the positive electrode layer) in the cross-sectional view of the secondary battery 400. It is positioned on the side of. Further, the negative electrode connecting portion 13B is in contact with the negative electrode conductive portion 300B in the exterior body 300 (see FIG. 15B).
 本実施形態では、二次電池の断面視にて隣り合う集電層は互いに接している。図示する例示態様でいえば、二次電池400の断面視において、隣り合う正極集電層(すなわち、正極連結部13Aおよび13A)が互いに接している(図15A参照)。また、隣り合う負極集電層(すなわち、負極連結部13Bおよび13B)が互いに接している(図15B参照)。ここで、当該隣り合う集電層は互いに接着されていることが好ましい。 In the present embodiment, adjacent current collector layers are in contact with each other in a cross-sectional view of the secondary battery. In the illustrated embodiment, in a cross-sectional view of the secondary battery 400, adjacent positive electrode current collector layers (that is, positive electrode connecting portions 13A 1 and 13A 2 ) are in contact with each other (see FIG. 15A). Further, adjacent negative electrode current collector layers (that is, negative electrode connecting portions 13B 1 and 13B 2 ) are in contact with each other (see FIG. 15B). Here, it is preferable that the adjacent current collector layers are adhered to each other.
 上述のように、正極10Aでは、正極層に近接する正極集電層12A(すなわち、正極連結部13A)にて集電が行われる。また、負極10Bでは、負極層に近接する負極集電層12B(すなわち、負極連結部13B)にて集電が行われる。 As described above, in the positive electrode 10A, current collection is performed by the positive electrode current collecting layer 12A (that is, the positive electrode connecting portion 13A) adjacent to the positive electrode layer. Further, in the negative electrode 10B, current collection is performed by the negative electrode current collecting layer 12B (that is, the negative electrode connecting portion 13B) close to the negative electrode layer.
 正負極体100’’’から成る電極組立体200’は、電極ユニットの連結部を1回折り曲げることによって構成される。そのため、二次電池400の断面視において、正極連結部13Aおよび13Aは、負極10Bにおける同一の側方にそれぞれ位置付けられる(図15A参照)。また、負極連結部13Bおよび13Bは、正極10Aにおける同一の側方にそれぞれ位置付けられる(図15B参照)。 The electrode assembly 200'consisting of the positive and negative electrode bodies 100'''is formed by bending the connecting portion of the electrode unit once. Therefore, in the cross-sectional view of the secondary battery 400, the positive electrode connecting portions 13A 1 and 13A 2 are positioned on the same side of the negative electrode 10B (see FIG. 15A). Further, the negative electrode connecting portions 13B 1 and 13B 2 are respectively positioned on the same side of the positive electrode 10A (see FIG. 15B).
[本発明に係る二次電池の各構成部材の材質など]
 正極は、少なくとも正極材および正極集電体から構成されている。正極材には電極活物質として正極活物質が含まれている。また、負極は、少なくとも負極材および負極集電体から構成されている。負極材には電極活物質として負極活物質が含まれている。
[Material of each component of the secondary battery according to the present invention, etc.]
The positive electrode is composed of at least a positive electrode material and a positive electrode current collector. The positive electrode material contains a positive electrode active material as an electrode active material. Further, the negative electrode is composed of at least a negative electrode material and a negative electrode current collector. The negative electrode material contains a negative electrode active material as an electrode active material.
 正極材および負極材に含まれる電極活物質、すなわち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。 The electrode active materials contained in the positive electrode material and the negative electrode material, that is, the positive electrode active material and the negative electrode active material are substances that are directly involved in the transfer of electrons in the secondary battery, and are mainly responsible for charge / discharge, that is, the battery reaction. It is a substance.
 より具体的には、「正極活物質」および「負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。 More specifically, ions are brought to the electrolyte due to the "positive electrode active material" and the "negative electrode active material", and such ions move between the positive electrode and the negative electrode to transfer electrons and fill the electrolyte. Discharge is done.
 正極材および負極材は、特にリチウムイオンを吸蔵放出可能な電極活物質を含むことが好ましい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。 It is particularly preferable that the positive electrode material and the negative electrode material contain an electrode active material capable of occluding and releasing lithium ions. That is, it is preferable to use a non-aqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte to charge and discharge the battery.
 充放電にリチウムイオンが関与する場合、本発明の二次電池は、いわゆる“リチウムイオン電池”に相当し、正極材を含む正極層および負極材を含む負極層がリチウムイオンを吸蔵放出可能な層である。 When lithium ions are involved in charging and discharging, the secondary battery of the present invention corresponds to a so-called "lithium ion battery", and a positive electrode layer containing a positive electrode material and a negative electrode layer containing a negative electrode material can occlude and release lithium ions. Is.
 正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダー(「結着材」とも称される)が正極材に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材に含まれていてもよい。 The positive electrode active material is composed of particles, for example, and it is preferable that the positive electrode material contains a binder (also referred to as a "binding material") for more sufficient contact between particles and shape retention. Further, a conductive auxiliary agent may be contained in the positive electrode material in order to facilitate the transfer of electrons that promote the battery reaction.
 同様に、負極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材に含まれていてもよい。 Similarly, where the negative electrode active material is composed of, for example, granules, it preferably contains a binder for better contact between the particles and shape retention, and is conductive to facilitate the transfer of electrons that drive the battery reaction. Auxiliary agent may be contained in the negative electrode material.
 このように、複数の成分が含有されて成る形態ゆえ、正極材および負極材はそれぞれ「正極合材」および「負極合材」などと称すこともできる。 As described above, the positive electrode material and the negative electrode material can also be referred to as "positive electrode mixture" and "negative electrode mixture", respectively, because of the form in which a plurality of components are contained.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本実施態様に係る二次電池の正極材においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものである。そのような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材に含まれる正極活物質がコバルト酸リチウムとなっている。 The positive electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material of the secondary battery according to the present embodiment, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material. For example, the positive electrode active material is lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal. Such a positive electrode active material may be contained as a single species, but may be contained in combination of two or more species. In a more preferred embodiment, the positive electrode active material contained in the positive electrode material is lithium cobalt oxide.
 正極材に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維などの炭素繊維、銅、ニッケル、アルミニウムおよび銀などの金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。より好適な態様では正極材のバインダーはポリフッ化ビニリデンであり、また、別のより好適な態様では正極材の導電助剤はカーボンブラックである。さらに好適な態様では、正極材のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっている。 The binder that can be contained in the positive electrode material is not particularly limited, but is not particularly limited, such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polytetrafluoroethylene. At least one species selected from the group consisting of can be mentioned. The conductive auxiliary agent that can be contained in the positive electrode material is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor-grown carbon. At least one selected from carbon fibers such as fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. In a more preferred embodiment, the binder of the positive electrode material is polyvinylidene fluoride, and in another more preferred embodiment, the conductive auxiliary agent of the positive electrode material is carbon black. In a more preferred embodiment, the binder and conductive aid of the positive electrode material are a combination of polyvinylidene fluoride and carbon black.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, lithium alloys, and the like.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金である。そのような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。より好適な態様では負極活物質が人造黒鉛となっている。 Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, and diamond-like carbon. In particular, graphite is preferable because it has high electron conductivity and excellent adhesion to a negative electrode current collector. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It is a binary, ternary or higher alloy of a metal such as La and lithium. Such oxides are preferably amorphous as their structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur. In a more preferred embodiment, the negative electrode active material is artificial graphite.
 負極材に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。より好適な実施態様では負極材に含まれるバインダーはスチレンブタジエンゴムとなっている。負極材に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維などの炭素繊維、銅、ニッケル、アルミニウムおよび銀などの金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be contained in the negative electrode material is not particularly limited, but at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin and polyamide-imide resin may be used. Can be mentioned. In a more preferred embodiment, the binder contained in the negative electrode material is styrene-butadiene rubber. The conductive auxiliary agent that can be contained in the negative electrode material is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor-grown carbon. At least one selected from carbon fibers such as fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. The negative electrode material may contain a component derived from a thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
 さらに好適な態様では、負極材における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっている。 In a more preferred embodiment, the negative electrode active material and the binder in the negative electrode material are a combination of artificial graphite and styrene-butadiene rubber.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。そのような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタルなどである。正極に用いられる正極集電体は、アルミニウム、ステンレス鋼およびニッケルなどから成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔である。一方、負極に用いられる負極集電体は、銅、ステンレス鋼およびニッケルなどから成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔である。 The positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated by the active material due to the battery reaction. Such a current collector may be a sheet-like metal member and may have a perforated or perforated form. For example, the current collector may be metal leaf, punching metal, mesh or expanded metal. The positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and is, for example, an aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode is preferably one made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and is, for example, a copper foil.
 セパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面は無機粒子コート層および/または接着層などにより覆われていてもよい。セパレータの表面は接着性を有していてもよい。 The separator is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte. In other words, the separator can be said to be a member through which ions pass while preventing electronic contact between the positive electrode and the negative electrode. Preferably, the separator is a porous or microporous insulating member and has a film morphology due to its small thickness. Although only an example, a microporous polyolefin membrane may be used as the separator. In this regard, the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP". The surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like. The surface of the separator may have adhesiveness.
 本発明に係る二次電池では、正極、負極およびセパレータを含む電極組立体が電解質と共に外装体に封入されている。電解質は電極(正極・負極)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の電解質であっても、または水を含む“水系”の電解質であってもよい。本発明に係る二次電池は、電解質として“非水系”の溶媒と、溶質とを含む電解質が用いられた非水電解質二次電池が好ましい。電解質は液体状またはゲル状などの形態を有し得る(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。 In the secondary battery according to the present invention, an electrode assembly including a positive electrode, a negative electrode and a separator is enclosed in an outer body together with an electrolyte. The electrolyte assists the movement of metal ions released from the electrodes (positive electrode / negative electrode). The electrolyte may be a "non-aqueous" electrolyte such as an organic electrolyte and an organic solvent, or it may be a "water-based" electrolyte containing water. The secondary battery according to the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a "non-aqueous" solvent and a solute is used as the electrolyte. The electrolyte may have a form such as liquid or gel (note that the "liquid" non-aqueous electrolyte is also referred to as "non-aqueous electrolyte solution" in the present specification).
 具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。本発明の1つの好適な実施態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。具体的な非水電解質の溶質としては、例えば、LiPFおよびLiBFなどのLi塩が好ましい。 As a specific non-aqueous electrolyte solvent, one containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC). In one preferred embodiment of the present invention, a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate. As a specific solute of the non-aqueous electrolyte, for example, Li salts such as LiPF 6 and LiBF 4 are preferable.
 外装体は、ハードケースであってよい。ハードケースは、互いに組み合わせて構成される2つの部材から成っていてよい。つまり、外装体は、例えば、第1外装体と第2外装体の2パーツ構成を有している。2パーツ構成を有する外装体は、その一方が正極導電部を成し、他方が負極導電部を成してよい。例えば、外装体が正極導電部および負極導電部から構成される場合、正極導電部と負極導電部とは、電極組立体、電解質、ならびに所望により電極端子の収容後、密封される。密封方法としては、特に限定されず、例えば、レーザー照射法などが挙げられる。 The exterior body may be a hard case. The hard case may consist of two members configured in combination with each other. That is, the exterior body has, for example, a two-part configuration of a first exterior body and a second exterior body. One of the exterior bodies having a two-part structure may form a positive electrode conductive portion, and the other may form a negative electrode conductive portion. For example, when the exterior body is composed of a positive electrode conductive portion and a negative electrode conductive portion, the positive electrode conductive portion and the negative electrode conductive portion are sealed after accommodating the electrode assembly, the electrolyte, and optionally the electrode terminals. The sealing method is not particularly limited, and examples thereof include a laser irradiation method.
 外装体の正極導電部および負極導電部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は、電子の移動が達成され得る導電性材料であってもよいし、または電子の移動が達成され得ない絶縁材料であってもよい。外装体の材料は、電極取り出しの観点から、導電性材料であることが好ましい。 As the material for forming the positive electrode conductive part and the negative electrode conductive part of the exterior body, any material that can form a hard case type exterior body can be used in the field of the secondary battery. Such a material may be a conductive material in which electron transfer can be achieved, or an insulating material in which electron transfer cannot be achieved. The material of the exterior body is preferably a conductive material from the viewpoint of taking out the electrodes.
 導電性材料としては、例えば銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼などから成る群から選択される金属材料が挙げられる。絶縁材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリイミド、ポリアミド、ポリアミドイミド、ならびにポリオレフィン(例えば、ポリエチレン、およびポリプロピレン)などから成る群から選択される絶縁ポリマー材料が挙げられる。 Examples of the conductive material include a metal material selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, stainless steel and the like. Examples of the insulating material include insulating polymer materials selected from the group consisting of polyester (eg, polyethylene terephthalate), polyimide, polyamide, polyamide-imide, and polyolefin (eg, polyethylene, and polypropylene).
 上述した導電性および剛性の観点を重視すると、正極導電部および負極導電部はともに、ステンレス鋼から構成されることが好ましい。なお、ステンレス鋼とは、「JIS G 0203 鉄鋼用語」に規定されている通り、クロムまたはクロムとニッケルとを含有させた合金鋼で、一般にはクロム含有量が全体の約10.5%以上の鋼をいう。そのようなステンレス鋼としては、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼および析出硬化系ステンレス鋼から成る群から選択されるステンレス鋼が挙げられる。 From the viewpoint of conductivity and rigidity described above, it is preferable that both the positive electrode conductive portion and the negative electrode conductive portion are made of stainless steel. As defined in "JIS G0203 Steel Terms", stainless steel is an alloy steel containing chromium or chromium and nickel, and generally has a chromium content of about 10.5% or more of the total. Refers to steel. Examples of such stainless steels include stainless steels selected from the group consisting of martensite-based stainless steels, ferrite-based stainless steels, austenitic stainless steels, austenitic-ferrite-based stainless steels, and precipitation-hardened stainless steels.
 外装体の正極導電部および負極導電部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、衝撃などによる電極組立体の損傷を防止し、二次電池の安全性が向上することができる。 The dimensions of the positive electrode conductive portion and the negative electrode conductive portion of the exterior body are mainly determined according to the dimensions of the electrode assembly. For example, when the electrode assembly is housed, the movement of the electrode assembly inside the exterior body is prevented. It is preferable to have dimensions. By preventing the electrode assembly from moving, damage to the electrode assembly due to impact or the like can be prevented, and the safety of the secondary battery can be improved.
 外装体はラミネートフィルムからなるパウチなどのフレキシブルケースであってもよい。ラミネートフィルムとしては、少なくとも金属層(例えば、アルミニウムなど)と接着層(例えば、ポリプロピレンおよびポリエチレンなど)とが積層される構成であり、付加的に保護層(例えば、ナイロンおよびポリアミドなど)が積層される構成であってもよい。 The exterior body may be a flexible case such as a pouch made of a laminated film. The laminated film has a structure in which at least a metal layer (for example, aluminum) and an adhesive layer (for example, polypropylene and polyethylene) are laminated, and an additional protective layer (for example, nylon and polyamide) is laminated. May be configured.
 二次電池には、電極端子が設けられていてよい。つまり、外部と電気的に接続するための端子が二次電池に設けられていてよい。かかる電極端子は、外装体の少なくとも1つの面に設けられてよい。例えば、外装体における同一面に正負極の電極端子がそれぞれ離間して設けられてよい。または、外装体の異なる面に正負極の電極端子がそれぞれ設けられてもよい。 The secondary battery may be provided with an electrode terminal. That is, the secondary battery may be provided with a terminal for electrically connecting to the outside. Such electrode terminals may be provided on at least one surface of the exterior body. For example, positive and negative electrode terminals may be provided on the same surface of the exterior body so as to be separated from each other. Alternatively, positive and negative electrode terminals may be provided on different surfaces of the exterior body.
 電極端子は、導電率が大きい材料を用いることが好ましい。電極端子の材質としては、特に制限するわけではないが、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼から成る群から選択される少なくとも一種を挙げることができる。 It is preferable to use a material having a high conductivity for the electrode terminal. The material of the electrode terminal is not particularly limited, and at least one selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, and stainless steel can be mentioned.
[本発明に係る二次電池の製造方法]
 本発明の二次電池は、少なくとも電極ユニットの製造工程、正負極体の製造工程、および電極組立体の製造工程を含む方法により製造できる。本発明の二次電池の製造方法は、最後に封入工程を含む。以下、各工程について簡単に説明するが、上述した二次電池の説明を適宜、参照してもよい。
[Method for manufacturing secondary battery according to the present invention]
The secondary battery of the present invention can be manufactured by a method including at least a manufacturing process of an electrode unit, a manufacturing process of a positive electrode body, and a manufacturing process of an electrode assembly. The method for manufacturing a secondary battery of the present invention finally includes a sealing step. Hereinafter, each step will be briefly described, but the above-mentioned description of the secondary battery may be referred to as appropriate.
(電極ユニットの製造工程)
 本工程では、集電体上に電極材を設けた電極前駆体からの切り出しにより電極ユニットを得る。
(Manufacturing process of electrode unit)
In this step, an electrode unit is obtained by cutting out from an electrode precursor provided with an electrode material on a current collector.
 電極前駆体は、電極材ペーストを集電体として用いられる金属シート材(例えば、正極集電体はアルミニウム箔、負極集電体は銅箔)に塗布し、ロールプレス機で圧延する。これにより、電極前駆体が得られる。 For the electrode precursor, the electrode material paste is applied to a metal sheet material used as a current collector (for example, the positive electrode current collector is an aluminum foil and the negative electrode current collector is a copper foil) and rolled by a roll press machine. As a result, an electrode precursor is obtained.
 塗布するエリアは、所望の電極層および集電層が得られるように決定する。例えば、図3Aの電極ユニットを製造する場合、金属シート材の任意の一方向に沿って、所望の長さの集電層としての連結部が得られるように一定の間隙を空けつつ、電極材ペーストを略円状に塗布する。 The area to be applied is determined so that the desired electrode layer and current collector layer can be obtained. For example, in the case of manufacturing the electrode unit of FIG. 3A, the electrode material is provided with a certain gap so as to obtain a connecting portion as a current collecting layer having a desired length along any one direction of the metal sheet material. Apply the paste in a substantially circular shape.
 次に、電極材ペーストを塗布した領域、および電極ユニットの連結部に対応するように電極材ペーストを塗布しなかった領域を切り出すことで電極ユニットを得る。例えば、図3Aの電極ユニットを製造する場合、電極材ペーストを略円状に塗布した領域の外縁に沿って、また当該領域の間に設けた電極材ペーストを塗布しなかった領域を所望の連結部の形状となるように切り出す。 Next, the electrode unit is obtained by cutting out the region to which the electrode material paste is applied and the region to which the electrode material paste is not applied so as to correspond to the connecting portion of the electrode unit. For example, in the case of manufacturing the electrode unit of FIG. 3A, a desired connection is made along the outer edge of the region where the electrode material paste is applied in a substantially circular shape, and the region where the electrode material paste is not applied provided between the regions. Cut out so that it has the shape of the part.
 切り出しは、あくまでも例示にすぎないが、いわゆる“打ち抜き操作”であってもよい。 The cutting out is just an example, but it may be a so-called "punching operation".
(正負極体の製造工程)
 本工程では、正極および負極を重ね合わせて、正負極体を得る。
(Manufacturing process of positive and negative electrodes)
In this step, the positive electrode and the negative electrode are superposed to obtain a positive electrode body.
 上述したように、正負極体において、正極と負極とがセパレータを介して重ね合わせられる。図4の正負極体を製造する場合、各電極ユニットにおける正極層と負極層とは、セパレータを介しつつ互い違いに重なるように重ね合わせられる。 As described above, in the positive electrode body, the positive electrode and the negative electrode are overlapped with each other via the separator. When the positive electrode body of FIG. 4 is manufactured, the positive electrode layer and the negative electrode layer in each electrode unit are superposed so as to be alternately overlapped with each other via a separator.
 セパレータは、正極層と負極層との間に挿入されるものであってよい。セパレータは枚葉にカットしたものを積層してよいし、あるいは、つづら折りに積層して余剰分をカットしたものでもよい。または、セパレータは、電極または電極ユニットを個装するものであってもよい。 The separator may be inserted between the positive electrode layer and the negative electrode layer. The separator may be a sheet cut and laminated, or may be laminated in a zigzag to cut the excess. Alternatively, the separator may individually package the electrode or the electrode unit.
 本工程においては、上述したように、正負極体においてセパレータを介して重ね合わせられる電極層間は、電極の取り扱い性のさらなる向上の観点から、接着されることが好ましい。接着は、セパレータとして接着性セパレータを用いる方法、電極層の上に接着性バインダーを塗布する方法、および/または熱圧着する方法などにより行うことができる。 In this step, as described above, it is preferable that the electrode layers that are overlapped with each other via the separator in the positive and negative electrodes are adhered from the viewpoint of further improving the handleability of the electrodes. Adhesion can be performed by a method using an adhesive separator as a separator, a method of applying an adhesive binder on the electrode layer, and / or a method of thermocompression bonding.
(電極組立体の製造工程)
 本工程では、例えば図4に示すように、正負極体100における電極ユニット10Aおよび10Bの連結部13Aおよび13Bを、つづら折りによって折り曲げることによって、電極組立体は構成される。折り曲げの回数は、1つの電極ユニットが有する電極層の数に応じて適宜決定されてもよい。
(Manufacturing process of electrode assembly)
In this step, for example, as shown in FIG. 4, the connecting portions 13A and 13B of the electrode units 10A u and 10B u in the positive and negative polar body 100, by folding the serpentine, the electrode assembly is constructed. The number of bends may be appropriately determined according to the number of electrode layers contained in one electrode unit.
 正負極体を折り曲げて電極組立体を得た後、通常は、その状態が保持されるように、接着を行うことが好ましい。接着は、折り曲げにより初めてセパレータを介して接触するようになる電極層同士を接着すればよい。接着方法は、正負極体の製造工程で行われてもよい接着の方法と同様の方法を用いることができる。 After the positive and negative electrodes are bent to obtain an electrode assembly, it is usually preferable to perform adhesion so that the state is maintained. Adhesion may be performed by adhering the electrode layers that come into contact with each other via the separator for the first time by bending. As the bonding method, the same method as the bonding method that may be performed in the manufacturing process of the positive electrode body can be used.
 また、所望により、電極組立体の断面視において、隣り合う集電層(例えば、図11Aにおける正極連結部13Aおよび13A)を接着する。隣り合う集電層の接着は、例えば熱溶着、レーザー溶着および超音波溶着、ならびに導電性接着剤により行ってよい。 Further, if desired, adjacent current collector layers (for example, positive electrode connecting portions 13A 1 and 13A 2 in FIG. 11A) are adhered in a cross-sectional view of the electrode assembly. Adhesion of adjacent current collector layers may be performed by, for example, heat welding, laser welding and ultrasonic welding, and a conductive adhesive.
(封入工程)
 電極組立体を電解質と共に外装体に封入することによって二次電池を得ることができる。
(Encapsulation process)
A secondary battery can be obtained by encapsulating the electrode assembly together with the electrolyte in the exterior body.
 本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、二次電池は、電気・電子機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery according to the present invention can be used in various fields where storage is expected. Although only an example, secondary batteries are used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, etc.) in which electric and electronic devices are used. , Wearable devices, RFID tags, card-type electronic money, smart watches, etc. in the electric / electronic equipment field or mobile equipment field), home / small industrial applications (for example, power tools, golf carts, home / nursing / industrial use) Robots), large industrial applications (eg forklifts, elevators, bay port cranes), transportation systems (eg hybrids, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), electricity System applications (for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (fields such as dose management systems), and , IoT field, space / deep sea applications (for example, fields such as space explorers and submersible research vessels).
 本発明に係る二次電池は、高い電池容量を保持しつつ、より低い抵抗を有する。したがって、本発明に係る二次電池は、高エネルギー密度および高速充放電特性などが要求されるウェアラブルデバイスに特に好ましく利用することができる。ここでウェアラブルデバイスとは、衣服状または腕時計状で身につけたまま使えるものを指し、例えば、ヘッドマウントディスプレイ、スマートウォッチなどである。 The secondary battery according to the present invention has a lower resistance while maintaining a high battery capacity. Therefore, the secondary battery according to the present invention can be particularly preferably used for a wearable device that requires high energy density and high-speed charge / discharge characteristics. Here, the wearable device refers to a device that can be used while being worn in the form of clothes or a wristwatch, such as a head-mounted display or a smart watch.
  1:集電体
   1A:正極集電体
   1B:負極集電体
  2:電極材
   2A:正極材
   2B:負極材
  10:電極
   10A:正極
   10B:負極
  11:電極層
   11A:正極層
   11B:負極層
  12:集電層
   12A:正極集電層
   12B:負極集電層
  13:連結部
   13A:正極連結部
   13B:負極連結部
  14:突出部
   14A:正極突出部
   14B:負極突出部
  10:電極ユニット
   10A:正極ユニット
   10B:負極ユニット
  20:セパレータ
  100:正負極体
  200:電極組立体
  300:外装体
   300A:正極導電部
   300B:負極導電部
   300I:絶縁部
  400:二次電池
1: Current collector 1A: Positive electrode current collector 1B: Negative electrode current collector 2: Electrode material 2A: Positive electrode material 2B: Negative electrode material 10: Electrode 10A: Positive electrode 10B: Negative electrode 11: Electrode layer 11A: Positive electrode layer 11B: Negative electrode layer 12: Current collecting layer 12A: Positive electrode current collecting layer 12B: Negative electrode current collecting layer 13: Connecting part 13A: Positive electrode connecting part 13B: Negative electrode connecting part 14: Protruding part 14A: Positive electrode protruding part 14B: Negative electrode protruding part 10 U : Electrode unit 10A U : Positive electrode unit 10B U : Negative electrode unit 20: Separator 100: Positive and negative electrode body 200: Electrode assembly 300: Exterior body 300A: Positive electrode conductive part 300B: Negative electrode conductive part 300I: Insulation part 400: Secondary battery

Claims (12)

  1.  正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体を有して成る二次電池であって、
     前記正極および前記負極の電極は、集電体上に電極材を形成した電極層と、該集電体が露出した集電層とを有し、
     前記正極および前記負極の少なくともいずれか一方の電極は、他方の電極に対向する複数の前記電極層および該複数の電極層を電気的に接続する連結部を備える電極ユニットを含み、該連結部が前記二次電池の断面視にて前記他方の電極の側方に位置付けられており、
     前記正極および前記負極は、前記電極層に近接する前記集電層にて集電を行う、二次電池。
    A secondary battery comprising an electrode assembly comprising a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode.
    The positive electrode and the negative electrode have an electrode layer in which an electrode material is formed on the current collector, and a current collector layer in which the current collector is exposed.
    The electrode of at least one of the positive electrode and the negative electrode includes a plurality of the electrode layers facing the other electrode and an electrode unit including a connecting portion for electrically connecting the plurality of electrode layers, and the connecting portion includes the connecting portion. It is positioned on the side of the other electrode in the cross-sectional view of the secondary battery.
    A secondary battery in which the positive electrode and the negative electrode collect current in the current collecting layer close to the electrode layer.
  2. 前記電極ユニットでは、互いに隣接する前記電極層の間に位置する前記連結部の各箇所が出力タブとなる、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein in the electrode unit, each part of the connecting portion located between the electrode layers adjacent to each other serves as an output tab.
  3. 前記電極ユニットを展開した平面視では、前記連結部が直線状に整列または延在している、請求項1または2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the connecting portions are linearly aligned or extended in a plan view in which the electrode unit is developed.
  4. 前記正極および前記負極の両方の電極が前記電極ユニットを含み、該電極ユニットにおける前記連結部が前記二次電池の断面視にて異極の電極の側方にそれぞれ位置付けられている、請求項1~3のいずれかに記載の二次電池。 Claim 1 in which both the positive electrode and the negative electrode include the electrode unit, and the connecting portion of the electrode unit is positioned on the side of the electrode having a different electrode in a cross-sectional view of the secondary battery. The secondary battery according to any one of 3 to 3.
  5. 前記正極および前記負極の少なくともいずれか一方の電極が、3つ以上の前記電極層および該電極層間に設けられた前記連結部を複数備える前記電極ユニットを含む、請求項1~4のいずれかに記載の二次電池。 One of claims 1 to 4, wherein at least one electrode of the positive electrode and the negative electrode includes the electrode unit including three or more electrode layers and a plurality of the connecting portions provided between the electrode layers. The described secondary battery.
  6. 前記正極および前記負極の少なくともいずれか一方の電極が、3つ以上の前記電極層および該電極層の各々に跨るように単一状に設けられた前記連結部を備える前記電極ユニットを含む、請求項1~4のいずれかに記載の二次電池。 A claim comprising the electrode unit comprising the connecting portion in which at least one of the positive electrode and the negative electrode is provided in a single shape so as to straddle each of the three or more electrode layers and the electrode layers. Item 4. The secondary battery according to any one of Items 1 to 4.
  7. 前記正極および前記負極の少なくともいずれか一方の電極が、2つの前記電極層および該電極層間に設けられた前記連結部を備える前記電極ユニットを複数含む、請求項1~4のいずれかに記載の二次電池。 The invention according to any one of claims 1 to 4, wherein at least one electrode of the positive electrode and the negative electrode includes a plurality of the electrode units including the two electrode layers and the connecting portion provided between the electrode layers. Secondary battery.
  8. 前記二次電池の断面視において、隣り合う前記集電層が互いに接着されている、請求項1~7のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 7, wherein the adjacent current collector layers are adhered to each other in a cross-sectional view of the secondary battery.
  9. 前記連結部が前記集電層から成る、請求項1~8のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 8, wherein the connecting portion comprises the current collecting layer.
  10. 前記電極が前記連結部にて集電を行う、請求項9に記載の二次電池。 The secondary battery according to claim 9, wherein the electrodes collect current at the connecting portion.
  11. 前記電極が前記連結部以外の部分にて集電を行う、請求項1に従属する請求項3~9のいずれかに記載の二次電池。 The secondary battery according to any one of claims 3 to 9, which is subordinate to claim 1, wherein the electrode collects current at a portion other than the connecting portion.
  12. 請求項1~11のいずれかに記載の二次電池を用いた、ウェアラブルデバイス。 A wearable device using the secondary battery according to any one of claims 1 to 11.
PCT/JP2020/025909 2019-07-11 2020-07-01 Secondary battery WO2021006161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129265 2019-07-11
JP2019-129265 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021006161A1 true WO2021006161A1 (en) 2021-01-14

Family

ID=74115157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025909 WO2021006161A1 (en) 2019-07-11 2020-07-01 Secondary battery

Country Status (1)

Country Link
WO (1) WO2021006161A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032874A (en) * 2004-07-22 2006-02-02 Tdk Corp Electrochemical device and manufacturing method for same
US20110143189A1 (en) * 2009-12-07 2011-06-16 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
CN104282948A (en) * 2014-09-18 2015-01-14 广州中国科学院工业技术研究院 Core structure of lithium battery and assembling method of core structure
JP2015118788A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Folding battery
JP2018018663A (en) * 2016-07-27 2018-02-01 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing the same
JP2019075294A (en) * 2017-10-17 2019-05-16 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing electrochemical cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032874A (en) * 2004-07-22 2006-02-02 Tdk Corp Electrochemical device and manufacturing method for same
US20110143189A1 (en) * 2009-12-07 2011-06-16 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
JP2015118788A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Folding battery
CN104282948A (en) * 2014-09-18 2015-01-14 广州中国科学院工业技术研究院 Core structure of lithium battery and assembling method of core structure
JP2018018663A (en) * 2016-07-27 2018-02-01 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing the same
JP2019075294A (en) * 2017-10-17 2019-05-16 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing electrochemical cell

Similar Documents

Publication Publication Date Title
JP6780766B2 (en) Secondary battery and its manufacturing method
US11437653B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
WO2020256023A1 (en) Secondary battery
WO2018180152A1 (en) Secondary battery
WO2020218217A1 (en) Secondary battery
US20230037438A1 (en) Secondary battery
US20230049098A1 (en) Secondary battery
US20230057980A1 (en) Secondary battery and method for manufacturing the same
US20220045404A1 (en) Secondary battery
WO2021140838A1 (en) Secondary battery
WO2018155210A1 (en) Secondary battery and method for producing secondary battery
WO2021149644A1 (en) Secondary battery and manufacturing method for same
JPWO2018131346A1 (en) Secondary battery
WO2021006161A1 (en) Secondary battery
JP6773208B2 (en) Secondary battery and its manufacturing method
JP6773133B2 (en) Rechargeable battery
WO2018163775A1 (en) Secondary battery production method
WO2018131398A1 (en) Secondary cell
US20230369652A1 (en) Secondary battery and method of manufacturing secondary battery
WO2021215500A1 (en) Secondary battery
WO2022044672A1 (en) Secondary battery and method for manufacturing same
WO2023127726A1 (en) Secondary battery
WO2022138334A1 (en) Secondary battery and method for producing secondary battery
JP7456163B2 (en) secondary battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20836393

Country of ref document: EP

Kind code of ref document: A1