JP2015118012A - Specific heat-measuring device and specific heat-measuring method of test body - Google Patents

Specific heat-measuring device and specific heat-measuring method of test body Download PDF

Info

Publication number
JP2015118012A
JP2015118012A JP2013261800A JP2013261800A JP2015118012A JP 2015118012 A JP2015118012 A JP 2015118012A JP 2013261800 A JP2013261800 A JP 2013261800A JP 2013261800 A JP2013261800 A JP 2013261800A JP 2015118012 A JP2015118012 A JP 2015118012A
Authority
JP
Japan
Prior art keywords
temperature
test body
specific heat
heat
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261800A
Other languages
Japanese (ja)
Inventor
智寛 佐伯
Tomohiro Saeki
智寛 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN TESTING CENTER FOR CONSTRUCTION MATERIALS
Japan Testing Ct For Construction Materials
Original Assignee
JAPAN TESTING CENTER FOR CONSTRUCTION MATERIALS
Japan Testing Ct For Construction Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN TESTING CENTER FOR CONSTRUCTION MATERIALS, Japan Testing Ct For Construction Materials filed Critical JAPAN TESTING CENTER FOR CONSTRUCTION MATERIALS
Priority to JP2013261800A priority Critical patent/JP2015118012A/en
Publication of JP2015118012A publication Critical patent/JP2015118012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To calculate an apparent specific heat and a heat accumulation amount of test bodies of various types during temperature rise and during temperature decrease.SOLUTION: A specific heat-measuring device 20 includes: heating plates 22 which sandwich a test body 21 to increase and decrease a temperature of the test body; and heat flow meters 23 adhered between the test body 21 and the heating plates 22. The test body 21 has a thermocouple 26 adhered between two pieces of a test body piece 21a. These are stored inside a constant temperature and humidity room 25. The heating plate 22 is connected to a constant temperature water tank 28 via piping 27. A circulation liquid is heated or cooled inside the constant temperature water tank 28 and circulated to the heating plate 22. An atmospheric temperature of the constant temperature and humidity room 25 is controlled to be the same as the temperature of the circulation liquid inside the constant temperature tank 28. An apparent specific heat of the test body 21 is calculated based on the temperature of the test body 21 measured by the thermocouple 26 and the heat flow rate measured by a heat flowmeter 23.

Description

本発明は、試験体、例えば潜熱蓄熱体や他の材料等の見かけの比熱を測定・算出するようにした試験体の比熱測定装置と比熱測定方法に関するものである。   The present invention relates to a specific heat measuring device and a specific heat measuring method for a test body, which are designed to measure and calculate the apparent specific heat of a test body, such as a latent heat storage body and other materials.

近年、地球温暖化が世界的に進んでいることに対し、化石燃料の燃焼や排熱を削減して二酸化炭素の排出を削減することで省エネルギーと温暖化の抑制が進められている。二酸化炭素排出量の削減のために再生可能エネルギーである太陽熱利用は各分野で重要である。例えば、建物の分野においても、消費エネルギーを削減するために、天井や床や壁等に断熱材を配設すると共に潜熱の吸収と放出を効率的に制御して、省エネルギー効果を促進することが進められている。   In recent years, global warming has progressed globally, and energy saving and suppression of global warming have been promoted by reducing combustion of fossil fuels and exhaust heat to reduce carbon dioxide emissions. The use of solar heat, which is a renewable energy, to reduce carbon dioxide emissions is important in each field. For example, in the field of buildings, in order to reduce energy consumption, heat insulation is arranged on the ceiling, floor, walls, etc., and the absorption and release of latent heat is efficiently controlled to promote the energy saving effect. It has been.

相変化によって多量の熱を蓄えたり放出したりできる潜熱蓄熱材は、省エネルギー効果が高いため、様々な分野で利用されている。特に、ビルや住宅等の建築物の分野等では、潜熱蓄熱材は、太陽熱利用の1つの手段であり、しかも冷暖房のエネルギーを節約して省エネルギー効果を促進する材料として知られている。例えば、特許文献1に記載された蓄熱性建材では、建築物の壁材や床材となる基材と潜熱蓄熱材を含む蓄熱シートとを貼り合せて、建材として用いている。   A latent heat storage material capable of storing and releasing a large amount of heat by phase change has a high energy saving effect and is used in various fields. In particular, in the field of buildings such as buildings and houses, a latent heat storage material is one means of using solar heat, and is known as a material that saves energy for air conditioning and promotes energy saving effects. For example, in the heat storage building material described in Patent Document 1, a base material that becomes a wall material or flooring of a building and a heat storage sheet containing a latent heat storage material are bonded together and used as a building material.

潜熱蓄熱材やその他の資材を、住宅等の建材として用いる場合、各種の素材がどのような蓄熱性能及び放熱性能を有するかを予め測定し、住宅のどの場所にどのように用いれば省エネ性能を効果的に発揮できるかを検討する必要がある。
そのため、各種の建材や潜熱蓄熱材の見かけの比熱や潜熱量を測定・算出する方法として、例えば図7に示す比熱測定装置1が知られている。この比熱測定装置1は、一般的な建築材料の比熱測定に用いられる断熱型熱量計の原理を用いたものであり、試験体2として潜熱蓄熱材を用い、この試験体2の中央に予め加工形成した穴内に熱電対3の接合点を取り付けて試験体2の外側面にはヒーター4を密着させる。
When using latent heat storage materials and other materials as building materials for homes, etc., measure in advance what kind of heat storage performance and heat dissipation performance each type of material has, and how to use it in which location in the home to save energy It is necessary to consider whether it can be effectively demonstrated.
Therefore, for example, a specific heat measuring device 1 shown in FIG. 7 is known as a method for measuring and calculating the apparent specific heat and latent heat amount of various building materials and latent heat storage materials. This specific heat measuring device 1 uses the principle of an adiabatic calorimeter used for measuring the specific heat of a general building material. A latent heat storage material is used as a test body 2 and processed in advance in the center of the test body 2. A junction point of the thermocouple 3 is attached in the formed hole, and the heater 4 is brought into close contact with the outer surface of the test body 2.

そして、試験体2とヒーター4を収納した内部容器5と、その外側に設置した断熱容器6と、更にその外側に設置した外部容器7とを備え、外部容器7の内側には保護ヒータ―8が設置されている。保護ヒータ―8は断熱容器6と内部容器5との間の空間を内部容器5の内部空間と同一温度になるように加熱制御し、この空間の温度を示差熱電対9によって測定して保護ヒーター8の出力を断熱制御装置10でフィードバック制御することによって、内部容器5内の熱が外側へ流出することをなくす。なお、この比熱測定装置1は、比熱が既知の材料で予め比熱を測定して、比熱測定装置1の熱容量を校正熱量として算出しておくものとする。   Then, an internal container 5 containing the test body 2 and the heater 4, a heat insulating container 6 installed on the outside thereof, and an external container 7 installed on the outside thereof are further provided. Is installed. The protective heater 8 controls the heating of the space between the heat insulating container 6 and the inner container 5 so as to be the same temperature as the inner space of the inner container 5, and measures the temperature of this space by the differential thermocouple 9 to protect the heater. By performing feedback control of the output of 8 with the heat insulation control device 10, the heat in the inner container 5 is prevented from flowing out to the outside. The specific heat measurement apparatus 1 measures the specific heat in advance using a material with a known specific heat, and calculates the heat capacity of the specific heat measurement apparatus 1 as a calibration heat quantity.

この比熱測定装置1を用いた比熱測定方法では、ヒーター4に一定電力を与えて試験体2を加熱し、試験体2の温度を試験体2の相変化の帯域より低い温度状態から高い温度状態まで徐々に上昇させるように制御する。ヒーター4は直流電源装置11によって加熱制御し、熱電対3で測定する試験体2の温度変化はデータロガー12に出力して、下式(2)によって見かけの比熱を算出するようにした。   In the specific heat measurement method using the specific heat measurement device 1, the test body 2 is heated by applying a constant power to the heater 4, and the temperature of the test body 2 is changed from a temperature state lower than the phase change band of the test body 2 to a high temperature state. Control to raise gradually. The heater 4 was heated and controlled by the DC power supply device 11, and the temperature change of the test body 2 measured by the thermocouple 3 was output to the data logger 12, and the apparent specific heat was calculated by the following equation (2).

ここで、ヒーター4の発熱量をQ(W)、試験体2の質量をM(g)、試験体2の上昇する温度をΔθ(K)、Δθの温度上昇に要する時間をΔt(s)、校正熱量をM´・c´(J/K)とし、見かけの比熱c(J/(g・K))を下記(2)式で求める。得られた試験体2の見かけの比熱cから、相変化で蓄えられる潜熱量を算出することができる。なお、比熱とは、材料の温度を1℃上昇させるために必要な熱量を材料の単位当たりの値として示すものをいい、見かけの比熱とは、この比熱に潜熱の熱量が加わったものをいう。   Here, the calorific value of the heater 4 is Q (W), the mass of the test body 2 is M (g), the temperature at which the test body 2 rises is Δθ (K), and the time required for the temperature rise of Δθ is Δt (s) The calibration heat quantity is M ′ · c ′ (J / K), and the apparent specific heat c (J / (g · K)) is obtained by the following equation (2). From the apparent specific heat c of the obtained test body 2, the amount of latent heat stored by the phase change can be calculated. The specific heat refers to the amount of heat required to raise the temperature of the material by 1 ° C. as a value per unit of material, and the apparent specific heat refers to a value obtained by adding the amount of latent heat to this specific heat. .

Figure 2015118012
Figure 2015118012

特開2001−173118号公報JP 2001-173118 A

しかしながら、上述したヒーター4と保護ヒータ―8を利用した比熱測定装置1は試験体2が温度上昇して相変化する領域では見かけの比熱を測定可能であるが、試験体2が温度降下して相変化する領域では、加熱温度を制御するヒーター4と保護ヒーター8によって温度調節ができないため、見かけの比熱を測定できない欠点があった。一方、潜熱蓄熱材を含む建材等では、潜熱蓄熱材を他の一般建材に一部混合させたものが多く、温度上昇する際における吸熱量の変化だけでなく、温度降下する際における放熱量の変化も重要な要素である。そのため、温度降下の際における相変化による見かけの比熱や蓄熱量を測定できないと、潜熱蓄熱材等を含む建材や各種の素材等の吸熱特性や放熱特性を把握できないという欠点があった。   However, the specific heat measuring apparatus 1 using the heater 4 and the protective heater 8 described above can measure the apparent specific heat in the region where the temperature of the test body 2 increases and the phase changes, but the temperature of the test body 2 decreases. In the region where the phase changes, since the temperature cannot be adjusted by the heater 4 and the protective heater 8 that control the heating temperature, there is a drawback that the apparent specific heat cannot be measured. On the other hand, in many building materials including latent heat storage materials, latent heat storage materials are often mixed with other general building materials, not only the change in heat absorption when the temperature rises, but also the amount of heat released when the temperature drops. Change is also an important factor. Therefore, if the apparent specific heat and heat storage amount due to the phase change at the time of temperature drop cannot be measured, there is a drawback that the heat absorption characteristics and heat radiation characteristics of building materials and various materials including the latent heat storage material cannot be grasped.

本発明は、このような事情に鑑みてなされたもので、各種の試験体の温度上昇時と温度降下時における見かけの比熱を測定できるようにした試験体の比熱測定装置と比熱測定方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a specific heat measurement device and a specific heat measurement method for a test specimen that can measure the apparent specific heat at the time of temperature rise and temperature drop of various specimens. The purpose is to do.

本発明による試験体の比熱測定装置は、試験体と、試験体の温度を上昇及び降下させる流体を有する加熱部材と、試験体と加熱部材との間に配設された熱流計と、試験体の温度を測定する熱電対とを備え、熱電対で測定した試験体の温度と熱流計で測定した熱流量とに基づいて、試験体の見かけの比熱を算出するようにしたことを特徴とする。
本発明による試験体の比熱測定装置は、温度を上昇及び下降させることのできる流体を加熱部材に備えているため、流体によって加熱部材の温度を昇降可能で熱流計を通して試験体に伝達することができ、試験体の温度を上昇させることで相変化させて蓄熱させ、そして試験体の温度を降下させることで相変化させて放熱させることができるため、熱電対で測定する試験体の温度と熱流計で測定する熱流量とに基づいて、温度上昇時と温度下降時における試験体の見かけの比熱を測定・演算できる。
A specific heat measuring apparatus for a test body according to the present invention includes a test body, a heating member having a fluid for raising and lowering the temperature of the test body, a heat flow meter disposed between the test body and the heating member, and the test body. And a thermocouple that measures the temperature of the specimen, and the apparent specific heat of the specimen is calculated based on the temperature of the specimen measured by the thermocouple and the heat flow rate measured by the heat flow meter. .
The specific heat measuring device for a test body according to the present invention includes a fluid capable of raising and lowering the temperature in the heating member, so that the temperature of the heating member can be raised and lowered by the fluid and transmitted to the test body through a heat flow meter. It is possible to store the heat by changing the phase by increasing the temperature of the specimen, and to dissipate the heat by changing the phase by lowering the temperature of the specimen, so the temperature and heat flow of the specimen measured with a thermocouple Based on the heat flow measured by the meter, it is possible to measure and calculate the apparent specific heat of the specimen when the temperature rises and when the temperature falls.

また、加熱部材に循環させる流体の温度を上昇及び降下させる恒温流体供給手段を備え、恒温流体供給手段には、流体を相変化の前後の温度に亘って上昇させる加熱手段と、流体を相変化の前後の温度に亘って下降させる冷却手段とを備えることが好ましい。
温度上昇時には、恒温流体供給手段の加熱手段で流体の温度を上昇させて加熱部材に供給して循環させることで、加熱部材の温度を上昇させて試験体に伝達することができ、温度降下時には、恒温流体供給手段の冷却手段で流体の温度を降下させて加熱部材に供給して循環させることで、加熱部材の温度を降下させて試験体に伝達することができる。
In addition, a constant temperature fluid supply means for raising and lowering the temperature of the fluid circulated through the heating member is provided, and the constant temperature fluid supply means includes a heating means for raising the fluid over the temperature before and after the phase change, and a phase change of the fluid. It is preferable to provide cooling means for lowering the temperature before and after the temperature.
When the temperature rises, the temperature of the fluid is raised by the heating means of the constant temperature fluid supply means, supplied to the heating member and circulated, so that the temperature of the heating member can be raised and transmitted to the test body. The temperature of the fluid is lowered by the cooling means of the constant temperature fluid supply means, supplied to the heating member and circulated, so that the temperature of the heating member can be lowered and transmitted to the specimen.

また、試験体と加熱部材と熱流計とを収容して内部の雰囲気温度を流体の温度と同等に制御する恒温恒湿室を備えることが好ましい。
試験体と加熱部材と熱流計を恒温恒湿室に収容して内部の雰囲気温度を流体の温度と同等に制御することで、加熱部材の温度が周囲に逃げることを防止して効率よく試験体に伝達できる。
Moreover, it is preferable to provide a constant temperature and humidity chamber that accommodates the test body, the heating member, and the heat flow meter and controls the internal atmosphere temperature to be equal to the temperature of the fluid.
The test body, heating member, and heat flow meter are housed in a constant temperature and humidity chamber, and the internal atmosphere temperature is controlled to be equal to the temperature of the fluid. Can communicate to.

また、試験体は、熱電対を挟む複数の試験体片からなることが好ましい。
試験体を複数の試験体片に分割して熱電対を挟んで密着させることで、試験体を加工することなく中心の温度を熱電対で測定できる。
Moreover, it is preferable that a test body consists of a several test body piece which pinches | interposes a thermocouple.
By dividing the test body into a plurality of test body pieces and putting them in close contact with a thermocouple, the center temperature can be measured with the thermocouple without processing the test body.

また、恒温流体供給手段によって、試験体の温度を相変化の前後に亘って上昇させることで試験体の上昇工程における見かけの比熱を算出することが好ましい。
恒温流体供給手段で加熱部材に循環させる流体の温度を上昇させることで、加熱部材から熱流計を介して伝達する試験体の温度が上昇し、試験体の相変化領域で熱流量が最大となり、熱電対による試験体の温度と熱流計の温度の測定値に基づいて、試験体の上昇工程における見かけの比熱を測定することができる。
Moreover, it is preferable to calculate the apparent specific heat in the step of raising the specimen by raising the temperature of the specimen before and after the phase change by the constant temperature fluid supply means.
By increasing the temperature of the fluid circulated to the heating member by the constant temperature fluid supply means, the temperature of the test body transmitted from the heating member via the heat flow meter rises, and the heat flow becomes maximum in the phase change region of the test body, The apparent specific heat in the ascending process of the specimen can be measured based on the measured value of the temperature of the specimen and the temperature of the heat flow meter by the thermocouple.

また、恒温流体供給手段によって、試験体の温度を相変化の前後に亘って降下させることで試験体の下降工程における見かけの比熱を算出することが好ましい。
恒温流体供給手段で加熱部材に循環させる流体の温度を降下させることで、加熱部材から熱流計を介して伝達する試験体の温度が降下し、試験体の相変化領域で熱流量が最小となり、熱電対による試験体の温度と熱流計の温度の測定値に基づいて、試験体の下降工程における見かけの比熱を測定することができる。
In addition, it is preferable to calculate the apparent specific heat in the lowering process of the specimen by lowering the temperature of the specimen before and after the phase change by the constant temperature fluid supply means.
By lowering the temperature of the fluid circulated to the heating member by the constant temperature fluid supply means, the temperature of the test body transmitted from the heating member via the heat flow meter is lowered, and the heat flow is minimized in the phase change region of the test body, The apparent specific heat in the descending process of the test body can be measured based on the measured value of the temperature of the test body and the temperature of the heat flow meter by the thermocouple.

また、下記(1)式によって、試験体の見かけの比熱を算出することができる。

Figure 2015118012
但し、c:見かけの比熱(J/(g・K))、q:熱流量(W/m )、A:試験体の面積、M:試験体の質量(g)、Δθ:試験体の上昇または降下する温度値(K)、Δt:試験体がΔθの温度上昇または降下に要する時間。 In addition, the apparent specific heat of the specimen can be calculated by the following equation (1).
Figure 2015118012
Where c: apparent specific heat (J / (g · K)), q: heat flow rate (W / m 2 ), A: area of specimen, M: mass (g) of specimen, Δθ: of specimen Temperature value to rise or fall (K), Δt: Time required for the specimen to rise or fall by Δθ.

また、試験体は潜熱蓄熱材であってもよい。
試験体が潜熱蓄熱材であれば、温度の上昇工程における相変化時に潜熱の蓄熱を行え、下降工程における相変化時に蓄熱した潜熱の放熱を行える。
Further, the test body may be a latent heat storage material.
If the test body is a latent heat storage material, the latent heat can be stored during the phase change in the temperature increasing process, and the latent heat stored during the phase change in the decreasing process can be released.

本発明による試験体の比熱測定方法は、昇温工程において、加熱部材に流れる流体によって試験体の温度を上昇させて相変化の前後に亘って試験体の温度を測定すると共に、加熱部材から試験体に伝達される熱流量を測定し、
降温工程において、加熱部材を流れる流体によって試験体の温度を降下させて相変化の前後に亘って試験体の温度を測定すると共に、加熱部材から試験体に伝達される熱流量を測定し、
測定された試験体の温度と熱流量とに基づいて、温度上昇時と降下時における試験体の見かけの比熱を算出するようにしたことを特徴とする。
本発明による試験体の比熱測定方法によれば、試験体に熱を伝達する加熱部材の温度を上昇させ、そして下降させることで、それぞれ測定された試験体の温度と熱流量とに基づいて、昇温工程と降温工程における試験体の見かけの比熱を算出することができる。また、この見かけの比熱を積分することで潜熱蓄熱量を算出できる。
The specific heat measurement method for a test specimen according to the present invention is a method for measuring the temperature of a test specimen before and after a phase change by increasing the temperature of the specimen by a fluid flowing through the heating member in the temperature raising step. Measure the heat flow transferred to the body,
In the temperature lowering step, the temperature of the test body is lowered by the fluid flowing through the heating member to measure the temperature of the test body before and after the phase change, and the heat flow transferred from the heating member to the test body is measured,
Based on the measured temperature and heat flow of the specimen, the apparent specific heat of the specimen at the time of temperature rise and fall is calculated.
According to the specific heat measuring method of the test body according to the present invention, the temperature of the heating member that transfers heat to the test body is raised and lowered, and based on the measured temperature and heat flow of the test body, respectively. The apparent specific heat of the test body in the temperature raising process and the temperature lowering process can be calculated. Further, the latent heat storage amount can be calculated by integrating the apparent specific heat.

また、下記(1)式によって、試験体の見かけの比熱を算出することができる。

Figure 2015118012
但し、c:見かけの比熱(J/(g・K)、q:熱流量(W/m )、A:試験体の面積、M:試験体の質量(g)、Δθ:試験体の上昇または降下する温度値(K)、Δt:試験体がΔθの温度上昇または降下に要する時間。 In addition, the apparent specific heat of the specimen can be calculated by the following equation (1).
Figure 2015118012
However, c: Apparent specific heat (J / (g · K), q: Heat flow rate (W / m 2 ), A: Area of specimen, M: Mass (g) of specimen, Δθ: Increase of specimen Or temperature value (K) which falls, (DELTA) t: Time which a test body requires for temperature rise or fall of (DELTA) (theta).

本発明に係る比熱測定装置及び比熱測定方法によれば、流体によって加熱部材の温度を昇降させることで、試験体の相変化を含む前後の領域で温度上昇と温度降下をさせることができるから、昇温工程と降温工程における試験体の見かけの比熱と蓄熱量を算出することができて試験体の蓄熱と放熱の特性を検査することができる。   According to the specific heat measuring device and the specific heat measuring method according to the present invention, by raising and lowering the temperature of the heating member with a fluid, it is possible to increase and decrease the temperature in the region before and after the phase change of the test specimen. It is possible to calculate the apparent specific heat and heat storage amount of the test body in the temperature raising process and the temperature lowering process, and to inspect the heat storage and heat dissipation characteristics of the test body.

本発明の実施形態による見かけの比熱測定装置の要部構成を示す図である。It is a figure which shows the principal part structure of the apparent specific heat measuring apparatus by embodiment of this invention. 一方の試験体片の内面に熱電対を取り付けた状態を示す正面図である。It is a front view which shows the state which attached the thermocouple to the inner surface of one test piece. 本発明の実施形態における比熱測定装置で測定した試験体中心温度と加熱板温度と加熱板から試験体への熱流量の測定値とを示すグラフである。It is a graph which shows the measured value of the test body center temperature measured with the specific heat measuring apparatus in embodiment of this invention, a heating plate temperature, and the heat flow from a heating plate to a test body. 図3に示す試験体中心温度の降温工程における試験体中心温度と見かけ比熱との関係を示すグラフである。It is a graph which shows the relationship between the test body center temperature and the apparent specific heat in the temperature decreasing process of the test body center temperature shown in FIG. 従来の比熱測定装置における温度上昇時の試験体中心温度とヒーター温度とを示すグラフである。It is a graph which shows the test body center temperature and heater temperature at the time of the temperature rise in the conventional specific heat measuring apparatus. 温度上昇時における従来の測定装置による見かけの比熱と実施形態の測定装置による見かけの比熱を示すグラフである。It is a graph which shows the apparent specific heat by the conventional measuring apparatus at the time of a temperature rise, and the apparent specific heat by the measuring apparatus of embodiment. 従来例による見かけの比熱測定装置の要部構成を示す図である。It is a figure which shows the principal part structure of the apparent specific heat measuring apparatus by a prior art example.

以下、本発明の実施形態による見かけの比熱測定装置と比熱測定方法について図1乃至図6を参照して説明する。
本実施形態による見かけの比熱測定装置20は、図1に示すように測定対象である、例えば板状をなす試験体21の両側の外面21bに、試験体21を加熱及び冷却して温度勾配を生じさせる加熱部材としての加熱板22がそれぞれ配設されている。試験体21の両外面21bと各加熱板22との間には例えばシート状の熱流計23が互いに密着して配設されている。熱流計23は加熱板22から試験体21に熱流を伝達することで、熱流計23の両面に発生する温度差を試験体21への熱流量として測定する。これら試験体21と一対の加熱板22と一対の熱流計23とで試験装置24を構成し、この試験装置24は筐体で密閉された恒温恒湿室25内に設置されている
Hereinafter, an apparent specific heat measuring device and a specific heat measuring method according to an embodiment of the present invention will be described with reference to FIGS.
The apparent specific heat measuring apparatus 20 according to the present embodiment heats and cools the test body 21 on the outer surfaces 21b on both sides of the test body 21, for example, which is a measurement target as shown in FIG. A heating plate 22 is provided as a heating member to be generated. For example, sheet-like heat flow meters 23 are disposed in close contact with each other between the outer surfaces 21 b of the test body 21 and the respective heating plates 22. The heat flow meter 23 transmits a heat flow from the heating plate 22 to the test body 21, thereby measuring a temperature difference generated on both surfaces of the heat flow meter 23 as a heat flow rate to the test body 21. The test body 21, the pair of heating plates 22, and the pair of heat flow meters 23 constitute a test apparatus 24, and the test apparatus 24 is installed in a constant temperature and humidity chamber 25 sealed with a housing.

試験体21は例えば同形同大の板状をなす2枚の試験体片21aからなり、各試験体片21aの間にその内面21c同士の温度を測定する熱電対26が密着して設置されている。熱電対26は、互いに当接する内面21cの中心と2つの外面21bとの3カ所に接合点を設置して、1カ所につき2点測定して平均値を測定値とする。図2に示す試験体片21aの内面21cでは、中心と中心から若干外れた位置の2点に熱電対26の接合点26a、26bが設置されている。これによって、試験体21の中心における温度を2点の平均値で測定できる。また、試験体21として、試験体片21aを2枚貼り合せることで、試験体21を穴加工することなく中心の温度を測定できる。   The test body 21 is composed of, for example, two test body pieces 21a having a plate shape of the same shape and the same size, and a thermocouple 26 for measuring the temperature of the inner surface 21c is closely attached between the test body pieces 21a. ing. The thermocouple 26 is set at three points of the center of the inner surface 21c and the two outer surfaces 21b that are in contact with each other, and two points are measured at each point to obtain an average value as a measured value. In the inner surface 21c of the test piece 21a shown in FIG. 2, the junction points 26a and 26b of the thermocouple 26 are installed at two points at a position slightly deviated from the center. Thereby, the temperature in the center of the test body 21 can be measured by an average value of two points. Further, by bonding two test piece pieces 21a as the test piece 21, the center temperature can be measured without drilling the test piece 21.

試験体21は、例えば硫酸ナトリウム10水和物を主成分とする蓄熱素材をプラスチックの容器に充填して板状の建材に成形したものを試験体片21aとした。試験体21としては、他にパラフィンをマイクロカプセル化して他の材料に混ぜたものでもよい。或いはこれらの潜熱蓄熱材に限定されることなく、その他の材料、例えば建材として用いられる合板や石膏ボード等を採用してもよい。   For the test body 21, for example, a test piece 21a was formed by filling a plastic container with a heat storage material mainly composed of sodium sulfate decahydrate and forming it into a plate-shaped building material. As the test body 21, paraffin can be microencapsulated and mixed with other materials. Or it is not limited to these latent heat storage materials, You may employ | adopt other materials, for example, the plywood used for building materials, a gypsum board, etc.

また、一対の加熱板22は、配管27を介して恒温恒湿室25の外部に設置された恒温水槽28に接続されている。恒温水槽28内には流体である循環液として、例えば水が貯留され、加熱板22との間で配管27を介して循環させている。しかも、恒温水槽28には循環液の温度を上昇または下降させるために、加熱手段としてのヒーターと冷却手段としての冷凍機と(図示せず)が配設され、温度上昇時と温度降下時における加熱板22の温度を調整可能に管理している。加熱板22内には、例えば配管27が蛇行状態に湾曲して配設され、所定温度の循環液が循環することで加熱板22の温度を均一に制御している。   Further, the pair of heating plates 22 are connected to a constant temperature water tank 28 installed outside the constant temperature and humidity chamber 25 through a pipe 27. For example, water is stored as a circulating fluid that is a fluid in the constant temperature water tank 28, and is circulated between the heating plate 22 via a pipe 27. In addition, the constant temperature water tank 28 is provided with a heater as a heating means and a refrigerator (not shown) as a cooling means in order to raise or lower the temperature of the circulating fluid, and when the temperature rises and falls The temperature of the heating plate 22 is managed to be adjustable. In the heating plate 22, for example, a pipe 27 is curved in a meandering state, and a circulating liquid having a predetermined temperature is circulated to control the temperature of the heating plate 22 uniformly.

また、恒温恒湿室25には例えば図示しないエアコンが温度調整手段として設置されており、恒温恒湿室25内の温度を恒温水槽28内の温度と一致するように制御部29でコントロールしている。これによって、加熱板22の熱が恒温恒湿室25内の空気に伝達されずに試験体21に伝達されるように制御される。
また、熱電対26による試験体21の温度の測定値と、熱流計23による加熱板22から試験体21への熱流量の測定値とを、データロガー30に配線を介して送信して、見かけの比熱cを下記の式(1)により演算している。また、見かけの比熱cを温度によって積分することで試験体21の蓄熱量を演算することができる。
Further, for example, an air conditioner (not shown) is installed in the constant temperature and humidity chamber 25 as a temperature adjusting means, and the temperature in the constant temperature and humidity chamber 25 is controlled by the control unit 29 so as to coincide with the temperature in the constant temperature water tank 28. Yes. Thus, the heat of the heating plate 22 is controlled to be transmitted to the test body 21 without being transmitted to the air in the constant temperature and humidity chamber 25.
In addition, the measured value of the temperature of the test body 21 by the thermocouple 26 and the measured value of the heat flow rate from the heating plate 22 to the test body 21 by the heat flow meter 23 are transmitted to the data logger 30 via the wiring, and apparent The specific heat c is calculated by the following equation (1). Moreover, the heat storage amount of the test body 21 can be calculated by integrating the apparent specific heat c with temperature.

Figure 2015118012
但し、c:試験体21の見かけの比熱(J/(g・K))、q:熱流計23で測定した熱流量(W/m )、A:試験体21の面積、M:試験体21の質量(g)、Δθ:試験体21の上昇または降下する温度値(K)、Δt:試験体21がΔθの温度上昇または降下に要する時間。
Figure 2015118012
However, c: Apparent specific heat (J / (g · K)) of the test body 21, q: Heat flow rate (W / m 2 ) measured by the heat flow meter 23, A: Area of the test body 21, M: Test body 21 mass (g), Δθ: temperature value (K) at which the specimen 21 rises or falls, Δt: time required for the specimen 21 to rise or fall at Δθ.

本実施形態による見かけの比熱測定装置20は上述の構成を備えており、次に見かけの比熱測定方法について説明する。
まず、試験体21として、例えば下記表1に規定した硫酸ナトリウム10水和物をプラスチック容器に充填した2枚の試験体片21aで熱電対26を挟んで内面21c同士を密着させ、その両外面21bに熱流計23を介して加熱板22をそれぞれ密着させる。そして、この試験体21を含む試験装置24を恒温恒湿室25内に封入し、試験前に試験体21を含む試験装置24を相変化の温度より低い0℃付近で養生し、その温度で安定させる。
The apparent specific heat measuring device 20 according to the present embodiment has the above-described configuration, and an apparent specific heat measuring method will be described next.
First, as the test body 21, for example, two test body pieces 21 a filled with sodium sulfate decahydrate specified in Table 1 below in a plastic container are brought into close contact with each other with the inner surface 21 c sandwiched between the thermocouples 26. The heating plates 22 are brought into close contact with 21 b through the heat flow meter 23. Then, the test apparatus 24 including the test body 21 is enclosed in a constant temperature and humidity chamber 25, and the test apparatus 24 including the test body 21 is cured near 0 ° C. lower than the phase change temperature before the test. Stabilize.

Figure 2015118012
Figure 2015118012

そして、恒温水槽28で昇温させた循環液を配管27を介して恒温恒湿室25内の加熱板22内に循環させ、加熱板22の温度を昇温させると共に、恒温恒湿室25内の雰囲気温度を恒温水槽28内の循環液の温度と同一温度に制御する。これによって、加熱板22の温度は恒温水槽28の温度と恒温恒湿室25内の温度と略同一温度に制御される。
昇温工程では、試験体21を一定速度で昇温させるために、恒温水槽28の温度を一定速度で上昇させて配管27を介して加熱板22の温度を昇温させ、熱流計23を介して試験体21に伝達させる。そして、試験体21を含む試験装置24の温度を徐々に上昇させ、例えば20℃〜30℃の範囲内にある相変化の温度を越えて試験体21の温度が60℃になるまで昇温させた。
Then, the circulating fluid heated in the constant temperature water tank 28 is circulated in the heating plate 22 in the constant temperature and humidity chamber 25 through the pipe 27 to raise the temperature of the heating plate 22 and in the constant temperature and humidity chamber 25. Is controlled to the same temperature as the circulating fluid in the constant temperature bath 28. As a result, the temperature of the heating plate 22 is controlled to be substantially the same as the temperature of the constant temperature water bath 28 and the temperature of the constant temperature and humidity chamber 25.
In the temperature raising step, in order to raise the temperature of the test body 21 at a constant speed, the temperature of the constant temperature water tank 28 is raised at a constant speed, the temperature of the heating plate 22 is raised via the pipe 27, and the heat flow meter 23 is used. Is transmitted to the test body 21. Then, the temperature of the test apparatus 24 including the test body 21 is gradually increased, and is increased until the temperature of the test body 21 reaches 60 ° C., for example, exceeding the phase change temperature within the range of 20 ° C. to 30 ° C. It was.

つぎに、降温工程では、例えば試験装置24を60℃付近で養生させ、恒温水槽28の循環液の温度を冷凍機で低下させて、温度低下した循環液を配管27を通して加熱板22に搬送し、加熱板22の温度を低下させる。これと同時に恒温恒湿室25内の温度をエアコンで恒温水槽28の循環液の温度と略同一となるように低下させ、加熱板22の温度が熱流計23を介して試験体21に伝達される。
そして、恒温水槽28と恒温恒湿室25の雰囲気温度を次第に降下させることで、加熱板22を介して伝達される試験体21の温度が60℃から次第に降下し、20℃〜30℃の範囲内の相変化領域の温度を越えて試験体21の温度が0℃になるまで降下させた。
Next, in the temperature lowering step, for example, the test device 24 is cured at around 60 ° C., the temperature of the circulating fluid in the constant temperature water tank 28 is lowered by a refrigerator, and the circulating fluid whose temperature has been lowered is conveyed to the heating plate 22 through the pipe 27. The temperature of the heating plate 22 is lowered. At the same time, the temperature in the constant temperature and humidity chamber 25 is lowered by an air conditioner so as to be substantially the same as the temperature of the circulating fluid in the constant temperature water tank 28, and the temperature of the heating plate 22 is transmitted to the test body 21 via the heat flow meter 23. The
And the temperature of the test body 21 transmitted via the heating plate 22 falls gradually from 60 degreeC by lowering | hanging the atmospheric temperature of the constant temperature water tank 28 and the constant temperature and humidity chamber 25 gradually, and the range of 20 to 30 degreeC The temperature of the test body 21 was lowered to 0 ° C. beyond the temperature in the phase change region.

本実施形態の比熱測定装置20による比熱測定方法によれば、昇温工程と降温工程とにおいて、所定時間毎に、試験体21の中心の温度を熱電対26で測定し、加熱板22の温度と加熱板22から試験体21への熱流量を熱流計23で測定した。これによって、図3に示す結果が得られた。   According to the specific heat measuring method by the specific heat measuring apparatus 20 of the present embodiment, the temperature of the center of the test body 21 is measured by the thermocouple 26 at predetermined time intervals in the temperature raising step and the temperature lowering step, and the temperature of the heating plate 22 is measured. The heat flow from the heating plate 22 to the test body 21 was measured with a heat flow meter 23. As a result, the result shown in FIG. 3 was obtained.

図3において、加熱板22の温度である「加熱板温度」は昇温工程では0℃から60℃まで一様に上昇し、60℃付近での養生を行った後、降温工程では0℃まで一様に降下した。試験体21の中心温度である「試験体中心温度」は昇温工程において20℃〜30℃の相変化領域の段階で傾斜が緩やかに変化する傾向を示している。なお、降温工程においても「試験体中心温度」は一様な下り勾配の傾斜で温度変化すると共に、相変化領域の30℃近傍において、試験体21からの発熱が認められるため、一時的にこぶ状に温度上昇する変化を呈し、グラフの線形状が昇温工程と異なる結果となった。
図3に示す「試験体中心温度」に関し、降温工程におけるこぶ状の発熱部分は本実施形態で採用した試験体2だけにみられる特異な現象であるが、こぶ状の発熱部分を含めた降温工程の温度データの平均値に基づいて熱量を積算すると、図4に示す試験体中心温度の平均値と見かけ比熱との関係を示すデータが得られた。
図4の降温工程における見かけ比熱は試験体中心温度が25℃前後で45J/gKとピークになっており、図3に示すこぶの部分に対応する。本実施形態における試験体2は昇温時と降温時に全く異なる特性を示しており、このような結果は使用する潜熱蓄熱材の配合に起因すると思われる。
In FIG. 3, the “heating plate temperature”, which is the temperature of the heating plate 22, rises uniformly from 0 ° C. to 60 ° C. in the temperature raising process, and after curing at around 60 ° C., to 0 ° C. It descended uniformly. The “test body center temperature”, which is the center temperature of the test body 21, shows a tendency that the slope gradually changes in the phase change region of 20 ° C. to 30 ° C. in the temperature raising step. Even in the temperature lowering process, the “center temperature of the specimen” changes with a uniform downward slope, and heat generation from the specimen 21 is observed near 30 ° C. in the phase change region. As a result, the line shape of the graph was different from that of the temperature raising step.
Regarding the “test body center temperature” shown in FIG. 3, the hump-like heat generation portion in the temperature lowering process is a unique phenomenon only seen in the test body 2 employed in the present embodiment, but the temperature drop including the hump-like heat generation portion is included. When the amount of heat was integrated based on the average value of the temperature data of the process, data indicating the relationship between the average value of the test specimen center temperature and the apparent specific heat shown in FIG. 4 was obtained.
The apparent specific heat in the temperature lowering step of FIG. 4 has a peak of 45 J / gK when the center temperature of the specimen is around 25 ° C., and corresponds to the hump portion shown in FIG. The test body 2 in the present embodiment exhibits completely different characteristics when the temperature is raised and when the temperature is lowered, and such a result is considered to result from the blending of the latent heat storage material used.

また、熱流計23で測定した「熱流量」は、昇温工程において「加熱板温度」と「試験体中心温度」との差が大きいほど大きくなり、試験体21の中心温度20℃〜30℃の相変化領域で最大となった。なお、降温工程においても、「熱流量」と「試験体中心温度」との差は、試験体21の中心温度が20℃〜30℃の相変化領域で最大となり、「熱流量」は最小となった。   Further, the “heat flow rate” measured by the heat flow meter 23 increases as the difference between the “heating plate temperature” and the “test body center temperature” increases, and the center temperature of the test body 21 ranges from 20 ° C. to 30 ° C. It became the maximum in the phase change region. In the temperature lowering process, the difference between the “heat flow rate” and the “test body center temperature” is the maximum in the phase change region where the center temperature of the test body 21 is 20 ° C. to 30 ° C., and the “heat flow rate” is the minimum. became.

これに対し、図7に示す従来技術の比熱測定装置1による比熱測定方法では、試験体2として、本実施形態による試験体21と同一のものを用い、しかも2枚の試験体片を熱電対3を挟んで密着させて、測定した。この比熱測定方法は従来技術の欄で説明したものと同一の測定方法で行った。
即ち、保護ヒーター8によって内部容器5と断熱容器6との間の空間の温度が同一になるように制御し、ヒーター4の加熱温度が試験体2にロスなく伝達されるようにした。そして、保護ヒータ―8の温度とヒーター4の温度を0℃の養生状態から上昇させて試験体2の温度を相変化領域を通過して上昇させ、60℃程度まで昇温させる。
On the other hand, in the specific heat measuring method by the specific heat measuring apparatus 1 of the prior art shown in FIG. 7, the same specimen as the specimen 21 according to the present embodiment is used as the specimen 2, and two specimen pieces are thermocoupled. Measurement was conducted with 3 being in close contact with each other. This specific heat measurement method was performed by the same measurement method as described in the section of the prior art.
That is, the temperature of the space between the inner container 5 and the heat insulating container 6 was controlled to be the same by the protective heater 8 so that the heating temperature of the heater 4 was transmitted to the test body 2 without loss. Then, the temperature of the protective heater 8 and the temperature of the heater 4 are raised from the curing state of 0 ° C., the temperature of the test body 2 is raised through the phase change region, and the temperature is raised to about 60 ° C.

そして、図5に、熱電対3で測定した「試験体中心温度」とヒーター4の温度である「ヒーター温度」との時間変化を示している。「試験体中心温度」は20℃〜30℃の間で傾斜がなだらかに変化しており、相変化による蓄熱が試験体2に発生していることが認められる。なお、ヒーター4に与える電力は一定であるが、試験体2の潜熱蓄熱効果によって温度が引っ張られてしまうため、「ヒータ温度」も「試験体中心温度」に沿った変化を呈している。   FIG. 5 shows the time change between the “test body center temperature” measured by the thermocouple 3 and the “heater temperature” which is the temperature of the heater 4. The “test body center temperature” has a gentle gradient between 20 ° C. and 30 ° C., and it is recognized that heat storage due to phase change occurs in the test body 2. Although the electric power applied to the heater 4 is constant, the temperature is pulled by the latent heat storage effect of the test body 2, so that the “heater temperature” also changes along the “test body center temperature”.

そして、実施形態による比熱測定装置20による比熱測定方法をB,従来の比熱測定装置1による比熱測定方法をAとして、「試験体中心温度」の昇温工程における温度の測定値が安定しているとみなせる5°〜55℃の範囲を対象として、温度上昇(△θ)を1K毎に区切った見かけの比熱を上記(1)式と(2)式に従って算出した結果を示すと図6のグラフに示すようになる。   And the specific heat measurement method by the specific heat measurement device 20 according to the embodiment is B, and the specific heat measurement method by the conventional specific heat measurement device 1 is A, and the temperature measurement value in the temperature raising process of the “test body center temperature” is stable. FIG. 6 is a graph showing the result of calculating the apparent specific heat obtained by dividing the temperature increase (Δθ) every 1K in the range of 5 ° to 55 ° C. that can be regarded as 5 ° C. to 55 ° C. according to the above equations (1) and (2). As shown.

図6で示す従来の比熱測定方法Aと実施形態の比熱測定方法Bにおいて、見かけの比熱は、温度との関係に多少のずれは見られるが、いずれも20℃〜30℃の範囲で発生しており、変化の傾向も概ね類似したカーブの特性を呈している。また、20℃〜30℃の範囲の相変位領域を除く両側の領域では試験体2、21の比熱はほぼ一致している。
そのため、本実施形態による比熱測定装置20における「試験体中心温度」の見かけの比熱の変化は、評価の定まった従来の比熱測定装置1による見かけの比熱の変化と略同一の曲線特性を呈するため、本実施形態による比熱測定装置20とその比熱測定方法Bが正しい特性を呈することを認識できる。
In the conventional specific heat measurement method A shown in FIG. 6 and the specific heat measurement method B of the embodiment, the apparent specific heat is somewhat different in relation to the temperature, but both occur in the range of 20 ° C. to 30 ° C. The tendency of the change also shows a similar curve characteristic. Moreover, the specific heats of the test bodies 2 and 21 are substantially the same in the regions on both sides excluding the phase displacement region in the range of 20 ° C. to 30 ° C.
Therefore, the change in the apparent specific heat of the “specimen center temperature” in the specific heat measurement apparatus 20 according to the present embodiment exhibits substantially the same curve characteristics as the change in the apparent specific heat by the conventional specific heat measurement apparatus 1 whose evaluation has been determined. It can be recognized that the specific heat measuring apparatus 20 and the specific heat measuring method B according to the present embodiment exhibit correct characteristics.

次に、(1)式で得られた試験体21の見かけの比熱を温度によって積分することで、試験体21の蓄熱量を算出することができる。この蓄熱量から顕熱の成分を差し引けば潜熱蓄熱量を算出できる。
また、試行的に、「試験体中心温度」が5℃〜15℃の範囲における見かけの比熱の平均値を顕熱による試験体2、21の比熱の代表値とし、相変位領域である20℃〜30℃の範囲での見かけの比熱を(1)式、(2)式から算出し、更に試験体2、21の蓄熱量、試験体2、21の潜熱蓄熱量を算出した。また、見かけの容積比熱、その蓄熱量、潜熱蓄熱量についても算出し、これらの算出結果を表2に示した。
Next, the amount of heat stored in the test body 21 can be calculated by integrating the apparent specific heat of the test body 21 obtained by the equation (1) with temperature. The latent heat storage amount can be calculated by subtracting the sensible heat component from this heat storage amount.
Further, as a trial, the average value of the apparent specific heat in the range where the “test body center temperature” is in the range of 5 ° C. to 15 ° C. is set as a representative value of the specific heat of the test bodies 2 and 21 by sensible heat, and the phase displacement region is 20 ° C. The apparent specific heat in the range of ˜30 ° C. was calculated from the formulas (1) and (2), and the heat storage amount of the test bodies 2 and 21 and the latent heat storage amount of the test bodies 2 and 21 were calculated. Further, the apparent volume specific heat, the amount of stored heat, and the amount of stored latent heat were also calculated, and the calculation results are shown in Table 2.

Figure 2015118012
Figure 2015118012

上述のように本実施形態による比熱測定装置20によれば、昇温工程における温度に対する見かけの比熱が、従来の比熱測定装置1による見かけの比熱と同様な数値と変化特性を呈するため、見かけの比熱を精度よく算出できると認められる。
また、本実施形態では、加熱手段としてヒーター4や保護ヒータ―8を用いることなく、恒温水槽28で加熱板22に循環する循環液の加熱と冷却を自由にコントロールして昇温と降温を制御できるため、図6における昇温工程における見かけ比熱と従来測定できなかった降温工程における見かけ比熱(図4参照)とを測定・算出できて、任意の試験体21について見かけ比熱の測定・算出を行える。
As described above, according to the specific heat measurement apparatus 20 according to the present embodiment, the apparent specific heat with respect to the temperature in the temperature raising step exhibits the same numerical value and change characteristics as the apparent specific heat of the conventional specific heat measurement apparatus 1, and thus the apparent specific heat. It is recognized that the specific heat can be calculated accurately.
Moreover, in this embodiment, without using the heater 4 or the protective heater 8 as the heating means, the heating and cooling of the circulating fluid circulating to the heating plate 22 in the constant temperature water tank 28 is freely controlled to control the temperature increase and the temperature decrease. Therefore, the apparent specific heat in the temperature raising step in FIG. 6 and the apparent specific heat in the temperature lowering step (see FIG. 4) that could not be measured conventionally can be measured and calculated, and the apparent specific heat can be measured and calculated for any specimen 21. .

しかも、試験体21として、中心をくりぬく穴加工を施すことなく、熱電対26の接合点を挟んで2枚の試験体片21aを貼り合せるだけで中心の温度を測定できる。そのため、潜熱蓄熱材だけでなく、一般材料、例えば合板や石膏ボード等の一般的な建材についても容易に見かけの比熱や潜熱蓄熱量を測定・算出できる。
また、試験体21を含む試験装置24を恒温恒湿室25内に設置し、内部の雰囲気温度を恒温水槽28の循環液の温度と同一になるように昇降制御したから、試験体21の小口からの熱の逃げや試験装置24の熱容量による測定のずれを補正できると共に、加熱板22の温度が外部に逃げることを抑制できて試験体21に伝達でき、測定誤差が生じにくい。
また、恒温恒湿室25を設けて試験装置24の周囲の雰囲気温度を循環液の温度とほぼ同一に制御することができるので、従来の比熱測定装置1に設けた断熱容器6が必要なく、構成がより簡単で測定精度が高い。
Moreover, the center temperature can be measured as the test body 21 by simply bonding the two test body pieces 21a across the junction of the thermocouple 26 without drilling the center. Therefore, apparent specific heat and latent heat storage amount can be easily measured and calculated not only for latent heat storage materials but also for general materials such as plywood and gypsum board.
In addition, since the test apparatus 24 including the test body 21 is installed in the constant temperature and humidity chamber 25 and the internal atmosphere temperature is controlled to be the same as the temperature of the circulating fluid in the constant temperature water tank 28, The measurement deviation due to the heat escape from the heat and the heat capacity of the test device 24 can be corrected, and the temperature of the heating plate 22 can be prevented from escaping to the outside and can be transmitted to the test body 21, so that a measurement error hardly occurs.
In addition, since the constant temperature and humidity chamber 25 is provided and the ambient temperature around the test device 24 can be controlled almost the same as the temperature of the circulating fluid, the heat insulating container 6 provided in the conventional specific heat measuring device 1 is not necessary, Simpler configuration and higher measurement accuracy.

なお、上述した実施形態では、試験体21を含む試験装置24を恒温恒湿室25内に収容して、雰囲気温度を恒温水槽28の循環液の温度と同一に制御したが、恒温恒湿室25を設けずにエアコンやヒーター等で試験装置24の周囲の雰囲気温度を恒温水槽28内の循環液と同一温度に制御するようにしてもよい。
また、恒温水槽28と配管27と加熱板22とを循環させる循環液として水を採用したが、ヒーター等の加熱手段で温度を上昇及び下降でき、加熱板22に熱伝達可能な流体であれば、水以外の液体や気体等でもよい。
また、恒温水槽28は恒温流体供給手段を構成する。
また、試験体21として2枚の試験体片21aを熱電対の接合点を挟んで貼り合せたが、試験体片21aは3枚以上の複数で構成してもよい。
In the above-described embodiment, the test apparatus 24 including the test body 21 is accommodated in the constant temperature and humidity chamber 25, and the atmospheric temperature is controlled to be the same as the temperature of the circulating liquid in the constant temperature water tank 28. The ambient temperature around the test device 24 may be controlled to the same temperature as the circulating liquid in the constant temperature water tank 28 by using an air conditioner, a heater, or the like without providing the air conditioner 25.
Further, water is used as a circulating fluid for circulating the constant temperature water tank 28, the pipe 27, and the heating plate 22. However, any fluid that can increase and decrease the temperature by heating means such as a heater and can transfer heat to the heating plate 22 is used. Liquids other than water, gases, and the like may be used.
The constant temperature water tank 28 constitutes a constant temperature fluid supply means.
Moreover, although the two test piece 21a was bonded as the test piece 21 across the junction of the thermocouple, the test piece 21a may be composed of three or more pieces.

20 比熱測定装置
21 試験体
21a 試験体片
22 加熱板
23 熱流計
25 恒温恒湿室
26 熱電対
27 配管
28 恒温水槽
30 データロガー
20 Specific Heat Measuring Device 21 Specimen 21a Specimen Piece 22 Heating Plate 23 Heat Flow Meter 25 Constant Temperature and Humidity Chamber 26 Thermocouple 27 Pipe 28 Constant Temperature Water Tank 30 Data Logger

Claims (10)

試験体と、
前記試験体に熱を伝達して該試験体の温度を上昇及び降下させる流体を有する加熱部材と、
前記試験体と加熱部材との間に設けた熱流計と、
前記試験体の温度を測定する熱電対とを備え、
前記熱電対で測定した試験体の温度と前記熱流計で測定した熱流量とに基づいて、前記試験体の見かけの比熱を算出するようにしたことを特徴とする試験体の比熱測定装置。
A specimen,
A heating member having a fluid that transfers heat to the specimen to raise and lower the temperature of the specimen;
A heat flow meter provided between the test body and the heating member;
A thermocouple for measuring the temperature of the specimen,
A specific heat measurement apparatus for a test specimen, wherein the apparent specific heat of the test specimen is calculated based on the temperature of the specimen measured by the thermocouple and the heat flow rate measured by the heat flow meter.
前記加熱部材に循環させる流体の温度を上昇及び降下させる恒温流体供給手段を備え、前記恒温流体供給手段には、流体を相変化の前後の温度に亘って上昇させる加熱手段と、流体を相変化の前後の温度に亘って下降させる冷却手段とを備えた請求項1に記載された試験体の比熱測定装置。   There is provided a constant temperature fluid supply means for increasing and decreasing the temperature of the fluid circulated through the heating member, and the constant temperature fluid supply means includes a heating means for increasing the fluid over the temperature before and after the phase change, and a phase change of the fluid. The specific heat measuring device for a test specimen according to claim 1, further comprising cooling means for lowering the temperature before and after the temperature. 前記試験体と加熱部材と熱流計とを収容して内部の雰囲気温度を前記流体の温度と同等に制御する恒温恒湿室を備えた請求項1または2に記載された試験体の比熱測定装置。   3. The specific heat measuring device for a test body according to claim 1, further comprising a constant temperature and humidity chamber that accommodates the test body, a heating member, and a heat flow meter and controls an internal atmosphere temperature to be equal to a temperature of the fluid. . 前記試験体は、前記熱電対を挟む複数の試験体片からなる請求項1から3のいずれか1項に記載された試験体の比熱測定装置。   The specific heat measuring apparatus for a test body according to any one of claims 1 to 3, wherein the test body includes a plurality of test body pieces sandwiching the thermocouple. 前記恒温流体供給手段によって、前記試験体の温度を相変化の前後に亘って上昇させることで前記試験体の昇温工程における見かけの比熱を算出するようにした請求項1から4のいずれか1項に記載された試験体の比熱測定装置。   5. The apparent specific heat in the temperature raising step of the test body is calculated by increasing the temperature of the test body before and after the phase change by the constant temperature fluid supply means. The specific heat measuring device of the test body described in the paragraph. 前記恒温流体供給手段によって、前記試験体の温度を相変化の前後に亘って降下させることで前記試験体の降温工程における見かけの比熱を算出するようにした請求項1から5のいずれか1項に記載された試験体の比熱測定装置。   6. The apparent specific heat in the temperature lowering step of the test body is calculated by lowering the temperature of the test body before and after the phase change by the constant temperature fluid supply means. The specific heat measuring device of the test body described in 1. 下記(1)式によって、前記試験体の見かけの比熱を測定するようにした請求項1から6のいずれか1項に記載された試験体の比熱測定装置。
Figure 2015118012
但し、c:見かけの比熱(J/(g・K)、q:熱流量(W/m )、A:試験体の面積、M:試験体の質量(g)、Δθ:試験体の上昇または降下する温度値(K)、Δt:試験体がΔθの温度上昇または降下に要する時間。
The specific heat measuring device of the test body according to any one of claims 1 to 6, wherein an apparent specific heat of the test body is measured by the following equation (1).
Figure 2015118012
However, c: Apparent specific heat (J / (g · K), q: Heat flow rate (W / m 2 ), A: Area of specimen, M: Mass (g) of specimen, Δθ: Increase of specimen Or temperature value (K) which falls, (DELTA) t: Time which a test body requires for temperature rise or fall of (DELTA) (theta).
前記試験体は潜熱蓄熱材である請求項1から7のいずれか1項に記載された試験体の比熱測定装置。   The specific heat measuring apparatus for a test body according to any one of claims 1 to 7, wherein the test body is a latent heat storage material. 昇温工程において、加熱部材に流れる流体によって試験体の温度を上昇させて相変化の前後に亘って前記試験体の温度を測定すると共に、前記加熱部材から熱流計を介して試験体に伝達される熱流量を測定し、
降温工程において、前記加熱部材に流れる流体によって試験体の温度を降下させて相変化の前後に亘って前記試験体の温度を測定すると共に、前記加熱部材から熱流計を介して前記試験体に伝達される熱流量を測定し、
測定された前記試験体の温度と熱流量とに基づいて、温度上昇時と降下時における前記試験体の見かけの比熱を算出するようにしたことを特徴とする試験体の比熱測定方法。
In the temperature raising step, the temperature of the test body is increased by the fluid flowing through the heating member to measure the temperature of the test body before and after the phase change, and is transmitted from the heating member to the test body via the heat flow meter. Measure the heat flow
In the temperature lowering step, the temperature of the test body is lowered by the fluid flowing through the heating member to measure the temperature of the test body before and after the phase change, and is transmitted from the heating member to the test body through a heat flow meter. Measured heat flow,
A specific heat measurement method for a specimen, wherein an apparent specific heat of the specimen at the time of temperature rise and drop is calculated based on the measured temperature and heat flow of the specimen.
下記(1)式によって、前記試験体の見かけの比熱を算出するようにした請求項9に記載された試験体の比熱測定方法。
Figure 2015118012
但し、c:見かけの比熱(J/(g・K)、q:熱流量(W/m )、A:試験体の面積、M:試験体の質量(g)、Δθ:試験体の上昇または降下する温度値(K)、Δt:試験体がΔθの温度上昇または降下に要する時間。
The specific heat measurement method of the test body described in claim 9, wherein the apparent specific heat of the test body is calculated by the following equation (1).
Figure 2015118012
However, c: Apparent specific heat (J / (g · K), q: Heat flow rate (W / m 2 ), A: Area of specimen, M: Mass (g) of specimen, Δθ: Increase of specimen Or temperature value (K) which falls, (DELTA) t: Time which a test body requires for temperature rise or fall of (DELTA) (theta).
JP2013261800A 2013-12-18 2013-12-18 Specific heat-measuring device and specific heat-measuring method of test body Pending JP2015118012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261800A JP2015118012A (en) 2013-12-18 2013-12-18 Specific heat-measuring device and specific heat-measuring method of test body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261800A JP2015118012A (en) 2013-12-18 2013-12-18 Specific heat-measuring device and specific heat-measuring method of test body

Publications (1)

Publication Number Publication Date
JP2015118012A true JP2015118012A (en) 2015-06-25

Family

ID=53530859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261800A Pending JP2015118012A (en) 2013-12-18 2013-12-18 Specific heat-measuring device and specific heat-measuring method of test body

Country Status (1)

Country Link
JP (1) JP2015118012A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424741A (en) * 2015-12-24 2016-03-23 深圳市建筑科学研究院股份有限公司 Test device and test method for latent heat of composite phase-change material
CN105445323A (en) * 2015-12-22 2016-03-30 广州合成材料研究院有限公司 Continuous condensate water damp-heat tester
CN105510379A (en) * 2015-11-24 2016-04-20 北京航空航天大学 A system for testing heat transfer properties of a fin of a heat exchanger
CN105675450A (en) * 2016-03-03 2016-06-15 东北石油大学 Experimental device and method for heat and mass transfer processes of floating roof crude oil storage tank
CN105675647A (en) * 2016-03-25 2016-06-15 华北水利水电大学 Phase-change heat storage testing device and phase-change heat storage testing method
CN106053529A (en) * 2016-08-05 2016-10-26 厦门大学 Device and method for measuring porous metal material heat conductivity coefficient through comparison plate
KR101726198B1 (en) * 2015-10-20 2017-04-12 숭실대학교산학협력단 Adjustable heat transfer analysis apparatus for thermal storage building materials, heat transfer analysis method using the apparatus and recording medium for performing the method
CN108931554A (en) * 2018-07-16 2018-12-04 东南大学 A kind of the storage energy test macro and method of non-ideal solid-liquid phase change material
CN111948257A (en) * 2020-08-11 2020-11-17 兰州大学 Phase change energy storage building material close to actual use state and method for testing temperature regulation performance of component
CN114113205A (en) * 2021-11-11 2022-03-01 湖北文理学院 Method and device for measuring phase change temperature, latent heat of fusion and specific heat capacity of phase change material
CN114487008A (en) * 2022-01-28 2022-05-13 深圳大学 System and method for measuring composite thermal parameters of phase-change concrete member

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726198B1 (en) * 2015-10-20 2017-04-12 숭실대학교산학협력단 Adjustable heat transfer analysis apparatus for thermal storage building materials, heat transfer analysis method using the apparatus and recording medium for performing the method
CN105510379A (en) * 2015-11-24 2016-04-20 北京航空航天大学 A system for testing heat transfer properties of a fin of a heat exchanger
CN105445323A (en) * 2015-12-22 2016-03-30 广州合成材料研究院有限公司 Continuous condensate water damp-heat tester
CN105424741A (en) * 2015-12-24 2016-03-23 深圳市建筑科学研究院股份有限公司 Test device and test method for latent heat of composite phase-change material
CN105424741B (en) * 2015-12-24 2018-11-20 深圳市建筑科学研究院股份有限公司 A kind of composite phase-change material latent heat measurement device and measuring method
CN105675450B (en) * 2016-03-03 2018-03-20 东北石油大学 Floating roof crude oil storage tank heat and mass transfer process experimental provision and its experimental method
CN105675450A (en) * 2016-03-03 2016-06-15 东北石油大学 Experimental device and method for heat and mass transfer processes of floating roof crude oil storage tank
CN105675647A (en) * 2016-03-25 2016-06-15 华北水利水电大学 Phase-change heat storage testing device and phase-change heat storage testing method
CN106053529A (en) * 2016-08-05 2016-10-26 厦门大学 Device and method for measuring porous metal material heat conductivity coefficient through comparison plate
CN108931554A (en) * 2018-07-16 2018-12-04 东南大学 A kind of the storage energy test macro and method of non-ideal solid-liquid phase change material
CN108931554B (en) * 2018-07-16 2021-01-12 东南大学 Storage and discharge energy testing system and method for non-ideal solid-liquid phase change material
CN111948257A (en) * 2020-08-11 2020-11-17 兰州大学 Phase change energy storage building material close to actual use state and method for testing temperature regulation performance of component
CN111948257B (en) * 2020-08-11 2023-06-23 兰州大学 Phase change energy storage building material approaching actual use state and method for testing temperature regulation performance of component
CN114113205A (en) * 2021-11-11 2022-03-01 湖北文理学院 Method and device for measuring phase change temperature, latent heat of fusion and specific heat capacity of phase change material
CN114113205B (en) * 2021-11-11 2024-03-05 湖北文理学院 Method and device for measuring phase transition temperature, latent heat of fusion and specific heat capacity of phase change material
CN114487008A (en) * 2022-01-28 2022-05-13 深圳大学 System and method for measuring composite thermal parameters of phase-change concrete member
CN114487008B (en) * 2022-01-28 2022-10-04 深圳大学 System and method for measuring composite thermal parameters of phase-change concrete member

Similar Documents

Publication Publication Date Title
JP2015118012A (en) Specific heat-measuring device and specific heat-measuring method of test body
Cherif et al. Experimental and numerical study of mixed convection heat and mass transfer in a vertical channel with film evaporation
Rong et al. Dynamic performance of an evaporative cooling pad investigated in a wind tunnel for application in hot and arid climate
WO2009107209A1 (en) Heater device, measuring device, and method of estimating heat conductivity
Zheng et al. Numerical study on impact of non-heating surface temperature on the heat output of radiant floor heating system
Khoukhi et al. Effect of temperature and density variations on thermal conductivity of polystyrene insulation materials in Oman climate
Acikgoz et al. Realistic experimental heat transfer characteristics of radiant floor heating using sidewalls as heat sinks
JP5959402B2 (en) FIXING DEVICE, FIXING METHOD, AND FLOW MEASURING DEVICE
CN105562133A (en) Constant temperature device of air bath
CN104391240B (en) Circuit board card temperature tolerance analysis method
Krusaa et al. Reduced-scale experiments of heat transfer from integrated radiant ceiling panel and diffuse ceiling ventilation
US9689819B2 (en) Electronic psychrometer and/or humidistat with low temperature and high humidity capability
Liao et al. Study of pressure drop-flow rate and flow resistance characteristics of heated porous materials under local thermal non-equilibrium conditions
Terzi et al. Experimental investigation on the evaporation of a wet porous layer inside a vertical channel with resolution of the heat equation by inverse method
CN107085009B (en) Performance test device for heat pipe exchanger
Hudoklin et al. The new LMK primary standard for dew-point sensor calibration: evaluation of the high-range saturator efficiency
Arpino et al. Design of a calibration system for heat flux meters
JP6110073B2 (en) Flow rate measuring device and flow rate measuring method
Tsai et al. Experimental study of evaporative heat transfer in sintered powder structures at low superheat levels
CN103575427B (en) A kind of method adopting heat conduction to demarcate heat flow meter
CN111709199B (en) Method for measuring heating value of equipment
Cortellessa et al. A novel calibration system for heat flow meters: Experimental and numerical analysis
Gui et al. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS
CN110376088B (en) Material water absorption coefficient testing device and measuring method
Wang et al. A-30\,^ ∘ C-30∘ C to 80\,^ ∘ C 80∘ C Stirred-Liquid-Bath-Based Blackbody Source