JP2015114153A - 測定装置、および測定方法 - Google Patents

測定装置、および測定方法 Download PDF

Info

Publication number
JP2015114153A
JP2015114153A JP2013255044A JP2013255044A JP2015114153A JP 2015114153 A JP2015114153 A JP 2015114153A JP 2013255044 A JP2013255044 A JP 2013255044A JP 2013255044 A JP2013255044 A JP 2013255044A JP 2015114153 A JP2015114153 A JP 2015114153A
Authority
JP
Japan
Prior art keywords
measurement
value
sample
signal
measurement electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013255044A
Other languages
English (en)
Inventor
一生 福田
Kazuo Fukuda
一生 福田
佐藤 義治
Yoshiharu Sato
義治 佐藤
彰子 岡見
Akiko Okami
彰子 岡見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP2013255044A priority Critical patent/JP2015114153A/ja
Publication of JP2015114153A publication Critical patent/JP2015114153A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】試料に印加した信号に対する応答から正確な測定値を得る測定装置および測定方法において、より高い精度での測定値を容易に得ることができるようにする。【解決手段】一対の測定電極25により構成された測定電極対を用いて、試料と所定の試薬を反応させない状態で測定電極対に測定信号を印加して、測定信号に対する試料からの応答信号を検出する工程と、測定電極と同じ材料を用いて形成された抵抗値把握部35の抵抗値を測定する工程と、測定された抵抗値に基づいて、応答信号により得られた測定値を補正する工程とを含む。【選択図】図12

Description

本開示は、試料に信号を印加して得られる応答に基づいて、試料に含まれる成分を測定する技術に関する。
従来、血液のような生物学的試料に、信号を印加して得られる応答に基づいて、試料中の医学的に有意な成分の情報を得る装置および方法が開発されてきた。
例えば、血液サンプル中のグルコース濃度を電気化学的に測定する方法として、血液サンプルに交流信号を印加し、応答として得られた交流信号の大きさや位相角のデータに基づいて血液サンプル中のヘマトクリット値を決定し、得られたヘマトクリット値と測定時の温度情報とに基づいて、試薬を添加した血液サンプルに直流信号を印加して得られた抵抗値を補正することで、高い精度でグルコース濃度を測定する方法が知られている(特許文献1参照)。
また、血液サンプル中のグルコース濃度を電気化学的に測定する方法に用いられる分析用具としてのセンサにおいて、所定のパターンとしてセンサ表面に形成された測定電極の抵抗値に起因する測定誤差を低減することで、測定精度を向上させる取り組みも行われている。
例えば、測定電極である作用電極と対向電極との少なくとも一方に、これと平行となるように形成されたセンス電極を配置して、このセンス電極を用いて試料である血液に印加される電圧が所定のものとなるように観視しながら制御することで、測定電極の電気抵抗成分による電圧降下の影響を補償して精度の高い測定値を得る方法が提案されている(特許文献2参照)。
また、ウェル内の電気活性物質と測定試料との電気化学反応により生じる電流値等を測定するために、分析用具であるセンサに形成された測定電極の抵抗値成分を測定電極と同じ方法で形成した付加的導電経路を用いて測定し、センサ上に形成されている測定電極の実際の形成厚さと、所望の理想状態の厚さとにおける抵抗値の差を補正する補正係数を算出して、測定電極を用いて得られた測定結果をこの補正係数を用いて補正する方法が提案されている(特許文献3)。
特表2007−524825号公報 特許第4827855号公報 特許第4969577号公報
上記従来の生物学的試料における有意な成分情報を得る方法は、いずれも、試薬を添加した血液の抵抗値を求めてグルコース濃度を測定するという血液サンプル中のグルコース濃度の電気化学的測定方法において、測定結果に生じる誤差要因を補正して測定精度を向上させようとするものである。
すなわち、特許文献1に記載された従来の測定方法は、ヘマトクリット値がグルコース濃度を測定する抵抗値に影響を与えるという、血液を測定対象試料とする場合の測定方法自体が有する血液成分に起因する不可避の測定誤差を回避するものである。また、特許文献2および特許文献3に記載の従来の測定方法は、分析用具として用いられるセンサに形成された測定電極の製造バラツキに起因する抵抗値の変動という測定誤差を、電気化学的な手段を用いて低減させて、より高い精度でグルコース濃度を測定しようというものである。
しかし、例えば特許文献1に記載の方法では、ヘマトクリット値の測定において印加された交流信号に対する応答信号について、交流信号としての大きさや位相角を測定データとして取得する必要がある。また、特許文献2に記載の方法では、センス電極を介して得られる印加電圧を測定の都度モニタリングする必要があり、測定手順が複雑となる。さらに、特許文献2および特許文献3に記載の従来技術は、試料の電気的特性を試料に所定の試薬を反応させた状態で測定することを前提としているため、求められる測定電極の抵抗値のばらつきの度合いは本来的にかなり大きなものとなる。このため、測定精度の観点などから、試料に試薬を反応させずにその電気的特性値を測定する方法には適用することができない。
本開示は、上記従来の課題を解決し、試料に印加した信号に対する応答から正確な測定値を得る測定装置および測定方法において、特に、試料と所定の試薬を反応させない状態での高い精度での測定を容易に行うことができるようにすることを目的とする。
本開示の測定方法は、生物学的な試料の測定対象成分を測定する方法であって、一対の測定電極により構成された測定電極対を用いて、試料と所定の試薬を反応させない状態で前記測定電極対に測定信号を印加して、前記測定信号に対する前記試料からの応答信号を検出する工程と、前記測定電極と同じ材料を用いて形成された抵抗値把握部の抵抗値を測定する工程と、測定された前記抵抗値に基づいて、前記応答信号により得られた測定値を補正する工程とを含む。
また、本開示の測定装置は、生物学的な試料の測定対象成分を測定する装置であって、一対の測定電極により構成された測定電極対と、前記測定電極と同じ材料を用いて形成された抵抗値把握部と、前記測定電極対を用いて、試料と所定の試薬を反応させない状態で前記測定電極対に測定信号を印加して前記測定信号に対する前記試料からの応答信号を検出する制御部とを備え、前記制御部は、前記抵抗値把握部の抵抗値を測定し、測定された前記抵抗値に基づいて前記応答信号から得られた測定値を補正する。
本開示によれば、測定対象試料に印加した測定信号に対する応答信号から測定値を得る装置および方法において、より高い精度での測定値を容易に得ることが可能となる。
図1は、実施形態にかかる測定装置、および分析用具を説明する斜視図である。 図2は、測定装置の一例である血糖値計の構成例を示すブロック図である。 図3は、第2測定部の回路構成の例を示す図である。 図4は、第2の測定電極対に印加される第2の測定信号と、試料から得られた第2の応答信号の一例を示す図である。 図5は、第2の測定信号の形態について説明するための図である。 図6は、第2の測定信号におけるパルス立ち上がり時間と、第2の応答信号のピーク電流値との関係を示すグラフである。 図7は、図1に示した分析用具を説明する平面図である。 図8は、分析用具の導入孔部側の構成を説明する拡大平面図である。 図9は、分析用具の導入孔部側の断面構成を説明する断面図である。 図10は、分析用具の血液導入部部分の構成を説明する拡大平面図である。 図11は、分析用具の挿入部側の構成を説明する拡大平面図である。 図12は、実施形態にかかる測定装置の動作例を示すフローチャートである。 図13は、抵抗値測定部の回路構成の例を示す図である。 図14は、分析用具の端子部間電流値と、測定結果として得られる血液のヘマトクリット電流値との相関を示す図である。 図15は、分析用具の端子部間電流値を用いて、ヘマトクリット電流値の補正を行う動作を説明するフローチャートである。 図16は、端子間電流値を用いて補正したヘマトクリット電流値のばらつきを説明する図である。 図17は、比較例としての端子間電流値を用いて補正をしていないヘマトクリット電流値のばらつきを説明する図である。
本開示にかかる測定方法は、生物学的な試料の測定対象成分を測定する方法であって、一対の測定電極により構成された測定電極対を用いて、試料と所定の試薬を反応させない状態で前記測定電極対に測定信号を印加して、前記測定信号に対する前記試料からの応答信号を検出する工程と、前記測定電極と同じ材料を用いて形成された抵抗値把握部の抵抗値を測定する工程と、測定された前記抵抗値に基づいて、前記応答信号により得られた測定値を補正する工程とを含む。
上記本開示にかかる測定方法では、測定電極対を通じて試料に印加した測定信号に対する応答信号を試料と所定の試薬を反応させない状態で検出することで生物学的な試料の測定対象成分を測定する測定方法おいて、試料への測定信号の印加と試料からの応答信号の検出とを行う測定電極と同じ材料を用いて形成された抵抗値把握部の抵抗値を測定する工程と、測定された抵抗値に基づいて、応答信号から得られた測定値を補正する工程とを含む。このため、測定電極の抵抗値が測定対象成分の測定値に与える誤差を補正して、正確な測定値を得ることができる。
また、本開示の測定方法において、前記抵抗値把握部が、前記測定電極の一部分として形成されている構成とすることができる。このようにすることで、抵抗値を測定するためだけの領域を別途形成することなく、試料の測定対象成分を測定するための測定電極そのものを用いて、その抵抗値を把握することができる。
さらに、前記測定電極それぞれは、一方の端部もしくはその近傍に形成された前記試料と接触する試料検知部と、他方の端部もしくはその近傍に形成された接続端子部とを有し、前記測定電極のうちの少なくとも1本が測定端子部をさらに備え、当該測定電極の前記接続端子部と前記測定端子部との間の部分を前記抵抗値把握部とすることができる。このようにすることで、測定電極に測定端子部を付加することで測定電極に抵抗値把握部を形成することができる。
さらにまた、前記測定電極として、第1の測定電極対を形成する第1の測定電極および第2の測定電極と、第2の測定電極対を形成する第3の測定電極および第4の測定電極とを備え、試料と前記所定の試薬を反応させた状態で、前記第1の測定電極対に第1の測定信号を印加して、前記第1の測定信号に対する前記試料からの第1の応答信号を検出する工程と、試料と前記所定の試薬を反応させない状態で、前記第2の測定電極対に第2の測定信号を印加して、前記第2の測定信号に対する前記試料からの第2の応答信号を検出する工程とをさらに備えることができる。このようにすることで、測定対象試料について、試薬を反応させた状態と試薬を反応させない状態との2つの状態における測定対象成分を測定することができる。
また、前記第2の測定信号が、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号とすることができる。このようにすることで、信号レベルが変化するため、測定電極における抵抗値成分の影響を受けやすい測定信号に対する応答信号を、正確に測定することができる。
また、前記試料が血液試料であって、前記第1の測定電極対を用いて、試料と所定の試薬を反応させた状態で前記血液試料のグルコース値を求める工程と、前記第2の測定電極対に印加される前記第2の測定信号が、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号であり、前記第2の測定信号に対する前記血液試料からの前記第2の応答信号を、前記第2の測定信号の変化に対する前記第2の応答信号のピーク値として検出する工程と、前記ピーク値から前記血液試料のヘマトクリット値を算出する工程と、算出された前記血液試料の前記ヘマトクリット値に基づいて前記グルコース値を補正する工程とを備えることができる。このようにすることで、血液試料中のグルコース値を正確に測定することができる。
さらにまた、前記抵抗値把握部の抵抗値を、所定電圧の直流電圧を印加した際に流れる直流電流値を測定することで測定し、測定された前記直流電流値に基づいて、前記応答信号により得られた測定値を補正することが好ましい。このようにすることで、測定電極の抵抗値の把握と、把握された抵抗値に基づく測定値の補正とを、容易に、かつ、正確に行うことかができる。
また、本開示にかかる測定装置は、生物学的な試料の測定対象成分を測定する装置であって、一対の測定電極により構成された測定電極対と、前記測定電極と同じ材料を用いて形成された抵抗値把握部と、前記測定電極対を用いて、試料と所定の試薬を反応させない状態で前記測定電極対に測定信号を印加して前記測定信号に対する前記試料からの応答信号を検出する制御部とを備え、前記制御部は、前記抵抗値把握部の抵抗値を測定し、測定された前記抵抗値に基づいて前記応答信号から得られた測定値を補正する。
上記本開示にかかる測定装置では、生物学的な試料の測定対象成分を、試料と所定の試薬を反応させない状態で測定するために用いられる測定電極と同じ材料を用いて形成された抵抗値把握部を備え、制御部が、この抵抗値把握部の抵抗値を把握するとともに、把握された抵抗値に基づいて応答信号から得られた測定値を補正する。このため、測定電極の抵抗値が測定対象成分の測定値に与える誤差を補正して、正確な測定を得ることができる。
また、本開示の測定装置において、前記抵抗値把握部が、前記測定電極の一部分として形成されているようにすることができる。このようにすることで、抵抗値を測定するためだけの領域を別途形成することなく、試料の測定対象成分を測定するための測定電極そのものを用いて、その抵抗値を把握することができる。
さらに、前記測定電極それぞれは、一方の端部もしくはその近傍に形成された前記試料と接触する試料検知部と、他方の端部もしくはその近傍に形成された接続端子部とを有し、前記測定電極のうちの少なくとも1本が測定端子部をさらに備え、当該測定電極の前記接続端子部と前記測定端子部との間の部分を前記抵抗値把握部とすることができる。このようにすることで、測定端子部を付加することで、測定電極に抵抗値把握部を形成することができる。
さらにまた、前記測定電極として、第1の測定電極対を形成する第1の測定電極および第2の測定電極と、第2の測定電極対を形成する第3の測定電極および第4の測定電極とを備え、前記制御部は、試料と前記所定の試薬を反応させた状態で、前記第1の測定電極対に第1の測定信号を印加して、前記第1の測定信号に対する前記試料からの第1の応答信号を検出し、試料と前記所定の試薬を反応させない状態で、前記第2の測定電極対に第2の測定信号を印加して、前記第2の測定信号に対する前記試料からの第2の応答信号を検出することができる。このようにすることで、測定対象試料について、試薬を反応させた状態と試薬を反応させない状態との2つの状態における測定対象成分を測定することができる。
また、本開示の測定装置において、前記制御部は、前記第2の測定信号として、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号を前記試料に印加することができる。このようにすることで、信号レベルが変化するため、測定電極における抵抗値成分の影響を受けやすい測定信号に対する応答信号を、正確に測定することができる。
また、前記試料が血液試料であって、前記第2の測定電極対に印加される前記第2の測定信号が、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号であり、前記制御部は、前記第1の測定電極対を用いて、試料と所定の試薬を反応させた状態で前記血液試料のグルコース値を求め、前記第2の測定信号に対する前記血液試料からの前記第2の応答信号を、前記第2の測定信号の変化に対する前記第2の応答信号のピーク値として検出し、前記ピーク値から前記血液試料のヘマトクリット値を算出し、算出された前記血液試料の前記ヘマトクリット値に基づいて前記グルコース値を補正することができる。このようにすることで、血液試料中のグルコース値を正確に測定することができる。
さらにまた、前記制御部は、前記抵抗値把握部の抵抗値を、所定電圧の直流電圧を印加した際に流れる直流電流値を測定することで測定し、測定された前記直流電流値に基づいて、前記応答信号により得られた測定値を補正することが好ましい。このようにすることで、測定電極の抵抗値の把握と、把握された抵抗値に基づく測定値の補正とを、容易に、かつ、正確に行うことかができる。
さらに、前記測定電極が、測定装置に対して着脱可能な分析用具に形成されているようにすることができる。このようにすることで、分析用具を交換して、多くの試料を容易に測定することができる。
以下、本開示にかかる測定装置および測定方法の実施形態について、図面を参照して説明する。
以下の説明では、本開示の測定装置および測定方法として、血液中のグルコース値(血糖値)を測定する装置および方法に適用した場合を例示して説明する。なお、以下で参照する各図は、説明の便宜上、本願で開示する測定装置および測定方法を説明するために必要な部分のみを簡略化して示したものである。このため、本開示の測定方法ならびに測定装置は、図を用いて説明した構成要素以外の任意の構成要素を備えることができる。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率を必ずしも忠実に表したものではない。
(実施の形態)
[測定システムの構成例]
図1は、本願で開示する測定装置および測定方法の、一実施の形態にかかる測定装置と分析用具とを説明する斜視図である。
本実施形態は、一例として、測定装置を携帯型の血糖値計とした場合の例である。
図1において、測定装置としての携帯型の血糖値計10と、この血糖値計10に着脱可能に構成された分析用具であるセンサ20とが示されている。このセンサ20には、試料としての患者の血液が付着もしくは導入されるようになっており、センサ20は、血液中の血糖値(グルコース値)を検出するためのセンサ(バイオセンサ)としての機能を有するように構成されている。図1に示す血糖値計10は、例えば、携帯型の血糖測定器(BGM:Blood Glucose Monitoring)や血糖自己測定(SMBG:Self Monitoring of Blood Glucose)メータなどの血糖値計として使用することができる。
血糖値計10は、本体11を備えており、この本体11には、短冊状のセンサ20の一部を挿入するための挿入口12が設けられている。また、本体11の内部には、例えばマイクロプロセッサにて構成される、血糖値計10の各部の制御を行う制御部が設けられている。さらに本体11は、センサ20に対して、所定の電気信号(電圧信号および/または電流信号)を供給するとともに、センサ20から測定結果を示す電気信号(電圧信号および/または電流信号)を受け取って適宜AD変換し、測定値を示す測定データを生成する測定部と、測定部で得られた測定データを記録する記録部とを備えており、制御部が、測定部で得られた測定データを測定時間や患者IDなどと関連付けて、記録部に記録させることができるようになっている。なお、制御部、測定部、記録部については、図1での図示を省略し後に詳述する。
本実施形態にかかる血糖値計10の本体11には、測定データを表示する表示画面13と、外部機器とデータ通信するためのコネクタ14とが設けられている。このコネクタ14は、外部機器としてのスマートフォンなどの携帯機器やパーソナルコンピュータなどの情報処理装置との間で、測定データ、測定時間、患者IDなどのデータを送受信することができるようになっている。すなわち、血糖値計10では、コネクタ14を介在させて、外部機器に測定データや測定時間を転送したり、外部機器から患者ID等を受信して測定データなどと関連付けたりすることができるように構成されている。
なお、上記の説明以外に、例えば測定部をセンサ20の端部に設けて、センサ20側で測定データを生成する構成としてもよい。また、血糖値計10の本体11において、患者などのユーザが操作するスイッチ部やデータを入力するためのボタン、タッチパネル等の入力部を含むユーザインタフェースを備えてもよい。さらに、表示画面13や記録部などを本体11に設けずに、本体11と接続可能な外部装置に設ける構成であってもよい。
[測定装置の構成例]
図2は、測定装置の一例である血糖値計10の構成例を示すブロック図である。
なお、図2に示す例では図示は省略するが、分析用具であるセンサ20は、血液試料の流路に設けられた試料検知部をそれぞれの端部に備えた第1の測定電極と第2の測定電極との組み合わせからなる第1の測定電極対と、第3の測定電極と第4の測定電極との組み合わせからなる第2の測定電極対とが形成されている。
血糖値計10は、第1測定部15a、第2測定部15b、抵抗値測定部15cを含む測定部15と、制御部16と、記録部17、および、出力部18を備える。
測定部15は、制御部16からの制御信号にしたがって、センサ20の測定電極と抵抗値把握部に所定の信号を印加すると共に、その応答を検出する。具体的には、測定部15の第1測定部15aは、試料に接触可能な第1の測定電極対に対して、第1の測定信号を印加すると共に第1の測定信号に対する試料の電気的応答である第1の応答信号を検出する。また、第2測定部15bは、試料に接触可能な第2の測定電極対に対して、第2の測定信号を印加すると共に第2の測定信号に対する試料の電気的応答である第2の応答信号を検出する。さらに、抵抗値測定部15cは、測定電極と同じ材料で同時に形成された抵抗値把握部に所定電圧の直流電圧を印加して、このとき抵抗値把握部を流れる直流電流値を測定する。
なお後述のように、本実施形態では、第1の測定電極対を構成する第1の測定電極の一部に抵抗値把握部が形成されている。また、本実施形態の測定装置では、第2の測定電極対に印加される第2の測定信号は、第1のレベルから第2のレベルへと値が変化し、その後一定の時間第2のレベルを保つ波形を含む信号である。第2測定部15bは、この第2の測定信号に対する第2の応答信号を、第2の測定信号の波形が備える変化に対する第2の応答信号のピーク値として検出する。
制御部16は、測定部15を制御して上述の測定信号や所定電圧の直流電圧を測定電極や抵抗値把握部に印加すると共に、測定部15で検出された、試料の電気的応答として得られる応答信号や抵抗値把握部を流れる直流電流値から、測定対象試料の測定値を検出する。また、本実施形態の測定装置において、制御部16は、抵抗値測定部15cで得られた直流電流値に基づいて、第2測定部15bから得られた第2の測定電極対を用いて検出された試料の第2の測定対象成分の測定値を補正する。また、制御部16は、補正された試料の第2の測定対象成分の測定値をさらに用いて、第1測定部15aから得られた第1の測定電極対を用いて検出された試料の第1の測定対象成分の測定値を補正する。
このようにして制御部16で得られた試料の測定対象成分の測定値やその補正値は、例えば、制御部16から記録部17に出力されて記録部16で記録される。また、制御部16で得られた試料の測定対象成分の測定値やその補正値は、例えば、出力部18によって血糖値計10の本体11の表面に配置された表示画面13に表示される。
なお本開示にかかる測定装置の構成は、上記例示した携帯型の測定装置に限られない。例えば、携帯電話、スマートフォン、ゲーム機、パーソナルコンピュータ、または、サーバコンピュータ等に測定部を接続した構成とすることもできる。この場合、制御部16は、測定部15を接続可能な機器のコンピュータにより構成することができる。
また、制御部16は、測定装置のコンピュータが備えるプロセッサが、所定のプログラムを実行することによって実現することができる。例えば、血糖値計10には、マイクロコントローラを組み込むことができる。このようなマイクロコントローラは、一例として、制御部16を構成するコアプロセッサを含む構成とすることができる。なお、コンピュータを、制御部16として機能させるプログラム、および、それらを記録した非一時的(non-transitory)な記録媒体も、本開示の実施形態にかかる測定装置の制御部16の構成の一例として含まれる。さらに、これらのプログラムをコンピュータが実行する方法も、本開示の実施形態の一例として含まれる。
以下、本実施形態にかかる血糖値計10における、血糖値の測定例について説明する。
本実施形態の血糖値計10では、一例として、分析用具であるセンサ20に形成された第1の測定電極対を、血液試料中のグルコース値を測定するための一対のグルコース電極として用い、第2の測定電極対を、血液試料中のヘマトクリット値を測定するための一対のヘマトクリット電極として用いる。このような第1の測定電極対および第2の測定電極対を構成する各測定電極において、試料と当接する部分である試料検知部は、センサ20における試料の流路に露出して形成される。グルコース電極の試料検知部には、例えば、酸化還元酵素および電子伝達物質などの試薬が設けられる。ヘマトクリット電極の試料検知部には、そのような試薬は設けられない。なお、これら分析用具であるセンサ20の具体的な構成については、後に詳述する。
第1測定部15aは、制御部16からの指示に基づき、試薬と反応した状態の試料が接触したグルコース電極に、第1の測定信号として、例えば、直流信号を印加し、その電気的応答を第1の応答信号として検出する。制御部16は、第1の応答信号値に基づいてグルコース濃度を示す値を決定することができる。
第2測定部15bは、制御部16からの指示に基づき、試薬と反応していない状態の試料が接触したヘマトクリット電極に、第2の測定信号として、例えば、矩形または台形の波形を有するパルス信号を印加する。第2測定部15bは、第2の応答信号として、第2の測定信号における信号レベルの変化、例えば、パルスの立ち上がりに対する応答信号のピーク値を測定する。
抵抗値測定部15cは、制御部16からの指示に基づき、センサ20に形成された抵抗値把握部に所定距離隔てて形成された2箇所の端子部間に、抵抗値検出信号として所定電圧の直流電圧を印加する。抵抗値測定部15cは、抵抗値検出信号に対する応答信号として、抵抗値把握部に所定距離隔てて形成された2箇所の端子部間を流れる直流電流値を測定する。制御部16は、得られた直流電流値に基づいて、第2の応答信号から得られた測定値を補正する。
このように、本実施形態の血糖値計10では、時間に応じて変化する第2の測定信号の信号レベルの変化に対する第2の応答信号のピーク値を測定することで、制御部16において、ヘマトクリットの量を示す値を決定することができる。すなわち、第2の入力信号の急峻な変化によって得られるピーク電流を測定することで、ヘマトクリット値を算出することができる。また、制御部16は、第2検出部15bで得られたヘマトクリット値を、抵抗値検出信号として得られた直流電流値を用いて補正することで、より精度の高いヘマトクリット値を得ることができる。さらに、制御部16は、このようにして得られた精度の高いヘマトクリット値を用いて、第1の測定信号に対する第1の応答信号から得られるグルコース濃度を示す値を補正し、高い精度でグルコース濃度を検出することができる。
図3は、第2測定部15bの回路構成の例を示す図である。
図3に示す例では、オペアンプ40の「+」端子に信号生成回路152が接続され、「−」端子にセンサ20の第2の測定電極対が接続される。オペアンプ40の出力端子は、A/D変換回路151に接続される。オペアンプ40の「−」端子と出力端子間には、抵抗Rが接続される。
図3に示す例においては、オペアンプ40の「+」端子に入力信号Inとしてパルス波が入力され、センサ20の第2の測定電極対へ、そのパルス波Inが一例としてパルス電圧として入力される。第2の測定電極対は試料と接しており、試料の応答電流Resはオペアンプ40の「−」端子側へ入力され、オペアンプ40の出力端子側から電圧信号Res_eに変換されて出力される。電圧信号Res_eはA/D変換回路151でデジタル信号に変換されて制御部16へ入力される。
なお、オペアンプ40とA/D変換回路151の間に設けられた図示しない検出回路においてピーク値を検出する構成としてもよいし、制御部16でピーク値の算出をする構成とすることもできる。信号生成回路152は、制御部16からの指示に基づいて、第2の測定信号としてのパルス電圧波形を生成する。
このように、第2測定部15bは、立ち上がり成分と立ち上がり後一定値をとるパルス状の波形成分を有する信号を、第2の測定信号として試料へ印加することができる。そして、第2測定部15bは、矩形波または台形波成分を有する試料の電気的応答を、第2の応答信号のピーク値として測定することができる。
第2の応答信号のピーク値は、例えば、第2の応答信号におけるレベル変化時点、一例として、パルスの立ち上がり時点から一定期間内に検出された応答信号値のうち最も大きいものとすることができる。あるいは、ある一定の時間における第2の応答信号のピーク値を保持する回路を用いて、例えば、第2の応答信号のレベル変化時間からある一定の時間において保持されたピークの値を、第2の応答信号のピーク値として測定することもできる。また、ピーク値の大きさは、応答信号値の立ち上がり前のレベル、または、立ち上がり後に一定値に落ち着いたときのレベルと、ピーク時のレベルとの差として検出することができる。すなわち、応答信号値の変化前または変化後の安定期におけるレベルを基準とした値を、第2の応答信号のピーク値として測定することができる。
第2の応答信号による応答信号値は、応答電流値または応答電圧値として測定することができる。上記図3に示す回路では、一例として、電圧信号を電極対へ印加することで応答信号としてピークトップを有する電流波形を出力として得る構成となっている。なお、ピーク値は、必ずしも厳密に最高到達点の値である必要はなく、一定期間内に所定周期で検出された離散値のうち最も大きい値をピーク値とすることができる。
本実施形態の血糖値計10では、少なくとも1回の入力信号レベル変化に対する応答信号値が検出できればピーク値を得ることができる。そのため、例えば測定対象とするヘマトクリット値を短時間で得ることが可能になる。なお、複数のパルスを連続的に入力し、複数回の入力信号のレベル変化に対する応答信号のピーク値をそれぞれ取得してもよい。この場合、例えば、複数のピーク値の代表値、一例としての平均値等を測定値として求めることにより、測定されたピーク値の精度を向上させることも可能である。
図4は、センサ20の第2の測定電極対への入力信号(InputSignal)と、出力信号(OutputSignal)の一例を示す図である。なお、上記のように、本実施形態にかかる測定装置である血糖値計10の場合には、入力信号は第2の測定信号であり、出力信号は第2の応答信号に相当する。
図4に示すグラフにおいて、横軸は時間、縦軸は電圧レベルを示す。図4に示す例では、入力信号(InputSignal)の電圧レベルがV1からV2へ変化することによって、出力信号(OutputSignal)の電圧レベルもV3から急激に変化してV4へ達し、その後ゆるやかに減少している。図4に示す例では、入力信号の立ち上がり時点(変化開始時点)t1から6.43μ秒後に、出力信号のレベルがピーク値(Peaktop)に達している。
図5は、入力信号である第2の測定信号の形態について説明するための図である。
図5では、入力信号の例として、電圧パルス波を示している。ここで、パルス波の周期T、第1のレベルと第2のレベルとの電位差A、第1のレベルから第2のレベルへと変化する時間の一例である立ち上がり時間tは、センサ20の構造や測定システムの環境等に応じて適宜設定することが可能である。例えば、1/Tは、1〜500[Hz]、立ち上がり時間tは、30μ秒より短く、電位差Aは、50〜1000mVの範囲で設定することができる。また、入力信号として、最大0.2秒のパルス波信号をヘマトクリット電極へ印加することで、ヘマトクリット値を測定することができる。なお、図5に示す例では、印加する信号すなわち入力信号は、電圧で表されるが、入力信号は電流で表されてもよい。すなわち、測定電極対へ印加する電圧を制御することで入力信号を制御することもできるし、測定電極対へ印加する電流を制御することで入力信号を制御することもできる。
図5に示す例では、あるレベルから高いレベルへ立ち上がり、一定の時間高いレベルを保ったのち、元のレベルへ戻る波形の信号を示している。これに対して、あるレベルから低いレベルへ下がって一定の時間低いレベルを保ったのち、元のレベルへ戻る波形の信号を入力信号とすることもできる。この場合、入力信号に対する応答信号のピーク値としては、低いレベルへ下がる入力信号の変化に対する応答信号、もしくは、低いレベルから元のレベルへの入力信号の変化に対する応答信号の、いずれかのピーク値を測定することができる。
発明者らは、例えば、立ち上がり時間などの、入力信号のレベルの変化に費やす時間が、応答信号を高精度に発生させるのに重要であることを見出した。図6は、入力信号におけるパルス立ち上がり時間を変化させた場合の、応答信号のピーク電流値とヘマトクリット値との関係を示すグラフである。
このグラフによれば、例えば、入力信号が第1のレベルから第2のレベルへと変化するのに費やす時間が、30μ秒かもしくは30μ秒より短ければ、応答信号のピーク値(ピーク電流値)の変化と測定対象試料のヘマトクリット値の変化との相関が大きくなり、応答信号のピーク値から試料のヘマトクリット値を高精度で測定することが可能となることがわかる。さらに、入力信号が第1のレベルから第2のレベルへと変化するのに費やす時間が、7μ秒かもしくは7μ秒より短ければ、応答信号のピーク値のヘマトクリット値による変動がより顕著に現れることがわかる。このため、ピーク値の測定結果から、試料のヘマトクリット値をより高精度に測定することができることが分かる。さらに望ましくは、入力信号が第1のレベルから第2のレベルへ変化するのに費やす時間を、2μ秒もしくは2μ秒より短くすることで、ピーク値の変化に対するヘマトクリット値の変動の大きさがさらに大きくなり、さらに高精度にヘマトクリット値を測定することができる。
なお、入力信号の値が第1のレベルから第2のレベルに変化した後、第2のレベルを維持する時間の長さは、高精度でのヘマトクリット値の測定を行うという観点からは特に限定されない。このため、例えば、入力信号の変化に対して応答信号がピークを過ぎて一定の値に落ち着くのに費やす時間よりも長い時間、入力信号の値が第2のレベルを維持するようにすることができる。図5に示すパルス波の場合、パルスが立ち上がってから再び元のレベルへ戻るまでの時間、すなわち、第2のレベルを維持する時間は、応答信号のピークが過ぎて変動が収まるのに要する時間よりも長くなるように設定することができる。これにより、確実に応答信号のピーク値を検出することができる。
また発明者らは、ピーク値を得るには、入力信号において信号のレベルがある値から異なる値へ短時間に変化することが重要であり、入力信号は、必ずしも一定周期で繰り返す一定の電位差のパルス波である必要はないことを見出した。例えば、間隔を空けて段階的にレベルが変化する、階段状の波形を有する信号を入力信号として試料へ印加して、良好な応答信号を得ることもできる。
[分析用具の構成例]
次に、図面を参照して、本開示にかかる測定装置と組み合わせて用いられる、分析用具の実施形態について説明する。
図1で説明したように、本実施形態における分析用具であるセンサ20は、測定装置である血糖値計10に着脱可能に構成された分析用具であって、試料である患者の血液が付着されるようになっている。本実施形態にかかるセンサ20は、血液中の血糖値(グルコース値)を検出するための(バイオ)センサとしての機能を有するものである。
図7は、本実施形態にかかる測定装置と組み合わせて用いられる、分析用具であるセンサの構成を説明する平面図である。また、図8は、図7で示したセンサの血液導入孔が設けられた導入孔部分の構成を説明する拡大平面図である。図9は、センサの導入孔部分の断面構成を示す断面図であり、図8のIV−IV線部分の断面構成を示している。図10は、センサの導入孔部分の構成を示す拡大平面図であり、センサの最上面に位置する対向基板と両面テープとを除去した状態を示している。図11は、センサにおいて導入孔部分側とは異なる側の端部に位置する、測定電極が露出した挿入部の平面形状を示す拡大平面図である。
以下、図7〜図11を用いて、センサ20の構成を詳細に説明する。
図7に示すように、本実施形態の測定装置と組み合わせて用いられる分析用具であるセンサ20は、全体として一方向に長い短冊状の平板であって、基板21と、基板21上に配置されたレジストインク23を介在させて基板21に対向して配置された対向基板22とを備えている。
センサ20の一方の端部、図7では図中右側に示す導入孔部分20a側の端部には、試料である血液を導入する血液導入孔Aが設けられている。なお、血液導入孔Aの構成については、後に詳述する。また、センサ20は、図7において矢印Iとして示す方向に沿って、血糖値計10の挿入口12(図1)に挿入されるようになっていて、血液導入孔Aが設けられた導入孔部分20a側とは異なる他方の端部である挿入部20b側の端部、図7では図中左側に示す端部では、レジストインク23と対向基板22とが配置されておらず、基板21上に形成された測定電極25が表面に露出している。
基板21は、例えば疎水性を有する合成樹脂で形成されていて、基板21上には第1の測定電極26、第2の測定電極27、第3の測定電極28、第4の測定電極29の4本の測定電極25が形成されている。本実施形態の測定装置では、第1の測定電極26と第2の測定電極27とが、一対となって第1の測定電極対30を、第3の測定電極28と第4の測定電極29とが、一対となって第2の測定電極対31を構成している。
これらの測定電極25は、例えばカーボンインクによって構成されていて、スクリーン印刷法などの各種パターン形成方法によって、基板21上に所定の形状に形成されたものである。より具体的には、各測定電極25(26、27、28、29)は、短冊状であるセンサ20の長手方向に伸延して、かつ、互いに略平行に配置された直線形状の測定電極25として形成されている。
測定電極25は、センサ20の長さ方向中間部分に配置された、それぞれ同一の幅寸法を有する配線部25a(26a、27a、28a、29a)と、センサ20における導入孔部分20a側の端部近傍において、配線部25aに対して直角に折り曲げられて形成された試料検知部25b(26b、27b、28b、29b)と、センサ20における挿入部20b側の端部近傍に形成された、配線部25aの幅よりも太い幅に形成された接続端子部25c(26c、7c、28c、29c)とによって構成されている。なお、測定電極25のうちの1本、本実施形態で説明するセンサ20では第1の測定電極26に、接続端子部26cとは別の端子部である測定端子部26dが形成されている。測定端子部26dは、接続端子部26cと同様に配線部26aよりも太い幅に形成されている。本実施形態のセンサ20では、測定端子部26dは、第1の測定電極26において接続端子部26cよりもセンサ20の挿入部20b側に形成されていて、測定端子部26dも接続端子部26cと同様にレジストインク23と対向基板22とで覆われずに、基板21上の表面に露出している。本実施形態にかかる測定装置のセンサ20では、この第1の測定電極26に形成された接続端子部26cと測定端子部26dとの間の部分が、抵抗値把握部35となっている。
センサ20は、図7において左側に位置する挿入部20b側の端部が血糖値計10の挿入口12に挿入されたときに、測定電極25の接続端子部25c(26c、27c、28c、29c)と、第1の測定電極26に形成された測定端子部26dとが、血糖値計10の本体11(図1)の内部に設けられた図示しない接続電極と電気的に接続されて、センサ20は、血糖値計10と電気信号のやりとりを行うことができるように構成されている。
図8、図9に詳細に示すように、測定対象試料である血液の塗布導入部であるセンサ20の導入孔部20aには、一対の測定電極である第1の測定電極26と第2の測定電極27とで構成された第1の測定電極対30が配置され、このうち特に第1の測定電極26の試料検知部26bと第2の測定電極27の試料検知部27bとが、試料である血液と接触してそのグルコース値を測定するグルコース電極36を構成している。また、他の一対の測定電極である第3の測定電極28と第4の測定電極29とで構成された第2の測定電極対31が配置され、このうち特に第3の測定電極28の試料検知部28bと第4の測定電極29の試料検知部29bとが、試料である血液と接触してそのヘマトクリット値を測定するヘマトクリット電極37を構成している。血液導入孔Aから導入された試料である血液が後に詳述する流路Rを通って、これらグルコース電極36およびヘマトクリット電極37に到達するようになっている。
対向基板22は、例えば親水性を有する合成樹脂で形成されていて、その左端側、すなわち挿入部20b側の端部22aは、上述したように、測定電極25の左端側部分が露出するように位置決めされている。一方、対向基板22の右端側、すなわち導入孔部分20a側における対向基板22の端部22bは、センサ20の右端、すなわち基板21の右端と一致するように構成されている。また、対向基板22は、親水性を有する材料で形成されているため、流路R内を通る血液が当該血液の流入方向である図8中に矢印で示すRh方向の下流側に設けられた、一対のグルコース電極36まで容易に達することができるようになっている。さらに、対向基板22には、流路Rに連通する空気孔Anが設けられており、流路R内に、円滑に試料である血液を流入させることができるようになっている。
レジストインク23は、例えば熱硬化インクなどの絶縁体により形成されていて、基板21および基板21上に形成された測定電極25上に、スクリーン印刷法などの各種パターン形成法によって所定のパターン形状で形成されている。具体的には、図7に示すように、レジストインク23の左端、すなわちセンサ20の挿入部20b側の端部23aは、対向基板22の挿入部20b側の端部22aと一致するように構成されている。一方、レジストインク23の右端、すなわち導入孔部20a側の端部23bは、図9に示すように、対向基板22の導入孔部20a側の端部22bよりも若干内側、すなわちセンサ20の挿入部20b側に位置するように構成されている。また、レジストインク23として絶縁体が用いられていることで、測定電極25に悪影響を及ぼすことが防止でき、結果として測定精度の低下を回避することができる。
レジストインク23上には、矩形状の両面テープ24a、24b、および24cが対向基板22との間に設けられている。この両面テープ24a、24b、および24cは、基板21と対向基板22とを接着するための接着層であり、基板21上に形成されたレジストインク23を介して基板21と対向基板22とを互いに接着させるようになっている。本実施形態で説明するセンサ20では、センサ20の導入孔部20a側端部の両側面に、所定の間隔を隔てて配置された一対の両面テープ24aおよび24bが、また、これら一対の両面テープ24aおよび24bと所定の間隔を介してセンサ20の挿入部20b側に配置された第3の両面テープ24cが設けられている。両面テープ24cは、基板21、対向基板22、およびレジストインク23と同じ幅を有していて、両面テープ24cの挿入部20b側の端部は、対向基板22の左端22aおよびレジストインク23の左端23aと一致するようになっている(図7)。また、両面テープ24cの導入孔部20a側の端部と、一対の両面テープ24aおよび24bとの間隔部分に、上述した空気孔Anが対向基板22に設けられている。
なお、本実施形態にかかるセンサ20のレジストインク23としては、上記説明した熱硬化インク以外に、例えば紫外線硬化樹脂を用いることもできる。
本実施形態のセンサ20には、図8に“A”として示す、試料である血液をセンサ20内に導入する導入孔が設けられている。この血液導入孔Aは、その開口部分が基板21、対向基板22、レジストインク23、および両面テープ24a、24bによって規定されている。血液導入孔Aの開口部分から、センサ20の挿入部20b側、すなわち図8の上側に向かって血液の流路Rが形成されている(図9も参照。)。そして、この流路Rでは、血液は血液導入孔Aから毛細管現象によって図9および図10に“Rh”として示す流入方向に流入するようになっている。なお、この毛細管現象を容易なものとするために、対向基板22には空気孔Anが設けられている。
つまり、本実施形態で説明する分析用具であるセンサ20では、基板21、対向基板22、レジストインク(絶縁体)23、および両面テープ(接着層)24a、24b、および24cにより、血液(試料)の流路Rを規定する規定要素が構成されている。
なお、流路Rの長さは、例えば、1.1〜10mm、1.5〜4.5mm、または2〜4mmとしうる。また、流路Rの幅は、例えば、1〜10mm、2〜3.5mm、または1.5〜2.5mmとしうる。さらに、流路Rの容積は、例えば、0.1〜10μL、0.15〜0.5μL、または0.25〜0.35μLとしうる。
センサ20の導入孔部20a側端部において、対向基板22と両面テープ24a、24bおよび24cとを除去した平面構成を示した図10に明瞭に示されるとおり、流路R部分のレジストインク23には、中間部でくびれて大きく2つの部分に分離された形状の切り欠き部23cが設けられている。また、流路Rでは、血液の流入方向Rhにおける上流側、すなわち血液導入孔Aの開口側に位置するように、ヘマトクリット電極37に相当する第2の測定電極対31の試料検知部28b、29bが設けられ、第2の測定電極対31の試料検知部28b、29bより血液の流入方向Rhにおける下流側に位置するように、グルコース電極36に相当する第1の測定電極対30の試料検知部26b、27bが設けられている。
具体的にいえば、一対のヘマトクリット電極37は、第3の測定電極28の試料検知部28bおよび第4の測定電極29の試料検知部29bのうち、レジストインク23の切り欠き部23c内に露出した部分、すなわち流路R内に露出した部分により実質的に構成されている。そして、一対のヘマトクリット電極37では、試料検知部28bおよび試料検知部29bのうちの流路R内に露出した部分に血液が接触した状態で、第3の測定電極28および第4の測定電極29に対して交流電圧(AC)または直流電圧(DC)による電圧信号が印加されることにより、血糖値計10においてヘマトクリットの値が検出されるようになっている。
また、一対のグルコース電極36は、第1の測定電極26の試料検知部26bおよび第2の測定電極27の試料検知部27bのうち、レジストインク23に形成された切り欠き部23c内に露出した部分、すなわち流路R内に露出した部分により実質的に構成されている。また、一対のグルコース電極36上には、図10において二点鎖線にて示すように、固化した滴下試薬34が設置されている。そして、一対のグルコース電極36では、試料検知部26bおよび試料検知部27bのうちの流路R内に露出した部分と滴下試薬34に血液が接触して当該血液が滴下試薬34と反応した状態で、第1の測定電極26および第2の測定電極27に対して、交流電圧(AC)または直流電圧(DC)による電圧信号が印加されることにより、血糖値計10において、グルコースの値(血糖値)が検出されるようになっている。また後に詳述するように、本実施形態にかかる測定装置では、検出したヘマトクリットの値を用いて、検出したグルコースの値を補正して、この補正後のグルコースの値を測定データとして扱うようになっている。
滴下試薬34は、センサ20の製造工程において、対向基板22が基板21に貼り合わせられる前に、液体の状態で、例えばディスペンサなどの液体定量吐出装置により、グルコース電極36に相当する第1の測定電極26の試料検知部26bおよび第2の測定電極27の試料検知部27b上に滴下された後、乾燥されることにより、当該グルコース電極36上で固化する。
流路Rにおけるレジストインク23に形成された切り欠き部23cは、図10に例示するように、血液の流入方向Rhの中間部分がくびれた形状となっている。このくびれ部分は、液体の状態の滴下試薬34を一対のグルコース電極36上に滴下した際に、一対のヘマトクリット電極37側へと浸入することを規制する一対の滴下試薬規制要素32aおよび32bによって形成されている。この滴下試薬規制要素32aおよび32bは、規制要素であるレジストインク23と一体的に構成されており、図10に示すように、一対のヘマトクリット電極37の一方である第3の測定電極28の試料検知部28b上に形成されている。
詳細には、滴下試薬規制要素32aおよび32bの一部分は、第4の測定電極29の試料検知部29bの一部分上に重なるように設けられ、滴下試薬規制要素32aおよび32bの残りの部分は、一対のヘマトクリット電極37の血液の流入方向Rhにおける下流側端部、すなわち第3の測定電極28の試料検知部28bと、一対のグルコース電極36の血液の流入方向Rhにおける上流側端部、すなわち、第2の測定電極27の試料検知部27bとの間に設けられている。
流路Rにおけるレジストインク23に形成された切り欠き部23cでは、図10に例示するように、血液の流入方向Rhに交差する交差方向、例えば、流入方向Rhに直交する直交方向において、滴下試薬規制要素32aおよび32bと、間隙33が設けられている。つまり、流路Rにおけるレジストインク23に形成された切り欠き部23cでは、間隙33が2つの滴下試薬規制要素32aおよび32bの間に形成されている。
以上のように構成された本実施形態のセンサ20では、滴下試薬規制要素32aおよび32bが、流路Rにおいて一対のヘマトクリット電極37である第2の測定電極対31の試料検知部28bおよび29bの下流側端部と、一対のグルコース電極36である第1の測定電極対30の試料検知部26bおよび27bの上流側端部との間に形成されている。また、本実施形態のセンサ20では、流路Rでは、血液(試料)の流入方向Rhに交差する交差方向において、滴下試薬規制要素32aおよび32bと、間隙33とが設けられている。
本実施形態にかかるセンサ20では、測定装置である血糖値計10の挿入口12に挿入される挿入部20b側端部として、対向基板22とレジストインク23が形成されていない領域が形成され、測定電極25が露出している。また、露出している測定電極25には、センサ20の長手方向に延在する測定電極25の配線部25aの幅よりも太い幅に形成された、接続端子部25c(26c、27c、28c、29c)と、抵抗値把握部35を形成する測定端子部26dとが形成されている。
挿入部20b側の拡大平面図である図11に示すように、本実施形態のセンサ20では、図11中矢印Iとして示すセンサ20の挿入方向側の端部により近い位置に、第3の測定電極28の接続端子部28cと第4の測定電極29の接続端子部29c、さらに第1の測定電極26の測定端子部26dとが、挿入方向Iと直交する方向であるセンサ20の幅方向に並んで配置されている。また、これら接続端子部28c、29cと測定端子部26dよりもセンサ20の導入孔部20a側、すなわち挿入部20b側の端部よりも内側に入った位置に、第1の測定電極26の接続端子部26cと第2の測定電極27の接続端子部27cとが、センサ20の幅方向に並んで配置されている。
本実施形態のセンサ20では、測定電極25に形成された接続端子部26c、27c、28c、および29cと、第1の測定電極26に形成された測定端子部26d(以下適宜これらを纏めて「端子部」と称する場合がある。)との、センサ20幅方向の大きさW(W1、W2)を、当該測定電極26、27、28、および29の配線部26a、27a、28a、および29aの幅w(w1、w2)よりも大きく形成している。また、接続端子部26c、27c、28c、および29cと、第1の測定電極26に形成された測定端子部26dの、センサ20の長さ方向の大きさを、それぞれの幅方向の大きさW(W1、W2)よりも大きな一定の長さLを有するように形成している。
このようにすることで、センサ20の挿入部20bが血糖値計10の挿入口12に挿入されて、血糖値計10の本体11内部に配置された図示しない接続電極とセンサ20の端子部とが電気的接続を行う場合に、接続電極の配置位置精度への要求を緩和することができるため、接続電極と端子部との電気的接続を容易かつ確実に行うことができる。また、端子部の面積を大きくすることで、血糖値計10の接続電極の面積も大きくすることができるので、センサ20の端子部と接続電極との接触抵抗を低減することができ、測定電極25への測定信号の印加と応答信号の検出とを、より正確に行うことができる。
本実施形態のセンサ20では、具体的には、図11中の上方に記載された測定電極25のそれぞれの配線部25a(26a、27a、28a、29a)の幅w1が、いずれも一例として1.2mmである場合に、接続端子部26c、27c、28c、29cの幅W1を約1.5倍の1.4mmとすることができる。また、第1の測定電極26に形成された測定端子部26dの幅W2を1.4mmとして、測定電極25の接続端子部25cの幅W1よりも少し狭く形成している。なお、接続端子部26c、27c、28c、29cと測定端子部26dの長さLを、一例として2.0mmとすることができる。
センサ20において、基板21上に形成された隣り合う測定電極25同士の間隔を狭くしすぎると、基板21の表面を伝わる微細なリーク電流が生じやすくなり、測定電極25を用いた、試料への測定信号の印加と応答信号の検出とが正確にできなくなるおそれがある。このため、図11に示す本実施形態のセンサ20では、隣り合う測定電極25同士の間隔dは、配線部25aにおける間隔d1、配線部25aと接続端子部26c、27cとの間隔d2、測定端子部26c、27c、28c、29cおよび測定端子部26dとの間隔d3を、いずれも一定値、一例として0.3mmとしている。なお、センサ20の幅方向の端部と、最も外側に位置する第3の測定電極28および第4の測定電極29の外側端部との間隙も、測定電極25同士の各部分の形成間隔d(d1、d2、d3)と同様に、0.3mmとしている。
また、一定の幅を有するセンサ20の幅方向に、測定電極25の配線部25aよりも広い幅の端子部を設けることから、本実施形態のセンサ20では、第1の測定電極26の接続端子部26cと第2の測定電極27の接続端子部27cを設けた部分の、第3の測定電極28の配線部28aと第4の測定電極29の配線部29aとの配線幅w2を、それぞれの配線部28aと29aの電極中央部分における配線幅w1よりも狭い0.5mmとしている。このように、測定電極25の配線部25aの電極幅を狭くすることは、本実施形態のセンサ20のように、電気配線としては抵抗値が高い部類に属するカーボンインクを用いて測定電極25を形成している場合には、当該幅の狭い部分での配線における抵抗値が上昇するため、好ましい状態であるとは言えない。しかし、図11に示すように配線部における幅の狭い部分は、他の測定電極25の接続端子部25cの側方を通過する部分のみであってその長さは十分に短いため、この部分の配線幅w2を狭くした場合でも、測定電極を通じて行われる試料への測定信号の印加と試料から得られる応答信号の検出においては実質的な影響はないと考えられる。
本実施形態にかかるセンサ20では、上記のように第1の測定電極26に形成された測定端子部26dの幅W2を、各測定電極25の接続電極25cの幅W1よりも狭く形成している。これは、所定幅のセンサ20の幅方向に、2つの接続端子部28c、29cと測定端子部26dとの3つの端子部を所定の間隔d3を有して配置するために、3つの端子部26d、28c、29cの幅を全て同じとすることができなかったためである。ここで、本実施形態のセンサ20では、測定装置である血糖値計10の接続電極と接続されて、試料の電気的特性を測定するための測定信号の印加と試料で得られた電気的応答である応答信号を検出する接続端子部25cの幅W1を少しでも広く取るとともに、各測定電極25における接続端子部25cの幅W1を同じ値としている。このようにすることで、試料へと印加される入力信号や試料からの電気応答としての応答信号として、例えば高周波の交流信号が測定電極に印加もしくは検出される場合であっても、試料の電気的特性の測定に使用される接続端子部25cをより大面積なものとして、測定装置の接続電極との接続時の接触抵抗を少しでも低減して正確な測定が行えなくなることを回避することができる。一方、測定端子部26dの幅W2を少し狭くした場合でも、測定端子部を用いて検出される測定電極25の抵抗値は、抵抗値把握部35に直流電圧を印加してこのとき流れる直流電流値として把握するものであるため、試料に対して印加される測定信号や応答信号と比較して接続電極と端子部との接触抵抗の影響が抵抗値測定結果のノイズとなる割合が小さいと判断できるからである。
なお、本実施形態のセンサ20の挿入部20bに配置された測定電極25のパターン構成において、一対となって第1の測定電極対30を構成する第1の測定電極26の接続端子部26cと第2の測定電極27の接続端子部27cとを、挿入部2bの端部から少し試料検知部20a側に配置し、一対となって第2の測定電極対31を構成する第3の測定電極28の接続端子部28cと第4の測定電極29の接続端子部29cとを、挿入部2bの端部寄りの位置に配置している。また、第1の測定電極26に形成された測定端子部26dを含む抵抗値把握部35の構成を除いて、4本の測定電極26、27、28、および29の形成パターンを図11中に示した、センサ20における幅方向の中心線lに対して左右対称としている。このように、互いに対となって試料への測定信号の印加と試料からの応答信号の検出を行う測定電極25の形状に対称性を持たせること、特に、互いに対となる測定電極26と27、および、測定電極28と29との試料検知部25aから接続部25cまでの長さをほぼ等しく形成することで、試料の電気的特性値の測定時において、例えば、印加される入力信号の極性もしくは得られた応答信号の極性が反転するような場合でも、一対の測定電極を同等の抵抗値を有するものとして取り扱うことができ、極性の反転時に何らかの補正が必要となるというような煩雑な事態を効果的に回避することができる。
ここで、本実施形態にかかる分析用具であるセンサ20の製造方法を簡単に説明する。
本実施形態にかかる分析用具であるセンサ20は、基板21上で、血液の流路Rの流入方向Rhにおける上流に位置する一対のヘマトクリット電極37を形成する第2の測定電極対31の形成工程と、基板21上で、血液の流路Rの流入方向Rhにおける下流に一対のグルコース電極36を形成する第1の測定電極対30の形成工程と、血液の流路Rにおいて、一対のヘマトクリット電極37の下流側端部と一対のグルコース電極36の上流側端部との間に、血液(試料)の流入方向Rhに交差する交差方向で間隙33が生じるように、滴下試薬34を規制する滴下試薬規制要素32aおよび32bを形成する滴下試薬規制要素形成工程を具備している。
これにより、本実施形態にかかる分析用具であるセンサ20の製造方法では、滴下試薬規制要素形成工程により、流路Rにおいて、一対のヘマトクリット電極37の下流側端部と一対のグルコース電極36の上流側端部との間に、滴下試薬規制要素32aおよび32bと、間隙33が形成される。この結果、本実施形態のセンサ20の製造方法では、流路Rの下流側に設けられた一対のグルコース電極に対しても、血液を十分に到達させることができる分析用具20を製造することができる。
また、本実施形態のセンサ20の製造方法では、滴下試薬規制要素形成工程において、滴下試薬規制要素32aおよび32bが一対のヘマトクリット電極37上に形成されているので、一対のグルコース電極36に対して、十分な滴下試薬34を滴下することができる。
さらに、本実施形態のセンサ20の製造方法では、第1の測定電極対30および第2の測定電極対31の形成工程において、一例としてのカーボンインクを用いたスクリーン印刷法により、基板21上に4本の測定電極25(26、27、28、29)を、それぞれの測定電極25における配線部25a、試料検知部25b、接続端子部25cを備えたパターンとして形成することができる。また、測定電極25の形成と同時に、測定電極25と同じ材料を用いて第1の測定電極26に形成された測定端子部26dと接続端子部26cとの間の部分として抵抗値把握部35を形成することができる。これにより、本実施形態のセンサ20では、一対のヘマトクリット電極37と一対のグルコース電極36とを備えた測定電極25を、高精度にかつ短時間で形成することができる。また、抵抗値把握部35を接続電極25と同じ材料を用いて同時に形成することで、形成厚さや、材料、膜の塗布とパターン成形といった製造条件などの不均一性によって変動する抵抗値把握部35のパターン特性を、測定電極25のパターン特性とを高い精度で一致させることができる。このため、抵抗値把握部35の抵抗値を測定することで、実際にセンサ20上に形成されている測定電極25の抵抗値を正確に把握することができ、測定電極25を用いて検出された試料の電気的応答における抵抗値成分による影響を取り除くことができる。この結果、本実施形態の測定装置では、測定電極25の抵抗値成分の影響を排除して高い精度で試料の電気的特性を測定することができる。
なお、本実施形態の測定装置では、分析用具として、流路Rの血液の流入方向Rhの下流側に設けられた一対のグルコース電極36に対しても、血液(試料)を十分に到達させることができるセンサ20が用いられているので、当該血液について、高精度な測定を行うことができる血糖値計(測定装置)10を容易に構成することができる。
上記のような、試薬を十分に設けたグルコース電極36とヘマトクリット電極37とを有する分析用具を、図2に示す血糖値計10のセンサ20として用いることで、測定精度をより向上させることができる。これにより、簡単な処理および構成によって、測定精度を向上させることができるという効果をより奏することができる。
なお、本実施形態の血糖値計10に用いることができる分析用具であるセンサは、上記例のような短冊状の板状物に限られない。例えば、測定電極が略環状に形成された縦横比の小さい矩形状、もしくは、円形などを含む略円形状の基板を備えたセンサとすることができる。また、長さと幅と厚み方向が略同じ程度の大きさの、立方体、直方体などの立体形状のセンサを分析用具とすることができる。
また、分析用具に形成される測定電極の本数なども、上記図示した構成には限られない。本実施形態のように、一つのセンサでヘマトクリット値を測定してグルコース値を補正する血糖値計に用いられるセンサの場合、少なくともヘマトクリット値を測定する第2の測定電極対と、グルコース値を測定する第1の測定電極対との2対の電極対を備えていればよい。例えば、第1の測定電極対と第2の測定電極対とを構成する4本の測定電極に加えて、さらなる測定電極が形成されていて、試料である血液のヘマトクリット値もしくはグルコース値を別の電気信号によっても測定することで測定精度を向上させる構成や、ヘマトクリット値とグルコース値以外の血液の他の特性値を、電気的応答を用いて測定することができる構成とすることもできる。
また、センサの基板上に形成された測定電極の抵抗値を測定する抵抗値把握部を、上記例ではグルコース値を測定する第1の電極対を構成する第1の測定電極に設けた例を示した。しかし、抵抗値把握部は、測定電極と同じ材料を用いて同時に形成された部分であればよく、その形成個数も1箇所に限られない。このため、グルコース値を測定する第1の測定電極対を構成する測定電極以外の、ヘマトクリット値を測定する第2の測定電極対を構成する第3の測定電極もしくは第4の測定電極に、抵抗値把握部を形成することができる。また、測定電極の複数本に抵抗値把握部を形成することもできる。抵抗値把握部を複数個備え、複数箇所の抵抗値把握部から複数の抵抗値データを得ることで、測定電極の抵抗値をより正確に特定することができる。
また、抵抗値把握部を測定電極の一部分として形成することで、センサ上に試料の電気的特性を把握するために必要な測定電極以外の電極要素を構成する必要が無く、センサをよりコンパクトなものとすることができる。しかし、センサ上に測定電極とは別に抵抗値把握部を配置することも可能であり、この場合には、測定電極の配置上妨げとならない部分の任意の場所に抵抗値把握部を形成することができる。なお、抵抗値把握部において測定電極の抵抗値を把握するための直流電圧の印加と流れる直流電流の検出を容易に行うためには、上記実施形態で示したセンサの挿入部側の、電極パターンがレジストインクや対向電極に覆われずに露出している部分に形成することが好ましい。
また、上記実施形態では、測定電極に配線部よりも幅広の配線部を設けたが、この構成も必須のものではなく、測定装置の接続電極と電気的に接続される測定電極部分の幅を、配線部と同じ幅とすることもできる。同様に、抵抗値把握部においても、端子部を設けることは必須ではなく、外形が略矩形状のパターンを抵抗値把握部とすることができる。
[測定装置の動作例]
図12は、本実施形態にかかる測定装置である血糖値計10の動作例を示すフローチャートである。
図12に示す例では、最初のステップS1で、測定準備動作が行われる。
測定準備動作は、血糖値計10で血糖値を測定するための動作開始の合図となる操作であって、例えば、測定装置である血糖値計10の挿入口12に分析用具であるセンサ20が挿入され、血糖値計10の電源ボタンが押下されることで行われる。なお、測定準備動作としては、センサ20が血糖値計10の挿入口12に挿入される前に電源スイッチが押下されていてもよいし、血糖値計10の挿入口12にセンサ20が挿入されることにより、自動的に血糖値計10の電源がONされる構成であってもよい。
次に、血糖値計10の制御部16(図2)は、センサ20に形成された測定電極25(図7)の抵抗値を測定するために、測定部15の抵抗値測定部15cからセンサ20の抵抗値把握部35に対して、抵抗値を測定するための直流電圧を印加する(ステップS2)。
測定電極の抵抗値を把握するための抵抗値把握部35は、センサ20の基板21上に測定電極25と同じ材料を用いて同時に形成された領域であり、測定電極25の一部分として形成されている場合、もしくは、測定電極とは別の部分として形成されている場合がある。本実施形態の測定装置では、センサ20の第1の測定電極26に形成された抵抗値把握部35として、接続端子部26cと測定端子部26dとの間に、一例として100mVの直流電圧を印加し、このとき、接続端子部26cと測定端子部26dとの間に流れる直流電流を測定する。
本実施形態にかかるセンサ20は、測定電極25を、カーボンインクを塗布した後所定形状にパターンニングすることで形成している。カーボンインクを材料として測定電極を形成することで、スクリーン印刷法などの各種の印刷方法によって、所望の形状を有する配線パターンを簡易な工程で正確にセンサの基板上に形成することができ、センサの製造コストを低減することができる。特に、本実施形態で説明したように、測定装置が血糖値計である場合には、測定を行う度に新たなセンサが必要となり、センサを低コストで得ることのメリットは大きい。
しかし、センサに形成される測定電極25をカーボンインクで形成した場合には、測定電極25として導電性が高く抵抗値がほぼ無視できる金や銀等の貴金属で形成した場合と比較して、測定電極25の材料自体が有する抵抗値に起因して測定電極25の抵抗値が一定の値以上の比較的大きな値となってしまい、抵抗値成分による電圧降下の影響が避けられない。また、スクリーン印刷法などの各種印刷方法によって測定電極25を形成した場合には、測定電極25の配線パターン形成時の温度や湿度などの環境条件や、パターン形成に使用されるカーボンインクや溶剤などの各種材料の濃度や粘度、さらに、パターン形成時に使用されるスクリーン板の目詰まりなど製造工程において生じる不可避の変動要因によって、形成された測定電極25の状態が一定せず、測定電極25の抵抗値にばらつきが生じる。このため、本実施形態の測定装置では、試料である血液のグルコース値の測定に際して、センサに形成された測定電極25の抵抗値を検出しうる工程を設け、得られた抵抗値に応じて測定結果を補正するものである。
図13は、本実施形態にかかる測定装置における、センサ20に形成された測定電極25の抵抗値を検出するための回路構成を示す図である。
図13では、センサ20に形成された測定電極25のうち、第1の測定電極26に形成された抵抗値把握部35を用いて、測定電極25の抵抗値を測定する構成を示している。
図13に示すように、センサ20の測定電極の抵抗値の測定において、図13では図示しない制御部16からの指示によって、抵抗値測定部15c内の直流電圧源153から、所定の直流電圧(一例として100mV)がオペアンプ50の「+」端子に印加される。直流電圧は制限抵抗R2を介し、測定装置の接続電極51がセンサ20に形成された第1の測定電極26の測定端子部26dと接続端子部26cとに電気的に接続されることで印加される。このとき、測定端子部26dと接続端子部26cとの間に流れた直流電流の値が、オペアンプ50の出力端子からバイアス抵抗R1を用いて電圧値に変換されて出力される。出力された出力電圧値はアナログ/デジタル変換回路154へと入力され、得られたデジタルデータに基づいて、制御部16は測定端子部26dと接続端子部26cとの間に流れた直流電流の値を検知することができる。なお、本実施形態では、測定端子部26dと接続端子部26cとの間に流れた直流電流値を抵抗値に換算せずにそのまま電流値として取り扱って、ヘマトクリット値の補正を行う。このようにすることで、測定電極25の抵抗値成分の補正における工程を簡素化できるとともに、例えば抵抗値(Ω)に換算する場合と比較して、計算過程によるあらたな誤差要因が生成されることを排除することができる。
図12に戻って、図13に示した測定回路によって、センサ20に形成された抵抗値把握部35である2つの端子部26c、26d間に所定の直流電圧を印加した際に流れる直流電流値を得る(ステップS3)。
発明者らが、センサ20に形成された抵抗値測定部35を用いて測定された測定電極パターンの抵抗値と、別途測定した測定電極25の試料検知部25bと接続端子部25cとの間の全抵抗値との関係を測定したところ、抵抗値把握部35での抵抗値の測定結果と測定電極の全長における抵抗値との間の相関指数は、R2=0.88という高い相関性を示した。本実施形態にかかるセンサ20の第1の測定電極26に形成された抵抗値把握部35の測定2点間の距離、すなわち、測定端子部26dと接続端子部26cとの間の距離は、一例として約2.4mmと短いにもかかわらず、測定電極25の全長(一例として約22.5mm)における抵抗値を把握する上で十分な精度を備えていることがわかった。
センサ20に形成された抵抗値把握部35の端子部間に流れる直流電流値が測定された後、血液を試料とする生物科学的データの測定が開始される。本実施形態の場合では、例えば、試料である血液が、センサ20の第1の測定電極対30および第2の測定電極対31に接触することで、測定が開始されるようにすることができる(ステップS4)。
また、血糖値計10は、センサ20がセンサ挿入口12に挿入された際に既に試料である血液がセンサ20の測定電極25に接触していた場合には、測定開始のステップS1〜ステップS3に引き続いて、直ちに血液の生物化学的データの測定を行うことができる。
次に、制御部16は、第1の測定信号を試料に印加する(ステップS5)。
例えば、制御部16は、第1測定部31aへ指示を出し、直流信号(DC信号)を第1の測定信号として、第1の測定電極対30の試料検知部26b、27bであるグルコース電極36へと印加させる。グルコース電極36には、予め試薬34が設けられており、試料が試薬34と反応した状態でグルコース電極36に接している。
第1測定部31aは、第1の測定信号に対する試料の電気的応答を第1の応答信号として検出する(ステップS6)。例えば、第1測定部31aは、直流信号に対する応答電流の電流値を測定し、A/D変換して制御部16へ送信することができる。
制御部16は、第1の測定信号に対する試料の電気的応答を取得すると、第2の測定信号を試料に印加する(ステップS7)。例えば、制御部16は、第2測定部15bへ指示を出し、パルス信号を第2の測定信号として、第2の測定電極対31の試料検知部28b、29bであるヘマトクリット電極37へ印加させる。ヘマトクリット電極37には、試料である血液が試薬と反応していない状態で接している。制御部16は、例えば、パルス信号の立ち上がり時間、周期、大きさ、印加する時間の長さ等を、第2測定部15bに対して指示することができる。
第2測定部15bは、第2の測定信号に対する試料の電気的応答である第2の応答信号を検出する(ステップS8)。例えば、第2測定部15bは、第2の測定信号であるパルス信号のパルスの立ち上がりに対する第2の応答信号のピーク値を測定する。第2測定部15bは、第2の応答信号のピーク値を、A/D変換して制御部16へ送信してもよいし、第2の応答信号を所定の周期(例えば、0.1μ秒)で検出した値をA/D変換して制御部16へ送信してもよい。
制御部16は、ステップS3で取得された抵抗値把握部35に流れた直流電流値、ステップS8で取得した第2の応答信号を用いて、ステップS6で取得した第1の応答信号を補正して、試料に含まれる測定対象成分の量を示す値(ここでは、一例として、グルコース濃度)を算出する(S9)。
以下、ステップS9として示した、測定結果の補正について説明する。
まず制御部16は、センサ20に形成された抵抗値把握部35に所定電圧の直流電圧を印加した際に流れる直流電流値を用いて、第2の応答信号として得られたヘマトクリット値の補正を行う。
図14は、センサの抵抗値把握部の端子部間に流れた電流値と、第2の応答信号として得られたヘマトクリット値を示す測定電流値(ヘマトクリット電流値)との相関を示す図である。
図14においては、ヘマトクリット値が20%、42%、70%である3つの試料について、それぞれに対し図2および図13に示す回路構成を用いて、センサ20に形成された抵抗値把握部35の端子部間26d、26cに流れる直流電流値と、得られたヘマトクリット電流値とをプロットしたものである。
図14に示すように、抵抗値把握部35の端子部26c、26d間に直流電圧を印加した際に流れる直流電流値と、ヘマトクリット電極37に第2の測定信号を印加して得られたヘマトクリット電流値との間には、明確な相関があることがわかる。
このことから、ステップS3で得られた、抵抗値把握部35において流れる直流電流値と、ステップS8で得られたヘマトクリット電極37によって測定されたヘマトクリット電流値を用いることで、センサ20の測定電極25の抵抗値のバラツキを補正して、より正確なヘマトクリット値を得ることができることがわかる。
なお、本実施形態では、センサ20に形成された測定電極25の抵抗値を、グルコース値を測定する第1の測定電極対30を構成する第1の測定電極に形成された抵抗値把握部35を用いて測定している。このように、本実施形態においては、実際にヘマトクリット値の測定に用いられたものではない測定電極の一部分を用いてその抵抗値成分を測定したにもかかわらず、図14に示したような、抵抗値把握部の端子間電流値とヘマトクリット電流値とにおいて高い相関性を得ることができている。このことは、センサ上において同じ材料を用いて同時に形成された電極パターンが有する抵抗値は、全体としてほぼ同じ値を示すことを示している。このため、本開示の測定装置は、試料の電気的特性を測定するための測定電極としてカーボンインクをスクリーン印刷法によってパターン形成したものを用いているものの、この測定電極の抵抗値を、抵抗値把握部に直流電圧を印加した場合に流れる直流電流を用いて補正することで、精度の高い測定結果数値を得ることができるものであることがわかる。
図15は、ヘマトクリット値の補正動作を示すフローチャートである。
以下、図15を用いて、ヘマトクリット値の補正動作を説明する。
図15に示すように、図12におけるステップS3で得られた、センサ20に形成された抵抗値把握部35の端子部26c、26d間に流れる電流値を端子部間電流値として測定する(ステップS11)。
一方、図12におけるステップS8で第2応答として得られた、ヘマトクリット電極37間を流れるヘマトクリット電流値を測定する(ステップS12)。
次に、ステップS3で得られた端子部間電流値と、ステップS8で得られたヘマトクリット電流値とから、測定電極の抵抗値の影響を補正するためのヘマトクリット値の補正係数を算出する(ステップS13)。
最後に、ステップS14において、ステップS13で得られた補正係数を用いてヘマトクリット電流値を補正し、より正確なヘマトクリット値(%)を取得する。
端子部間電流値を用いてヘマトクリット値を補正する場合には、例えば、縦方向に端子部間電流値が、横方向に測定によって得られたヘマトクリット測定電流値が、それぞれ記載された補正テーブルを用意してこれを制御部に記憶させ、端子部間電流値から直ちにヘマトクリット値の補正係数を求めることができるようにすることができる。なお、抵抗値把握部の端子間に流れた直流電流値に基づいてヘマトクリット電流値を補正する方法としては、上記の補正係数のテーブルを作成する方法以外にも、所定の変換プログラムを構成して、制御部がこのプログラムに基づいて端子部間電流値からヘマトクリット値補正係数を求め、得られた補正係数を用いてヘマトクリット値の補正を行うようにすることができる。
図16は、補正係数を用いて測定電極の抵抗値における影響を補正して得られたヘマトクリット電流値のばらつき度合いを図示したものである。
図16では、予めヘマトクリット値が20%、42%、70%と判明している試料を用いて、測定したヘマトクリット電流値を図示したものである。図16に示すように、いずれのヘマトクリット値の場合でも、ヘマトクリット電流値の誤差範囲は2μA程度であり、測定値の中心値に対して±1(μA)、約4%程度の誤差に抑えられていることがわかる。
これと比較して図17は、補正係数を用いた補正を行っていない場合の、ヘマトクリット電流値のばらつき度合いを示したものである。図17に示すデータは、本開示にかかる測定装置での測定結果を示す図16のデータに対する、比較例としてのデータであり、センサ20上に形成された測定電極25の抵抗値成分のばらつきとして、実際に生じうる+/−0.5kΩのばらつきが生じた場合の、ヘマトクリット値のばらつき度合いを示している。
図17に示す場合も、図16の場合と同様に、ヘマトクリット値が20%、42%、70%の3つの試料を用いて、測定されたヘマトクリット電流値を図示したものであるが、図17に示す場合では、特にヘマトクリット値が20%や42%の場合において、ヘマトクリット電流値のばらつきは4μAかそれ以上に達し、測定中心値に対して±10%程度のばらつきが生じていることがわかる。
このように、抵抗値把握部に直流電圧を印加し、このときに流れる直流電流値を用いて得られたヘマトクリット電流値を補正することで、より精度の高いヘマトクリット値を測定できることがわかる。特に、本実施形態の測定装置では、ヘマトクリット値を測定するために、図5に例示した、第1のレベルから第2のレベルへと値が変化しその後一定の時間第2のレベルを保つ波形を含む第2の測定信号を入力信号として用いて、得られる電流値のピーク値を第2の応答信号として取得している。このように、試料である血液に流れる電流のピークトップ値の変化を測定電流値として測定する方法を採用しているために、例えば直流電圧を印加して得られる電流値から測定対象の抵抗値を求めるグルコース値の測定などの場合と比較して、測定に用いられる測定電極の抵抗値の差異が得られる測定結果に与える影響が大きくなる。したがって、本実施形態として説明した、測定電極と同じ材料を用いて同時に形成された抵抗値把握部に、直流電圧を印加した場合に流れる直流電流値を用いて、得られた測定結果を補正する方法を採用することで、ヘマトクリット値をはじめとする試料の電気的特性値を高い精度で測定することができる。
次に、図12のステップS10において、補正された精度の高いヘマトクリット値に基づいてグルコース値の補正を行う。
これにより、ステップS6で第1電気的応答から得られる試料の測定対象成分の量を示す値を、ステップS8で得られる応答信号のピーク値に基づいて補正した値が得られる。
例えば、ステップS9において、制御部16は、S6で取得した応答信号のピーク値を用いて試料中のヘマトクリットの量を示す値を決定することができる。例えば、ヘマトクリット値は、予め記録された計算式にピーク値を代入する演算によって得ることができる。あるいは、制御部33は、応答信号のピーク値と、ヘマトクリット値とを対応付けて記録したテーブルを参照することにより、ヘマトクリット値を決定することができる。
制御部16は、決定したヘマトクリット値を用いて、第1電気的応答から得られるグルコース濃度の値を補正することができる。なお、ピーク値からヘマトクリット値に換算せず、ピーク値(応答電流値または応答電圧値)を、そのままグルコース値の補正に用いてもよい。
ここで、応答信号のピーク値をヘマトクリット値に変換する際の計算例について説明する。
例えば、下記式(1)に、S8で得られるピーク値を代入してヘマトクリット値を求めることができる。
Y = aX + b ―――(1)
ヘマトクリット値:Y
ピーク値:X
a, b:予め決められた係数
なお、計算式は、上記式(1)に限られない。例えば、上記式(1)のような一次式だけでなく、高次式を用いることもできる。
また、計算式を用いるかわりに、演算用のテーブルを予め記録しておき、テーブルを参照することにより、ピーク値に対応するヘマトクリット値を決定することもできる。
ステップS9で補正された測定対象成分の量を示す値(例えば、グルコース濃度値)は、記録部17に記録され、出力部18により表示画面13へ表示される(ステップS10)。出力部35は、有線または無線ネットワークを介して他の装置へ値を送信することもできる。
なお、図12に示した測定動作のフローチャートにおいて、まず、抵抗値測定としてセンサに形成された測定電極の抵抗値を抵抗値把握部に流れる電流値として求め(ステップS2、S3)、その後、第1の測定信号の応答信号を検出する処理(ステップS5、S6)の終了後、第2の測定信号の応答信号を検出する処理(ステップS7、S8)が実行されている。
これは、特に第1の測定信号および第2の測定信号を、共通しない時間のあいだで試料に印加する場合の例であり、この場合には、第1の測定信号および第2の測定信号との間で同期をとる必要がないため、測定信号の印加から応答信号の検出までの一連処理や装置構成を簡素にすることができるというメリットがある。
しかし、本実施形態の測定装置の動作において、抵抗値測定のステップと、第1の測定信号を用いて行うことを例示したグルコース値の測定と、第2の測定信号を用いて行うことを例示したヘマトクリット値の測定との順序を、適宜変更することができる。また、本実施形態に示した分析用具であるセンサには、第1の測定信号を印加してグルコース値を第1の応答信号を用いて測定するグルコース電極である第1の測定電極対と、第2の測定信号を印加してヘマトクリット値を第2の応答信号から検出するヘマトクリット電極である第2の測定電極対との、合わせて2対4本の測定電極が形成されている。このように、試料に対してそれぞれ別々の2系統の測定電極対を備えているため、第1の測定信号を用いて行うことを例示したグルコース値の測定と、第2の測定信号を用いて行うことを例示したヘマトクリット値の測定とを同時に行うことができる。
また、本実施形態で示したように、予備的な測定としてセンサに形成された測定電極の抵抗値を最初に求めることによって、例えば検出された直流電流の値が所定の範囲から大きく逸脱している場合には、センサの測定電極の形成工程に何らかのトラブルが生じて、測定電極が断線している場合(電流値が検出されない状態)、または、測定電極に導電性の異物が付着している場合(電流値が極めて大きい値の状態)等を想定することができる。このため本実施形態に示したように、試料の電気的特性値の検出工程の最初に、測定電極の抵抗値を検出する工程を行うことで、上記のような不所望な事態が生じている場合はこれを表示部1cにエラー表示を行うなどしてユーザにその旨を伝え、以降の血糖値測定を中止することができる。このようにすることで、正しい測定値が得られない状態にもかかわらず、使用者が血糖値測定の作業を行ってしまうという問題を回避することができる。
以上のように、本実施形態における測定装置は、試料の電気的特性を検出するための測定電極の抵抗値を把握する。特に、測定電極と同じ材料を用いて形成された抵抗値把握部に所定電圧の直流電圧を印加し、このときに流れる直流電流値として把握する。このようにすることで、測定電極としてカーボンインクなどの材料自体が有する抵抗値が比較的高い材料を用いた場合でも、抵抗値成分の影響を排除した高い精度の測定結果を得ることができる。このため、測定電極パターンの形成しやすさや、材料自体の低コスト性を考慮して測定電極材料を選択することができるので、安価な、かつ、測定精度の高い測定装置を実現することができる。
なお、本実施形態にかかる測定装置において、測定電極の抵抗値を測定する方法は、上記例示した抵抗値把握部に直流電圧を印加してそのときに流れる直流電流値を測定する方法には限られない。測定電極と同じ抵抗値を有すると考えられる抵抗値把握部の実際の抵抗値を、容易にかつ正確に測定できる方法であれば、周知の抵抗値測定方法を用いることができる。また、測定対象試料の測定値を把握された測定電極の抵抗値に基づいて補正する工程においても、抵抗値把握部を流れる直流電流値をそのまま用いる方法には限られない。測定電極の抵抗値そのもの、もしくは、測定電極の抵抗値に高い互換性を持って換算できる他の指標を用いて測定対象試料の測定値を補正することができる。
また、測定電極の抵抗値を検出する工程を最初に行うことにより、測定電極の異常状態を検出することができる可能性があり、正しい測定結果が得られない状態での測定作業を事前に回避することができる可能性がある。
また、本実施形態の測定装置では、第2の測定信号に対する第2の応答信号の値から測定電極の抵抗値成分に起因する誤差を取り除いた後に、補正された第2の応答信号から得られた精度の高い測定値を用いて、第1の測定信号に対する第1の応答信号から得られた試料の電気的特性値を補正することができる。この構成により、単純な構成および処理で、最終的に得られる測定結果の測定精度を大幅に向上させることができる。
また、本実施形態で説明した測定装置では、測定に用いられる分析用具として2対4本の測定電極が形成されたものを用いているため、試料である血液の2つの異なる電気的特性値をそれぞれの測定電極対で検出することができる。このため、測定順序を含めた測定手順の裕度が大幅に広がり、簡単な処理と装置構成にもかかわらず、高い精度での測定を実現することかできる。
なお、上記実施形態において、測定装置として血液中のグルコース値を測定する血糖値計を例示して説明したが、本開示の測定装置は、血糖値であるグルコース値を測定するものに限られず、血液試料のヘマトクリット値を測定する測定装置として実現することができる。また、本開示にかかる測定装置を、ヘマトクリット値測定専用の装置とすることができる。この場合には、分析用具に形成される測定電極は、1対のみが形成されているものとすることができ、測定電極も2本が形成されたものとすることができる。
また、上記実施形態では、血液を試料とするヘマトクリット値測定を例示して、分析用具に形成された測定電極の抵抗値を求めて、信号レベルが変化する入力信号を用いて得られた応答信号値を補正する例を示した。しかし、本開示にかかる測定装置では、分析装置に形成された測定電極の抵抗値を求めて、信号レベルが変化しない入力信号を用いて得られた応答信号値を補正する構成、すなわち、上記実施形態として示したグルコース値の測定において、抵抗値把握部を用いて測定電極の抵抗値に基づく補正を行うこともできる。
上記の実施形態では、試料を血液とし、第1の測定信号の応答によりグルコース値を、第2の測定信号の応答によりヘマトクリット値を測定する例を説明したが、試料および測定対象成分は、上記した例に限られない。その他の様々な生物学的流体を、本開示にかかる測定装置および測定方法の測定対象試料とすることができる。例えば、グルコースの代わりに乳酸を測定対象成分とし、第1の測定信号に対する電気的応答から得られた乳酸の値を、第2の測定信号に対する応答として得られたヘマトクリット値で補正する構成であってもよい。また、その他のヘマトクリット補正機能を備えた測定システムに、本開示にかかる測定装置および測定方法を適用することもできる。
さらに、上記実施形態に示した、値が変化する入力信号に対する応答信号のピーク値を用いた測定は、ヘマトクリット値の測定以外にも、例えば、血液検体の電解質およびPH検査、血液凝固のモニタリング(血栓リスクの評価)、または、コントロール液検知等の測定にも適用することができる。その他、入力信号の変化に対する応答信号のピーク値に相関がある成分の測定に、本開示にかかる測定方法および測定装置を用いることができる。
なお、本開示にかかる測定装置は、上記実施形態でセンサを例示して説明したような、測定装置の本体部に着脱可能な分析用具を用いて測定するものに限られない。測定装置自体が、不可分の測定電極を備えている場合でも、上記説明した抵抗値把握部から得られた直流電流によって測定値の補正を行うことで、より精度の高い測定結果を得ることができる。
また、本開示の実施形態では、測定装置において所望の電気的特性を測定するための測定電極として、カーボンインクを材料として用いて所定のパターンにパターン形成されたものを例示した説明した。このようにカーボンインクを用いることで、安価で括消耗形状の測定電極を容易に得ることができるからである。しかし、本開示にかかる測定装置および測定方法に用いられる測定電極としては、上記したカーボンインクを材料として用いたものに限られず、塗布あるいは蒸着によって形成される透明導電材料その他の無機物や、貴金属ほど低抵抗値ではない一定の大きさの抵抗値を有する金属材料を用いることもできる。抵抗値が低く精度の高い測定ができる測定電極材料として周知の金、銀などの貴金属と比較して、比較的抵抗値は高いが安価なニッケルなどの金属材料を用いることなどにより、安価な測定装置を実現することができる。また、例えば、酸化インジウムスズ(ITO)膜やニオブ添加二酸化チタン(TNO)膜などの透明導電材料を本開示にかかる測定電極の材料として使用することで、透明な分析用具を用いて高い精度での電気的特性の測定を行うことも可能となる。
以上説明した、本開示にかかる測定方法および測定装置は、血液のような生物学的試料をはじめとした各種の流体試料について、その電気化学的特性を測定する測定装置および測定方法として有用である。
10 血糖値計(測定装置)
20 分析用具(センサ)
25(26、27、28、29) 測定電極
30、31 測定電極対
35 抵抗値把握部

Claims (15)

  1. 生物学的な試料の測定対象成分を測定する方法であって、
    一対の測定電極により構成された測定電極対を用いて、試料と所定の試薬を反応させない状態で前記測定電極対に測定信号を印加して、前記測定信号に対する前記試料からの応答信号を検出する工程と、
    前記測定電極と同じ材料を用いて形成された抵抗値把握部の抵抗値を測定する工程と、
    測定された前記抵抗値に基づいて、前記応答信号により得られた測定値を補正する工程とを含む、測定方法。
  2. 前記抵抗値把握部が、前記測定電極の一部分として形成されている、請求項1に記載の測定方法。
  3. 前記測定電極それぞれは、一方の端部もしくはその近傍に形成された前記試料と接触する試料検知部と、他方の端部もしくはその近傍に形成された接続端子部とを有し、
    前記測定電極のうちの少なくとも1本が測定端子部をさらに備え、
    当該測定電極の前記接続端子部と前記測定端子部との間の部分が前記抵抗値把握部である、請求項2に記載の測定方法。
  4. 前記測定電極として、第1の測定電極対を形成する第1の測定電極および第2の測定電極と、第2の測定電極対を形成する第3の測定電極および第4の測定電極とを備え、
    試料と前記所定の試薬を反応させた状態で、前記第1の測定電極対に第1の測定信号を印加して、前記第1の測定信号に対する前記試料からの第1の応答信号を検出する工程と、
    試料と前記所定の試薬を反応させない状態で、前記第2の測定電極対に第2の測定信号を印加して、前記第2の測定信号に対する前記試料からの第2の応答信号を検出する工程とをさらに備えた、請求項1〜3のいずれかに記載の測定方法。
  5. 前記第2の測定信号が、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号である、請求項4に記載の測定方法。
  6. 前記試料が血液試料であって、
    前記第1の測定電極対を用いて、試料と所定の試薬を反応させた状態で前記血液試料のグルコース値を求める工程と、
    前記第2の測定電極対に印加される前記第2の測定信号が、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号であり、
    前記第2の測定信号に対する前記血液試料からの前記第2の応答信号を、前記第2の測定信号の変化に対する前記第2の応答信号のピーク値として検出する工程と、
    前記ピーク値から前記血液試料のヘマトクリット値を算出する工程と、
    算出された前記血液試料の前記ヘマトクリット値に基づいて前記グルコース値を補正する工程とを備えた、請求項4に記載の測定方法。
  7. 前記抵抗値把握部の抵抗値を、所定電圧の直流電圧を印加した際に流れる直流電流値を測定することで測定し、
    測定された前記直流電流値に基づいて、前記応答信号により得られた測定値を補正する、請求項1〜6のいずれかに記載の測定方法。
  8. 生物学的な試料の測定対象成分を測定する装置であって、
    一対の測定電極により構成された測定電極対と、
    前記測定電極と同じ材料を用いて形成された抵抗値把握部と、
    前記測定電極対を用いて、試料と所定の試薬を反応させない状態で前記測定電極対に測定信号を印加して前記測定信号に対する前記試料からの応答信号を検出する制御部とを備え、
    前記制御部は、
    前記抵抗値把握部の抵抗値を測定し、測定された前記抵抗値に基づいて前記応答信号から得られた測定値を補正する、測定装置。
  9. 前記抵抗値把握部が、前記測定電極の一部分として形成されている、請求項8に記載の測定装置。
  10. 前記測定電極それぞれは、一方の端部もしくはその近傍に形成された前記試料と接触する試料検知部と、他方の端部もしくはその近傍に形成された接続端子部とを有し、
    前記測定電極のうちの少なくとも1本が測定端子部をさらに備え、
    当該測定電極の前記接続端子部と前記測定端子部との間の部分が前記抵抗値把握部である、請求項9に記載の測定装置。
  11. 前記測定電極として、第1の測定電極対を形成する第1の測定電極および第2の測定電極と、第2の測定電極対を形成する第3の測定電極および第4の測定電極とを備え、
    前記制御部は、
    試料と前記所定の試薬を反応させた状態で、前記第1の測定電極対に第1の測定信号を印加して、前記第1の測定信号に対する前記試料からの第1の応答信号を検出し、
    試料と前記所定の試薬を反応させない状態で、前記第2の測定電極対に第2の測定信号を印加して、前記第2の測定信号に対する前記試料からの第2の応答信号を検出する、請求項8〜10のいずれかに記載の測定装置。
  12. 前記制御部は、前記第2の測定信号として、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号を前記試料に印加する、請求項9に記載の測定装置。
  13. 前記試料が血液試料であって、
    前記第2の測定電極対に印加される前記第2の測定信号が、第1のレベルから第2のレベルへと値が変化し、その後一定の時間前記第2のレベルを保つ信号であり、
    前記制御部は、
    前記第1の測定電極対を用いて、所定の試薬を反応させた状態で前記血液試料のグルコース値を求め、
    前記第2の測定信号に対する前記血液試料からの前記第2の応答信号を、前記第2の測定信号の変化に対する前記第2の応答信号のピーク値として検出し、
    前記ピーク値から前記血液試料のヘマトクリット値を算出し、
    算出された前記血液試料の前記ヘマトクリット値に基づいて前記グルコース値を補正する、請求項11に記載の測定装置。
  14. 前記制御部は、
    前記抵抗値把握部の抵抗値を、所定電圧の直流電圧を印加した際に流れる直流電流値を測定することで測定し、
    測定された前記直流電流値に基づいて、前記応答信号により得られた測定値を補正する、請求項8〜13のいずれかに記載の測定方法。
  15. 前記測定電極が、測定装置に対して着脱可能な分析用具に形成されている請求項8〜14のいずれかに記載の測定装置。
JP2013255044A 2013-12-10 2013-12-10 測定装置、および測定方法 Pending JP2015114153A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013255044A JP2015114153A (ja) 2013-12-10 2013-12-10 測定装置、および測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013255044A JP2015114153A (ja) 2013-12-10 2013-12-10 測定装置、および測定方法

Publications (1)

Publication Number Publication Date
JP2015114153A true JP2015114153A (ja) 2015-06-22

Family

ID=53528085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013255044A Pending JP2015114153A (ja) 2013-12-10 2013-12-10 測定装置、および測定方法

Country Status (1)

Country Link
JP (1) JP2015114153A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009550A (ja) * 2015-06-26 2017-01-12 国立研究開発法人産業技術総合研究所 バイオセンサ
JP2019105558A (ja) * 2017-12-13 2019-06-27 アークレイ株式会社 血液中のヘマトクリット値を測定する測定方法および測定装置
JP2019168334A (ja) * 2018-03-23 2019-10-03 アークレイ株式会社 測定方法および測定装置
CN112485301A (zh) * 2020-11-25 2021-03-12 三诺生物传感股份有限公司 一种电化学测试装置的测试方法、系统、设备及介质
WO2023162366A1 (ja) * 2022-02-25 2023-08-31 株式会社Screenホールディングス 流路デバイス
JP7457567B2 (ja) 2020-05-01 2024-03-28 アークレイ株式会社 電気化学式センサの製造方法、及び電気化学式センサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009550A (ja) * 2015-06-26 2017-01-12 国立研究開発法人産業技術総合研究所 バイオセンサ
JP2019105558A (ja) * 2017-12-13 2019-06-27 アークレイ株式会社 血液中のヘマトクリット値を測定する測定方法および測定装置
JP2019168334A (ja) * 2018-03-23 2019-10-03 アークレイ株式会社 測定方法および測定装置
JP7457567B2 (ja) 2020-05-01 2024-03-28 アークレイ株式会社 電気化学式センサの製造方法、及び電気化学式センサ
CN112485301A (zh) * 2020-11-25 2021-03-12 三诺生物传感股份有限公司 一种电化学测试装置的测试方法、系统、设备及介质
WO2023162366A1 (ja) * 2022-02-25 2023-08-31 株式会社Screenホールディングス 流路デバイス

Similar Documents

Publication Publication Date Title
JP6158133B2 (ja) 測定装置、及び測定方法
US8877033B2 (en) Method and apparatus for assay of electrochemical properties
JP2015114153A (ja) 測定装置、および測定方法
JP5635631B2 (ja) 電気化学的分析における静電容量の検出
JP6182155B2 (ja) 血液成分の測定装置、血液成分の測定方法、及び、バイオセンサ
JP6404681B2 (ja) 測定装置、及び測定方法
JP2004233294A (ja) 電気化学センサ測定装置及びその測定方法
US20160108451A1 (en) Blood component measurement device and blood component measurement method
US10241069B2 (en) Biological sample measuring device
JP5978868B2 (ja) 生体成分測定用の試験片、測定装置本体、およびそれらを含む生体成分測定装置
JP2016224075A (ja) 測定装置、及び測定方法
TWI603083B (zh) 用以測量樣品中之分析物及計算血容比鈍感血糖濃度之系統及方法
JP2014052259A5 (ja)
TW201514487A (zh) 分析用具、其製造方法、及使用其之測定裝置
US9039875B2 (en) Liquid sample measuring device
US20200033287A1 (en) Method of operation of a meter
US10149642B2 (en) Bodily fluid-component analyzing apparatus
US20230249179A1 (en) Testing implement and measuring device