JP2015114070A - Refrigerant exhaust device and refrigerant exhaust method - Google Patents

Refrigerant exhaust device and refrigerant exhaust method Download PDF

Info

Publication number
JP2015114070A
JP2015114070A JP2013257772A JP2013257772A JP2015114070A JP 2015114070 A JP2015114070 A JP 2015114070A JP 2013257772 A JP2013257772 A JP 2013257772A JP 2013257772 A JP2013257772 A JP 2013257772A JP 2015114070 A JP2015114070 A JP 2015114070A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
drive valve
atmosphere
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013257772A
Other languages
Japanese (ja)
Other versions
JP5995826B2 (en
Inventor
一喜 村澤
Kazuyoshi Murasawa
一喜 村澤
千夏 三田
chinatsu Mita
千夏 三田
哲司 千葉
Tetsuji Chiba
哲司 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013257772A priority Critical patent/JP5995826B2/en
Publication of JP2015114070A publication Critical patent/JP2015114070A/en
Application granted granted Critical
Publication of JP5995826B2 publication Critical patent/JP5995826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant exhaust device that can suppress increase of combustible refrigerant concentration by vaporizing, in a short time, dissolved combustible refrigerant with respect to refrigeration oil that remains with a small amount inside a compressor after discharge of residual material and where combustible refrigerant is dissolved, and can ensure safety without an explosion risk of the compressor.SOLUTION: A vacuum pump 7 and a drive valve 4 are attached to a compressor 1 after discharge of residual material; pressure in the compressor 1 is decompressed; and after decompression for a prescribed time, the drive valve 4 is opened, ambient air is flowed into the compressor 1, and the pressure in the compressor 1 is restored to atmospheric pressure. By repeating the decompression and ambient air inflow, combustible refrigerant dissolved in refrigeration oil remaining with a small amount in the compressor 1 is vaporized in a short time to be exhausted.

Description

この発明は、真空ポンプと駆動弁により圧縮機内部を減圧する機構により内部の可燃性冷媒を排気する冷媒排気装置及び冷媒排気方法に関するものである。   The present invention relates to a refrigerant exhaust apparatus and a refrigerant exhaust method for exhausting an internal combustible refrigerant by a mechanism that depressurizes the inside of a compressor by a vacuum pump and a drive valve.

従来の可燃性冷媒の処理方法は、いくつか提案されており、1つは、冷蔵庫解体時に冷凍サイクル内の冷凍機油と可燃性冷媒を分離タンクへ吸引して回収し、回収後、可燃性冷媒を空気で希釈し大気へ放出する方法がある(例えば特許文献1参照)。
また、圧縮機内の冷凍機油及び可燃性冷媒の処理方法として高温の過熱水蒸気を利用することで圧縮機内を洗い流し圧縮機内に残留物が残らないようにしている(例えば特許文献2参照)。
他に空気調和機の室外ユニットから冷媒を回収する方法として、低圧タンクと高圧タンクを接続し、高圧タンクからのガスによる押出作用と低圧タンクの負圧吸引作用により、冷媒を回収する方法が提案されている(例えば特許文献3参照)。
Several conventional methods for treating flammable refrigerants have been proposed. One is to collect the refrigeration oil and flammable refrigerant in the refrigeration cycle by sucking them into the separation tank when the refrigerator is disassembled, and after the collection, the flammable refrigerant is recovered. There is a method of diluting with air and releasing it to the atmosphere (for example, see Patent Document 1).
In addition, by using high-temperature superheated steam as a method for treating refrigeration oil and combustible refrigerant in the compressor, the inside of the compressor is washed away so that no residue remains in the compressor (see, for example, Patent Document 2).
Another method for recovering refrigerant from the outdoor unit of an air conditioner is to connect a low-pressure tank and a high-pressure tank, and recover the refrigerant by pushing out gas from the high-pressure tank and negative pressure suction from the low-pressure tank. (For example, refer to Patent Document 3).

特許第4854302号Japanese Patent No. 4854302 特開2007−212056JP2007-212056 特開2002−147903JP 2002-147903 A

特許文献1〜3に示すような可燃性冷媒の処理方法では、圧縮機内より冷凍機油及び可燃性冷媒を排出した場合に、回収しきれなかった可燃性冷媒が溶存する冷凍機油が圧縮機内に少量残留してしまい、その結果、時間経過と共に圧縮機内には残留する冷凍機油から溶存した可燃性冷媒が気化し、圧縮機内の可燃性冷媒濃度が上昇することによって圧縮機が爆発する恐れがある。   In the processing method of the combustible refrigerant as shown in Patent Documents 1 to 3, when the refrigerating machine oil and the combustible refrigerant are discharged from the compressor, a small amount of the refrigerating machine oil in which the combustible refrigerant that could not be recovered is dissolved in the compressor. As a result, the combustible refrigerant dissolved from the refrigerating machine oil remaining in the compressor evaporates with time, and the compressor may explode due to an increase in the combustible refrigerant concentration in the compressor.

この発明は上記のような問題点を解決するためになされたものであり、冷凍機油及び可燃性冷媒排出後の圧縮機に対し、短時間の処理により溶存した可燃性冷媒を処理し、圧縮機解体時でも爆発危険のない安全性を確保できる冷媒排気装置及び冷媒排気方法を提案することを目的としている。   The present invention has been made to solve the above-described problems. The compressor after discharging the refrigerating machine oil and the combustible refrigerant is treated with the combustible refrigerant dissolved in a short time, and the compressor. An object of the present invention is to propose a refrigerant exhaust device and a refrigerant exhaust method that can ensure safety without explosion hazard even during dismantling.

この発明の冷媒排気装置は、圧縮機、この圧縮機の冷媒充填口に接続された第1の真空ホースと大気間に設けられ前記圧縮機の前記冷媒充填口に大気圧を選択的に加えることが可能な駆動弁、第2の真空ホースを介して前記圧縮機の吸入管及び吐出管と接続された真空ポンプ、前記駆動弁及び前記真空ポンプを制御する制御装置を備え、前記制御装置によって前記駆動弁の開閉を制御することにより、前記圧縮機内において減圧状態と大気を導入する状態とが繰り返されるようにすることで前記圧縮機内に残存する冷媒を気化させるようにしたものである。
また、この発明の冷媒排気方法は、残留物排出後の圧縮機の吸引側に真空ポンプを取り付けるとともに、大気との間で開閉する駆動弁を前記圧縮機の前記吸引側と別の位置に取り付け、前記真空ポンプを作動させて圧縮機内部を減圧し一定時間減圧後、前記駆動弁を開放し大気を流入させる動作を繰り返すことにより気泡を発生させ可燃性冷媒を気化させるようにしたものである。
The refrigerant exhaust device of the present invention is provided between the compressor and the first vacuum hose connected to the refrigerant filling port of the compressor and the atmosphere, and selectively applies atmospheric pressure to the refrigerant filling port of the compressor. And a control device for controlling the drive valve and the vacuum pump via a second vacuum hose, and a control device for controlling the drive valve and the vacuum pump. The refrigerant remaining in the compressor is vaporized by controlling the opening and closing of the drive valve so that the reduced pressure state and the state in which the atmosphere is introduced are repeated in the compressor.
In the refrigerant exhaust method of the present invention, a vacuum pump is attached to the suction side of the compressor after discharging the residue, and a drive valve that opens and closes to the atmosphere is attached to a position different from the suction side of the compressor. The vacuum pump is operated to depressurize the inside of the compressor, depressurize for a certain period of time, and then repeat the operation of opening the drive valve and flowing in the atmosphere to generate bubbles and vaporize the combustible refrigerant. .

この発明によれば、圧縮機内部において減圧と大気流入とを繰り返し、内部に少量残留する冷凍機油から溶存する可燃性冷媒を短時間で気化させ、排気することにより圧縮機内部の可燃性冷媒濃度の上昇を抑制し、可燃性冷媒の濃度上昇による爆発を防ぎ作業者の安全性確保ができる。   According to the present invention, the concentration of the flammable refrigerant in the compressor is reduced by repeating the decompression and the inflow of air inside the compressor, evaporating the flammable refrigerant dissolved from the refrigeration oil remaining in the inside in a short time, and exhausting it. Can be prevented, explosion caused by the increase in the concentration of the flammable refrigerant can be prevented, and worker safety can be ensured.

この発明に係る実施の形態1による冷媒排気装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the refrigerant | coolant exhaust apparatus by Embodiment 1 which concerns on this invention. この発明に係る実施の形態3による圧縮機への接続と冷媒排気装置の一部を断面で示す斜視図である。It is a perspective view which shows the connection to the compressor by Embodiment 3 which concerns on this invention, and a part of refrigerant | coolant exhaust apparatus in a cross section. この発明における作用を説明するための圧力−溶存酸素量線図である。It is a pressure-dissolved oxygen amount diagram for demonstrating the effect | action in this invention.

実施の形態1.
この発明に係る実施の形態1を図1および図3について説明する。図1は、実施の形態1による冷媒排気装置の要部を示す概略構成図である。図3は、この発明における作用を説明するための圧力−溶存酸素量線図である。
圧縮機1の冷媒充填口18に第1の真空ホース2が接続され、圧力センサ3と第1の駆動弁4を介して大気と接続させる。冷凍機油と可燃性冷媒液を含む残留物を排出した後の圧縮機1に対し、第2の真空ホース5にて圧縮機1の吸入管16、吐出管17側に第2の駆動弁6を介して真空ポンプ7を接続する。第1の駆動弁4の開閉を制御装置8にて制御し真空ポンプ7にて吸引中の圧縮機内1に大気を流入させ圧力を大気圧まで戻すことができる。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram showing a main part of the refrigerant exhaust apparatus according to the first embodiment. FIG. 3 is a pressure-dissolved oxygen amount diagram for explaining the operation in the present invention.
The first vacuum hose 2 is connected to the refrigerant filling port 18 of the compressor 1 and is connected to the atmosphere via the pressure sensor 3 and the first drive valve 4. With respect to the compressor 1 after discharging the residue containing the refrigerating machine oil and the combustible refrigerant liquid, the second drive valve 6 is provided on the suction pipe 16 and discharge pipe 17 side of the compressor 1 by the second vacuum hose 5. Via the vacuum pump 7. The opening and closing of the first drive valve 4 can be controlled by the control device 8, and the air can be flowed into the compressor 1 being sucked by the vacuum pump 7 to return the pressure to atmospheric pressure.

このような構成にて、残留物排出後の圧縮機1に第1、第2の真空ホース2、5を接続する。接続確認後、真空ポンプ7にて圧縮機内1を吸引し減圧する。減圧時には第1の真空ホース2に接続された第1の駆動弁4を密閉し、第2の真空ホース5に接続された第2の駆動弁6は開放する。このような駆動弁開閉条件にて真空ポンプ7による吸引を開始し圧縮機1内を減圧する。   With such a configuration, the first and second vacuum hoses 2 and 5 are connected to the compressor 1 after discharging the residue. After confirming the connection, the vacuum pump 7 sucks the inside 1 of the compressor and depressurizes it. During decompression, the first drive valve 4 connected to the first vacuum hose 2 is sealed, and the second drive valve 6 connected to the second vacuum hose 5 is opened. The suction by the vacuum pump 7 is started under such a driving valve opening / closing condition, and the inside of the compressor 1 is decompressed.

一定時間経過後、真空ポンプ7による吸引を継続したまま圧縮機1内に大気を取入れ、減圧した圧力を大気圧付近まで戻す。大気流入時の駆動弁開閉条件は第1の真空ホース2に接続した第1駆動弁4と、第2の真空ホース5に接続した第2駆動弁6を共に開放する。圧縮機1内に大気を一定時間流入し圧力が大気圧付近まで戻った事を確認後、再度駆動弁の開閉条件を第1の駆動弁4は密閉、第2の駆動弁6は開放とし、初期の吸引時と同じ条件に戻す。
例えば、真空ポンプ7による吸引時には第2の駆動弁6を55秒間開放し圧縮機内1を減圧する。55秒経過後、第1の駆動弁4を5秒間開放し大気を取り入れ、圧縮機内1の圧力を大気圧付近まで戻す。この動作を1サイクルとし、任意の回数このサイクル運動を繰り返す。
After a certain period of time has passed, the air is taken into the compressor 1 while suction by the vacuum pump 7 is continued, and the reduced pressure is returned to near atmospheric pressure. The driving valve opening / closing condition at the time of inflow to the atmosphere is that both the first driving valve 4 connected to the first vacuum hose 2 and the second driving valve 6 connected to the second vacuum hose 5 are opened. After confirming that the atmosphere has flowed into the compressor 1 for a certain period of time and the pressure has returned to near atmospheric pressure, the opening and closing conditions of the driving valve are again set to the first driving valve 4 and the second driving valve 6 open, Return to the same conditions as the initial suction.
For example, at the time of suction by the vacuum pump 7, the second drive valve 6 is opened for 55 seconds to reduce the pressure in the compressor 1. After 55 seconds, the first drive valve 4 is opened for 5 seconds to take in the atmosphere, and the pressure in the compressor 1 is returned to near atmospheric pressure. This operation is defined as one cycle, and this cycle motion is repeated an arbitrary number of times.

この構成によって減圧状態における液体への溶解度の変化を利用する。すなわち、大気圧から減圧することにより液体に溶解できる気体の量は大気圧状態より減少し、飽和状態となった気体は液体の中で気泡へと変化する。
例えば、大気圧(101kPa)では0℃の水1Lに酸素は0.07g溶解する。大気圧状態から減圧したとき、酸素の溶解量は図3のように減少する。大気圧から10kPaまで減圧時には水に溶解する酸素は大気圧時の10%となり飽和した90%の酸素は気体へと変化する。
With this configuration, the change in solubility in a liquid in a reduced pressure state is utilized. That is, the amount of gas that can be dissolved in the liquid by reducing the pressure from the atmospheric pressure decreases from the atmospheric pressure state, and the saturated gas changes into bubbles in the liquid.
For example, at atmospheric pressure (101 kPa), 0.07 g of oxygen is dissolved in 1 L of water at 0 ° C. When the pressure is reduced from the atmospheric pressure state, the dissolved amount of oxygen decreases as shown in FIG. When the pressure is reduced from atmospheric pressure to 10 kPa, oxygen dissolved in water becomes 10% at atmospheric pressure, and 90% of saturated oxygen changes to gas.

このように圧縮機内1を真空ポンプ7にて大気圧から10kPaまで減圧することで、圧力低下により圧縮機1内に残存する冷凍機油から溶存する酸素、窒素等が気泡として発生する。発生した気泡によりバブリングと同じ効果が得られ、溶存した可燃性冷媒が気泡に吸収され冷凍機油内から可燃性冷媒を脱気し、気化させることができる。また、気化した可燃性冷媒を排気することで圧縮機内1の可燃性冷媒濃度の上昇を抑制することができる。   Thus, by reducing the pressure in the compressor 1 from the atmospheric pressure to 10 kPa with the vacuum pump 7, oxygen, nitrogen, etc. dissolved from the refrigerating machine oil remaining in the compressor 1 are generated as bubbles due to the pressure drop. The same effect as bubbling is obtained by the generated bubbles, and the dissolved combustible refrigerant is absorbed by the bubbles, and the combustible refrigerant can be degassed and evaporated from the refrigerating machine oil. Moreover, the raise of the combustible refrigerant | coolant density | concentration in the compressor 1 can be suppressed by exhausting the combustible refrigerant | coolant which vaporized.

圧縮機内1の減圧を続けると冷凍機油に溶存する酸素、窒素が減少するため、発生する気泡も減少し可燃性冷媒を脱気出来なくなる。よって、圧縮機内1へ大気を流入することにより、冷凍機油へ大気を溶け込ませる。減圧された圧縮機内へ5秒間大気を流入する事で急激な圧力変化により冷凍気油が攪拌され、大気に含まれる酸素や窒素等の一部を溶け込ます事ができる。大気流入後、再度圧縮機1内を減圧することで冷凍機油に溶存した一部の大気が再び気泡となりバブリング効果によってさらに可燃性冷媒を脱気させることが可能となる。この操作によって、真空ポンプ7で吸引を続けるよりも短時間で溶存した可燃性冷媒を気化させることが可能となる。   If the pressure in the compressor 1 is continuously reduced, oxygen and nitrogen dissolved in the refrigerating machine oil are reduced, so that the generated bubbles are reduced and the combustible refrigerant cannot be degassed. Therefore, the air is dissolved into the refrigeration oil by flowing the air into the compressor 1. By flowing the air into the decompressed compressor for 5 seconds, the frozen air oil is agitated by a sudden pressure change, and some of oxygen, nitrogen, etc. contained in the air can be dissolved. After the inflow to the atmosphere, the inside of the compressor 1 is decompressed again, so that a part of the atmosphere dissolved in the refrigerating machine oil becomes bubbles again, and the flammable refrigerant can be further degassed by the bubbling effect. This operation makes it possible to vaporize the combustible refrigerant dissolved in a shorter time than when the vacuum pump 7 continues to suck.

このように、圧縮機内1を真空ポンプ7で吸引するとき第1の駆動弁4の開閉を制御し、圧縮機内を減圧と大気流入を繰り返すことにより、一度の減圧で冷凍機油から気化できなかった可燃性冷媒が残っても、大気を流入し冷凍機油内の圧力を戻し再度減圧することによって溶存する可燃性冷媒を徐々に気化させることができ、真空ポンプ7でただ減圧するよりも多くの可燃性冷媒を気化させることができる。気化した可燃性冷媒を吸引・排気することで真空ポンプ7にて減圧し続けるよりも短時間で可燃性冷媒濃度を爆発危険のない濃度まで減少させることができる。この発明における真空ポンプ7と大気流入による圧縮機内1の圧力を変動させる方法ならば、圧力変動の回数に上限はなく何度でも圧縮機内1の圧力を変動させることで残留する冷凍機油から溶存する可燃性冷媒を気化させることができる。
さらに残留物処理後の圧縮機に対して可燃性冷媒濃度の上昇による爆発を防ぐ事が出来、作業者の安全を確保する事ができる。
As described above, when the inside 1 of the compressor is sucked by the vacuum pump 7, the opening and closing of the first drive valve 4 is controlled, and the inside of the compressor is repeatedly decompressed and introduced into the atmosphere, so that it cannot be vaporized from the refrigerating machine oil by one decompression. Even if the flammable refrigerant remains, the flammable refrigerant dissolved can be gradually vaporized by flowing in the atmosphere, returning the pressure in the refrigeration oil, and reducing the pressure again, and more flammable than just reducing the pressure by the vacuum pump 7. Can be vaporized. By sucking and exhausting the vaporized combustible refrigerant, the concentration of the combustible refrigerant can be reduced to a concentration at which there is no risk of explosion in a shorter time than when the pressure is continuously reduced by the vacuum pump 7. According to the method of changing the pressure in the compressor 1 by the vacuum pump 7 and the air inflow in the present invention, there is no upper limit to the number of pressure fluctuations, and the pressure in the compressor 1 is changed any number of times to dissolve from the remaining refrigeration oil. A combustible refrigerant can be vaporized.
Furthermore, it is possible to prevent an explosion due to an increase in the concentration of the flammable refrigerant with respect to the compressor after the residue treatment, and it is possible to ensure the safety of the operator.

実施の形態2.
この発明に係る実施の形態2を先に説明した実施の形態1と同様の図1について説明する。
実施の形態1では真空ポンプ7と第2の駆動弁6の吸引サイクルにて圧縮機1内を減圧した後、第1の駆動弁4を開放し大気を流入させてから再度減圧を開始する構成となっているが、この実施の形態2では1サイクル終了後、再度減圧を開始する前に第2の駆動弁6を制御し一定時間密閉後、開放するという作業工程を追加している。
なお、第1駆動弁4を開放後、一定時間第2の駆動弁6を密閉させているが、第2の駆動弁6を密閉させるタイミングは、大気流入による第1の駆動弁4の開放と同時でも良いし、しばらく経過してからでも良い。
Embodiment 2. FIG.
A second embodiment according to the present invention will be described with reference to FIG. 1 similar to the first embodiment described above.
In the first embodiment, after the pressure in the compressor 1 is reduced by the suction cycle of the vacuum pump 7 and the second drive valve 6, the first drive valve 4 is opened, the atmosphere is introduced, and the pressure reduction is started again. However, in the second embodiment, after the end of one cycle, the second drive valve 6 is controlled before the decompression is started again, and after a certain period of time is closed, the work process is opened.
Although the second drive valve 6 is sealed for a certain period of time after the first drive valve 4 is opened, the timing for sealing the second drive valve 6 is the same as the opening of the first drive valve 4 due to atmospheric inflow. It may be at the same time or after a while.

例えば、圧縮機1内へ5秒間大気を流入後、第2の駆動弁6を5秒間密閉した後に圧縮機1内の吸引を開始する。このとき、圧縮機1内の吸引を開始する前に第2の駆動弁6を密閉することにより、圧縮機内1の圧力は完全に大気圧まで戻る。従って、実施の形態1よりも圧縮機1内の圧力が大きくなり、冷凍機油の再度減圧を実施したときに冷凍機油に発生する気泡も多くなる。発生する気泡が多くなることで、より多く可燃性冷媒を気化させることが可能となる。
この構成によれば第2の駆動弁6の開閉条件を加えることによって圧縮機内1の圧力を大気圧まで戻し減圧することで、冷凍機油により多くの気泡が発生し溶存する可燃性冷媒をより気化させる効果を得ることができる。減圧と大気流入を繰り返すことによって実施の形態1よりも可燃性冷媒を気化させることができ、可燃性冷媒濃度の上昇を抑制することができる。
For example, after the atmosphere flows into the compressor 1 for 5 seconds, the second drive valve 6 is sealed for 5 seconds, and then the suction in the compressor 1 is started. At this time, the pressure in the compressor 1 is completely returned to the atmospheric pressure by sealing the second drive valve 6 before starting the suction in the compressor 1. Therefore, the pressure in the compressor 1 becomes larger than that in the first embodiment, and more bubbles are generated in the refrigeration oil when the refrigeration oil is decompressed again. By increasing the number of generated bubbles, more combustible refrigerant can be vaporized.
According to this configuration, by adding the opening / closing conditions of the second drive valve 6, the pressure in the compressor 1 is returned to atmospheric pressure and the pressure is reduced, so that more bubbles are generated in the refrigerating machine oil and the flammable refrigerant dissolved is further vaporized. Effect can be obtained. By repeating depressurization and air inflow, the combustible refrigerant can be vaporized more than in the first embodiment, and the increase in the combustible refrigerant concentration can be suppressed.

実施の形態3.
この発明に係る実施の形態3を図2について説明する。図2は実施の形態3による圧縮機への接続と冷媒排気装置の一部を断面で示す斜視図である。
図1に示す例においては圧縮機1の接続を第2の駆動弁6を介して真空ポンプ7を接続する構成だが、図2のように配管長さの変更と、配管数を追加することにより吸引する圧縮機1の数を増やすこともできる。例えば、図2においては真空ポンプ7から接続した配管を変更し、複数台の圧縮機1を吸引できるように接続配管を増やしている。さらに接続する圧縮機1の吸引場所として真空ポンプ7と配管周りをカバーし、それらの機器の上に圧縮機1の積載台を設置することで複数台の圧縮機1の吸引場所を確保している。さらに、積載台からは圧縮機1に接続する真空ホース2、5をそれぞれ設置し、第1の真空ホース2には実施の形態1と同様に装置内で圧力センサ3と第1の駆動弁4をそれぞれ準備し接続する。全ての第1駆動弁4の密閉、開放を制御し吸引中の圧縮機内1に大気を流入させることを可能とする。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIG. FIG. 2 is a perspective view showing a section of the connection to the compressor and a part of the refrigerant exhaust device according to the third embodiment.
In the example shown in FIG. 1, the compressor 1 is connected to the vacuum pump 7 via the second drive valve 6, but by changing the pipe length and adding the number of pipes as shown in FIG. The number of compressors 1 to be sucked can be increased. For example, in FIG. 2, the piping connected from the vacuum pump 7 is changed, and the number of connecting piping is increased so that a plurality of compressors 1 can be sucked. Further, the vacuum pump 7 and the surroundings of the piping are covered as suction places of the compressor 1 to be connected, and the suction places of the plurality of compressors 1 are secured by installing the loading table of the compressor 1 on those devices. Yes. Further, vacuum hoses 2 and 5 connected to the compressor 1 are respectively installed from the loading platform, and the pressure sensor 3 and the first drive valve 4 are installed in the first vacuum hose 2 in the apparatus as in the first embodiment. Prepare and connect each. It is possible to control the sealing and opening of all the first drive valves 4 to allow the atmosphere to flow into the compressor 1 during suction.

第2の真空ホース5は装置内配管で第2の駆動弁6へ接続する。第1の駆動弁4と同様に全ての接続する圧縮機1と同じ個数を設置し全ての第2駆動弁6の密閉、開放を制御する。さらに第2の駆動弁6から複数ある接合配管14と接合し真空ポンプ7に接続される。真空ポンプ7の吸引口付近には、吸引時に冷凍機油が真空ポンプ7内に入り込む事を防ぐためにオイルセパレータ13を設置してもよい。また、真空ポンプ7と吸引した空気を装置外へ排出するブロワ12へ接続される。
上記構成にて複数台の圧縮機1を同時に吸引することが可能となり、圧縮機1内を実施の形態1、2と同様に減圧と大気流入を繰り返す事によって冷媒排気装置に接続した複数台の圧縮機1内に少量残留している冷凍機油から溶存した可燃性冷媒を気化させることができ、実施の形態1、2の吸引時と同様の効果を得て、気化した可燃性冷媒を装置外へ吸引・排気することができる。このため、圧縮機内1の可燃性冷媒濃度が上昇する事がなく、圧縮機が爆発する危険もなく安全性を確保する事ができる。また、複数台の圧縮機を同時に吸引することによって冷媒排気装置による処理能力の向上効果を得ることができる。
The second vacuum hose 5 is connected to the second drive valve 6 by piping in the apparatus. Similar to the first drive valve 4, the same number as the compressors 1 to be connected is installed, and the sealing and opening of all the second drive valves 6 are controlled. Further, a plurality of joint pipes 14 are joined from the second drive valve 6 and connected to the vacuum pump 7. An oil separator 13 may be installed near the suction port of the vacuum pump 7 in order to prevent refrigeration oil from entering the vacuum pump 7 during suction. Further, the vacuum pump 7 and the blower 12 for discharging the sucked air to the outside of the apparatus are connected.
With the above configuration, a plurality of compressors 1 can be sucked at the same time, and a plurality of compressors 1 connected to the refrigerant exhaust device by repeatedly depressurizing and flowing into the atmosphere in the compressor 1 as in the first and second embodiments. The combustible refrigerant dissolved from the refrigerating machine oil remaining in a small amount in the compressor 1 can be vaporized, and the same effect as that in the suction of the first and second embodiments can be obtained, and the vaporized combustible refrigerant is removed from the apparatus. Can be sucked and exhausted. Therefore, the combustible refrigerant concentration in the compressor 1 does not increase, and safety can be ensured without the danger of the compressor exploding. Moreover, the improvement effect of the processing capacity by the refrigerant exhaust device can be obtained by simultaneously sucking a plurality of compressors.

実施の形態4.
この発明に係る実施の形態4を先に説明した実施の形態3と同様の図2について説明する。
実施の形態3では圧縮機1の吸引時には複数台全ての圧縮機1を装置に接続後、同時に吸引するようにしているが、圧縮機1を1台ずつ冷媒排気装置へ接続し、個別に吸引を開始しても良い。操作パネル11にはそれぞれの圧縮機1a、1b、・・・の吸引を開始するための起動スイッチ10が設けられている。
例えば、1台目の圧縮機1aを実施の形態3と同様に図2に示す装置にて積載台へ設置する。真空ホース2、5を接続後、吸引を開始したい箇所の起動スイッチ10を押下し吸引を開始した後、2台目の圧縮機1bを冷媒排気装置へ設置し真空ホース2、5を接続後、起動スイッチ10を押下する。ただし2台目の圧縮機1bに対して吸引を開始するときは1台目圧縮機1aの1サイクルの吸引・大気流入が完了するまで第1、第2の駆動弁4、6を密閉し吸引をすぐには開始せず待機状態とする。吸引を開始した1台目の圧縮機1aが1サイクル間の吸引を終了後、次サイクルの吸引を開始すると同時に2台目に接続した圧縮機1bの駆動弁6を開放し2台目圧縮機1bの吸引を開始する。
Embodiment 4 FIG.
The fourth embodiment according to the present invention will be described with reference to FIG. 2 similar to the third embodiment described above.
In the third embodiment, all the compressors 1 are connected to the apparatus at the time of suction by the compressor 1 and then sucked at the same time. However, the compressors 1 are connected to the refrigerant exhaust device one by one and sucked individually. You may start. The operation panel 11 is provided with an activation switch 10 for starting suction of the compressors 1a, 1b,.
For example, the first compressor 1a is installed on the loading table using the apparatus shown in FIG. After connecting the vacuum hoses 2 and 5, after depressing the start switch 10 at the location where the suction is to be started and starting the suction, the second compressor 1b is installed in the refrigerant exhaust device and the vacuum hoses 2 and 5 are connected. Press the start switch 10. However, when suction is started for the second compressor 1b, the first and second drive valves 4 and 6 are sealed and sucked until one cycle of suction and air inflow of the first compressor 1a is completed. Is not started immediately and is set in a standby state. After the suction of the first compressor 1a that has started the suction for one cycle, the suction of the next cycle is started, and at the same time, the driving valve 6 of the compressor 1b connected to the second is opened to open the second compressor Start the suction of 1b.

同様の方法にて圧縮機1の接続台数を増加し、時間差による圧縮機の連続吸引を可能とする。本装置における圧縮機1の吸引方法を1台ずつの時間差にて吸引した場合でも、実施の形態1、2と同様に真空ポンプ7と駆動弁4、6による吸引と大気流入を繰り返す事によって圧縮機1内に少量残留する可燃性冷媒が溶存した冷凍機油から可燃性冷媒を短時間で気化させ回収することができる。また、溶存した可燃性冷媒を短時間で強制的に気化させる事によって、圧縮機1内の可燃性冷媒が上昇する事はないため、圧縮機爆発の危険がなく作業者の安全を確保することができる。また、装置へ接続する圧縮機1を実施の形態3のように全て接続するまで待つ必要がなく、装置に接続次第すぐに処理できるため全体の作業時間を実施の形態3よりも短縮する事ができ、冷媒排気装置による処理能力の向上効果を得ることができる。   The number of connected compressors 1 is increased by the same method, and the compressor can be continuously sucked by time difference. Even when the suction method of the compressor 1 in this apparatus is sucked at a time difference of one by one, the suction by the vacuum pump 7 and the drive valves 4 and 6 and the air inflow are repeated as in the first and second embodiments. The combustible refrigerant can be vaporized and recovered in a short time from the refrigeration oil in which the small amount of the combustible refrigerant remaining in the machine 1 is dissolved. In addition, by forcibly evaporating the dissolved flammable refrigerant in a short time, the flammable refrigerant in the compressor 1 will not rise, so there is no danger of the compressor explosion and ensuring the safety of the operator. Can do. Further, it is not necessary to wait until all the compressors 1 connected to the apparatus are connected as in the third embodiment, and processing can be performed immediately upon connection to the apparatus, so that the entire work time can be shortened compared to the third embodiment. In addition, the effect of improving the processing capacity by the refrigerant exhaust device can be obtained.

同様の方法にて圧縮機1の接続台数を増加し、時間差による圧縮機の連続吸引を可能とする。本装置における圧縮機1の吸引方法を1台ずつの時間差にて吸引した場合でも、実施の形態1、2と同様に真空ポンプ7と駆動弁4、6による吸引と大気流入を繰り返す事によって圧縮機1内に少量残留する可燃性冷媒が溶存した冷凍機油から可燃性冷媒を短時間で気化させ回収することができる。また、溶存した可燃性冷媒を短時間で強制的に気化させる事によって、圧縮機1内の可燃性冷媒が上昇する事はないため、圧縮機爆発の危険がなく作業者の安全を確保することができる。また、装置へ接続する圧縮機1を実施の形態3のように全て接続するまで待つ必要がなく、装置に接続次第すぐに処理できるため全体の作業時間を実施の形態3よりも短縮する事ができ、冷媒排気装置による処理能力の向上効果を得ることができる。   The number of connected compressors 1 is increased by the same method, and the compressor can be continuously sucked by time difference. Even when the suction method of the compressor 1 in this apparatus is sucked at a time difference of one by one, the suction by the vacuum pump 7 and the drive valves 4 and 6 and the air inflow are repeated as in the first and second embodiments. The combustible refrigerant can be vaporized and recovered in a short time from the refrigeration oil in which the small amount of the combustible refrigerant remaining in the machine 1 is dissolved. In addition, by forcibly evaporating the dissolved flammable refrigerant in a short time, the flammable refrigerant in the compressor 1 will not rise, so there is no danger of the compressor explosion and ensuring the safety of the operator. Can do. Further, it is not necessary to wait until all the compressors 1 connected to the apparatus are connected as in the third embodiment, and processing can be performed immediately upon connection to the apparatus, so that the entire work time can be shortened compared to the third embodiment. In addition, the effect of improving the processing capacity by the refrigerant exhaust device can be obtained.

なお、本発明は、その発明の範囲内において、各実施の形態の一部または全部を自由に組合せたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that within the scope of the present invention, a part or all of each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.

1 圧縮機、 2 第1の真空ホース、 3 圧力センサ、 4 第1の駆動弁、5 第2の真空ホース、 6 第2の駆動弁、 7 真空ポンプ、 8 制御装置、9 冷媒排気装置、 10 起動スイッチ、 11 操作パネル、 12 ブロワ、13 オイルセパレータ、 14 接合配管、 15 排気口、 16 吸入管、17 吐出管、 18 冷媒充填口。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 1st vacuum hose, 3 Pressure sensor, 4 1st drive valve, 5 2nd vacuum hose, 6 2nd drive valve, 7 Vacuum pump, 8 Control apparatus, 9 Refrigerant exhaust apparatus, 10 Start switch, 11 Operation panel, 12 Blower, 13 Oil separator, 14 Joint piping, 15 Exhaust port, 16 Suction tube, 17 Discharge tube, 18 Refrigerant filling port.

Claims (9)

圧縮機、この圧縮機の冷媒充填口に接続された第1の真空ホースと大気間に設けられ前記圧縮機の前記冷媒充填口に大気圧を選択的に加えることが可能な駆動弁、第2の真空ホースを介して前記圧縮機の吸入管及び吐出管と接続された真空ポンプ、前記駆動弁及び前記真空ポンプを制御する制御装置を備え、前記制御装置によって前記駆動弁の開閉を制御することにより、前記圧縮機内において減圧状態と大気を導入する状態とが繰り返されるようにすることで前記圧縮機内に残存する冷媒を気化させるようにした冷媒排気装置。   A compressor, a drive valve provided between the first vacuum hose connected to the refrigerant charging port of the compressor and the atmosphere and capable of selectively applying atmospheric pressure to the refrigerant charging port of the compressor; A vacuum pump connected to a suction pipe and a discharge pipe of the compressor via a vacuum hose of the compressor, a control device for controlling the drive valve and the vacuum pump, and controlling the opening and closing of the drive valve by the control device. Accordingly, the refrigerant exhaust device configured to vaporize the refrigerant remaining in the compressor by repeating the reduced pressure state and the state of introducing the atmosphere in the compressor. 圧縮機、この圧縮機の冷媒充填口に接続された第1の真空ホースと大気間に設けられ前記圧縮機の前記冷媒充填口に大気圧を選択的に加えることが可能な第1の駆動弁、第2の真空ホースに設けられた第2の駆動弁、前記第2の駆動弁が設けられた前記第2の真空ホースを介して前記圧縮機の吸入管及び吐出管と接続された真空ポンプ、前記第1の駆動弁及び前記第2の駆動弁並びに前記真空ポンプを制御する制御装置を備え、前記制御装置によって前記第1駆動弁及び前記第2の駆動弁の開閉を制御することにより、前記圧縮機内において減圧状態と大気を導入する状態とが繰り返されるようにすることで前記圧縮機内に残存する冷媒を気化させるようにした冷媒排気装置。   A first drive valve provided between the compressor and a first vacuum hose connected to the refrigerant filling port of the compressor and the atmosphere and capable of selectively applying atmospheric pressure to the refrigerant filling port of the compressor A second drive valve provided in the second vacuum hose, and a vacuum pump connected to the suction pipe and the discharge pipe of the compressor via the second vacuum hose provided with the second drive valve A control device for controlling the first drive valve, the second drive valve and the vacuum pump, and controlling the opening and closing of the first drive valve and the second drive valve by the control device, A refrigerant exhaust device configured to vaporize the refrigerant remaining in the compressor by repeating a reduced pressure state and a state in which air is introduced in the compressor. 前記第1の駆動弁が閉合され、前記第2の駆動弁が開放されている状態で、前記真空ポンプの吸引が行われ、前記圧縮機内が減圧された後、前記第1の駆動弁を開放して前記圧縮機内に大気を導入させるようにした請求項2に記載の冷媒排気装置。   After the first drive valve is closed and the second drive valve is opened, the vacuum pump is sucked and the pressure in the compressor is reduced, and then the first drive valve is opened. The refrigerant exhaust device according to claim 2, wherein the air is introduced into the compressor. 前記第1の駆動弁を開放して前記圧縮機内に大気を導入した後、再度減圧を開始する前に、前記第2の駆動弁を所定時間閉合することにより、前記圧縮機内の圧力をより一層大気圧に近づけるようにしたことを特徴とする請求項3に記載の冷媒排気装置。   After the first driving valve is opened and the atmosphere is introduced into the compressor, the pressure in the compressor is further increased by closing the second driving valve for a predetermined time before starting decompression again. The refrigerant exhaust device according to claim 3, wherein the refrigerant exhaust device is close to atmospheric pressure. 前記圧縮機を複数台設け、これら複数の圧縮機を接続配管を介してまとめて前記第1、第2の真空ホースに接続するとともに、前記駆動弁にて、複数台の前記圧縮機に同時に大気を導入するように構成したことを特徴とする請求項1または請求項2に記載の冷媒排気装置。   A plurality of the compressors are provided, and the plurality of compressors are collectively connected to the first and second vacuum hoses via connection pipes, and at the same time, the plurality of compressors are simultaneously connected to the atmosphere by the driving valve. The refrigerant exhaust apparatus according to claim 1 or 2, wherein the refrigerant exhaust apparatus is configured to introduce the refrigerant. 前記圧縮機を複数台設けるとともに、これら圧縮機各々に対応して前記駆動弁を複数設け、これらの駆動弁を選択的に制御することにより、複数台の前記圧縮機のうち大気導入する圧縮機を選択するようにしたことを特徴とする請求項1または請求項2に記載の冷媒排気装置。   A plurality of the compressors, a plurality of the driving valves corresponding to each of the compressors, and a compressor that introduces the atmosphere among the plurality of the compressors by selectively controlling the driving valves. The refrigerant exhaust device according to claim 1 or 2, wherein the refrigerant exhaust device is selected. 残留物排出後の圧縮機の吸引側に真空ポンプを取り付けるとともに、大気との間で開閉する駆動弁を前記圧縮機の前記吸引側と別の位置に取り付け、前記真空ポンプを作動させて前記圧縮機内部を減圧し一定時間減圧後、前記駆動弁を開放し大気を流入させる動作を繰り返すことにより気泡を発生させ可燃性冷媒を気化させるようにしたことを特徴とする冷媒排気方法。   A vacuum pump is attached to the suction side of the compressor after the residue is discharged, and a drive valve that opens and closes to the atmosphere is attached to a position different from the suction side of the compressor, and the vacuum pump is operated to perform the compression. A refrigerant exhausting method characterized in that after the pressure inside the apparatus is reduced and the pressure is reduced for a certain period of time, air bubbles are generated by repeating the operation of opening the drive valve and allowing the atmosphere to flow, thereby vaporizing the combustible refrigerant. 少量の冷凍機油が残存する圧縮機内を真空ポンプで吸引することにより、前記圧縮機内を減圧し残留する冷凍機油内に気泡を発生させ、バブリングによって溶存する可燃性冷媒を脱気するとともに、前記圧縮機内の減圧中に大気を導入させる駆動弁を開放することで溶存する酸素や窒素が減少した冷凍機油に大気を溶け込ませた後、再度減圧することにより気泡を発生させ可燃性冷媒を気化させるようにしたことを特徴とする冷媒排気方法。   By sucking the inside of the compressor in which a small amount of refrigerating machine oil remains with a vacuum pump, the inside of the compressor is decompressed, bubbles are generated in the remaining refrigerating machine oil, and the combustible refrigerant dissolved by bubbling is degassed and the compression is performed. Opening the drive valve that introduces the atmosphere during decompression in the machine causes the atmosphere to dissolve in the refrigerating machine oil in which dissolved oxygen and nitrogen are reduced, and then decompresses again to generate bubbles and vaporize the flammable refrigerant. A refrigerant exhaust method characterized by that. 前記真空ポンプの作動による減圧と、前記駆動弁の開放による大気の導入とを繰り返すことで、可燃性冷媒を気化させるようにしたことを特徴とする請求項8に記載の冷媒排気方法。   The refrigerant exhausting method according to claim 8, wherein the combustible refrigerant is vaporized by repeating the pressure reduction by the operation of the vacuum pump and the introduction of the atmosphere by opening the drive valve.
JP2013257772A 2013-12-13 2013-12-13 Refrigerant exhaust apparatus and refrigerant exhaust method Active JP5995826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013257772A JP5995826B2 (en) 2013-12-13 2013-12-13 Refrigerant exhaust apparatus and refrigerant exhaust method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013257772A JP5995826B2 (en) 2013-12-13 2013-12-13 Refrigerant exhaust apparatus and refrigerant exhaust method

Publications (2)

Publication Number Publication Date
JP2015114070A true JP2015114070A (en) 2015-06-22
JP5995826B2 JP5995826B2 (en) 2016-09-21

Family

ID=53528035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013257772A Active JP5995826B2 (en) 2013-12-13 2013-12-13 Refrigerant exhaust apparatus and refrigerant exhaust method

Country Status (1)

Country Link
JP (1) JP5995826B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780227A (en) * 2020-07-01 2020-10-16 青岛海尔空调器有限总公司 Indoor unit of air conditioner, air conditioner and assembling method
CN111780226A (en) * 2020-07-01 2020-10-16 青岛海尔空调器有限总公司 Indoor unit of air conditioner, air conditioner and assembling method
CN111780223A (en) * 2020-07-01 2020-10-16 青岛海尔空调器有限总公司 Air conditioner and assembling method for air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180541A (en) * 1991-12-26 1993-07-23 Hitachi Ltd Refrigerant recovery device
JPH0961018A (en) * 1995-08-30 1997-03-07 Hitachi Ltd Refrigerant recovery device
JPH1047280A (en) * 1996-08-07 1998-02-17 Mitsubishi Electric Corp Drying method of compressor inside and device therefor
JP2008121915A (en) * 2006-11-08 2008-05-29 Nakajima Jidosha Denso:Kk Refrigerant recovering method and device, and drill
JP4854302B2 (en) * 2004-02-17 2012-01-18 パナソニック株式会社 Combustible refrigerant, refrigerating machine oil processing apparatus and processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180541A (en) * 1991-12-26 1993-07-23 Hitachi Ltd Refrigerant recovery device
JPH0961018A (en) * 1995-08-30 1997-03-07 Hitachi Ltd Refrigerant recovery device
JPH1047280A (en) * 1996-08-07 1998-02-17 Mitsubishi Electric Corp Drying method of compressor inside and device therefor
JP4854302B2 (en) * 2004-02-17 2012-01-18 パナソニック株式会社 Combustible refrigerant, refrigerating machine oil processing apparatus and processing method
JP2008121915A (en) * 2006-11-08 2008-05-29 Nakajima Jidosha Denso:Kk Refrigerant recovering method and device, and drill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780227A (en) * 2020-07-01 2020-10-16 青岛海尔空调器有限总公司 Indoor unit of air conditioner, air conditioner and assembling method
CN111780226A (en) * 2020-07-01 2020-10-16 青岛海尔空调器有限总公司 Indoor unit of air conditioner, air conditioner and assembling method
CN111780223A (en) * 2020-07-01 2020-10-16 青岛海尔空调器有限总公司 Air conditioner and assembling method for air conditioner

Also Published As

Publication number Publication date
JP5995826B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP4854302B2 (en) Combustible refrigerant, refrigerating machine oil processing apparatus and processing method
JP5995826B2 (en) Refrigerant exhaust apparatus and refrigerant exhaust method
JP2019035608A (en) Leak inspection device and recovery method of inspection gas therein
JP2012117719A (en) Refrigerant processor
JP2014085082A (en) Refrigerant processor
CN105899889A (en) Refrigerating device
US20200208889A1 (en) Refrigerant recovery apparatus
GB2565463A (en) Refrigeration cycle device
JP2006220381A (en) Refrigerant processor
CN116465107A (en) Refrigerating system and purifying method thereof
JP2011133192A (en) Refrigerant recovering device
JP5606714B2 (en) Bleeding recovery device, operation method thereof, and turbo refrigerator equipped with the same
JP4699196B2 (en) Combustible refrigerant treatment equipment
JP2012007775A (en) Air conditioner
JP2007139347A (en) Refrigerating unit and its construction method
US11618868B2 (en) Aroma recovery equipment from fermentation vats
JP3550616B2 (en) Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus
CN106808117A (en) Robot welding system and its electrode cap replacing options
JP2013002720A (en) Flammable refrigerant recovery equipment
JP2010078194A (en) Method and device for cleaning refrigerant pipe
JPH0328676A (en) Refrigerant recovery equipment
JP3959409B2 (en) Refrigerant recovery device
JPH1151515A (en) Method for recovering refrigerant and apparatus for recovering refrigerant
WO2022064671A1 (en) Refrigerant recovery system and refrigerant recovery method
JPH01155901A (en) Solvent recovering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250