JP2010078194A - Method and device for cleaning refrigerant pipe - Google Patents

Method and device for cleaning refrigerant pipe Download PDF

Info

Publication number
JP2010078194A
JP2010078194A JP2008245076A JP2008245076A JP2010078194A JP 2010078194 A JP2010078194 A JP 2010078194A JP 2008245076 A JP2008245076 A JP 2008245076A JP 2008245076 A JP2008245076 A JP 2008245076A JP 2010078194 A JP2010078194 A JP 2010078194A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
nitrogen gas
switching valve
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008245076A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suganuma
博之 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAIKU NETSUGAKU KK
Original Assignee
SAIKU NETSUGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIKU NETSUGAKU KK filed Critical SAIKU NETSUGAKU KK
Priority to JP2008245076A priority Critical patent/JP2010078194A/en
Publication of JP2010078194A publication Critical patent/JP2010078194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for cleaning a refrigerant pipe securely and easily cleaning the refrigerant pipe when an old refrigerant is replaced with a new refrigerant in a separate type air conditioner using the old refrigerant. <P>SOLUTION: In this method and device for cleaning the refrigerant pipe, by removing an outdoor unit and an indoor unit, a cleaning pipe line for the refrigerant pipe is formed. By decompressing inside of a storage cylinder, the new refrigerant is sucked. Nitrogen gas is pressed inside the storage cylinder and mixed fluid with the new refrigerant is produced. The mixed fluid is pressed into the cleaning pipe line, and inside of the refrigerant piping is cleaned. After the cleaning, the old refrigerant, mineral oil and the new refrigerant are collected to a refrigerant collecting cylinder, and then, the nitrogen gas is sent out to the cleaning pipe line to clean inside of the refrigerant pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、旧冷媒を使用しているセパレート型空気調和機を新冷媒に取り替える際の冷媒配管を洗浄する方法および装置に関する。   The present invention relates to a method and an apparatus for cleaning a refrigerant pipe when a separate air conditioner using an old refrigerant is replaced with a new refrigerant.

従来、セパレート型空気調和機の冷媒にはCFC系、HCFC系等のいわゆる旧冷媒と称される塩素を含む弗化炭化水素系冷媒が使用されていたが、地球環境保全等の観点から、いわゆる新冷媒と称される塩素が含まれないHFC系の新冷媒に対応したセパレート型空気調和機に取り替える必要が生じている。この場合、セパレート型空気調和機の室内機と室外機とを接続する冷媒配管は、配管の長さが長い場合、あるいは壁面内や天井裏等に埋設されている場合はその交換が困難であり、仮に交換可能であっても、経済上の理由から既設の冷媒配管を再利用した方が有利なこともあって、旧冷媒機器から新冷媒機器に取り替える際に、既設の冷媒配管内を洗浄し、新設冷媒配管と同様の機能が得られるように処理して再利用することが行われる。   Conventionally, a fluorocarbon refrigerant containing chlorine called a so-called old refrigerant such as a CFC type or HCFC type has been used as a refrigerant of a separate type air conditioner. It is necessary to replace with a separate air conditioner compatible with a new HFC-based refrigerant that does not contain chlorine, which is called a new refrigerant. In this case, it is difficult to replace the refrigerant pipe connecting the indoor unit and the outdoor unit of the separate type air conditioner when the length of the pipe is long, or when it is buried in the wall surface or the ceiling. Even if it can be replaced, it is advantageous to reuse existing refrigerant piping for economic reasons. When replacing old refrigerant equipment with new refrigerant equipment, clean the existing refrigerant piping. Then, processing is performed and reused so as to obtain the same function as that of the newly installed refrigerant pipe.

このような冷媒配管の洗浄方法や洗浄装置としては、特開2005−188825号公報に開示のものがある。この発明は、「空冷セパレート型の空調機で旧冷媒機を新冷媒機に入れ替えるため、冷媒回収後に既設の冷媒配管を洗浄するにあたり、既設配管の残油、塵埃を確実且つ効率的に除去できるようにする。」ことを課題としていて、「洗浄液に窒素ガスを混合溶解して配管に流入する手段を有する洗浄装置を旧室外機に代えて既設配管に接続する工程と、旧室内機に代えて既設配管に連絡配管を接続する工程と、洗浄装置から既設配管に洗浄液を加圧し一方向に流入させて管内を順次清浄化洗浄する工程と、洗浄装置から既設配管に前記とは逆方向に洗浄液を加圧し流入させて管内を順次清浄化洗浄する工程と、既設配管内に残存した異物を抜き取る工程と、既設配管に窒素ガスボンベから窒素ガスを加圧流入させて、加圧ブローにより洗浄液を抜き取り回収し、同時に管内の異物を排出させる工程とを経て既設配管の洗浄を行う。」方法により、上記課題の解決手段としたものである。
特開2005−188825号公報
As such a refrigerant pipe cleaning method and cleaning apparatus, there is one disclosed in JP-A-2005-188825. According to the present invention, "the old refrigerant machine is replaced with a new refrigerant machine with an air-cooled separate type air conditioner, so that residual oil and dust in the existing pipe can be reliably and efficiently removed when washing the existing refrigerant pipe after collecting the refrigerant. The process of connecting a cleaning device having means for mixing and dissolving nitrogen gas into the cleaning liquid and flowing into the piping instead of the old outdoor unit, and replacing the old indoor unit with Connecting the connecting pipe to the existing pipe, pressurizing the cleaning liquid from the cleaning device into the existing pipe and flowing it in one direction to sequentially clean and wash the inside of the pipe, and from the cleaning device to the existing pipe in the opposite direction. A process of cleaning and cleaning the inside of the pipe in order by pressurizing and flowing the cleaning liquid, a process of removing foreign matters remaining in the existing pipe, and a nitrogen gas from a nitrogen gas cylinder under pressure into the existing pipe, And sampling collected by. "How to clean the existing pipe through the step of simultaneously discharging the foreign material in the tube is obtained by a means for solving the above-described problem.
JP 2005-188825 A

しかしながら、特開2005−188825号公報に開示の洗浄方法では、洗浄装置から既設配管に洗浄液を加圧し一方向に流入させて管内を順次清浄化洗浄した後、再度、洗浄装置から既設配管に前記とは逆方向に洗浄液を加圧し流入させて管内を順次清浄化洗浄し、その後、既設配管に窒素ガスを加圧流入させる、こととしていて、洗浄工程が煩雑とならざるを得ない。その上、「洗浄装置は、洗浄液タンク、ポンプ、窒素ガスボンベ、回収タンク、回収缶、予備タンク、受皿等の各部材を有して構成されている。これら構成部材は、互いに配管で接続された状態で、台車上に収納されて適宜な場所へ一体に持ち運んで利用できるようになって」(段落番号〔0024〕の記載)いて、「洗浄液タンクは、適宜な容量の蓋付きステンレス製タンクであり、図に示されるように、その蓋には打ち抜きによって通孔を列設させた網部が設けられ、当該網部の上面に、活性炭とシリカゲルからなる水分除去フィルターを設置してある」(段落番号〔0025〕の記載)と記されているように、洗浄液タンクの構成が複雑であって、洗浄装置自体も比較的大掛かりなものとなっている。   However, in the cleaning method disclosed in Japanese Patent Application Laid-Open No. 2005-188825, the cleaning liquid is pressurized from the cleaning device to the existing piping and is allowed to flow in one direction to sequentially clean and clean the inside of the pipe, and then the cleaning device returns to the existing piping again. In other words, the cleaning liquid is pressurized and flown in the opposite direction to sequentially clean and wash the inside of the pipe, and then nitrogen gas is pressurized and flowed into the existing piping, and the washing process must be complicated. In addition, “the cleaning device is configured to include each member such as a cleaning liquid tank, a pump, a nitrogen gas cylinder, a recovery tank, a recovery can, a spare tank, a tray, etc. These components are connected to each other by piping. In the state, it is stored on the carriage and can be used by carrying it to an appropriate place as one unit ”(described in paragraph [0024]).“ The cleaning liquid tank is a stainless steel tank with a lid of an appropriate capacity. Yes, as shown in the figure, the lid is provided with a mesh part in which through holes are arranged by punching, and a moisture removal filter made of activated carbon and silica gel is installed on the upper surface of the mesh part. '' As described in paragraph [0025], the structure of the cleaning liquid tank is complicated, and the cleaning apparatus itself is relatively large.

そこで、本願発明は、旧冷媒を使用しているセパレート型空気調和機を新冷媒に取り替える際の冷媒配管の洗浄を確実、かつ簡便に行うことができる冷媒配管の洗浄方法および洗浄装置を提供することを目的とする。   Accordingly, the present invention provides a refrigerant pipe cleaning method and a cleaning apparatus capable of reliably and easily cleaning refrigerant pipes when replacing a separate air conditioner using an old refrigerant with a new refrigerant. For the purpose.

上記目的を達成するため、本願発明者は、鋭意研究した結果、新冷媒と窒素ガスを所定の方法で混合流体とすることにより、洗浄液として使用することができることの知見を得た。本願発明はこの知見に基づくものである。   In order to achieve the above object, the present inventor has earnestly studied, and as a result, obtained a knowledge that a new refrigerant and nitrogen gas can be used as a cleaning liquid by using a mixed fluid by a predetermined method. The present invention is based on this finding.

すなわち、上記目的を達成するため、本願請求項1に係る冷媒配管の洗浄方法は、室外機および室内機で構成されるセパレート型空気調和機を旧冷媒機器から新冷媒機器へ転換する際の冷媒配管内の冷媒および残油を除去洗浄する方法であって、前記室外機または前記室内機の一方が外された前記冷媒配管の両端に注入管および排出管が接続されるとともに、該室外機または該室内機の他方が外された該冷媒配管の両端を連結する連結管が接続され、前記注入管の他端は貯留シリンダーに接続されるとともに前記排出管の他端は冷媒回収ボンベに接続され、前記貯留シリンダー内は絶対真空に近い状態に減圧されて新冷媒を収納する新冷媒タンクから該新冷媒が吸引され、該貯留シリンダー内に窒素ガスを収納する窒素ガスタンクから該新冷媒に対して所定の容積比の窒素ガスが流入されて該新冷媒と該窒素ガスの混合流体となし、前記貯留シリンダー内が該窒素ガスにより所定の圧力に加圧されて前記混合流体が前記注入管を介して前記冷媒配管内に注入され、前記冷媒配管内の旧冷媒および該混合流体が前記排出管を介して前記冷媒回収ボンベ内に回収され、その後、前記窒素ガスタンクから窒素ガスが所定の圧力下で一気に前記冷媒配管内に注入される、ことを特徴としている。
なお、「絶対真空に近い状態」とは、小数点第1位を有効数字とするMPa表示の圧力計で計測したときの値が「0.0」である状態をいい、「所定の圧力下で一気に」とは、たとえば介装させた開閉弁を「閉」にして窒素ガスを所定の圧力とし、その後、瞬時に当該開閉弁を「開」にして窒素ガスを冷媒配管内に注入させる、ことをいう。
また、本願請求項2に係る冷媒配管の洗浄方法は、請求項1に記載の冷媒配管の洗浄方法であって、1気圧下における前記所定の容積比は新冷媒1に対して窒素ガスが略14〜23である、ことを特徴としている。
そして、本願請求項3に係る冷媒配管の洗浄方法は、請求項1または請求項2に記載の冷媒配管の洗浄方法であって、前記貯留シリンダー内が加圧される所定の圧力は略0.2MPa〜0.3MPaであり、前記窒素ガスタンクから窒素ガスが一気に前記冷媒配管内に注入される所定の圧力は略0.2MPa〜0.3MPaである、ことを特徴としている。
さらに、本願請求項4に係る冷媒配管の洗浄方法は、請求項1ないし請求項3のいずれかに記載の冷媒配管の洗浄方法であって、前記窒素ガスが所定の圧力下で一気に前記冷媒配管内に注入される工程においては、前記窒素ガスタンクは前記注入管に直結される、ことを特徴としている。
また、本願請求項5に係る冷媒配管洗浄装置は、室外機と室内機で構成されるセパレート型空気調和機の旧冷媒機器から新冷媒機器への転換時における冷媒配管内の冷媒を除去洗浄する冷媒配管洗浄装置であって、前記室外機または前記室内機の一方が外された前記冷媒配管の一端に注入管を介して接続される円筒状の貯留シリンダーと、該貯留シリンダーに切替え弁を介して接続される真空ポンプと、該貯留シリンダーに切替え弁を介して接続される新冷媒タンクと、該貯留シリンダーおよび前記注入管のそれぞれに切替え弁を介して接続される窒素ガスボンベと、前記室外機または前記室内機の他方が外された前記冷媒配管の両端を連結する連結管と、前記室外機または前記室内機の一方が外された前記冷媒配管の他端に排出管を介して接続される冷媒回収ボンベと、からなり、前記注入管および前記排出管には切替え弁が介装されている、ことを特徴としている。
そして、本願請求項6に係る冷媒配管洗浄装置は、請求項5に係る冷媒配管洗浄装置であり、前記真空ポンプに接続する切替え弁および前記新冷媒タンクに接続する切替え弁は1つの第1の2方向切替え弁であって、該第1の2方向切替え弁と前記貯留シリンダーの間には第2の2方向切替え弁が介装されて該第2の2方向切替え弁には前記窒素ガスボンベが接続される、ことを特徴としている。
さらに、本願請求項7に係る冷媒配管洗浄装置は、請求項5または請求項6に係る冷媒配管洗浄装置であり、前記注入管に介装される切替え弁は第3の2方向切替え弁であって、該第3の2方向切替え弁には前記窒素ガスボンベが接続される、ことを特徴としている。
That is, in order to achieve the above-described object, the refrigerant pipe cleaning method according to claim 1 of the present application is a refrigerant for converting a separate air conditioner composed of an outdoor unit and an indoor unit from an old refrigerant device to a new refrigerant device. A method of removing and cleaning refrigerant and residual oil in a pipe, wherein an inlet pipe and a discharge pipe are connected to both ends of the refrigerant pipe from which one of the outdoor unit or the indoor unit is removed, and the outdoor unit or A connecting pipe that connects both ends of the refrigerant pipe from which the other end of the indoor unit is removed is connected, the other end of the injection pipe is connected to a storage cylinder, and the other end of the discharge pipe is connected to a refrigerant recovery cylinder. The storage cylinder is depressurized to a state close to absolute vacuum, the new refrigerant is sucked from a new refrigerant tank that stores new refrigerant, and the new cold is discharged from a nitrogen gas tank that stores nitrogen gas in the storage cylinder. Nitrogen gas having a predetermined volume ratio is flown into the mixed fluid of the new refrigerant and the nitrogen gas, and the storage cylinder is pressurized to a predetermined pressure by the nitrogen gas and the mixed fluid is injected. The refrigerant is injected into the refrigerant pipe through the pipe, the old refrigerant and the mixed fluid in the refrigerant pipe are collected into the refrigerant collection cylinder through the discharge pipe, and then nitrogen gas is supplied from the nitrogen gas tank to a predetermined amount. It is characterized by being injected into the refrigerant pipe at a stretch under pressure.
The “state close to absolute vacuum” refers to a state where the value when measured with a pressure gauge in MPa with the first decimal place as a significant figure is “0.0”. “At once” means, for example, that the installed on-off valve is “closed” and nitrogen gas is brought to a predetermined pressure, and then the on-off valve is instantly opened and nitrogen gas is injected into the refrigerant pipe. Say.
Moreover, the cleaning method of the refrigerant pipe according to claim 2 of the present application is the cleaning method of the refrigerant pipe according to claim 1, wherein the predetermined volume ratio under 1 atm is substantially less nitrogen gas than the new refrigerant 1. It is characterized by being 14-23.
The refrigerant pipe cleaning method according to claim 3 of the present application is the refrigerant pipe cleaning method according to claim 1 or 2, wherein the predetermined pressure at which the inside of the storage cylinder is pressurized is approximately 0. The predetermined pressure at which nitrogen gas is injected into the refrigerant pipe from the nitrogen gas tank at once is approximately 0.2 MPa to 0.3 MPa.
Furthermore, the refrigerant pipe cleaning method according to claim 4 of the present application is the refrigerant pipe cleaning method according to any one of claims 1 to 3, wherein the nitrogen gas is blown at a time under a predetermined pressure. In the step of being injected into the inside, the nitrogen gas tank is directly connected to the injection pipe.
In addition, the refrigerant pipe cleaning device according to claim 5 of the present application removes and cleans the refrigerant in the refrigerant pipe at the time of conversion from the old refrigerant device to the new refrigerant device of the separate air conditioner composed of the outdoor unit and the indoor unit. A refrigerant pipe cleaning apparatus, comprising a cylindrical storage cylinder connected via an injection pipe to one end of the refrigerant pipe from which one of the outdoor unit or the indoor unit is removed, and a switching valve connected to the storage cylinder A vacuum pump connected to the storage cylinder, a new refrigerant tank connected to the storage cylinder via a switching valve, a nitrogen gas cylinder connected to each of the storage cylinder and the injection pipe via a switching valve, and the outdoor unit Or a connecting pipe that connects both ends of the refrigerant pipe from which the other of the indoor unit is removed, and a discharge pipe to the other end of the refrigerant pipe from which one of the outdoor unit or the indoor unit is removed. A refrigerant recovery cylinder which is continued, made, said injection tube and said switching to drain valve is interposed, it is characterized in that.
The refrigerant pipe cleaning apparatus according to claim 6 of the present application is the refrigerant pipe cleaning apparatus according to claim 5, wherein the switching valve connected to the vacuum pump and the switching valve connected to the new refrigerant tank are one first A two-way switching valve, wherein a second two-way switching valve is interposed between the first two-way switching valve and the storage cylinder, and the nitrogen gas cylinder is placed in the second two-way switching valve. It is connected.
Further, the refrigerant pipe cleaning device according to claim 7 of the present application is the refrigerant pipe cleaning device according to claim 5 or claim 6, and the switching valve interposed in the injection pipe is a third two-way switching valve. The nitrogen gas cylinder is connected to the third two-way switching valve.

本願発明は、上記構成により以下の効果を奏する。
(1)貯留シリンダー内を減圧して新冷媒を吸引し、その後、窒素ガスを流入させて加圧するため、貯留シリンダー内では、新冷媒と微細な気泡の窒素ガスが均等に混ざり合った混合流体が瞬時に作られる。
そして、加圧されたこの混合流体が一気に冷媒配管内に注入される上に、この混合流体は新冷媒と加圧された微細な気泡の窒素ガスからなっているため、窒素ガスの気泡が冷媒配管の壁面に接触して減圧し膨張して弾けるときに衝撃波が発生して、冷媒配管内に付着した鉱物油が剥ぎ落とされる。その結果、混合流体により冷媒配管内の旧冷媒が押し出されるとともに、冷媒配管内に付着した鉱物油もまた、押し出されることになる。
(2)本願発明の洗浄方法では、新冷媒と窒素ガスの混合流体を冷媒配管内に流入させた後、窒素ガスのみを一気に流入させる工程により冷媒配管内の洗浄を可能としているため、洗浄工程数が少なく、簡便に冷媒配管内の洗浄をすることができる。
(3)また、洗浄液として新冷媒と窒素ガスの混合流体を使用しているため、仮に洗浄液が冷媒配管内に残留しても、旧新冷媒と新冷媒の混合による不純物が生成されることがない上に、最終工程で窒素ガスのみを流入させるため、洗浄後の冷媒配管内には有害な残留物が残らない。
(4)出願人の知見に拠れば、新冷媒の容積1に対して1気圧下における窒素ガスの容積を略14〜23とし、貯留シリンダー内の圧力を略0.2MPa〜0.3MPaとすることにより、新冷媒と微細な気泡の窒素ガスが均等に瞬時に混ざり合わせることができ、加圧された微細な気泡の弾け効果も大となって、混合流体の流動性および洗浄力の相乗効果が最大となる。
また、窒素ガスを一気に冷媒配管内に注入させる所定の圧力を略0.2MPa〜0.3MPaとして、一気に冷媒配管内に注入することにより、冷媒配管内における窒素ガスが残留物を吹き飛ばす力も最大となる。
(5)窒素ガスを所定の圧力下で一気に冷媒配管内に注入する工程において、窒素ガスタンクを注入管に直結させることにより、窒素ガスは直接冷媒配管内に注入されるため、加圧された窒素ガスの圧力損失が少なくなる。
(6)冷媒配管洗浄装置の主要構成部品は、別体の貯留シリンダー、真空ポンプ、新冷媒タンク、窒素ガスボンベおよび冷媒回収ボンベであり、付属部品として前記の主要構成部品を接続する管、冷媒配管に接続する管および接続する管に介装される切替え弁からなっていて、貯留シリンダーは両端が閉鎖された耐圧性のある円筒である。したがって、冷媒配管洗浄装置は極めてその構成が簡単であり、それ故、維持管理が容易であり、作業性、運搬性および経済性に優れたものとなっている。
(7)貯留シリンダーと新冷媒タンク間、および真空ポンプと新冷媒タンク間に介装する第1の2方向切替え弁と貯留シリンダーの間に第2の2方向切替え弁を介装し、さらに、注入管に第3の2方向切替え弁を介装した場合には、
(ア)第1の2方向切替え弁を切替えない限り、貯留シリンダー内が減圧される前に窒素ガスが流入する、という誤動作を防ぐことができ、
(イ)第2の2方向切替え弁を切替えない限り、新冷媒が貯留シリンダーに流入する前に窒素ガスが流入する、という誤動作を防ぐことができ、
(ウ)第3の2方向切替え弁を切替えない限り、新冷媒と窒素ガスの混合流体が冷媒配管に流入し終わる前に窒素ガスが流入する、という誤動作を防ぐことができる。
The present invention has the following effects by the above configuration.
(1) The storage cylinder is depressurized to suck in the new refrigerant, and then nitrogen gas is introduced to pressurize, so in the storage cylinder, the new refrigerant and fine bubbles of nitrogen gas are mixed evenly. Is made instantly.
The pressurized mixed fluid is injected into the refrigerant pipe all at once, and the mixed fluid is composed of new refrigerant and pressurized nitrogen gas in fine bubbles. A shock wave is generated when the pipe touches the wall surface of the pipe, decompresses, expands and repels, and the mineral oil adhering to the refrigerant pipe is peeled off. As a result, the old refrigerant in the refrigerant pipe is pushed out by the mixed fluid, and the mineral oil adhering to the refrigerant pipe is also pushed out.
(2) In the cleaning method of the present invention, since the mixed fluid of the new refrigerant and nitrogen gas is allowed to flow into the refrigerant pipe and then only the nitrogen gas is allowed to flow at once, the refrigerant pipe can be cleaned. The number of the refrigerant pipes is small and can be easily cleaned.
(3) Further, since a mixed fluid of new refrigerant and nitrogen gas is used as the cleaning liquid, even if the cleaning liquid remains in the refrigerant pipe, impurities may be generated due to the mixing of the old new refrigerant and the new refrigerant. In addition, since only nitrogen gas is allowed to flow in in the final process, no harmful residue remains in the cleaned refrigerant pipe.
(4) According to the applicant's knowledge, the volume of nitrogen gas at 1 atm with respect to the new refrigerant volume 1 is approximately 14 to 23, and the pressure in the storage cylinder is approximately 0.2 MPa to 0.3 MPa. As a result, the new refrigerant and the nitrogen gas in fine bubbles can be mixed evenly and instantaneously, and the repelling effect of the pressurized fine bubbles is increased, and the synergistic effect of the fluidity and detergency of the mixed fluid Is the maximum.
Further, the predetermined pressure for injecting nitrogen gas into the refrigerant pipe at a stroke is set to approximately 0.2 MPa to 0.3 MPa, and by injecting into the refrigerant pipe at once, the force with which the nitrogen gas in the refrigerant pipe blows away the residue is maximized. Become.
(5) In the step of injecting nitrogen gas into the refrigerant pipe at a time under a predetermined pressure, the nitrogen gas is directly injected into the refrigerant pipe by directly connecting the nitrogen gas tank to the injection pipe. Gas pressure loss is reduced.
(6) The main components of the refrigerant pipe cleaning device are a separate storage cylinder, a vacuum pump, a new refrigerant tank, a nitrogen gas cylinder, and a refrigerant recovery cylinder, and pipes and refrigerant pipes connecting the main components as accessory parts The storage cylinder is a pressure-resistant cylinder whose both ends are closed. Therefore, the refrigerant pipe cleaning device is extremely simple in configuration, and therefore is easy to maintain and manage, and is excellent in workability, transportability and economy.
(7) A second two-way switching valve is interposed between the storage cylinder and the new refrigerant tank and between the vacuum pump and the new refrigerant tank between the first two-way switching valve and the storage cylinder. When a third two-way switching valve is installed in the injection pipe,
(A) Unless the first two-way switching valve is switched, it is possible to prevent a malfunction in which nitrogen gas flows before the inside of the storage cylinder is depressurized.
(B) Unless the second two-way switching valve is switched, it is possible to prevent a malfunction that nitrogen gas flows before the new refrigerant flows into the storage cylinder.
(C) Unless the third two-way switching valve is switched, it is possible to prevent a malfunction in which nitrogen gas flows before the mixed fluid of the new refrigerant and nitrogen gas finishes flowing into the refrigerant pipe.

以下、本願発明を実施するための最良の形態に係る実施例について、図1および図2に基づいて説明する。なお、図1は、実施例に係る冷媒配管洗浄装置の構成図であり、図2は、実施例に係る冷媒配管の洗浄方法のフローチャート図である。
また、図1において、符号1は実施例に係る冷媒配管洗浄装置、符号11は貯留シリンダー、符号13は真空ポンプ、符号15は新冷媒タンク、符号17は窒素ガスボンベ、符号19は冷媒回収ボンベ、符号31は注入管、符号33は連結管、符号35は排出管、符号41は真空ポンプ接続管、符号43は新冷媒タンク接続管、符号45は窒素ガスボンベ接続管、符号51は第1の2方向切替え弁、符号52は第2の2方向切替え弁、符号53は第3の2方向切替え弁、符号55は排気切替え弁、符号57は回収切替え弁、符号59はガス逃し管、符号61は冷媒配管、符号63は室外機、符号65は室内機、である。
Hereinafter, an embodiment according to the best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of the refrigerant pipe cleaning device according to the embodiment, and FIG. 2 is a flowchart of the refrigerant pipe cleaning method according to the embodiment.
In FIG. 1, reference numeral 1 is a refrigerant pipe cleaning apparatus according to the embodiment, reference numeral 11 is a storage cylinder, reference numeral 13 is a vacuum pump, reference numeral 15 is a new refrigerant tank, reference numeral 17 is a nitrogen gas cylinder, reference numeral 19 is a refrigerant recovery cylinder, Reference numeral 31 is an injection pipe, reference numeral 33 is a connection pipe, reference numeral 35 is a discharge pipe, reference numeral 41 is a vacuum pump connection pipe, reference numeral 43 is a new refrigerant tank connection pipe, reference numeral 45 is a nitrogen gas cylinder connection pipe, reference numeral 51 is the first 2 Direction switching valve, reference numeral 52 is a second two-way switching valve, reference numeral 53 is a third two-way switching valve, reference numeral 55 is an exhaust switching valve, reference numeral 57 is a recovery switching valve, reference numeral 59 is a gas escape pipe, reference numeral 61 is Refrigerant piping, 63 is an outdoor unit, and 65 is an indoor unit.

まず、実施例に係る冷媒配管洗浄装置1の構成について、図1に基づいて説明する。   First, the structure of the refrigerant | coolant piping cleaning apparatus 1 which concerns on an Example is demonstrated based on FIG.

冷媒配管洗浄装置1は、主に、両端部が閉鎖された円筒状の貯留シリンダー11と、真空ポンプ13と、新冷媒を収納する新冷媒タンク15と、窒素ガスを収納する窒素ガスボンベ17と、冷媒回収ボンベ19と、前記の各構成要素を着脱自在に連結する接続管とから構成されている。すなわち、貯留シリンダー11と真空ポンプ13とは真空ポンプ接続管41で着脱自在に連結され、貯留シリンダー11と新冷媒タンク15とは新冷媒タンク接続管43で着脱自在に連結され、貯留シリンダー11と窒素ガスボンベ17とは窒素ガスボンベ接続管45で着脱自在に連結され、貯留シリンダー11と冷媒回収ボンベ19とは注入管31、冷媒配管61、連結管33および排出管35を介して着脱自在に連結されている。さらに、窒素ガスボンベ接続管45は途中から分岐して、その先端は注入管31に接続している。   The refrigerant pipe cleaning device 1 mainly includes a cylindrical storage cylinder 11 whose both ends are closed, a vacuum pump 13, a new refrigerant tank 15 that stores new refrigerant, a nitrogen gas cylinder 17 that stores nitrogen gas, The refrigerant recovery cylinder 19 and a connecting pipe that detachably connects the above-described components are configured. That is, the storage cylinder 11 and the vacuum pump 13 are detachably connected by a vacuum pump connection pipe 41, and the storage cylinder 11 and the new refrigerant tank 15 are detachably connected by a new refrigerant tank connection pipe 43, The nitrogen gas cylinder 17 is detachably connected by a nitrogen gas cylinder connection pipe 45, and the storage cylinder 11 and the refrigerant recovery cylinder 19 are detachably connected via an injection pipe 31, a refrigerant pipe 61, a connection pipe 33 and a discharge pipe 35. ing. Further, the nitrogen gas cylinder connection pipe 45 is branched from the middle, and the tip thereof is connected to the injection pipe 31.

また、真空ポンプ接続管41、新冷媒タンク接続管43および窒素ガスボンベ接続管45には、切替え弁が介装されている。すなわち、真空ポンプ接続管41および新冷媒タンク接続管43には第1の2方向切替え弁51が介装されて、第1の2方向切替え弁51を介して真空ポンプ接続管41および新冷媒タンク接続管43が継合し、継合した接続管は貯留シリンダー11方向に延伸していて、第2の2方向切替え弁52を介して貯留シリンダー11に接続している。そして、第2の2方向切替え弁52には窒素ガスボンベ接続管45が接続している。
また、注入管31には第3の2方向切替え弁53が介装され、第3の2方向切替え弁53には前述したように、窒素ガスボンベ接続管45から分岐した分岐管の先端が接続している。
さらに、排出管35は、冷媒回収ボンベ19方向に向かって二股に分岐し、その一方は回収切替え弁57が介装されて冷媒回収ボンベ19に接続し、他方は排気切替え弁55が介装されてその先端は開放されている。なお、排気切替え弁55および回収切替え弁57をまとめて一つの2方向切替え弁としても良い。
A switching valve is interposed in the vacuum pump connection pipe 41, the new refrigerant tank connection pipe 43, and the nitrogen gas cylinder connection pipe 45. That is, the vacuum pump connection pipe 41 and the new refrigerant tank connection pipe 43 are provided with a first two-way switching valve 51, and the vacuum pump connection pipe 41 and the new refrigerant tank are interposed via the first two-way switching valve 51. The connecting pipe 43 is joined, and the joined connecting pipe extends in the direction of the storage cylinder 11 and is connected to the storage cylinder 11 via the second two-way switching valve 52. A nitrogen gas cylinder connection pipe 45 is connected to the second two-way switching valve 52.
The injection pipe 31 is provided with a third two-way switching valve 53, and the tip of the branch pipe branched from the nitrogen gas cylinder connection pipe 45 is connected to the third two-way switching valve 53 as described above. ing.
Further, the discharge pipe 35 is bifurcated in the direction of the refrigerant recovery cylinder 19, one of which is connected to the refrigerant recovery cylinder 19 via the recovery switching valve 57 and the other is connected to the exhaust switching valve 55. The tip of the lever is open. The exhaust switching valve 55 and the recovery switching valve 57 may be combined into a single two-way switching valve.

注入管31の先端は室内機65から外された冷媒配管61の一端に接続され、室内機65から外された冷媒配管61の他端は排出管35に接続される。そして、室外機63から外された冷媒配管61の両端は、連結管33により接続されて、冷媒配管61→連結管33→冷媒配管61からなるバイパス管路が形成される。
なお、注入管31および排出管35は室内機65から外された冷媒配管61に接続し、連結管33は室外機63から外された冷媒配管61に接続しているが、室内機65および室外機63を入れ替えても良いことは勿論である。
The tip of the injection pipe 31 is connected to one end of the refrigerant pipe 61 removed from the indoor unit 65, and the other end of the refrigerant pipe 61 removed from the indoor unit 65 is connected to the discharge pipe 35. Then, both ends of the refrigerant pipe 61 removed from the outdoor unit 63 are connected by the connecting pipe 33 to form a bypass pipe line including the refrigerant pipe 61 → the connecting pipe 33 → the refrigerant pipe 61.
The injection pipe 31 and the discharge pipe 35 are connected to the refrigerant pipe 61 removed from the indoor unit 65, and the connecting pipe 33 is connected to the refrigerant pipe 61 removed from the outdoor unit 63. Of course, the machine 63 may be replaced.

なお、冷媒回収ボンベ19には、前述したように、排出管35が排出切替え弁55を介して接続されているが、排出管35以外にガス逃し管59が接続されてその先端は外部に開放されている。   As described above, the exhaust pipe 35 is connected to the refrigerant recovery cylinder 19 via the exhaust switching valve 55. However, in addition to the exhaust pipe 35, a gas escape pipe 59 is connected and its tip is opened to the outside. Has been.

つぎに、実施例に係る冷媒配管洗浄装置1を使用した冷媒配管の洗浄方法について、図1および図2に基づいて順を追って説明する。   Next, a refrigerant pipe cleaning method using the refrigerant pipe cleaning apparatus 1 according to the embodiment will be described in order based on FIG. 1 and FIG.

冷媒配管の洗浄方法の手順例は、
(1)まず、室外機63、室内機65および冷媒配管61内の旧冷媒をポンプダウンにより回収する(ステップ1)。なお、セパレート型空気調和機のポンプが稼働しない場合は、ステップ1を飛ばしてステップ2から開始する。
An example of the procedure for cleaning the refrigerant piping is as follows:
(1) First, the old refrigerant in the outdoor unit 63, the indoor unit 65, and the refrigerant pipe 61 is recovered by pumping down (step 1). In addition, when the pump of a separate type air conditioner does not operate, step 1 is skipped and it starts from step 2.

(2)ポンプダウンによる旧冷媒回収後、冷媒配管61を室内機65から外して、その一端に注入管31を接続し、他端に排出管35を接続するとともに、冷媒配管61を室外機63から外して、その両端に連結管33を接続する(ステップ2)。 (2) After collecting the old refrigerant by pumping down, the refrigerant pipe 61 is removed from the indoor unit 65, the injection pipe 31 is connected to one end thereof, the discharge pipe 35 is connected to the other end, and the refrigerant pipe 61 is connected to the outdoor unit 63. The connecting pipe 33 is connected to both ends thereof (step 2).

(3)第1の2方向切替え弁51および第2の2方向切替え弁52を操作して、真空ポンプ13と貯留シリンダー11とを連通させるとともに、第3の2方向切替え弁53を操作して、貯留シリンダー11の排出口を「閉」にする。そして、真空ポンプ13を稼動させて貯留シリンダー11内を絶対真空に近い状態に減圧する(ステップ3)。 (3) The first two-way switching valve 51 and the second two-way switching valve 52 are operated to connect the vacuum pump 13 and the storage cylinder 11 and the third two-way switching valve 53 is operated. Then, the discharge port of the storage cylinder 11 is closed. And the vacuum pump 13 is operated and the inside of the storage cylinder 11 is pressure-reduced to the state close | similar to absolute vacuum (step 3).

(4)第1の2方向切替え弁51を操作して、新冷媒タンク15と貯留シリンダー11とを連通させると、減圧された貯留シリンダー11内には、新冷媒タンク15から新冷媒が吸引される(ステップ4)。吸引される新冷媒の量は、既設の冷媒配管61の長さに拠るが、家庭用のセパレート型空気調和機では概ね500g〜800gであり、業務用のセパレート型空気調和機では概ね1kg〜2kgである。
また、実施例では、新冷媒にHFC-365mfc(ハイドロフルオロカーボン-365mfc)を使用している。なお、第1の2方向切替え弁51の操作により、真空ポンプ13と貯留シリンダー11との接続は遮断される。
(4) When the first two-way switching valve 51 is operated to cause the new refrigerant tank 15 and the storage cylinder 11 to communicate with each other, new refrigerant is sucked into the decompressed storage cylinder 11 from the new refrigerant tank 15. (Step 4). The amount of the new refrigerant sucked depends on the length of the existing refrigerant pipe 61, but is approximately 500 g to 800 g for a domestic separate air conditioner, and approximately 1 kg to 2 kg for a commercial separate air conditioner. It is.
In the examples, HFC-365mfc (hydrofluorocarbon-365mfc) is used as the new refrigerant. The connection between the vacuum pump 13 and the storage cylinder 11 is interrupted by the operation of the first two-way switching valve 51.

(5)第2の2方向切替え弁52を操作して、窒素ガスボンベ17と貯留シリンダー11とを連通させると、窒素ガスボンベ17から加圧された所定量の窒素ガスが貯留シリンダー11内に流入する(ステップ5)。この工程により、貯留シリンダー11内では、新冷媒と微細な気泡の窒素ガスが均等に混ざり合った混合流体が瞬時に作られる。
なお、家庭用のセパレート型空気調和機の場合の窒素ガスの量は、1気圧下において略9,000cmであることが好ましい。また、第2の2方向切替え弁52の操作により、真空ポンプ13および新冷媒タンク15と貯留シリンダー11との接続は遮断される。
(5) When the second two-way switching valve 52 is operated to connect the nitrogen gas cylinder 17 and the storage cylinder 11, a predetermined amount of nitrogen gas pressurized from the nitrogen gas cylinder 17 flows into the storage cylinder 11. (Step 5). By this process, in the storage cylinder 11, a mixed fluid in which new refrigerant and fine bubble nitrogen gas are evenly mixed is instantly created.
In addition, it is preferable that the amount of nitrogen gas in the case of a home-use separate type air conditioner is approximately 9,000 cm 3 under 1 atm. Further, the operation of the second two-way switching valve 52 cuts off the connection between the vacuum pump 13 and the new refrigerant tank 15 and the storage cylinder 11.

(6)窒素ガスボンベ17と貯留シリンダー11を接続した状態で、第3の2方向切替え弁53および回収切替え弁57を操作して、貯留シリンダー11→注入管31→第3の2方向切替え弁53→注入管31→冷媒配管61→連結管33→冷媒配管61→排出管35→回収切替え弁57→排出管35→冷媒回収ボンベ19、からなる冷媒配管の洗浄用の管路を開通させると、新冷媒と窒素ガスとの混合流体は窒素ガスにより加圧された状態でこの洗浄用の管路内を流入し、窒素ガスに押し出されるように冷媒回収ボンベ19内に回収される(ステップ6)。
新冷媒と窒素ガスとの混合流体が上記の洗浄管路内を流通する間に、窒素ガスの微細な気泡が冷媒配管の壁面に接触して弾け、冷媒配管61内に付着した鉱物油が剥ぎ落とされて、混合流体とともに、冷媒配管61内に付着した鉱物油も冷媒回収ボンベ19内に回収される。この工程において、ガス逃し管59により、気体の窒素ガスが冷媒回収ボンベ19外に放出されて、旧冷媒、新冷媒および鉱物油のみが冷媒回収ボンベ19内に貯留する。
なお、セパレート型空気調和機の圧縮機不良の場合には、旧冷媒に含まれるオイルが焼けていることが多いため、ステップ6において、始めに混合流体の略半分の量を冷媒配管61に注入して汚れの程度を確認し、然る後に、残りの略半分の量を冷媒配管61に注入して内部を洗浄するようにしても良い。
(6) With the nitrogen gas cylinder 17 and the storage cylinder 11 connected, the third two-way switching valve 53 and the recovery switching valve 57 are operated to store the storage cylinder 11 → the injection pipe 31 → the third two-way switching valve 53. When the pipe for cleaning the refrigerant pipe composed of the injection pipe 31 → the refrigerant pipe 61 → the connection pipe 33 → the refrigerant pipe 61 → the discharge pipe 35 → the recovery switching valve 57 → the discharge pipe 35 → the refrigerant recovery cylinder 19 is opened, The mixed fluid of the new refrigerant and nitrogen gas flows into the cleaning conduit while being pressurized by the nitrogen gas, and is recovered in the refrigerant recovery cylinder 19 so as to be pushed out by the nitrogen gas (step 6). .
While the mixed fluid of the new refrigerant and nitrogen gas flows through the cleaning pipe, the fine bubbles of nitrogen gas bounce against the wall surface of the refrigerant pipe, and the mineral oil adhering to the refrigerant pipe 61 peels off. The mineral oil that has been dropped and adhered to the refrigerant pipe 61 together with the mixed fluid is also recovered in the refrigerant recovery cylinder 19. In this step, gaseous nitrogen gas is released out of the refrigerant recovery cylinder 19 by the gas escape pipe 59, and only the old refrigerant, new refrigerant and mineral oil are stored in the refrigerant recovery cylinder 19.
In the case of a defective compressor of a separate type air conditioner, the oil contained in the old refrigerant is often burnt. Therefore, in Step 6, approximately half of the mixed fluid is first injected into the refrigerant pipe 61. Then, the degree of contamination may be confirmed, and then the remaining substantially half amount may be injected into the refrigerant pipe 61 to clean the inside.

(7)第2の2方向切替え弁52、第3の2方向切替え弁53、排気切替え弁55および回収切替え弁57を操作して、窒素ガスボンベ17→窒素ガスボンベ接続管45→第3の2方向切替え弁53→注入管31→冷媒配管61→連結管33→冷媒配管61→排出管35→排気切替え弁55、からなる冷媒配管の仕上げ洗浄用の管路を開通させる。そして、第3の2方向切替え弁53を「閉」とした状態で窒素ガスボンベ17から窒素ガスを流入させて所定の圧力とした後、一気に第3の2方向切替え弁53を「全開」すると、加圧された窒素ガスはこの仕上げ洗浄用管路内を流入し、排気切替え弁55を通って外部に放出される(ステップ7)。
なお、この工程は、必要に応じて2回〜4回程度繰り返す。また、第2の2方向切替え弁52および第3の2方向切替え弁53の操作により、窒素ガスボンベ17と貯留シリンダー11との接続は遮断される。
以上の手順により、冷媒配管内が洗浄される。
(7) The second two-way switching valve 52, the third two-way switching valve 53, the exhaust gas switching valve 55, and the recovery switching valve 57 are operated, and the nitrogen gas cylinder 17 → the nitrogen gas cylinder connection pipe 45 → the third two directions. A line for finishing cleaning of the refrigerant pipe composed of the switching valve 53 → the injection pipe 31 → the refrigerant pipe 61 → the connection pipe 33 → the refrigerant pipe 61 → the discharge pipe 35 → the exhaust gas switching valve 55 is opened. Then, after the nitrogen gas is introduced from the nitrogen gas cylinder 17 to a predetermined pressure with the third two-way switching valve 53 set to “closed”, the third two-way switching valve 53 is “fully opened” at once. The pressurized nitrogen gas flows into the finish cleaning pipe and is discharged to the outside through the exhaust switching valve 55 (step 7).
In addition, this process is repeated about 2-4 times as needed. Further, the operation of the second two-way switching valve 52 and the third two-way switching valve 53 disconnects the connection between the nitrogen gas cylinder 17 and the storage cylinder 11.
By the above procedure, the inside of the refrigerant pipe is cleaned.

図1は、実施例に係る冷媒配管洗浄装置の構成図である。FIG. 1 is a configuration diagram of a refrigerant pipe cleaning device according to an embodiment. 図2は、実施例に係る冷媒配管の洗浄方法のフローチャート図である。FIG. 2 is a flowchart of the cleaning method for the refrigerant pipe according to the embodiment.

符号の説明Explanation of symbols

1 実施例に係る排水管洗浄装置
11 貯留シリンダー
13 真空ポンプ
15 新冷媒タンク
17 窒素ガスボンベ
19 冷媒回収ボンベ
31 注入管
33 連結管
35 排出管
51 第1の2方向切替え弁
52 第2の2方向切替え弁
53 第3の2方向切替え弁
57 回収切替え弁
61 冷媒配管
63 室外機
65 室内機
DESCRIPTION OF SYMBOLS 1 Drain pipe washing | cleaning apparatus which concerns on Example 11 Storage cylinder 13 Vacuum pump 15 New refrigerant tank 17 Nitrogen gas cylinder 19 Refrigerant recovery cylinder 31 Injection pipe 33 Connection pipe 35 Discharge pipe 51 First two-way switching valve 52 Second two-way switching Valve 53 Third two-way switching valve 57 Recovery switching valve 61 Refrigerant piping 63 Outdoor unit 65 Indoor unit

Claims (7)

室外機および室内機で構成されるセパレート型空気調和機を旧冷媒機器から新冷媒機器へ転換する際の冷媒配管内の冷媒および残油を除去洗浄する方法であって、
前記室外機または前記室内機の一方が外された前記冷媒配管の両端に注入管および排出管が接続されるとともに、該室外機または該室内機の他方が外された該冷媒配管の両端を連結する連結管が接続され、
前記注入管の他端は貯留シリンダーに接続されるとともに前記排出管の他端は冷媒回収ボンベに接続され、
前記貯留シリンダー内は絶対真空に近い状態に減圧されて新冷媒を収納する新冷媒タンクから該新冷媒が吸引され、
該貯留シリンダー内に窒素ガスを収納する窒素ガスタンクから該新冷媒に対して所定の容積比の窒素ガスが流入されて該新冷媒と該窒素ガスの混合流体となし、
前記貯留シリンダー内が該窒素ガスにより所定の圧力に加圧されて前記混合流体が前記注入管を介して前記冷媒配管内に注入され、前記冷媒配管内の旧冷媒および該混合流体が前記排出管を介して前記冷媒回収ボンベ内に回収され、
その後、前記窒素ガスタンクから窒素ガスが所定の圧力下で一気に前記冷媒配管内に注入される、ことを特徴とする冷媒配管の洗浄方法。
A method for removing and cleaning refrigerant and residual oil in a refrigerant pipe when converting a separate air conditioner composed of an outdoor unit and an indoor unit from an old refrigerant device to a new refrigerant device,
An injection pipe and a discharge pipe are connected to both ends of the refrigerant pipe from which one of the outdoor unit or the indoor unit is removed, and both ends of the refrigerant pipe from which the other of the outdoor unit or the indoor unit is removed are connected. Connecting pipe is connected,
The other end of the injection pipe is connected to a storage cylinder and the other end of the discharge pipe is connected to a refrigerant recovery cylinder.
In the storage cylinder, the new refrigerant is sucked from a new refrigerant tank that is depressurized to a state close to absolute vacuum and stores the new refrigerant,
A nitrogen gas having a predetermined volume ratio to the new refrigerant is introduced from a nitrogen gas tank that stores the nitrogen gas in the storage cylinder to form a mixed fluid of the new refrigerant and the nitrogen gas;
The storage cylinder is pressurized to a predetermined pressure by the nitrogen gas, the mixed fluid is injected into the refrigerant pipe through the injection pipe, and the old refrigerant and the mixed fluid in the refrigerant pipe are discharged into the discharge pipe. Is recovered in the refrigerant recovery cylinder through
Thereafter, nitrogen gas is injected into the refrigerant pipe from the nitrogen gas tank at a stretch under a predetermined pressure.
1気圧下における前記所定の容積比は新冷媒1に対して窒素ガスが略14〜23である、ことを特徴とする請求項1に記載の冷媒配管の洗浄方法。   The method for cleaning refrigerant piping according to claim 1, wherein the predetermined volume ratio under 1 atm is about 14 to 23 of nitrogen gas relative to the new refrigerant 1. 前記貯留シリンダー内が加圧される所定の圧力は略0.2MPa〜0.3MPaであり、
前記窒素ガスタンクから窒素ガスが一気に前記冷媒配管内に注入される所定の圧力は略0.2MPa〜0.3MPaである、ことを特徴とする請求項1または請求項2に記載の冷媒配管の洗浄方法。
The predetermined pressure at which the inside of the storage cylinder is pressurized is approximately 0.2 MPa to 0.3 MPa,
3. The refrigerant pipe cleaning according to claim 1, wherein a predetermined pressure at which nitrogen gas is injected into the refrigerant pipe from the nitrogen gas tank at a stroke is approximately 0.2 MPa to 0.3 MPa. 4. Method.
前記窒素ガスが所定の圧力下で一気に前記冷媒配管内に注入される工程においては、前記窒素ガスタンクは前記注入管に直結される、ことを特徴とする請求項1ないし請求項3のいずれかに記載の冷媒配管の洗浄方法。   4. The nitrogen gas tank is directly connected to the injection pipe in the step of injecting the nitrogen gas into the refrigerant pipe at a time under a predetermined pressure. 5. The refrigerant piping cleaning method described. 室外機と室内機で構成されるセパレート型空気調和機の旧冷媒機器から新冷媒機器への転換時における冷媒配管内の冷媒を除去洗浄する冷媒配管洗浄装置であって、
前記室外機または前記室内機の一方が外された前記冷媒配管の一端に注入管を介して接続される円筒状の貯留シリンダーと、
該貯留シリンダーに切替え弁を介して接続される真空ポンプと、
該貯留シリンダーに切替え弁を介して接続される新冷媒タンクと、
該貯留シリンダーおよび前記注入管のそれぞれに切替え弁を介して接続される窒素ガスボンベと、
前記室外機または前記室内機の他方が外された前記冷媒配管の両端を連結する連結管と、
前記室外機または前記室内機の一方が外された前記冷媒配管の他端に排出管を介して接続される冷媒回収ボンベと、からなり、
前記注入管および前記排出管には切替え弁が介装されている、ことを特徴とする冷媒配管洗浄装置。
A refrigerant pipe cleaning device that removes and cleans refrigerant in the refrigerant pipe at the time of conversion from an old refrigerant device to a new refrigerant device of a separate type air conditioner composed of an outdoor unit and an indoor unit,
A cylindrical storage cylinder connected via an injection pipe to one end of the refrigerant pipe from which one of the outdoor unit or the indoor unit is removed;
A vacuum pump connected to the storage cylinder via a switching valve;
A new refrigerant tank connected to the storage cylinder via a switching valve;
A nitrogen gas cylinder connected to each of the storage cylinder and the injection pipe via a switching valve;
A connecting pipe that connects both ends of the refrigerant pipe from which the other of the outdoor unit or the indoor unit is removed;
A refrigerant recovery cylinder connected via a discharge pipe to the other end of the refrigerant pipe from which one of the outdoor unit or the indoor unit is removed,
A refrigerant pipe cleaning apparatus, wherein a switching valve is interposed in the injection pipe and the discharge pipe.
前記真空ポンプに接続する切替え弁および前記新冷媒タンクに接続する切替え弁は1つの第1の2方向切替え弁であって、該第1の2方向切替え弁と前記貯留シリンダーの間には第2の2方向切替え弁が介装されて該第2の2方向切替え弁には前記窒素ガスボンベが接続される、ことを特徴とする請求項5に記載の冷媒配管洗浄装置。   The switching valve connected to the vacuum pump and the switching valve connected to the new refrigerant tank are one first two-way switching valve, and a second valve is provided between the first two-way switching valve and the storage cylinder. The refrigerant pipe cleaning apparatus according to claim 5, wherein the two-way switching valve is interposed, and the nitrogen gas cylinder is connected to the second two-way switching valve. 前記注入管に介装される切替え弁は第3の2方向切替え弁であって、該第3の2方向切替え弁には前記窒素ガスボンベが接続される、ことを特徴とする請求項5または請求項6に記載の冷媒配管洗浄装置。   The switching valve interposed in the injection pipe is a third two-way switching valve, and the nitrogen gas cylinder is connected to the third two-way switching valve. Item 7. The refrigerant pipe cleaning device according to Item 6.
JP2008245076A 2008-09-25 2008-09-25 Method and device for cleaning refrigerant pipe Pending JP2010078194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245076A JP2010078194A (en) 2008-09-25 2008-09-25 Method and device for cleaning refrigerant pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245076A JP2010078194A (en) 2008-09-25 2008-09-25 Method and device for cleaning refrigerant pipe

Publications (1)

Publication Number Publication Date
JP2010078194A true JP2010078194A (en) 2010-04-08

Family

ID=42208855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245076A Pending JP2010078194A (en) 2008-09-25 2008-09-25 Method and device for cleaning refrigerant pipe

Country Status (1)

Country Link
JP (1) JP2010078194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211267A (en) * 2013-04-18 2014-11-13 デンゲン株式会社 Refrigerant collector-filler and washing method therefor
CN111397258A (en) * 2020-04-01 2020-07-10 宁波奥克斯电气股份有限公司 Refrigerant recovery system and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211267A (en) * 2013-04-18 2014-11-13 デンゲン株式会社 Refrigerant collector-filler and washing method therefor
CN111397258A (en) * 2020-04-01 2020-07-10 宁波奥克斯电气股份有限公司 Refrigerant recovery system and control method
CN111397258B (en) * 2020-04-01 2021-08-20 宁波奥克斯电气股份有限公司 Refrigerant recovery system and control method

Similar Documents

Publication Publication Date Title
CN205518885U (en) Vapour fortune tank car is inside sweeps cleaning device fast
AU2012245083A1 (en) A plant and method for recovering sulphur hexafluoride for reuse
US20050241677A1 (en) Combined pressure test and clean apparatus
EP2202009B1 (en) Cleaning apparatus
JP2010078194A (en) Method and device for cleaning refrigerant pipe
CN104353632B (en) Gas-liquid mixing high-pressure washer
US6872263B1 (en) Cleaning system and method for dynamic devices in a refinery
CN101468354A (en) Method and apparatus for cleaning rail vehicle pipeline
JP2009279117A (en) Washing device
JP3725629B2 (en) Supercritical fluid cleaning equipment
US6877337B2 (en) Product for the cleaning of refrigeration installations, method and device for purging of the same
JP2008264722A (en) Aqueous cleaning method and aqueous cleaning apparatus
JP2005249297A (en) Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
KR20140092577A (en) Portable Air Blowing Skid
JP2008229557A (en) Tank cleaning system
JP5318975B2 (en) Substrate processing apparatus using high-pressure processor and gas recycling method for high-pressure processor
JP2011127787A (en) Waste steam recovering device
CN204220535U (en) Gas-liquid mixed jetting machine
KR20150109095A (en) Leak checker of pipline and method thereof
KR20200109169A (en) Apparatus and Method for oil flushing based on dry ice pigging
JP3971445B1 (en) Cleaning equipment for refrigerant piping
RU2700055C1 (en) Method for removal of condensate from spherical cavity of pipeline valves and device for implementation thereof
KR102046313B1 (en) Oil remover devices and methods for piping including oil branching pipes
JP2004278859A (en) Piping flushing device and piping flushing method
JP2003302128A (en) Method and device for cleaning refrigerant pipe of air- conditioning refrigeration unit