JP2015114051A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2015114051A
JP2015114051A JP2013256508A JP2013256508A JP2015114051A JP 2015114051 A JP2015114051 A JP 2015114051A JP 2013256508 A JP2013256508 A JP 2013256508A JP 2013256508 A JP2013256508 A JP 2013256508A JP 2015114051 A JP2015114051 A JP 2015114051A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
valve
refrigerant
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013256508A
Other languages
Japanese (ja)
Inventor
亮介 八木
Ryosuke Yagi
亮介 八木
竹谷 伸行
Nobuyuki Takeya
伸行 竹谷
嘉浩 小見山
Yoshihiro Komiyama
嘉浩 小見山
卓也 本郷
Takuya Hongo
卓也 本郷
松岡 敬
Takashi Matsuoka
敬 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Corp
Priority to JP2013256508A priority Critical patent/JP2015114051A/en
Publication of JP2015114051A publication Critical patent/JP2015114051A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system designed so as to shorten rise time until blowoff of hot air when starting up heating.SOLUTION: The air conditioning system includes: a heat storage part having a compressor, a cooling/heating exchange four-way valve, an indoor heat exchanger, a throttle valve, an outdoor heat exchanger, piping and heat storage material; a control part; a first valve; and a second valve. The heat exchanging part is placed between the compressor and the throttle valve. The first valve is placed between the throttle valve and the outdoor heat exchanger. The second valve is placed between the throttle valve and the heat storage part, and includes: a first circulation pathway making refrigerant circulate among the compressor, the indoor heat exchanger and the outdoor heat exchanger; and a second circulation pathway making refrigerant circulate among the compressor, the indoor heat exchanger and the heat storage part. Open and close of the first valve and the second valve are controlled by the control part to conduct heating operation in a second step for making the refrigerant circulate into the second circulation pathway after a first step for making the refrigerant circulate into the first circulation pathway.

Description

実施形態は、空気調和システムに関する。   Embodiments relate to an air conditioning system.

空気調和システムの暖房立上時に、室内に温風を吹き出すまでの立ち上がり時間を短縮させる取り組みが従来よりなされている。例えば、圧縮機で発生した熱を蓄熱する蓄熱槽と、蓄熱槽内に設けられた吸熱用の熱交換機器と、を有するヒートポンプにおいて、吸熱熱交換器の一端を圧縮機の吸込み口に接続し、他端の冷媒流入側を開閉バルブに接続した構造を有する空気調和装置において、起動時に冷媒流入側の開閉バルブを閉めることで蓄熱槽内に残留する冷媒を蓄熱材で加熱、高温にし、圧縮機側に高温になった冷媒を供給することで立ち上がり時間を短縮させる提案がなされている。ただし、立ち上がり時間を短縮させるには、冷媒のみならず、これと接する圧縮機、室内熱交換器や配管に冷媒の熱が逃げないよう、これら温度を上昇させてやる必要がある。これら機器の昇温には大きな熱量が必要になるため、蓄熱槽内に残留した冷媒のみを加熱し、その熱を循環させる方式では供給できる熱量が不足し、立ち上がり時間の短縮効果は小さいという課題がある。   Attempts have been made to shorten the rise time until hot air is blown into the room when the air conditioning system is heated. For example, in a heat pump having a heat storage tank that stores heat generated in the compressor and a heat exchange device for heat absorption provided in the heat storage tank, one end of the endothermic heat exchanger is connected to the suction port of the compressor. In an air conditioner having a structure in which the refrigerant inflow side at the other end is connected to an on-off valve, the refrigerant remaining in the heat storage tank is heated with a heat storage material, compressed by closing the on-off valve on the refrigerant inflow side at startup. Proposals have been made to shorten the rise time by supplying a high-temperature refrigerant to the machine side. However, in order to shorten the rise time, it is necessary to raise these temperatures so that the heat of the refrigerant does not escape not only to the refrigerant but also to the compressor, the indoor heat exchanger, and the piping that are in contact with the refrigerant. Since a large amount of heat is required to raise the temperature of these devices, the method of heating only the refrigerant remaining in the heat storage tank and circulating the heat has a problem that the amount of heat that can be supplied is insufficient and the effect of shortening the rise time is small. There is.

また、圧縮機吐出後の冷媒循環経路に蓄熱材を有する蓄熱熱交換器を配置するヒートポンプを有する空気調和装置は、圧縮機運転中に蓄熱材に熱を蓄え、停止中は蓄熱材から室内に放熱する。この場合、蓄熱材の熱は圧縮機を経由せずに直接室内熱交換器に投入されるため、立ち上がり時間を短縮させることが可能となるが、室内熱交換器と蓄熱熱交換器が冷媒の流れに対して直列に接続された循環経路となるため、圧力損失が増加し、暖房能力が低下することが課題となる。また、圧縮機吐出後の冷媒温度は圧縮機流入前の冷媒温度に比べて高いため、蓄熱材と吐出冷媒との相対温度差が小さくなり、吐出冷媒−蓄熱材間の吸熱・放熱能力が制約されることが課題となる。   In addition, an air conditioner having a heat pump that places a heat storage heat exchanger having a heat storage material in the refrigerant circulation path after discharging the compressor stores heat in the heat storage material during compressor operation, and from the heat storage material to the room during stoppage. Dissipate heat. In this case, since the heat of the heat storage material is directly input to the indoor heat exchanger without going through the compressor, the rise time can be shortened, but the indoor heat exchanger and the heat storage heat exchanger Since the circulation path is connected in series with the flow, the pressure loss increases, and the heating capacity decreases. In addition, since the refrigerant temperature after discharging the compressor is higher than the refrigerant temperature before entering the compressor, the relative temperature difference between the heat storage material and the discharge refrigerant is reduced, limiting the heat absorption and heat dissipation capacity between the discharge refrigerant and the heat storage material. It becomes a problem to be done.

特開平05―187735号公報JP 05-187735 A

実施形態の空気調和システムは、暖房起動時の、温風吹出しまでの立ち上がり時間を短縮させる。   The air conditioning system of the embodiment shortens the rise time until hot air blow-out at the time of heating activation.

実施形態の空気調和システムは、圧縮機と、冷暖切り替え四方弁と、室内熱交換器と、絞り弁と、室外熱交換器と、配管と、蓄熱材を有する蓄熱部と、制御部と、第1のバルブと、第2のバルブとを有し、配管は、圧縮機と室内熱交換器と室外熱交換器との間に冷媒を循環させる循環回路を形成し、圧縮機は、室外熱交換器と室内熱交換器との間の循環回路に配置され、四方弁は、圧縮機と室内熱交換器及び圧縮機と前記室外熱交換器の間に配置され、絞り弁は、循環回路の室内熱交換器と室外熱交換器とを挟んで配置され、蓄熱部は、圧縮機と絞り弁との間に配置され、第1のバルブは、絞り弁と室外熱交換器との間に配置され、第2のバルブは、絞り弁と蓄熱部との間に配置され、圧縮機と、室内熱交換器と、室外熱交換器との間に冷媒を循環させる第1の循環経路と、圧縮機と、室内熱交換器と、蓄熱部との間に冷媒を循環させる第2の循環経路とを有し、第1の循環系路に冷媒を循環させる第1のステップ後に第2の循環系路に冷媒を循環させる第2のステップで暖房運転を行うように制御部によって第1のバルブと第2のバルブの開閉を制御することを特徴とする。   The air conditioning system of the embodiment includes a compressor, a cooling / heating switching four-way valve, an indoor heat exchanger, a throttle valve, an outdoor heat exchanger, piping, a heat storage unit having a heat storage material, a control unit, 1 and a second valve, and the pipe forms a circulation circuit for circulating a refrigerant between the compressor, the indoor heat exchanger, and the outdoor heat exchanger, and the compressor performs outdoor heat exchange. The four-way valve is arranged between the compressor and the indoor heat exchanger, the compressor and the outdoor heat exchanger, and the throttle valve is arranged in the circulation circuit between the compressor and the indoor heat exchanger. Arranged between the heat exchanger and the outdoor heat exchanger, the heat storage section is arranged between the compressor and the throttle valve, and the first valve is arranged between the throttle valve and the outdoor heat exchanger. The second valve is disposed between the throttle valve and the heat storage unit, and a refrigerant is provided between the compressor, the indoor heat exchanger, and the outdoor heat exchanger. There is a first circulation path to circulate, a compressor, an indoor heat exchanger, and a second circulation path for circulating the refrigerant between the heat storage unit, and the refrigerant is circulated through the first circulation system path. After the first step, the controller controls the opening and closing of the first valve and the second valve so that the heating operation is performed in the second step of circulating the refrigerant in the second circulation system.

図1は、実施形態の空気調和装置(システム)の暖房サイクル構成図である。Drawing 1 is a heating cycle lineblock diagram of an air harmony device (system) of an embodiment. 図2は、実施形態の蓄熱部の断面概念図である。FIG. 2 is a conceptual cross-sectional view of the heat storage unit of the embodiment. 図3は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。Drawing 3 is a flow chart of preheating heating operation of the air harmony device system of an embodiment. 図4は、実施形態の切替信号にかかるチャート図である。FIG. 4 is a chart according to the switching signal of the embodiment. 図5は、実施形態の空気調和装置(システム)の暖房サイクル構成図である。Drawing 5 is a heating cycle lineblock diagram of an air harmony device (system) of an embodiment. 図6は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。FIG. 6 is a flowchart of the preheating heating operation of the air conditioner system according to the embodiment. 図7は、実施形態の圧縮機の回転子の回転周波数を示すグラフである。FIG. 7 is a graph showing the rotation frequency of the rotor of the compressor according to the embodiment.

以下、図面を参照しつつ、実施の形態について例示をする。なお、各実施形態で共通する詳細な説明は適宜省略する。
[第1の実施形態]
図1は、第1の実施形態に係る空気調和システム100の暖房サイクルの構成図である。実施形態の空気調和システム(空気調和装置)は、冷媒を圧縮する圧縮機1と、冷暖切替え用四方弁2と、室内熱交換器3と、絞り弁4と、室外熱交換器5と、制御部6と、蓄熱部7と、第1のバルブと、第2のバルブとから構成される。
Hereinafter, embodiments will be illustrated with reference to the drawings. Note that a detailed description common to the embodiments is omitted as appropriate.
[First Embodiment]
Drawing 1 is a lineblock diagram of the heating cycle of air harmony system 100 concerning a 1st embodiment. The air conditioning system (air conditioning apparatus) of the embodiment includes a compressor 1 that compresses a refrigerant, a cooling / heating switching four-way valve 2, an indoor heat exchanger 3, a throttle valve 4, an outdoor heat exchanger 5, and a control. It is comprised from the part 6, the heat storage part 7, the 1st valve | bulb, and the 2nd valve | bulb.

圧縮機1は、室外熱交換器3と室内熱交換器4との間に配置され、熱媒体である冷媒を圧縮する。圧縮機1の一部に液冷媒を貯蔵するアキュムレータが取り付けられている場合がある。この場合、アキュムレータで気液分離されてガス化した冷媒が圧縮機1の圧縮室に送られる。圧縮機1を出た冷媒は、配管Pにより、四方弁2、室内熱交換器3、絞り弁4、室外熱交換器5を経て圧縮機1に再び吸い込まれる。冷媒としては、例えば、ハイドロフルオロカーボンやハイドロクロロフルオロカーボン等を用いることができる。配管Pは、圧縮機1と、室内熱交換器3と、室外熱交換器5との間に冷媒を循環させる第1の循環経路と、圧縮機1と、室内熱交換器3と、蓄熱部7との間に冷媒を循環させる第2の循環経路とを形成する。   The compressor 1 is arrange | positioned between the outdoor heat exchanger 3 and the indoor heat exchanger 4, and compresses the refrigerant | coolant which is a heat medium. An accumulator that stores liquid refrigerant may be attached to a part of the compressor 1. In this case, the gasified and gasified refrigerant gasified by the accumulator is sent to the compression chamber of the compressor 1. The refrigerant exiting the compressor 1 is sucked into the compressor 1 again by the pipe P through the four-way valve 2, the indoor heat exchanger 3, the throttle valve 4, and the outdoor heat exchanger 5. As the refrigerant, for example, hydrofluorocarbon, hydrochlorofluorocarbon, or the like can be used. The pipe P includes a first circulation path for circulating a refrigerant between the compressor 1, the indoor heat exchanger 3, and the outdoor heat exchanger 5, the compressor 1, the indoor heat exchanger 3, and a heat storage unit. 7 and a second circulation path for circulating the refrigerant.

四方弁2は、圧縮機1と室内熱交換器3の間及び圧縮機1と室外熱交換器5の間に配置される。四方弁2は、圧縮機1で圧縮された冷媒の循環方向を切り替えることができる。圧縮された冷媒が室内熱交換器3に向かう循環回路は、暖房時の回路である。暖房の場合は、暖められた空気が室内熱交換器3から室内に向かって送風される。圧縮された冷媒が室外熱交換器5に向かう循環回路は、冷房時の回路である。冷媒の場合は、冷やされた空気が室内熱交換器3から室内に向かって送風される。予熱暖房運転とは、室内熱交換器3から室内への温風の吹き出しを制限すること以外は、暖房運転と同様である。以下、実施形態は、暖房について説明し、冷房については省略するが、空気調和装置は、冷房と暖房の両機能を備えることができる。暖房のみの機能を有する空気調和装置100(システム)は、四方弁を省略することができる。   The four-way valve 2 is disposed between the compressor 1 and the indoor heat exchanger 3 and between the compressor 1 and the outdoor heat exchanger 5. The four-way valve 2 can switch the circulation direction of the refrigerant compressed by the compressor 1. The circulation circuit in which the compressed refrigerant goes to the indoor heat exchanger 3 is a circuit during heating. In the case of heating, warmed air is blown from the indoor heat exchanger 3 into the room. A circulation circuit in which the compressed refrigerant is directed to the outdoor heat exchanger 5 is a circuit during cooling. In the case of the refrigerant, the cooled air is blown from the indoor heat exchanger 3 into the room. The preheating heating operation is the same as the heating operation except that the blowing of warm air from the indoor heat exchanger 3 into the room is restricted. Hereinafter, although an embodiment explains heating and omits about cooling, an air harmony device can be provided with both functions of cooling and heating. The air-conditioning apparatus 100 (system) having a function only for heating can omit the four-way valve.

室内熱交換器3は、圧縮機1で圧縮した高温高圧の冷媒と室内空気とを熱交換し、冷媒を凝縮させて昇温した空気を室内に放出する。モーターで回転させた室内熱交換器3内のファンによる送風で空気を室内に放出する。室内熱交換器3は、熱交換した空気の吹き出し口(ルーバー)を開閉することができる。
絞り弁4は、室内熱交換器3を経た冷媒を減圧させる。
室外熱交換器5は、絞り弁4で減圧した低温低圧の冷媒と室外空気とを熱交換し、冷媒を蒸発させて降温した空気を室外に放出する。モーターで回転させた室外熱交換器5内のファンによる送風で空気を室外に放出する。ここで、室内、室外とは、暖房対象の部屋の室内か室外を意味する。
The indoor heat exchanger 3 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 1 and the room air, and discharges the air heated by condensing the refrigerant to the room. Air is discharged into the room by blowing air from a fan in the indoor heat exchanger 3 rotated by a motor. The indoor heat exchanger 3 can open and close a heat exchanged air outlet (louver).
The throttle valve 4 depressurizes the refrigerant that has passed through the indoor heat exchanger 3.
The outdoor heat exchanger 5 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the throttle valve 4 and the outdoor air, and evaporates the refrigerant to release the cooled air to the outdoors. Air is discharged to the outside by blowing air from a fan in the outdoor heat exchanger 5 rotated by a motor. Here, “indoor” and “outdoor” mean indoors or outdoors of the room to be heated.

制御部6は、圧縮機1の回転子の周波数やトルク、室内熱交換器3、四方弁4、室外熱交換器5などの空気調和装置(システム)の動作を制御することができる。さらに、制御部6は、蓄熱部7の潜熱蓄熱材71を発核させる発核手段73と第1と第2のバルブ8、9の開閉を制御する。第1のバルブ8を制御する配線をL1とする。第2のバルブ9を制御する配線をL2とする。圧縮機1を制御する配線をL3とする。他の構成を制御する配線も制御部6に含まれるが図示及び説明を省略する。制御部6には、ユーザが無線操作可能なリモコン等の端末が含まれても良い。制御部6は、マイコン、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field−Programmable Gate Array)等の集積回路を有し、ソフトウェア又はハードウェア制御されている。   The controller 6 can control the frequency and torque of the rotor of the compressor 1 and the operation of an air conditioner (system) such as the indoor heat exchanger 3, the four-way valve 4, and the outdoor heat exchanger 5. Further, the control unit 6 controls the opening and closing of the nucleation means 73 that nucleates the latent heat storage material 71 of the heat storage unit 7 and the first and second valves 8 and 9. The wiring for controlling the first valve 8 is L1. The wiring for controlling the second valve 9 is L2. The wiring for controlling the compressor 1 is L3. Although wiring for controlling other configurations is also included in the control unit 6, illustration and description thereof are omitted. The control unit 6 may include a terminal such as a remote control that can be wirelessly operated by the user. The control unit 6 includes an integrated circuit such as a microcomputer, an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field-Programmable Gate Array), and is controlled by software or hardware.

蓄熱部7は、図2の断面概念図に示すように潜熱蓄熱材71と、蓄熱熱交換器72と、発核手段73と、これらを収容する蓄熱容器74を有する。蓄熱部7は、圧縮機1と絞り弁4との間に、室外熱交換器5と並列に配置される。潜熱蓄熱材71は、過冷却性を有する潜熱蓄熱材が好ましい。潜熱蓄熱材71に、過冷却性の無い蓄熱材を用いることもできる。潜熱蓄熱材71としては、例えば酢酸ナトリウム水和物、硫酸ナトリウム水和物、エリスリトールなどが使用される。潜熱蓄熱材71は、エチレングリコール、塩化ナトリウムや塩化カリウム等の融点調整剤が、潜熱蓄熱材71に対して30質量%以下程度の範囲内で添加される場合がある。融点は、空気温度よりも高く、例えば、30℃から70℃の範囲内になるように材料の選択及び融点の調整がなされることが好ましい。潜熱蓄熱材71の熱源は、圧縮機1運転時の排熱、太陽熱、地中熱等を用いることができる。蓄熱熱交換器72は、第2の循環経路を流れる冷媒と蓄熱部7の潜熱蓄熱材71間で熱交換を行うための機器である。蓄熱容器73は、蓄熱材71の容器として用いられるものが好ましい。   The heat storage part 7 has the latent heat storage material 71, the heat storage heat exchanger 72, the nucleation means 73, and the heat storage container 74 which accommodates these, as shown to the cross-sectional conceptual diagram of FIG. The heat storage unit 7 is disposed in parallel with the outdoor heat exchanger 5 between the compressor 1 and the throttle valve 4. The latent heat storage material 71 is preferably a latent heat storage material having supercoolability. As the latent heat storage material 71, a heat storage material without supercooling property can also be used. As the latent heat storage material 71, for example, sodium acetate hydrate, sodium sulfate hydrate, erythritol and the like are used. In the latent heat storage material 71, a melting point adjusting agent such as ethylene glycol, sodium chloride or potassium chloride may be added in a range of about 30% by mass or less with respect to the latent heat storage material 71. It is preferable that the material is selected and the melting point is adjusted so that the melting point is higher than the air temperature, for example, within the range of 30 ° C. to 70 ° C. As the heat source of the latent heat storage material 71, exhaust heat, solar heat, underground heat, or the like during the operation of the compressor 1 can be used. The heat storage heat exchanger 72 is a device for exchanging heat between the refrigerant flowing through the second circulation path and the latent heat storage material 71 of the heat storage unit 7. The heat storage container 73 is preferably used as a container for the heat storage material 71.

潜熱蓄熱材71が過冷却性を有する場合、その発核方法は、潜熱蓄熱材71に2本の電極を挿入し、電極間に電圧を印加する方法、凹凸を有する板バネとアクチュエータで構成され、アクチュエータで潜熱蓄熱材71中の板バネを動かす方法、潜熱蓄熱材71中の熱電素子に電圧を印加して極所急令する方法、結晶核を結晶核収納容器より潜熱蓄熱材71中に投入して核生成させる方法などを用いることができる。前記発核方法に応じて、適宜必要な発核手段73を潜熱蓄熱材71と接する場所に備える。図中では、発核手段73を図示しているが、潜熱蓄熱材71が過冷却性を有しない場合は、発核手段73を省略することができる。   When the latent heat storage material 71 has a supercooling property, the nucleation method is composed of a method of inserting two electrodes into the latent heat storage material 71 and applying a voltage between the electrodes, a plate spring having unevenness and an actuator. , A method of moving a leaf spring in the latent heat storage material 71 with an actuator, a method of applying a voltage to a thermoelectric element in the latent heat storage material 71 and prompting the extreme location, and a crystal nucleus from the crystal nucleus storage container into the latent heat storage material 71 It is possible to use a method of nucleation by charging. Depending on the nucleation method, a necessary nucleation means 73 is provided at a place in contact with the latent heat storage material 71. In the figure, the nucleation means 73 is illustrated, but when the latent heat storage material 71 does not have supercooling properties, the nucleation means 73 can be omitted.

第1のバルブ8は、開閉によって室外熱交換器5への冷媒の流入を制御するバルブである。また、第2のバルブ9は、開閉によって蓄熱部7への冷媒の流入を制御するバルブである。第1のバルブ8は、絞り弁4と室外熱交換器5との間に配置される。第2のバルブ9は、絞り弁4と蓄熱部7との間に配置される。
第1と第2のバルブ8,9の開閉の組み合わせによって、循環経路を選択することができる。第1の循環経路は、第1のバルブ8が開き、第2のバルブ閉じた状態である。第2の循環経路は、第1のバルブ8が閉じ、第2のバルブ9が開いた状態である。
なお、バルブは、開閉に伴い、直ちに冷媒の流入や遮断を制御できない場合がある。そこで、バルブの開閉を次のように定義する。バルブが開状態での冷媒流入量とバルブが閉状態での冷媒流入量の比は、バルブが閉状態での冷媒流入量が多い場合で、100(開):1(閉)である。
The first valve 8 is a valve that controls the inflow of refrigerant into the outdoor heat exchanger 5 by opening and closing. The second valve 9 is a valve that controls the inflow of refrigerant into the heat storage unit 7 by opening and closing. The first valve 8 is disposed between the throttle valve 4 and the outdoor heat exchanger 5. The second valve 9 is disposed between the throttle valve 4 and the heat storage unit 7.
A circulation path can be selected by a combination of opening and closing of the first and second valves 8 and 9. The first circulation path is a state in which the first valve 8 is open and the second valve is closed. The second circulation path is a state in which the first valve 8 is closed and the second valve 9 is opened.
Note that the valve may not be able to immediately control the inflow or shut-off of the refrigerant as it opens and closes. Therefore, the opening and closing of the valve is defined as follows. The ratio of the refrigerant inflow when the valve is open and the refrigerant inflow when the valve is closed is 100 (open): 1 (closed) when the refrigerant inflow is large when the valve is closed.

また、室内熱交換器3には、室内熱交換器3内の冷媒温度又は室内熱交換器3に流入出する冷媒の温度を測定する室内熱交換器温度測定手段10が設けられる。冷媒の代わりに、冷媒温度と略一致する配管の温度を測定し判定することができる。室内熱交換器温度測定手段10によって測定された温度に応じて、制御部6は圧縮機1の回転子の回転周波数等を制御することができる。温度測定手段10としては、例えば、電気式温度計等の温度を測定する機器を用いることができる。   The indoor heat exchanger 3 is provided with an indoor heat exchanger temperature measuring means 10 for measuring the refrigerant temperature in the indoor heat exchanger 3 or the temperature of the refrigerant flowing into and out of the indoor heat exchanger 3. Instead of the refrigerant, it is possible to measure and determine the temperature of the pipe that substantially matches the refrigerant temperature. The control unit 6 can control the rotational frequency of the rotor of the compressor 1 according to the temperature measured by the indoor heat exchanger temperature measuring means 10. As the temperature measuring means 10, for example, a device for measuring temperature such as an electric thermometer can be used.

次に、空気調和システム100の暖房サイクルの運転方法について説明する。図3に、第1の実施形態の空気調和システム100の暖房サイクル運転方法に係るフローチャートを示す。なお、実施形態においては、冷房運転方法に関する説明を省略するが、冷房運転等の他の運転方法が空気調和システムに含まれていてもよい。   Next, the operation method of the heating cycle of the air conditioning system 100 will be described. FIG. 3 shows a flowchart according to the heating cycle operation method of the air-conditioning system 100 of the first embodiment. In addition, in embodiment, although the description regarding a cooling operation method is abbreviate | omitted, other operation methods, such as a cooling operation, may be contained in the air conditioning system.

図3に空気調和システム100の暖房サイクル運転方法に係るフローチャートを示す。
ステップS01にて空調システム100はタイマーが動作し(ステップS01)、運転開始命令がなされると(ステップS02)、第1のステップの運転を開始する(ステップS01→ステップS02→ステップS03)。第1のステップは、熱量の大きな圧縮機1、冷媒、熱交換器3、5を温める予熱暖房運転である。第1のステップの運転では制御部6は第1のバルブ8を開に、第2のバルブ9を閉に操作し、第1の循環経路に冷媒を流して運転を行う(ステップS03)。
FIG. 3 shows a flowchart according to the heating cycle operation method of the air conditioning system 100.
In step S01, the air conditioning system 100 operates a timer (step S01), and when an operation start command is issued (step S02), starts the first step operation (step S01 → step S02 → step S03). The first step is a preheating heating operation for heating the compressor 1, the refrigerant, and the heat exchangers 3 and 5 having a large heat quantity. In the operation of the first step, the control unit 6 operates by opening the first valve 8 and closing the second valve 9 to flow the refrigerant through the first circulation path (step S03).

タイマーはユーザ(使用者)が予め時刻を設定し、時刻に達すると開始状態に移る方法、ユーザの暖房使用時刻を学習し、開始時刻を制御部6が自動決定する方法、空調機器外部(例えば携帯電話など)から指令を受け時刻を決定する方法がある。また、空気調和システム使用頻度、外気温、室内熱交換器3の温度のうちの少なくともいずれかの情報に基づいて作成された時間表に基づいて、切替信号のオン−オフを切り替えることができる。   The timer (timer) is set in advance by the user (user), and when the time reaches the start state, the heating time of the user is learned, the control unit 6 automatically determines the start time, outside the air conditioner (for example, There is a method of receiving a command from a mobile phone or the like and determining the time. Moreover, on-off of a switching signal can be switched based on the timetable created based on the information of at least any one of an air conditioning system use frequency, external temperature, and the temperature of the indoor heat exchanger 3. FIG.

第1のステップでは室内熱交換器温度測定手段10で室内熱交換器3内の冷媒もしくは冷媒配管の温度を測定し、測定した値が所要の値になるよう圧縮機1の周波数が操作される(ステップS04)。ここで、所要の値とは、外気温度よりも高く、第2のステップにおける冷媒の温度より低い温度で設定することができ、具体的には30℃から50℃の間の値をとることができる。温度測定手段10で測定された値が所要の値より高い場合には圧縮機1の回転子の周波数を低減もしくは停止させる。原則として、室内熱交換器3のルーバーは開かず、温風吹出しを行わない。   In the first step, the temperature of the refrigerant or refrigerant pipe in the indoor heat exchanger 3 is measured by the indoor heat exchanger temperature measuring means 10, and the frequency of the compressor 1 is manipulated so that the measured value becomes a required value. (Step S04). Here, the required value can be set at a temperature higher than the outside air temperature and lower than the temperature of the refrigerant in the second step, and specifically takes a value between 30 ° C. and 50 ° C. it can. When the value measured by the temperature measuring means 10 is higher than the required value, the frequency of the rotor of the compressor 1 is reduced or stopped. As a rule, the louver of the indoor heat exchanger 3 is not opened and the hot air is not blown out.

次に、ステップS05にて切替信号がオンになると、第1のステップから第2のステップの運転に切り替えを行う(ステップS05→ステップS06)。第2のステップの運転では、制御部6は第1のバルブ8を閉に、第2のバルブ9を開に操作する。第2のステップにおいて、切替信号をオンにして、冷媒の流路を第1の循環系路から第2の循環経路に切り替えて冷媒を流して暖房運転を行う。ステップS05で切替信号がオンになる条件を図4のチャート図に示す。   Next, when the switching signal is turned on in step S05, the operation is switched from the first step to the second step (step S05 → step S06). In the operation of the second step, the controller 6 operates the first valve 8 to be closed and the second valve 9 to be opened. In the second step, the switching signal is turned on, the refrigerant flow path is switched from the first circulation system path to the second circulation path, and the refrigerant is supplied to perform the heating operation. The conditions for turning on the switching signal in step S05 are shown in the chart of FIG.

図4Aではユーザが暖房開始の指令を空気調和システム100に与えることで切替信号をオンにする。例えばリモコンの暖房ボタンを押すことで、オンとなる。また、図4Bでは、予め収納した時間表に基づいて切替信号オンを行う。時間表にはステップS01が開始された後一定時間経過後に自動的にオンとするスケジュールが記録される。また、ユーザの暖房を使用する時刻を記憶し、自動的にオンとするスケジュールなどが予め制御部6に記録される。上記条件を満たさない場合、切替信号はオフのままにする。切替信号がオフの場合、所要の時間が経過した後に再度、ステップS05にて、切替信号の判定を行う。なお、温度測定手段10で測定された値が所要値よりも低い場合、切替信号をオフのままにすることができる。この場合、温度測定手段10で測定された値が所要値以上になった段階で、切替信号の判定を行えばよい。   In FIG. 4A, the user gives a heating start command to the air conditioning system 100 to turn on the switching signal. For example, it is turned on by pressing the heating button on the remote control. In FIG. 4B, the switching signal is turned on based on a time table stored in advance. A schedule that is automatically turned on after a lapse of a certain time after the start of step S01 is recorded in the timetable. Moreover, the time etc. which memorize | store the time which uses a user's heating and are automatically turned on are recorded on the control part 6 previously. If the above condition is not satisfied, the switching signal remains off. If the switching signal is off, the switching signal is determined again in step S05 after the required time has elapsed. If the value measured by the temperature measuring means 10 is lower than the required value, the switching signal can be kept off. In this case, the determination of the switching signal may be performed when the value measured by the temperature measuring means 10 becomes equal to or greater than the required value.

ステップS05にて第2のステップへ移行すると、ステップS06にて制御部6は、第1のバルブ8を開に、第2のバルブ9を閉に操作し、第2の循環経路に冷媒を流して運転を行う。所要の時間が経過した後に室内熱交換器温度測定手段10で室内熱交換器3内の冷媒温度を測定し、冷媒温度Tが所要の温度Tsetに到達したかどうか判定を行う(ステップS07)。なお、Tsetは、所要の値であって、固定値でも良いし、暖房運転の設定温度等によって変わる値でも良い。T≧Tsetの場合、室内熱交換器3のファン回転数を増加させ、室内熱交換器3のルーバーを開いて室内温風吹出しを開始する(ステップS08)。冷媒は第2の循環経路で蓄熱部7の蓄熱材71から吸熱し、圧縮機1に吸入される冷媒温度は上昇する。よって、圧縮機1、室内熱交換器3と蓄熱部7を流れる冷媒は温度が上昇し、ステップS08で温風吹出しを開始すると即座に暖かい風を室内に供給することができる。一方、T<Tsetの場合、所要の時間経過後に再度ステップS07の判定を行うことが好ましい。再判定前に、必要に応じて、圧縮機1の回転子の回転周波数を調整して、冷媒温度を上げることができる(ステップS09)。 When the process proceeds to the second step in step S05, in step S06, the control unit 6 operates the first valve 8 to open and the second valve 9 to close so that the refrigerant flows through the second circulation path. Drive. The refrigerant temperature in the indoor heat exchanger 3 as measured in the indoor heat exchanger temperature measuring means 10 after a predetermined time has elapsed, a determination is made whether the refrigerant temperature T c reaches the required temperature T The set (step S07 ). Note that T set is a required value and may be a fixed value or a value that varies depending on the set temperature of the heating operation or the like. When T c ≧ T set , the fan rotation speed of the indoor heat exchanger 3 is increased, the louver of the indoor heat exchanger 3 is opened, and the indoor warm air blowing is started (step S08). The refrigerant absorbs heat from the heat storage material 71 of the heat storage unit 7 through the second circulation path, and the temperature of the refrigerant sucked into the compressor 1 rises. Therefore, the temperature of the refrigerant flowing through the compressor 1, the indoor heat exchanger 3, and the heat storage unit 7 rises, and warm air can be immediately supplied indoors when the hot air blowing is started in step S08. On the other hand, if T c <T set , it is preferable to perform the determination in step S07 again after the required time has elapsed. Before re-determination, if necessary, the rotational frequency of the rotor of the compressor 1 can be adjusted to raise the refrigerant temperature (step S09).

潜熱蓄熱材71に過冷却特性を有する蓄熱材を用いる場合、ステップS06で第2のステップに移行する時機に発核手段74を動作させて蓄熱材71の発核動作を行うことが好ましい。発核動作によって蓄熱材71は凝固を開始し、凝固潜熱が発生する。発生した凝固潜熱は、蓄熱熱交換器72と熱的に接する冷媒に吸熱される。   When a heat storage material having a supercooling characteristic is used as the latent heat storage material 71, it is preferable to perform the nucleation operation of the heat storage material 71 by operating the nucleation means 74 when the process proceeds to the second step in Step S06. The heat storage material 71 starts to solidify by the nucleation operation, and solidification latent heat is generated. The generated latent heat of solidification is absorbed by the refrigerant that is in thermal contact with the heat storage heat exchanger 72.

第1の実施形態では、第1のステップの後に第2のステップに切り替え、温風吹出しを行うことを特徴とする。これは、第1のステップで室内熱交換器3、圧縮機1筐体を予熱しておくことで、第2のステップで高温になった冷媒の熱が室内に届く前にこれらに吸熱されてしまうのを防ぐためである。予熱をすることで、第2のステップに切り替えると同時に蓄熱部7で高温になった冷媒は室内に高温の熱を輸送でき、温風吹出しまでの立ち上がり時間を短縮させることが可能となる。また、第1のステップでは室内熱交換器3の温度が所要の温度を超えないよう圧縮機1の回転子の周波数を操作するため、外気温度が低い場合に、空気調和システム100から外気へと逃げてしまう放熱量を抑えられ、省エネ化が可能となる。   The first embodiment is characterized by switching to the second step after the first step and performing hot air blowing. This is because by preheating the indoor heat exchanger 3 and the compressor 1 housing in the first step, the heat of the refrigerant that has become high temperature in the second step is absorbed by these before reaching the room. This is to prevent it from falling out. By preheating, the refrigerant that has become high temperature in the heat storage unit 7 at the same time as switching to the second step can transport high-temperature heat into the room, and it is possible to shorten the rise time until hot air blows out. Further, in the first step, the frequency of the rotor of the compressor 1 is manipulated so that the temperature of the indoor heat exchanger 3 does not exceed the required temperature. Therefore, when the outside air temperature is low, the air conditioning system 100 moves to the outside air. The amount of heat that escapes can be reduced, and energy savings are possible.

なお、第2のステップを実施せずに第1のステップのみで温風吹出しを行った場合(例えば、ステップS01→S02→S03→S08)、蓄熱部7で冷媒温度を急加熱することができないため、室内熱交換器3に供給される冷媒の温度は低く、温風吹出しまでの立ち上がり時間を要する。他方、第1のステップを実施せずに、開始と同時に第2のステップのみで温風吹出しを行った場合(例えば、ステップS01→S02→S06→S08)、室内熱交換器3、圧縮機1筐体が冷えているため、蓄熱部7で吸熱して高温になった冷媒の熱が室内に届く前にこれらの機器に吸熱されてしまい、温風を吹き出しまでの立ち上がり時間は非常に長くなる。   In addition, when hot air blowing is performed only in the first step without performing the second step (for example, steps S01 → S02 → S03 → S08), the refrigerant temperature cannot be rapidly heated in the heat storage unit 7. Therefore, the temperature of the refrigerant supplied to the indoor heat exchanger 3 is low, and a rise time until the hot air blows out is required. On the other hand, when the hot air blowing is performed only in the second step at the same time as the start without performing the first step (for example, steps S01 → S02 → S06 → S08), the indoor heat exchanger 3 and the compressor 1 Since the casing is cold, the heat of the refrigerant that has absorbed heat at the heat storage section 7 is absorbed by these devices before reaching the room, and the rise time until the hot air is blown out becomes very long. .

以上、本発明の実施の形態では第1のステップで、室内熱交換器3、圧縮機1筐体を予熱しておき、第2のステップで、第1の循環経路から第2の循環経路に切り替え、蓄熱部7から吸熱した熱を室内熱交換器3まで他に吸熱されることなく供給することで温風吹出しまでの立ち上がり時間を短縮することが可能となる。   As described above, in the embodiment of the present invention, in the first step, the indoor heat exchanger 3 and the compressor 1 housing are preheated, and in the second step, the first circulation path is changed to the second circulation path. By switching and supplying the heat absorbed from the heat storage unit 7 to the indoor heat exchanger 3 without any other heat absorption, it is possible to shorten the rise time until the hot air blows out.

[第2の実施形態]
図5は、第2の実施形態に係る空気調和システムの暖房サイクル200の構成図である。
第2実施形態の空気調和装置(システム)は、蓄熱部7に流入する冷媒の温度を測定する蓄熱部冷媒流入温度測定手段11と、蓄熱部7から流出する冷媒の温度を測定する蓄熱部冷媒流出温度測定手段12とをさらに備えること以外は、第1の実施形態の空気調和装置(システム)と同様の構成を有する。冷媒の循環経路も第1の実施形態の空気調和装置(システム)と同様である。
[Second Embodiment]
FIG. 5 is a configuration diagram of a heating cycle 200 of the air-conditioning system according to the second embodiment.
The air conditioner (system) of the second embodiment includes a heat storage section refrigerant inflow temperature measuring means 11 that measures the temperature of the refrigerant flowing into the heat storage section 7 and a heat storage section refrigerant that measures the temperature of the refrigerant flowing out of the heat storage section 7. Except for further comprising the outflow temperature measuring means 12, it has the same configuration as the air conditioning apparatus (system) of the first embodiment. The refrigerant circulation path is the same as that of the air-conditioning apparatus (system) of the first embodiment.

次に図6のフローチャートを参照し、空気調和システム200の暖房サイクルの運転方法について説明する。第2の実施形態の空気調和システムは第1の実施形態の第2のステップの後に第3のステップによる暖房運転を行う。第2のステップのステップS08までは、第1の実施形態と第2の実施形態の運転方法は共通するため、その説明を省略する。   Next, the operation method of the heating cycle of the air conditioning system 200 will be described with reference to the flowchart of FIG. The air conditioning system of the second embodiment performs the heating operation by the third step after the second step of the first embodiment. Up to step S08 of the second step, the operation method of the first embodiment and the second embodiment is common, and the description thereof is omitted.

ステップS08にて温風吹出し開始後、蓄熱部入口温度測定手段11と、蓄熱部出口温度測定手段12は、それぞれ蓄熱部7の入口温度(Tin)と出口の冷媒温度(Tout)を測定し、測定した値の差(Tout−Tin)の値(ΔT)と判定値である所要の値(T)との大小関係の判定を行う(ステップS10)。ΔT<Tの場合、第3のステップにて制御部6は第1のバルブを開に、第2のバルブを閉に操作し、第2の循環系路から第1の循環経路に流路を切り替えて、第1の循環系路に冷媒を流して運転を行う(ステップS11)。ΔT>Tの場合、所要の時間が経過した後に、再度ステップS10の判定を行う。冷媒出口温度が第2のステップにて蓄熱部7から吸熱をすると、蓄熱材71の温度は経時的に低下する。蓄熱材71の温度が低いと冷媒の吸熱量が低下し、暖房能力が低下する課題がある。そこで本実施の形態では、蓄熱部7の入口温度「Tin」と出口の冷媒温度「Tout」を測定し、「Tout−Tin」が所要の下限値より低い場合、蓄熱部7からの吸熱量が不足していると判断し、第3のステップに切り替えて第1の循環経路に冷媒を流し、室外熱交換器5で空気から吸熱を行う。ここで、「Tout−Tin」の下限値は制御部6に予め記録されており、動作条件等に応じて、所要の値を用いることができる。よって、蓄熱部7からの吸熱が低下した場合にも、暖房能力の低下を抑制することが可能となる。 After starting the hot air blowing in step S08, the heat storage section inlet temperature measuring means 11 and the heat storage section outlet temperature measuring means 12 measure the inlet temperature (T in ) and the outlet refrigerant temperature (T out ) of the heat storage section 7, respectively. Then, the magnitude relationship between the measured value difference (T out -T in ) (ΔT) and the required value (T l ), which is the judgment value, is determined (step S10). In the case of ΔT <T 1 , in the third step, the control unit 6 operates the first valve to open and the second valve to close so that the flow path from the second circulation system path to the first circulation path And the operation is performed by flowing the refrigerant through the first circulation path (step S11). If ΔT> T i , the determination in step S10 is performed again after the required time has elapsed. When the refrigerant outlet temperature absorbs heat from the heat storage unit 7 in the second step, the temperature of the heat storage material 71 decreases with time. When the temperature of the heat storage material 71 is low, there is a problem that the heat absorption amount of the refrigerant decreases and the heating capacity decreases. Therefore, in the present embodiment, the inlet temperature “T in ” of the heat storage unit 7 and the refrigerant temperature “T out ” of the outlet are measured, and when “T out −T in ” is lower than the required lower limit value, It is determined that the heat absorption amount is insufficient, and the flow is switched to the third step to flow the refrigerant through the first circulation path, and the outdoor heat exchanger 5 absorbs heat from the air. Here, the lower limit value of “T out −T in ” is recorded in advance in the control unit 6, and a required value can be used according to the operating conditions and the like. Therefore, also when the heat absorption from the heat storage part 7 falls, it becomes possible to suppress the fall of heating capability.

第1および第2の実施形態にて、第2の循環経路を冷媒が流れる場合、蓄熱部7から加熱によって圧縮機1に吸い込まれる冷媒は高温ガスとなる。圧縮機1に供給される冷媒が高温ガスの場合、圧縮機1に液体の冷媒が供給される問題や、低温時に圧縮機1の潤滑性が低下する問題を抑制することが可能となる。よって、第2の循環経路に冷媒を流す場合のみ、圧縮機1の周波数を増加させる時の周波数最大増加速度であるdf/dtを増加させる。図7のグラフを用いて、以下、圧縮機1の回転子の周波数について説明する。図7中では、実線が第1の循環系路を冷媒が流れる際の圧縮機1の回転子の回転周波数を示す。また、図7中の破線は、第2の循環系路を冷媒が流れる際の圧縮機1の回転子の回転周波数を示す。   In the first and second embodiments, when the refrigerant flows through the second circulation path, the refrigerant sucked into the compressor 1 by heating from the heat storage unit 7 becomes a high-temperature gas. When the refrigerant supplied to the compressor 1 is a high-temperature gas, it is possible to suppress the problem that the liquid refrigerant is supplied to the compressor 1 and the problem that the lubricity of the compressor 1 decreases at low temperatures. Therefore, df / dt, which is the maximum frequency increase rate when increasing the frequency of the compressor 1, is increased only when the refrigerant flows through the second circulation path. Hereinafter, the frequency of the rotor of the compressor 1 will be described with reference to the graph of FIG. In FIG. 7, the solid line indicates the rotational frequency of the rotor of the compressor 1 when the refrigerant flows through the first circulation system path. Moreover, the broken line in FIG. 7 shows the rotational frequency of the rotor of the compressor 1 when the refrigerant flows through the second circulation system path.

ここで、周波数最大増加速度は、単位時間あたり(Δt)の圧縮機周波数増加量(Δf)で定義され、式(1)で表現する。   Here, the frequency maximum increase rate is defined by the compressor frequency increase amount (Δf) per unit time (Δt), and is expressed by Expression (1).

Δt>0、かつΔf>0の場合に適用 Applicable when Δt> 0 and Δf> 0

そして、第1の循環経路で冷媒を流す時の圧縮機周波数最大増加速度をdf/dt、第2の循環経路で冷媒を流す時の圧縮機周波数最大増加速度をとすると、df/dt式(2)が成り立つよう、圧縮機1の回転子の周波数を制御する。 When the maximum compressor frequency increase rate when the refrigerant flows through the first circulation path is df 1 / dt, and the maximum compressor frequency increase rate when the refrigerant flows through the second circulation path, df 2 / dt The frequency of the rotor of the compressor 1 is controlled so that Formula (2) is satisfied.

df/dt、df/dtの値は予め制御部6に記録させておく。そして、式(2)の条件で圧縮機1の周波数を制御することで、第1の循環経路を流れる場合に対して第2の循環経路を流れる場合は冷媒の循環流量を増加させ、立ち上がり時間の短縮と、暖房能力の増加を図ることが可能となる。 The values of df 1 / dt and df 2 / dt are recorded in the control unit 6 in advance. Then, by controlling the frequency of the compressor 1 under the condition of the expression (2), the circulation flow rate of the refrigerant is increased when flowing through the second circulation path with respect to the flow through the first circulation path, and the rise time It is possible to shorten the power consumption and increase the heating capacity.

100、200…空気調和装置(システム)、1…圧縮機、2…冷暖切り替え四方弁、3…室内熱交換器、4…絞り弁、5…室外熱交換器、P…配管、6…制御部、7…蓄熱部、8…第1のバルブ、9…第2のバルブ、10、11、12…温度測定手段、71…潜熱蓄熱材、72…潜熱熱交換器、73…発核手段、74…蓄熱材容器、L…配線、P…配管   DESCRIPTION OF SYMBOLS 100, 200 ... Air conditioning apparatus (system), 1 ... Compressor, 2 ... Cooling / heating switching four-way valve, 3 ... Indoor heat exchanger, 4 ... Throttle valve, 5 ... Outdoor heat exchanger, P ... Piping, 6 ... Control part , 7 ... heat storage section, 8 ... first valve, 9 ... second valve, 10, 11, 12 ... temperature measuring means, 71 ... latent heat storage material, 72 ... latent heat heat exchanger, 73 ... nucleation means, 74 ... Heat storage material container, L ... Wiring, P ... Piping

Claims (9)

圧縮機と、冷暖切り替え四方弁と、室内熱交換器と、絞り弁と、室外熱交換器と、配管と、蓄熱材を有する蓄熱部と、制御部と、第1のバルブと、第2のバルブとを有し、
前記配管は、前記圧縮機と前記室内熱交換器と前記室外熱交換器との間に冷媒を循環させる循環回路を形成し、
前記圧縮機は、前記室外熱交換器と前記室内熱交換器との間の循環回路に配置され、
前記四方弁は、前記圧縮機と前記室内熱交換器及び前記圧縮機と前記室外熱交換器の間に配置され、
前記絞り弁は、前記循環回路の前記室内熱交換器と前記室外熱交換器とを挟んで配置され、
前記蓄熱部は、前記圧縮機と前記絞り弁との間に配置され、
前記第1のバルブは、前記絞り弁と前記室外熱交換器との間に配置され、
前記第2のバルブは、前記絞り弁と前記蓄熱部との間に配置され、
前記圧縮機と、前記室内熱交換器と、前記室外熱交換器との間に冷媒を循環させる第1の循環経路と、
前記圧縮機と、前記室内熱交換器と、前記蓄熱部との間に冷媒を循環させる第2の循環経路とを有し、
前記第1の循環系路に冷媒を循環させる第1のステップ後に前記第2の循環系路に冷媒を循環させる第2のステップで暖房運転を行うように前記制御部によって前記第1のバルブと前記第2のバルブの開閉を制御することを特徴とする空気調和システム。
A compressor, a cooling / heating switching four-way valve, an indoor heat exchanger, a throttle valve, an outdoor heat exchanger, piping, a heat storage unit having a heat storage material, a control unit, a first valve, and a second valve A valve,
The pipe forms a circulation circuit for circulating a refrigerant between the compressor, the indoor heat exchanger, and the outdoor heat exchanger,
The compressor is disposed in a circulation circuit between the outdoor heat exchanger and the indoor heat exchanger,
The four-way valve is disposed between the compressor and the indoor heat exchanger and between the compressor and the outdoor heat exchanger,
The throttle valve is disposed across the indoor heat exchanger and the outdoor heat exchanger of the circulation circuit,
The heat storage unit is disposed between the compressor and the throttle valve,
The first valve is disposed between the throttle valve and the outdoor heat exchanger,
The second valve is disposed between the throttle valve and the heat storage unit,
A first circulation path for circulating a refrigerant between the compressor, the indoor heat exchanger, and the outdoor heat exchanger;
A second circulation path for circulating a refrigerant between the compressor, the indoor heat exchanger, and the heat storage unit;
After the first step of circulating the refrigerant in the first circulation system path, the control unit performs the heating operation in the second step of circulating the refrigerant in the second circulation system path. An air conditioning system that controls opening and closing of the second valve.
前記制御部は、切替信号に基づいて前記第1のステップから第2のステップに切替えることを特徴とする請求項1に記載の空気調和システム。   The air conditioning system according to claim 1, wherein the control unit switches from the first step to the second step based on a switching signal. 前記第1のステップをタイマーで予め登録した時間に開始させることを特徴とする請求項1又は2に記載の空気調和システム。   The air conditioning system according to claim 1 or 2, wherein the first step is started at a time previously registered by a timer. 空気調和システム使用者の指令によって前記切替信号を切り替えることを特徴とする請求項2又は3に記載の空気調和システム。   The air conditioning system according to claim 2 or 3, wherein the switching signal is switched according to a command from an air conditioning system user. 前記制御部は、空気調和システム使用頻度、外気温、室内熱交換器温度のうちの少なくともいずれかに基づいて前記切替信号を切り替えることを特徴とする請求項2乃至4のいずれか1項に記載の空気調和システム。   5. The control unit according to claim 2, wherein the control unit switches the switching signal based on at least one of an air conditioning system usage frequency, an outside air temperature, and an indoor heat exchanger temperature. Air conditioning system. 前記第2のステップにおいて、前記圧縮機の回転子の周波数最大増加速度は、前記第1のステップにおける前記圧縮機の回転子の周波数最大増加速度よりも速いことを特徴とする請求項1乃至5のいずれか1項に記載の空気調和システム。   6. The maximum frequency increase rate of the compressor rotor in the second step is faster than the maximum frequency increase rate of the compressor rotor in the first step. The air conditioning system according to any one of the above. 前記第2のステップにおいて、前記蓄熱部入口の冷媒温度と出口の冷媒温度を測定し、測定した出口温度と入口温度の差が所要値よりも低い場合、前記第2の循環経路から第1の循環経路に切り替えることを特徴とする請求項1乃至6のいずれか1項に記載の空気調和システム。   In the second step, the refrigerant temperature at the inlet of the heat storage section and the refrigerant temperature at the outlet are measured, and when the difference between the measured outlet temperature and the inlet temperature is lower than a required value, the first circulation path The air conditioning system according to claim 1, wherein the air conditioning system is switched to a circulation path. 前記第1のステップにおいて、前記室内熱交換器の温度が所要値より小さくなるよう、前記圧縮機の回転子の周波数を調整することを特徴とする請求項1乃至7のいずれか1項に記載の空気調和システム。   The frequency of the rotor of the compressor is adjusted so that the temperature of the indoor heat exchanger becomes smaller than a required value in the first step. Air conditioning system. 前記蓄熱材は、過冷却性を有し、
前記蓄熱部は、前記蓄熱材の過冷却解除手段を有し、
前記前記第1ステップから前記第2ステップへ移行する時機に前記蓄熱材の過冷却を解除することを特徴とする請求項1乃至8のいずれか1項に記載の空気調和システム
The heat storage material has supercooling properties,
The heat storage unit has a supercooling release means for the heat storage material,
The air conditioning system according to any one of claims 1 to 8, wherein the supercooling of the heat storage material is released when the first step moves to the second step.
JP2013256508A 2013-12-11 2013-12-11 Air conditioning system Pending JP2015114051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256508A JP2015114051A (en) 2013-12-11 2013-12-11 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256508A JP2015114051A (en) 2013-12-11 2013-12-11 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2015114051A true JP2015114051A (en) 2015-06-22

Family

ID=53528018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256508A Pending JP2015114051A (en) 2013-12-11 2013-12-11 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2015114051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094732A (en) * 2018-12-12 2020-06-18 株式会社コロナ Air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212638A (en) * 1983-05-16 1984-12-01 Matsushita Electric Ind Co Ltd Operation control device for heat accumulating type air conditioner
JPS63116063A (en) * 1986-10-31 1988-05-20 株式会社東芝 Refrigeration cycle device
JPS63233266A (en) * 1987-03-20 1988-09-28 松下電器産業株式会社 Heat pump type air conditioner
JPH01306782A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Heat pump type air-conditioner
JPH01306756A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Method of controlling heat storage
JPH02171554A (en) * 1988-12-23 1990-07-03 Matsushita Electric Ind Co Ltd Heating overload control device for air conditioner
JPH0397162U (en) * 1990-01-18 1991-10-04
JP2000337685A (en) * 1999-05-14 2000-12-08 Samsung Electronics Co Ltd Method for controlling heating overload of air- conditioner
JP2001336806A (en) * 2000-05-30 2001-12-07 Matsushita Refrig Co Ltd Heat storage type air conditioner
JP2012072957A (en) * 2010-09-29 2012-04-12 Panasonic Corp Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212638A (en) * 1983-05-16 1984-12-01 Matsushita Electric Ind Co Ltd Operation control device for heat accumulating type air conditioner
JPS63116063A (en) * 1986-10-31 1988-05-20 株式会社東芝 Refrigeration cycle device
JPS63233266A (en) * 1987-03-20 1988-09-28 松下電器産業株式会社 Heat pump type air conditioner
JPH01306782A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Heat pump type air-conditioner
JPH01306756A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Method of controlling heat storage
JPH02171554A (en) * 1988-12-23 1990-07-03 Matsushita Electric Ind Co Ltd Heating overload control device for air conditioner
JPH0397162U (en) * 1990-01-18 1991-10-04
JP2000337685A (en) * 1999-05-14 2000-12-08 Samsung Electronics Co Ltd Method for controlling heating overload of air- conditioner
JP2001336806A (en) * 2000-05-30 2001-12-07 Matsushita Refrig Co Ltd Heat storage type air conditioner
JP2012072957A (en) * 2010-09-29 2012-04-12 Panasonic Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094732A (en) * 2018-12-12 2020-06-18 株式会社コロナ Air conditioner
JP7168435B2 (en) 2018-12-12 2022-11-09 株式会社コロナ air conditioner

Similar Documents

Publication Publication Date Title
TWI328100B (en) Refrigerating apparatus
CN104246378B (en) Air-conditioning system with supercooling phase-change material
CN104879843B (en) Air conditioner controlling device, multi-split air conditioner and air-conditioner control method
CN101680699B (en) Free-cooling capacity control for air conditioning systems
JP5958503B2 (en) Room temperature adjustment system
US11402112B2 (en) Heat exchange unit and air-conditioning apparatus
CA2962291C (en) Micro environmental control system
JP6108067B2 (en) Air conditioner for vehicles
JP2016031182A (en) Air conditioner
JP6342150B2 (en) Air conditioning system
JP2012083011A (en) Air conditioner
JP6351409B2 (en) Air conditioner
KR200451891Y1 (en) Electric fan
JP6537990B2 (en) Heat pump type cold and hot water supply system
JP2015114051A (en) Air conditioning system
KR20060124960A (en) Cool mode control method of air conditioner
JP2015117899A (en) Heat pump device
CN113498470B (en) Method for controlling a thermal management device of a motor vehicle
JP5403078B2 (en) Air conditioner
JP7000261B2 (en) Combined heat source heat pump device
JP2006017440A (en) Heat pump air conditioner
KR20130080737A (en) Air conditioner and home-leave driving method thereof
WO2018150568A1 (en) Refrigeration cycle device and control device
JP2002158478A (en) Air-conditioning system for facility
JP5871040B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327