JP6342150B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP6342150B2
JP6342150B2 JP2013256509A JP2013256509A JP6342150B2 JP 6342150 B2 JP6342150 B2 JP 6342150B2 JP 2013256509 A JP2013256509 A JP 2013256509A JP 2013256509 A JP2013256509 A JP 2013256509A JP 6342150 B2 JP6342150 B2 JP 6342150B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
temperature
heat exchanger
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013256509A
Other languages
Japanese (ja)
Other versions
JP2015114052A (en
Inventor
亮介 八木
亮介 八木
竹谷 伸行
伸行 竹谷
嘉浩 小見山
嘉浩 小見山
卓也 本郷
卓也 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Lifestyle Products and Services Corp
Priority to JP2013256509A priority Critical patent/JP6342150B2/en
Publication of JP2015114052A publication Critical patent/JP2015114052A/en
Application granted granted Critical
Publication of JP6342150B2 publication Critical patent/JP6342150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02B30/746

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

実施形態は、空気調和システムに関する。   Embodiments relate to an air conditioning system.

空気調和システムの暖房立上時に、室内に温風を吹き出すまでの立ち上がり時間を短縮させる取り組みが従来よりなされている。冷媒を蓄熱材で加熱、高温にし、圧縮機側に高温になった冷媒を供給することで立ち上がり時間を短縮させる提案がなされている。ただし、立ち上がり時間を短縮させるには、冷媒のみならず、これと接する圧縮機、室内熱交換器、圧縮機と室内熱交換器とを接続する配管に冷媒の熱が逃げないよう、これら温度を上昇させてやる必要がある。これら機器の昇温には大きな熱量が必要になるため、蓄熱部内に残留した冷媒のみを加熱し、その熱を循環させる方式では供給できる熱量が不足し、立ち上がり時間の短縮効果は小さいという課題があった。   Attempts have been made to shorten the rise time until hot air is blown into the room when the air conditioning system is heated. Proposals have been made to shorten the rise time by heating the refrigerant with a heat storage material to a high temperature and supplying the refrigerant at a high temperature to the compressor side. However, to shorten the rise time, not only the refrigerant but also the compressor, the indoor heat exchanger, and the pipe connecting the compressor and the indoor heat exchanger should be adjusted so that the heat of the refrigerant does not escape. It needs to be raised. Since a large amount of heat is required to raise the temperature of these devices, the method of heating only the refrigerant remaining in the heat storage unit and circulating the heat has a problem that the amount of heat that can be supplied is insufficient and the effect of shortening the rise time is small. there were.

特開平05―187735号公報JP 05-187735 A

実施形態の空気調和システムは、暖房起動時の、温風吹出しまでの立ち上がり時間を短縮させる。   The air conditioning system of the embodiment shortens the rise time until hot air blow-out at the time of heating activation.

実施形態の空気調和システムは、圧縮機と、冷暖切り替え四方弁と、室内熱交換器と、絞り弁と、室外熱交換器と、配管と、制御部とを有し、配管は、圧縮機と室内熱交換器と室外熱交換器との間に冷媒を循環させる循環回路を形成し、圧縮機は、室外熱交換器と室内熱交換器との間の循環回路に配置され、四方弁は、圧縮機と室内熱交換器及び圧縮機と室外熱交換器の間に配置され、絞り弁は、循環回路の室内熱交換器と室外熱交換器とを挟んで配置され、制御部は、冷媒のエントロピが圧縮機の入口よりも出口の方が大きく、圧縮機の温度は、冷媒の臨界点の温度よりも低くなるように暖房運転開始前に予熱暖房運転を制御し、制御部による制御は、圧縮機の回転周波数の制御であることを特徴とする。 The air conditioning system of the embodiment includes a compressor, a cooling / heating switching four-way valve, an indoor heat exchanger, a throttle valve, an outdoor heat exchanger, a pipe, and a control unit. A circulation circuit for circulating the refrigerant is formed between the indoor heat exchanger and the outdoor heat exchanger, the compressor is arranged in a circulation circuit between the outdoor heat exchanger and the indoor heat exchanger, and the four-way valve is It is arranged between the compressor and the indoor heat exchanger and between the compressor and the outdoor heat exchanger, the throttle valve is arranged between the indoor heat exchanger and the outdoor heat exchanger of the circulation circuit, and the control unit The entropy is larger at the outlet than the inlet of the compressor, and the compressor temperature is controlled before the heating operation so that the temperature of the compressor is lower than the temperature of the critical point of the refrigerant . It is characterized by controlling the rotation frequency of the compressor .

図1は、実施形態の空気調和装置(システム)の暖房サイクル構成図である。Drawing 1 is a heating cycle lineblock diagram of an air harmony device (system) of an embodiment. 図2は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。Drawing 2 is a flow chart of preheating heating operation of an air harmony device system of an embodiment. 図3は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。Drawing 3 is a flow chart of preheating heating operation of the air harmony device system of an embodiment. 図4は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。FIG. 4 is a flowchart of the preheating heating operation of the air conditioner system according to the embodiment. 図5は、実施形態の冷媒の圧力−エンタルピ線図である。FIG. 5 is a pressure-enthalpy diagram of the refrigerant of the embodiment. 図6は、実施形態の冷媒の圧力−エンタルピ線図である。FIG. 6 is a pressure-enthalpy diagram of the refrigerant of the embodiment. 図7は、実施形態の空気調和装置(システム)の暖房サイクル構成図である。Drawing 7 is a heating cycle lineblock diagram of an air harmony device (system) of an embodiment. 図8は、実施形態の蓄熱材充填カバーを有する圧縮機の断面概念図である。FIG. 8 is a conceptual cross-sectional view of a compressor having the heat storage material filling cover of the embodiment. 図9は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。FIG. 9 is a flowchart of the preheating heating operation of the air conditioner system according to the embodiment. 図10は、実施形態の空気調和装置(システム)の暖房サイクル構成図である。Drawing 10 is a heating cycle lineblock diagram of an air harmony device (system) of an embodiment. 図11は、実施形態の空気調和装置システムの予熱暖房運転のフローチャートである。FIG. 11 is a flowchart of the preheating heating operation of the air conditioner system according to the embodiment.

以下、図面を参照しつつ、実施の形態について例示をする。なお、各実施形態で共通する詳細な説明は適宜省略する。
[第1の実施形態]
図1は、第1の実施形態に係る空気調和システム50の暖房サイクルの構成図である。実施形態の空気調和システム(空気調和装置)は、冷媒を圧縮する圧縮機1と、冷暖切替え用四方弁2と、室内熱交換器3と、絞り弁4と、室外熱交換器5と、制御部6から構成される。
Hereinafter, embodiments will be illustrated with reference to the drawings. Note that a detailed description common to the embodiments is omitted as appropriate.
[First Embodiment]
Drawing 1 is a lineblock diagram of the heating cycle of air harmony system 50 concerning a 1st embodiment. The air conditioning system (air conditioning apparatus) of the embodiment includes a compressor 1 that compresses a refrigerant, a cooling / heating switching four-way valve 2, an indoor heat exchanger 3, a throttle valve 4, an outdoor heat exchanger 5, and a control. The unit 6 is configured.

実施形態の暖房サイクルは、圧縮機1の入口よりも出口の冷媒のエントロピが大きく、圧縮機1の温度が冷媒の臨界温度未満になるように予熱暖房運転を行う。実施形態の予熱暖房運転では、前記条件により、空気調和システム(空気調和装置)を構成する圧縮機1等の機器が十分に暖められた状態であり、暖房運転開始とともに、温度低下することなく温風を室内に吹き出すことができる。   In the heating cycle of the embodiment, the entropy of the refrigerant at the outlet is larger than that at the inlet of the compressor 1 and the preheating heating operation is performed so that the temperature of the compressor 1 becomes lower than the critical temperature of the refrigerant. In the preheating heating operation of the embodiment, devices such as the compressor 1 constituting the air conditioning system (air conditioning device) are sufficiently warmed according to the above-described conditions, and the temperature does not decrease with the start of the heating operation. Wind can be blown into the room.

上記制御を行うために制御部6は、例えば、圧縮機1に流入する冷媒の温度を取得する入口冷媒温度取得手段8と、圧縮機1内の圧縮室1内壁の温度を取得する内壁面温度取得手段9と、圧縮機1に流入する冷媒の圧力を取得する入口冷媒圧力取得手段7と、圧縮機1から吐出する冷媒の圧力を取得する出口冷媒圧力取得手段10と、を有する。   In order to perform the above control, the control unit 6 includes, for example, an inlet refrigerant temperature acquisition unit 8 that acquires the temperature of the refrigerant flowing into the compressor 1 and an inner wall surface temperature that acquires the temperature of the inner wall of the compression chamber 1 in the compressor 1. It has acquisition means 9, inlet refrigerant pressure acquisition means 7 for acquiring the pressure of the refrigerant flowing into the compressor 1, and outlet refrigerant pressure acquisition means 10 for acquiring the pressure of the refrigerant discharged from the compressor 1.

圧縮機1で、冷媒のエントロピを増大させる制御とは、制御部6において、冷媒によって定まる圧力−エンタルピ線図の圧力が入口冷媒圧力取得手段7によって取得した入口冷媒圧力と入口冷媒温度取得手段8によって取得した入口冷媒温度から定まる入口状態点を定める。ついで、圧力−エンタルピ線図の入口状態点からの等エントロピ線上の圧力が出口冷媒圧力取得手段10によって取得した出口冷媒圧力における温度よりも内壁面温度取得手段9によって取得した内壁面温度が高く、かつ、冷媒の臨界点の温度よりも内壁面温度が低くなるように予熱暖房運転を行う(予熱暖房運転を開始する)。   The control for increasing the entropy of the refrigerant in the compressor 1 means that the pressure in the pressure-enthalpy diagram determined by the refrigerant is acquired by the inlet refrigerant pressure acquisition unit 7 and the inlet refrigerant temperature acquisition unit 8 in the control unit 6. The inlet state point determined from the inlet refrigerant temperature obtained by the above is determined. Next, the inner wall surface temperature acquired by the inner wall surface temperature acquisition unit 9 is higher than the temperature at the outlet refrigerant pressure acquired by the outlet refrigerant pressure acquisition unit 10 as the pressure on the isentropic line from the inlet state point of the pressure-enthalpy diagram, And preheating heating operation is performed so that the inner wall surface temperature becomes lower than the temperature of the critical point of the refrigerant (preheating heating operation is started).

圧縮機1は、室外熱交換器3と室内熱交換器4との間に配置され、熱媒体である冷媒を圧縮する。圧縮機1の一部に液冷媒を貯蔵するアキュムレータが取り付けられている場合がある。この場合、アキュムレータで気液分離されてガス化した冷媒が圧縮機1の圧縮室に送られる。圧縮機1を出た冷媒は、配管Pにより、四方弁2、室内熱交換器3、絞り弁4、室外熱交換器5を経て圧縮機1に再び吸い込まれる。冷媒としては、例えば、ハイドロフルオロカーボンやハイドロクロロフルオロカーボン等を用いることができる。配管Pは、圧縮機1と室内熱交換器3と、室外熱交換器5との間に冷媒を循環させる循環回路を形成する。   The compressor 1 is arrange | positioned between the outdoor heat exchanger 3 and the indoor heat exchanger 4, and compresses the refrigerant | coolant which is a heat medium. An accumulator that stores liquid refrigerant may be attached to a part of the compressor 1. In this case, the gasified and gasified refrigerant gasified by the accumulator is sent to the compression chamber of the compressor 1. The refrigerant exiting the compressor 1 is sucked into the compressor 1 again by the pipe P through the four-way valve 2, the indoor heat exchanger 3, the throttle valve 4, and the outdoor heat exchanger 5. As the refrigerant, for example, hydrofluorocarbon, hydrochlorofluorocarbon, or the like can be used. The pipe P forms a circulation circuit that circulates refrigerant between the compressor 1, the indoor heat exchanger 3, and the outdoor heat exchanger 5.

四方弁2は、圧縮機1と室内熱交換器3の間及び圧縮機1と室外熱交換器5の間に配置される。四方弁2は、圧縮機1で圧縮された冷媒の循環方向を切り替えることができる。圧縮された冷媒が室内熱交換器3に向かう循環回路は、暖房時の回路である。暖房の場合は、暖められた空気が室内熱交換器3から室内に向かって送風される。圧縮された冷媒が室外熱交換器5に向かう循環回路は、冷房時の回路である。冷媒の場合は、冷やされた空気が室内熱交換器3から室内に向かって送風される。予熱暖房運転とは、室内熱交換器3から室内への温風の吹き出しを制限すること以外は、暖房運転と同様である。以下、実施形態は、暖房について説明し、冷房については省略するが、空気調和装置は、冷房と暖房の両機能を備えることができる。暖房のみの機能を有する空気調和装置50(システム)は、四方弁を省略することができる。   The four-way valve 2 is disposed between the compressor 1 and the indoor heat exchanger 3 and between the compressor 1 and the outdoor heat exchanger 5. The four-way valve 2 can switch the circulation direction of the refrigerant compressed by the compressor 1. The circulation circuit in which the compressed refrigerant goes to the indoor heat exchanger 3 is a circuit during heating. In the case of heating, warmed air is blown from the indoor heat exchanger 3 into the room. A circulation circuit in which the compressed refrigerant is directed to the outdoor heat exchanger 5 is a circuit during cooling. In the case of the refrigerant, the cooled air is blown from the indoor heat exchanger 3 into the room. The preheating heating operation is the same as the heating operation except that the blowing of warm air from the indoor heat exchanger 3 into the room is restricted. Hereinafter, although an embodiment explains heating and omits about cooling, an air harmony device can be provided with both functions of cooling and heating. The air-conditioning apparatus 50 (system) having a function only for heating can omit the four-way valve.

室内熱交換器3は、圧縮機1で圧縮した高温高圧の冷媒と室内空気とを熱交換し、冷媒を凝縮させて昇温した空気を室内に放出する。モーターで回転させた室内熱交換器3内のファンによる送風で空気を室内に放出する。熱交換した空気の吹き出し口を開閉することができる。
絞り弁4は、室内熱交換器3を経た冷媒を減圧させる。
室外熱交換器5は、絞り弁4で減圧した低温低圧の冷媒と室外空気とを熱交換し、冷媒を蒸発させて降温した空気を室外に放出する。モーターで回転させた室外熱交換器5内のファンによる送風で空気を室外に放出する。ここで、室内、室外とは、暖房対象の部屋の室内か室外を意味する。
The indoor heat exchanger 3 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 1 and the room air, and discharges the air heated by condensing the refrigerant to the room. Air is discharged into the room by blowing air from a fan in the indoor heat exchanger 3 rotated by a motor. The air outlet after heat exchange can be opened and closed.
The throttle valve 4 depressurizes the refrigerant that has passed through the indoor heat exchanger 3.
The outdoor heat exchanger 5 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the throttle valve 4 and the outdoor air, and evaporates the refrigerant to release the cooled air to the outdoors. Air is discharged to the outside by blowing air from a fan in the outdoor heat exchanger 5 rotated by a motor. Here, “indoor” and “outdoor” mean indoors or outdoors of the room to be heated.

実施形態の空気調和システムは、暖房起動時の、温風吹出しまでの立ち上がり時間を短縮させるために、圧縮機1入口のエントロピよりも圧縮機1出口のエントロピが大きく、かつ、圧縮機1出口の温度が冷媒の臨界点における温度よりも低くなるように予熱暖房運転を制御部6で制御する。
以下、圧縮機1から吐出する冷媒の圧力である出口冷媒圧力をPと記す。圧縮機1内の圧縮室内壁の温度である内壁面温度をTと記す。圧縮機1に流入する冷媒の圧力である入口冷媒圧力をPと記す。圧縮機1に流入する冷媒の温度である入口冷媒温度をTと記す。各圧力及び温度の値は、冷媒や測定対象の機器を直接測定して取得してもよいし、冷媒や測定対象の機器以外の構成から間接的に測定することによって推定して取得してもよい。推定した場合は、間接的に測定した数値をそのまま使用するか、測定値を用いて所要の演算した値を使用することができる。従って、温度又は圧力の取得手段は、例えば、センサ又はセンサと演算プログラムから構成される。例えば、圧力取得手段は、温度取得手段のセンサと演算プログラムから構成される場合もある。
In the air conditioning system of the embodiment, the entropy of the compressor 1 outlet is larger than the entropy of the compressor 1 inlet and the compressor 1 outlet of the compressor 1 outlet in order to shorten the rise time until the hot air blow-out at the start of heating. The preheating heating operation is controlled by the control unit 6 so that the temperature is lower than the temperature at the critical point of the refrigerant.
Hereinafter, an outlet refrigerant pressure is the pressure of refrigerant discharged from the compressor 1 described as P d. The inner wall surface temperature, which is the temperature of the compression chamber wall in the compressor 1, is denoted as Tc . An inlet refrigerant pressure is the pressure of the refrigerant flowing into the compressor 1 described as P s. The inlet coolant temperature is the temperature of the refrigerant flowing into the compressor 1 described as T s. The value of each pressure and temperature may be obtained by directly measuring the refrigerant or the measurement target device, or may be estimated and obtained by indirectly measuring from a configuration other than the refrigerant or the measurement target device. Good. In the case of estimation, a numerical value measured indirectly can be used as it is, or a value calculated using a measured value can be used. Therefore, the temperature or pressure acquisition means is composed of, for example, a sensor or a sensor and a calculation program. For example, the pressure acquisition unit may include a sensor of the temperature acquisition unit and a calculation program.

制御部6は、温度や圧力、圧縮機1の周波数、室内熱交換器3、四方弁4、室外熱交換器5などの空気調和装置(システム)の動作を制御することができる。制御部6には、ユーザが無線操作可能なリモコン等の端末が含まれても良い。制御部6は、マイコン、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field−Programmable Gate Array)等の集積回路を有し、ソフトウェア又はハードウェア制御されている。   The controller 6 can control the operation of an air conditioner (system) such as the temperature and pressure, the frequency of the compressor 1, the indoor heat exchanger 3, the four-way valve 4, and the outdoor heat exchanger 5. The control unit 6 may include a terminal such as a remote control that can be wirelessly operated by the user. The control unit 6 includes an integrated circuit such as a microcomputer, an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field-Programmable Gate Array), and is controlled by software or hardware.

制御部6は、図示しない空気調和装置(システム)の動作を制御する手段の他に、P値を取得するP取得手段7と、T値を取得するT取得手段8と、P値を取得するP取得手段9と、T値を取得するT取得手段10を有する。Pは、例えば、圧縮機1から冷媒吐出される出口に圧力センサを配置し、測定した圧力から得ることができる(配線L1)。Tは、例えば、圧縮機1の筐体表面に温度センサを配置し、測定した温度から得ることができる(配線L2)。Pは、例えば、圧縮機1の冷媒吸込口に圧力センサを配置し、測定した圧力から得ることができる(配線L3)。Tは、例えば、冷媒吸込口の配管に温度センサを配置し、測定した温度から得ることができる(配線L4)。 Control unit 6, in addition to the means for controlling the operation of the air conditioning apparatus, not shown (system), and P d acquiring means 7 for acquiring P d value, and T c acquisition unit 8 for acquiring T c value, P and P s acquisition unit 9 for acquiring s values have a T s acquisition means 10 for acquiring T s value. P d, for example, can be obtained from a pressure sensor disposed at the outlet to be discharged refrigerant from the compressor 1, and the measured pressure (line L1). Tc can be obtained from, for example, a temperature measured by arranging a temperature sensor on the casing surface of the compressor 1 (wiring L2). P s is, for example, can be obtained from a pressure sensor disposed in a refrigerant suction port of the compressor 1, and the measured pressure (line L3). T s can be obtained from, for example, a temperature measured by placing a temperature sensor in the refrigerant suction pipe (wiring L4).

圧力センサは高額なセンサであるため、圧力センサを圧力測定のために設置する場合、コストの増加になる。圧力センサ以外の構成によって、圧力を推定可能な場合は、他の手段によって、PやPを推定することができる。例えば、圧力センサを用いてPを測定し、一方、Pを推定する場合、圧縮機1の周波数(回転数)を検知し、その値と冷媒物性とPとから圧縮率を求め、Pを推定することができる。 Since the pressure sensor is an expensive sensor, when the pressure sensor is installed for pressure measurement, the cost increases. When the pressure can be estimated by a configuration other than the pressure sensor, P s and P d can be estimated by other means. For example, when P s is measured using a pressure sensor and P d is estimated, the frequency (the number of rotations) of the compressor 1 is detected, and the compression rate is obtained from the value, refrigerant physical properties, and P s , P d can be estimated.

また、予め予熱暖房運転中のP、P、Tを規定値として制御部6内の記憶装置に記録しておくことができる。この場合、所要の過去分の予熱暖房運転時のP、P、Tを制御部6に記録し、各々の規定値を記憶装置に更新又は追加してもよい。規定値は、1つの予熱暖房運転時の条件値でも良いし、過去分の条件値の平均値などでもよい。これらの規定値は、下記に説明する予熱暖房運転の動作条件を設定する基準値に採用することができる。予熱暖房運転の動作条件値は、予熱時の気候条件から判断して、設定されてもよい。 Further, P d , P s , and T s during the preheating heating operation can be recorded in advance in the storage device in the control unit 6 as specified values. In this case, P d , P s , and T s during the required preheating heating operation for the past may be recorded in the control unit 6, and each specified value may be updated or added to the storage device. The specified value may be a condition value during one preheating heating operation, or an average value of condition values for the past. These specified values can be adopted as reference values for setting the operating conditions of the preheating heating operation described below. The operating condition value for the preheating heating operation may be set by judging from the climatic conditions during preheating.

次に、空気調和システム50の暖房サイクルの運転方法について説明する。図2に、図1の空気調和システム50の暖房サイクル運転方法に係るフローチャート500を示す。なお、実施形態においては、冷房運転方法に関する説明を省略するが、冷房運転等の他の運転方法が空気調和システムに含まれていてもよい。
フローチャート500では、まずステップS501にて、ユーザが暖房起動時に予熱暖房を使用するか否かの設定について操作リモコン等を通して行う。そして、ステップS502でユーザが予熱暖房ありの設定をした場合、ステップS503でユーザは暖房開始前に予熱暖房運転を自動的に開始する時刻をタイマー設定する。なお、タイマー設定する時刻は、このように予熱暖房運転を開始する時刻をユーザが直接指定する他、ユーザは暖房を開始する時刻を設定し、その時刻から予熱開始時刻を制御部6が自動的に設定することも可能である。さらに、制御部6はユーザの暖房使用時刻を学習し、その時刻から予め定められた時間前に予熱暖房開始時刻を自動的に設定することも可能である(図3)。ステップS501からステップS503までの工程は、予熱暖房運転を行う時刻が設定済みであれば、省略することができる。
Next, the operation method of the heating cycle of the air conditioning system 50 will be described. FIG. 2 shows a flowchart 500 according to the heating cycle operation method of the air conditioning system 50 of FIG. In addition, in embodiment, although the description regarding a cooling operation method is abbreviate | omitted, other operation methods, such as a cooling operation, may be contained in the air conditioning system.
In the flowchart 500, first, in step S501, the user sets whether or not to use preheating heating when heating is started through an operation remote controller or the like. If the user makes a setting for preheating heating in step S502, the user sets a timer for automatically starting the preheating heating operation before starting heating in step S503. As for the time to set the timer, in addition to the user directly specifying the time to start the preheating heating operation, the user sets the time to start heating, and the control unit 6 automatically sets the preheating start time from that time. It is also possible to set to. Further, the control unit 6 can learn the heating use time of the user, and can automatically set the preheating heating start time a predetermined time before that time (FIG. 3). The steps from step S501 to step S503 can be omitted if the time for performing the preheating heating operation has been set.

設定した時刻になったら、ステップS504において制御部6は空気調和システム50の予熱暖房運転を開始する。予熱暖房運転が開始されると、四方弁2が圧縮機1から排出される冷媒が室内熱交換器3、絞り弁4、室外熱交換器5の順で流れる回路を形成するよう接続されるように制御部6により制御される。そして、制御部6は、圧縮機1を駆動させ、回路に冷媒を循環させる。室内熱交換器3、室外熱交換器5が低温の環境で予熱暖房運転を開始すると、圧縮機1の筐体、冷媒、および室内熱交換器3の温度が低いため、圧縮機1で圧縮されて高温、高圧になった冷媒の熱は、暖房対象の室内を温めるのではなく、空気調和システム50の機器の昇温及び冷媒の気化に使われる。そのため、圧縮機1吐出冷媒の熱は室内空気に供給される前に放熱してしまう。これが時間の経過ともに機器の昇温、冷媒の気化が進むと、圧縮機1で圧縮された冷媒から前記機器、冷媒への放熱は少なくなり、冷媒の温度は上昇していく。温度が予め定められた温度より上昇したら、制御部6は、室内熱交換器3のファンを回転させ、その熱の一部を室内に放熱する(暖房運転開始)。ただし、予熱暖房運転中は、室内熱交換器3の吹出し口を閉じた状態、もしくはわずかに開口した状態で、室内に積極的に熱風を吹き出すことはせず、機器自体の温度上昇を優先させる。圧縮機1の内壁温度推定手段8は、予熱暖房運転中の内壁温度(T)を検知し、検知した値が、暖房開始前にて予め定められた下限値(Tcl)より高く、かつ、上限値(Tcu)より低くなるよう、圧縮機1の回転子の回転周波数、室内熱交換器3の吹き出し口の開度、および室内熱交換機3内のファン回転数のうちの少なくともいずれかを制御する(Tcl<T<Tcu…式(1))。 When the set time comes, the control unit 6 starts the preheating heating operation of the air conditioning system 50 in step S504. When the preheating heating operation is started, the four-way valve 2 is connected so as to form a circuit in which the refrigerant discharged from the compressor 1 flows in the order of the indoor heat exchanger 3, the throttle valve 4, and the outdoor heat exchanger 5. Are controlled by the control unit 6. And the control part 6 drives the compressor 1, and circulates a refrigerant | coolant to a circuit. When the indoor heat exchanger 3 and the outdoor heat exchanger 5 start the preheating heating operation in a low temperature environment, the casing of the compressor 1, the refrigerant, and the temperature of the indoor heat exchanger 3 are low, so the compressor 1 is compressed by the compressor 1. The heat of the refrigerant that has become high temperature and high pressure is not used for heating the room to be heated, but for raising the temperature of the equipment of the air conditioning system 50 and vaporizing the refrigerant. Therefore, the heat of the refrigerant discharged from the compressor 1 is dissipated before being supplied to the room air. As the temperature of the equipment and the vaporization of the refrigerant progress with time, the heat radiation from the refrigerant compressed by the compressor 1 to the equipment and the refrigerant decreases, and the temperature of the refrigerant rises. When the temperature rises above a predetermined temperature, the control unit 6 rotates the fan of the indoor heat exchanger 3 and radiates a part of the heat to the room (starts heating operation). However, during the preheating heating operation, with the outlet of the indoor heat exchanger 3 closed or slightly opened, hot air is not actively blown into the room, and priority is given to the temperature rise of the equipment itself. . The inner wall temperature estimating means 8 of the compressor 1 detects the inner wall temperature (T c ) during the preheating heating operation, and the detected value is higher than a lower limit (T cl ) determined in advance before the start of heating, and , At least one of the rotational frequency of the rotor of the compressor 1, the opening degree of the outlet of the indoor heat exchanger 3, and the number of fan rotations in the indoor heat exchanger 3 so as to be lower than the upper limit value (T cu ). Is controlled (T cl <T c <T cu (Expression (1))).

式(1)を満たすようにする制御を図4のチャート図に示す。図4のチャートフローは、図2のステップS504を詳細に説明するものであるがこれは式(1)を満たすための制御の一例である。Tcu及びTclの設定方法は、下記段落に説明する。変形例としては、ループの変更やT検知の工程を追加乃至省略することで、図4とは一部が異なる工程で式(1)を満たすように予熱暖房運転を制御することができる。変形例は、組み合わせによって無数に存在するため、チャート図及びその説明を省略する。ステップS5041で予熱暖房運転されて、所要の時間が経過した後にTを検知して測定する(ステップS5042)。次いで、ステップS5043において、TとTclの高低関係の比較判定を行う。Tcl>Tであれば、Tが上昇する制御をステップS5045で行う。所要の時間が経過した後に、再度、Tを検知、測定を行い(S5042A)、Tcl>Tの判定を行う(S5043)。TがTcl以上になると次の判定を行う。ステップS5043判定に用いられたT又は図4のチャート中に図示していない工程によって取得したTとTcuの高低関係の比較判定を行う(S5044)。T>Tcuであれば、Tが低減する制御をステップS5046で行う。所要の時間が経過した後に、再度、Tを検知、測定を行い(S5042B)、T>Tcuの判定を行う(S5044)。TがTcu以下になると、式(1)を満たすようにTを保持するように制御する(S5047)。ステップS5047での温度保持制御とは、ステップS5043とS5044の判定を所要時間ごとに行なって、適切に制御しても良いし、ステップS5043とS5044において、条件を満たさなかった場合の、予熱暖房運転の動作条件を元に任意のアルゴリズムでTが式(1)の範囲内になるように圧縮機1の回転子の回転周波数、室内熱交換器3の吹き出し口の開度、および室内熱交換機3内のファン回転数などの条件値を設定してもよい。Tが所要時間式(1)を満たすか暖房運転開始時機になった時点で、予熱暖房運転を完了(S5048)し、暖房運転を開始する(S507)。 The control for satisfying the expression (1) is shown in the chart of FIG. The chart flow of FIG. 4 explains step S504 of FIG. 2 in detail, but this is an example of control for satisfying the equation (1). The method for setting T cu and T cl is described in the following paragraph. As a modification, by adding or omitting a loop change or Tc detection step, the preheating heating operation can be controlled so as to satisfy Equation (1) in a step that is partially different from that in FIG. Since there are an infinite number of modifications depending on the combination, the chart and description thereof are omitted. After the preheating heating operation is performed in step S5041 and the required time has elapsed, Tc is detected and measured (step S5042). Then, in step S5043, it performs a comparison determination of the high and low relationship between T c and T cl. If T cl > T c , control for increasing T c is performed in step S5045. After the required time has elapsed, again, detecting the T c, was measured (S5042A), and determines T cl> T c (S5043) . When Tc is equal to or greater than Tcl , the following determination is performed. Step S5043 is then compared in high and low relationship between T c and T cu obtained by a process which is not shown in the T c or chart of FIG. 4 was used for the determination (S5044). If T c > T cu , control for reducing T c is performed in step S5046. After the required time has elapsed, again, detecting the T c, it was measured (S5042B), and determines T c> T cu (S5044) . When T c becomes equal to or less than T cu , control is performed so as to hold T c so as to satisfy Expression (1) (S5047). The temperature holding control in step S5047 may be performed appropriately by performing the determinations in steps S5043 and S5044 for each required time, or the preheating heating operation in the case where the conditions are not satisfied in steps S5043 and S5044. The rotational frequency of the rotor of the compressor 1, the opening degree of the outlet of the indoor heat exchanger 3, and the indoor heat exchanger so that Tc is within the range of the expression (1) by an arbitrary algorithm based on the operating conditions of A condition value such as the number of fan rotations in 3 may be set. When Tc satisfies the required time equation (1) or when the heating operation starts, the preheating heating operation is completed (S5048), and the heating operation is started (S507).

圧縮機1の周波数を上げることは、Tを高くする制御である。圧縮機1の周波数を下げることは、Tを低くする制御である。室内熱交換器3の開度を大きくすることは、Tを低くする制御である。室内熱交換器3の開度を小さくすることは、Tを高くする制御である。室内熱交換器3内のファンの回転数を上げることは、Tを低くする制御である。室内熱交換器3内のファンの回転数を下げることは、Tを高くする制御である。例えば、これらの制御によって、Tを式(1)の範囲内にすることができる。 Increasing the frequency of the compressor 1 is control for increasing Tc . Lowering the frequency of the compressor 1 is control for lowering Tc . Increasing the opening degree of the indoor heat exchanger 3 is control for decreasing Tc . Reducing the opening of the indoor heat exchanger 3 is control for increasing Tc . Increasing the rotational speed of the fan in the indoor heat exchanger 3 is a control for decreasing Tc . Lowering the rotational speed of the fan in the indoor heat exchanger 3 is control for increasing Tc . For example, by these controls, Tc can be set within the range of the formula (1).

ここで、上記に説明したように予熱中の運転条件は、圧縮機1内壁温度(T)が式(1)を満たすように設定されるが、下限値(Tcl)、上限値(Tcu)は以下のように定める。Tclは、圧力−エンタルピ線図を用いて求める。Tcuは、冷媒の臨界点の温度である。Tclは、T、PとPと冷媒の圧力−エンタルピ線図から求めることができる。図5は暖房サイクル50を流れる実施形態の冷媒のP−H線図(圧力−エンタルピ線図)である。圧力−エンタルピ線図は冷媒に応じて一義的に定まる。用いる冷媒に合わせた圧力−エンタルピ線図のデータを実施形態の演算に利用可能なデータベース又は・及び演算式として制御部6に記憶しておく。まず、予熱暖房運転中のPと、そのTを推定し、吸込み冷媒の状態[1]を定める。次に、吸込み冷媒の状態[1]を起点とする一点長破線で示す等エントロピ線が予熱暖房中のPと交差する点[2]を求め、[2]を下限値(Tcl)として算出して定義する。圧力−エンタルピ線図は、冷媒によって一義的に定まる。冷媒の臨界点の温度は、圧力−エンタルピ線図の飽和液体線と飽和蒸気線の高圧・高温側の終点の温度である。 Here, as described above, the operating condition during preheating is set so that the inner wall temperature (T c ) of the compressor 1 satisfies the formula (1), but the lower limit value (T cl ) and the upper limit value (T cu ) is determined as follows. T cl is determined using a pressure-enthalpy diagram. T cu is the temperature at the critical point of the refrigerant. T cl can be obtained from T s , P s , P d, and the pressure-enthalpy diagram of the refrigerant. FIG. 5 is a PH diagram (pressure-enthalpy diagram) of the refrigerant of the embodiment that flows through the heating cycle 50. The pressure-enthalpy diagram is uniquely determined according to the refrigerant. Data of a pressure-enthalpy diagram according to the refrigerant to be used is stored in the control unit 6 as a database that can be used in the calculation of the embodiment or / and an arithmetic expression. First, P s during preheating heating operation and T s thereof are estimated, and the state [1] of the suction refrigerant is determined. Then, the suction that the isentropic curve indicated by a dot-length dashed line starting from the state [1] of the refrigerant crosses the P d in the preheating heating seeking [2], as the lower limit value (T cl) [2] Calculate and define. The pressure-enthalpy diagram is uniquely determined by the refrigerant. The temperature at the critical point of the refrigerant is the temperature at the end of the saturated liquid line and saturated vapor line on the high pressure / high temperature side of the pressure-enthalpy diagram.

図5の圧力−エンタルピ線図ように圧縮機内壁温度(T)>下限値(Tcl)の場合、圧縮機1内壁の温度は断熱圧縮後の吐出冷媒温度よりも高いため、内壁から冷媒に熱を供給することができる。よって、暖房運転が開始された際、温風吹出しまでの立ち上がり時間を短縮させることができる。
一方、図6の圧力−エンタルピ線図のように、圧縮機1内壁温度(T)<下限値(Tcl)の場合、圧縮機1内壁の温度は断熱圧縮後の吐出冷媒温度よりも低いため、内壁を通して圧縮機1筐体に冷媒の熱が奪われる。よって、暖房運転が開始された際、温風吹出しまでの立ち上がり時間が長くなる。また、冷媒の臨界点における温度を上限値(Tcu)として定義する。圧縮機1内壁温度(T)が臨界点の温度(Tcu)以上の場合、気液相変化に伴う潜熱を利用できない。よって、圧縮機1内壁温度(T)は冷媒の臨界点温度(Tcu)より低くなるように制御する。
When the compressor inner wall temperature (T c )> the lower limit (T cl ) as shown in the pressure-enthalpy diagram of FIG. 5, the temperature of the inner wall of the compressor 1 is higher than the discharged refrigerant temperature after adiabatic compression. Can be supplied with heat. Therefore, when the heating operation is started, the rising time until the hot air blows out can be shortened.
On the other hand, as shown in the pressure-enthalpy diagram of FIG. 6, when the compressor 1 inner wall temperature (T c ) <lower limit (T cl ), the temperature of the compressor 1 inner wall is lower than the discharged refrigerant temperature after adiabatic compression. Therefore, the heat of the refrigerant is taken to the compressor 1 casing through the inner wall. Therefore, when the heating operation is started, the rise time until the hot air blows out becomes longer. Further, the temperature at the critical point of the refrigerant is defined as the upper limit value (T cu ). When the inner wall temperature (T c ) of the compressor 1 is equal to or higher than the critical point temperature (T cu ), the latent heat accompanying the gas-liquid phase change cannot be used. Therefore, the compressor 1 inner wall temperature (T c ) is controlled to be lower than the critical point temperature (T cu ) of the refrigerant.

次に、ステップS505でユーザから暖房の指示を受けると、制御部6は、圧縮機1の回転数を増加させる。そして、制御部6は、室内熱交換器3の吹出し口を開けて室内熱交換器3のファン回転数を増加させ、室内に温風を吹き出す。
上記のように予熱暖房を行った後に暖房を起動する方法では、暖房開始時に圧縮機1の筐体の温度上昇、室内熱交換器3の温度上昇および、アキュムレータ内に蓄積する冷媒の気化が済んでいるため、暖房開始から短い時間で室内熱交換器3から高温の温風を吹き出すことができる。
一方、予熱暖房運転を行わない場合(ステップS502→ステップS506→ステップS507)、暖房運転開始直後は、圧縮機1筐体、室内熱交換器3の温度が低く、かつアキュムレータ内に蓄積する冷媒の気化ができていない状態である。したがって、圧縮機1で圧縮された冷媒の熱はこれら機器に吸熱され、室内に温風を吹き出すまでに時間を要し、かつ温風温度も低くなる。
Next, when receiving a heating instruction from the user in step S <b> 505, the control unit 6 increases the rotation speed of the compressor 1. And the control part 6 opens the blower outlet of the indoor heat exchanger 3, increases the fan rotation speed of the indoor heat exchanger 3, and blows warm air indoors.
In the method of starting the heating after performing the preheating heating as described above, the temperature of the casing of the compressor 1 is increased at the start of heating, the temperature of the indoor heat exchanger 3 is increased, and the refrigerant accumulated in the accumulator is vaporized. Therefore, high-temperature hot air can be blown out from the indoor heat exchanger 3 in a short time from the start of heating.
On the other hand, when the preheating heating operation is not performed (step S502 → step S506 → step S507), immediately after the heating operation is started, the temperatures of the compressor 1 housing and the indoor heat exchanger 3 are low, and the refrigerant accumulated in the accumulator It is in a state of not being vaporized. Therefore, the heat of the refrigerant compressed by the compressor 1 is absorbed by these devices, and it takes time until the hot air is blown into the room, and the hot air temperature is also lowered.

以上のように、空気調和システム50において、予熱暖房運転中の内壁温度(T)を検知し、検知した値が、暖房開始前にて予め定められた下限値(Tcl)より高く、かつ、上限値(Tcu)より低くなるよう、圧縮機1の周波数、室内熱交換器3の開度、および室内熱交換機3内のファン回転数を制御することで、冷媒から圧縮機1内壁への熱の逃げを抑制し、暖房起動時の温風吹出し時間を短縮させることが可能となる。予熱暖房運転の完了とは、Tが設定された予熱温度に達した時機、暖房運転開始時機、Tが暖房運転の設定温度の所要の範囲内に達した時機、又はこれらに相当する時機である。 As described above, in the air conditioning system 50, the inner wall temperature (T c ) during the preheating heating operation is detected, and the detected value is higher than the lower limit (T cl ) determined in advance before the start of heating, and By controlling the frequency of the compressor 1, the opening degree of the indoor heat exchanger 3, and the fan rotation speed in the indoor heat exchanger 3 so as to be lower than the upper limit value (T cu ), the refrigerant is transferred to the inner wall of the compressor 1. It is possible to suppress the escape of heat and shorten the hot air blowing time at the start of heating. The completion of the preheating heating operation timing has been reached the preheating temperature T c is set, heating operation start timing, timing T c is reached within the required range of set temperature of the heating operation, or timing corresponding thereto It is.

[第2の実施形態]
図7は、第2の実施形態に係る空気調和システムの暖房サイクル60の構成図である。
暖房サイクル60は、冷媒を圧縮する圧縮機1と、冷暖切替え用四方弁2と、室内熱交換器3と、絞り弁4と、室外熱交換器5と、蓄熱材充填カバー11と、制御部12から構成される。圧縮機1の少なくとも一部の表面を覆うように蓄熱材充填カバー11を更に備え、蓄熱材充填カバー11には、過冷却性を有する潜熱蓄熱材110が充填され、潜熱蓄熱材110を発核させる発核機構111を備えること以外は第1の実施形態にかかる説明と同様である。第1の実施形態と重複する説明は省略または簡略化する。
[Second Embodiment]
FIG. 7 is a configuration diagram of the heating cycle 60 of the air-conditioning system according to the second embodiment.
The heating cycle 60 includes a compressor 1 for compressing refrigerant, a cooling / heating switching four-way valve 2, an indoor heat exchanger 3, a throttle valve 4, an outdoor heat exchanger 5, a heat storage material filling cover 11, a control unit. 12 is comprised. A heat storage material filling cover 11 is further provided so as to cover at least a part of the surface of the compressor 1. The heat storage material filling cover 11 is filled with a latent heat storage material 110 having a supercooling property, and the latent heat storage material 110 is nucleated. The description is the same as that of the first embodiment except that the nucleation mechanism 111 is provided. The description overlapping with the first embodiment is omitted or simplified.

蓄熱材充填カバー11は、図8の断面概念図に示すよう、潜熱蓄熱材110と、発核機構111と容器112を含む。潜熱蓄熱材110には、過冷却性を有する潜熱蓄熱材が用いられ、例えば酢酸ナトリウム水和物、硫酸ナトリウム水和物、エリスリトールなどが使用される。潜熱蓄熱材110の融点(T)は、式(2)を満たすよう、エチレングリコール、塩化ナトリウムや塩化カリウム等の融点調整剤が、潜熱蓄熱材110に対して30質量%以下程度の範囲内で添加される(Tcl<T<Tcu…式(2))。容器112には、例えば、ラミネート容器を用いることができる。 The heat storage material filling cover 11 includes a latent heat storage material 110, a nucleation mechanism 111, and a container 112, as shown in the conceptual cross-sectional view of FIG. As the latent heat storage material 110, a latent heat storage material having supercooling property is used. For example, sodium acetate hydrate, sodium sulfate hydrate, erythritol, or the like is used. The melting point (T m ) of the latent heat storage material 110 is such that the melting point adjusting agent such as ethylene glycol, sodium chloride or potassium chloride is within a range of about 30% by mass or less with respect to the latent heat storage material 110 so as to satisfy the formula (2). (T cl <T m <T cu Equation (2)). For example, a laminate container can be used as the container 112.

発核機構111は、過冷却性を有する潜熱蓄熱材110の過冷却状態を解除する役割を果たす。発核機構111は、制御部12の発核操作部13と配線L5で接続され、発核操作部13の信号がOnになると発核し過冷却状態から固相変化に伴う潜熱が蓄熱材110から放出される。この時、潜熱蓄熱材110の温度は、融点Tもしくはそれ以下の温度まで上昇する。具体的な発核方法は、潜熱蓄熱材110に2本の電極を挿入し、電極間に電圧を印加する方法、凹凸を有する板バネとアクチュエータで構成され、アクチュエータで潜熱蓄熱材110中の板バネを動かす方法、潜熱蓄熱材110中の熱電素子に電圧を印加して極所急令する方法、結晶核を結晶核収納容器より潜熱蓄熱材110中に投入して核生成させる方法などを用いることができる。前記発核方法に応じて、適宜必要な発核機構を蓄熱材充填カバー11に備える。蓄熱材充填カバー11は、圧縮機1の少なくとも一部の表面を覆う形で配置される(蓄熱材充填カバー11と圧縮機1筐体は接触している)。 The nucleation mechanism 111 plays a role of releasing the supercooled state of the latent heat storage material 110 having supercoolability. The nucleation mechanism 111 is connected to the nucleation operation unit 13 of the control unit 12 by the wiring L5. When the signal of the nucleation operation unit 13 becomes On, the nucleation mechanism 111 nucleates and the latent heat due to the solid phase change from the supercooled state becomes the heat storage material 110 Released from. At this time, the temperature of the latent heat storage material 110 rises to a melting point Tm or lower. A specific nucleation method is a method in which two electrodes are inserted into the latent heat storage material 110 and a voltage is applied between the electrodes, a plate spring having an unevenness and an actuator, and a plate in the latent heat storage material 110 by the actuator. A method of moving a spring, a method of applying a voltage to a thermoelectric element in the latent heat storage material 110 to place an extreme point, a method of introducing crystal nuclei into the latent heat storage material 110 from a crystal nucleus storage container, and a method of generating nuclei are used. be able to. Depending on the nucleation method, the heat storage material filling cover 11 is provided with a necessary nucleation mechanism as appropriate. The heat storage material filling cover 11 is disposed so as to cover at least a part of the surface of the compressor 1 (the heat storage material filling cover 11 and the compressor 1 housing are in contact with each other).

次に、空気調和システム60における予熱暖房の運転方法について説明する。図9に空気調和システム60の暖房サイクル運転方法に係るフローチャート600を示す。
フローチャート600では、まずステップS601にて、ユーザが暖房起動時に予熱暖房を使用するか否かの設定に関して操作リモコン等を通して行う。そして、ステップS602でユーザが予熱暖房ありの設定をした場合、ステップS603でユーザは暖房開始前に予熱暖房運転を自動的に開始する時刻をタイマー設定する。ステップS604で設定した時刻になったら、制御部16は空気調和システム60の予熱暖房運転を開始する。予熱暖房運転が開始されると、ステップS605にて制御部12は発核操作部13を通して発核機構111をOnする。これにより、潜熱蓄熱材110の過冷却状態が解除され、蓄熱材110と接する圧縮機1の温度が上昇する。
さらに、圧縮機1の内壁温度推定手段8は、予熱暖房運転中の内壁温度(T)を検知し、検知した値が、暖房開始前にて予め定められた下限値(Tcl)より高く、かつ、上限値(Tcu)より低くなるよう、圧縮機1の周波数を制御する。
Next, the operation method of the preheating heating in the air conditioning system 60 will be described. FIG. 9 shows a flowchart 600 according to the heating cycle operation method of the air conditioning system 60.
In the flowchart 600, first, in step S601, the user performs setting through the operation remote controller or the like regarding whether or not to use preheating heating when heating is started. If the user makes a setting for preheating heating in step S602, the user sets a timer for starting the preheating heating operation automatically before starting heating in step S603. When the time set in step S604 is reached, the control unit 16 starts the preheating heating operation of the air conditioning system 60. When the preheating heating operation is started, the control unit 12 turns on the nucleation mechanism 111 through the nucleation operation unit 13 in step S605. Thereby, the supercooled state of the latent heat storage material 110 is cancelled | released, and the temperature of the compressor 1 which contact | connects the heat storage material 110 rises.
Further, the inner wall temperature estimating means 8 of the compressor 1 detects the inner wall temperature (T c ) during the preheating heating operation, and the detected value is higher than the lower limit (T cl ) determined in advance before the start of heating. And the frequency of the compressor 1 is controlled so that it may become lower than an upper limit ( Tcu ).

次に、ステップS606でユーザから暖房の指示を受けると、室内熱交換器3では吹出し口を開け、圧縮機1から吐出した冷媒を空気と熱交換させて温風を吹き出す(ステップS608)。
上記予熱暖房運転を利用した暖房方法では、予熱中に潜熱蓄熱材110から圧縮機1に熱を与える。予熱中の機器の昇温の中で圧縮機1の昇温に必要な熱量は非常に多く、この圧縮機1に潜熱蓄熱材110から直接熱を投入することで、圧縮機1内壁温度を短時間で式(1)を満たす値まで上昇させることが可能となる。よって、予熱に要する時間を短縮させることが可能となる。
なお、暖房開始後は圧縮機1の温度がTよりも高くなるため、圧縮機1外周を通して潜熱蓄熱材110に蓄熱を行う。
Next, when an instruction for heating is received from the user in step S606, the indoor heat exchanger 3 opens the outlet, heat-exchanges the refrigerant discharged from the compressor 1 with air, and blows warm air (step S608).
In the heating method using the preheating heating operation, heat is applied to the compressor 1 from the latent heat storage material 110 during preheating. The amount of heat required to raise the temperature of the compressor 1 during the preheating of the equipment during the preheating is very large. By directly supplying heat from the latent heat storage material 110 to the compressor 1, the inner wall temperature of the compressor 1 is shortened. It is possible to increase the value to satisfy the formula (1) with time. Therefore, the time required for preheating can be shortened.
Incidentally, after the heating started because the temperature of the compressor 1 is higher than T m, it performs heat storage in phase change material 110 through compressor 1 circumference.

[第3の実施形態]
図10は、第3の実施形態に係る空気調和システムの暖房サイクルの構成図である。暖房サイクル70は、冷媒を圧縮する圧縮機1と、冷暖切替え用四方弁2と、室内熱交換器3と、絞り弁4と、室外熱交換器5と、圧縮機1と熱的に接触する蓄熱部15と、切替弁14と、制御部16と、冷媒管17から構成される。圧縮機1と熱的に接触する潜熱蓄熱材を有する蓄熱部15と、切替弁14と、室外熱交換器5と切替弁14間を接続し蓄熱部15と熱的に接触する冷媒管17と、を更に備え、制御部16は、圧縮機から吐出する冷媒を前記四方弁2へと流す、又は冷媒菅17へと流すよう、切替弁14を切替制御18すること以外は第1の実施形態又は第2実施形態にかかる説明と同様である。重複する説明を省略又は簡略化する。
[Third Embodiment]
FIG. 10 is a configuration diagram of a heating cycle of the air-conditioning system according to the third embodiment. The heating cycle 70 is in thermal contact with the compressor 1 that compresses the refrigerant, the cooling / heating switching four-way valve 2, the indoor heat exchanger 3, the throttle valve 4, the outdoor heat exchanger 5, and the compressor 1. The heat storage unit 15, the switching valve 14, the control unit 16, and the refrigerant pipe 17 are configured. A heat storage unit 15 having a latent heat storage material that is in thermal contact with the compressor 1, a switching valve 14, a refrigerant pipe 17 that is connected between the outdoor heat exchanger 5 and the switching valve 14 and is in thermal contact with the heat storage unit 15. The control unit 16 is the first embodiment except that the switching valve 14 is switched and controlled 18 so that the refrigerant discharged from the compressor flows into the four-way valve 2 or flows into the refrigerant tank 17. Or it is the same as the description concerning 2nd Embodiment. A duplicate description is omitted or simplified.

切替弁14は、圧縮機1から吐出する冷媒を四方弁2へと流す、もしくは冷媒管17へと流すよう、流れを切り替える役割を果たす。切替弁14は制御部16と配線L5で接続され、制御部16の指示により前記切替弁14の切り替えを行う。蓄熱部15は、潜熱蓄熱材110を有し、室外熱交換器5と四方弁2間の冷媒管17を流れる冷媒と潜熱蓄熱材110との間で熱交換を行う。蓄熱部15は圧縮機1とその表面が接触する形で配置され、蓄熱部15の熱は接面を介して圧縮機1に伝熱される。   The switching valve 14 plays a role of switching the flow so that the refrigerant discharged from the compressor 1 flows to the four-way valve 2 or flows to the refrigerant pipe 17. The switching valve 14 is connected to the control unit 16 via a wiring L5, and switches the switching valve 14 according to an instruction from the control unit 16. The heat storage unit 15 includes a latent heat storage material 110 and performs heat exchange between the refrigerant flowing through the refrigerant pipe 17 between the outdoor heat exchanger 5 and the four-way valve 2 and the latent heat storage material 110. The heat storage part 15 is arrange | positioned in the form which the compressor 1 and its surface contact, and the heat of the heat storage part 15 is heat-transferred to the compressor 1 via a contact surface.

次に空気調和システム70における予熱暖房の運転方法について説明する。図11に空気調和システム70の暖房サイクル運転方法に係るフローチャート700を示す。
フローチャート700では、まずステップS701にて、ユーザが暖房起動時に予熱暖房を使用するか否かの設定に関して操作リモコン等を通して行う。そして、ステップS702でユーザが予熱暖房ありの設定をした場合、ステップS703でユーザは暖房開始前に予熱暖房運転を自動的に開始する時刻をタイマー設定する。ステップS704で設定した時刻になったら、制御部16は空気調和システム70の予熱暖房運転を開始する。予熱暖房運転が開始されると、圧縮機1から排出される冷媒が蓄熱部15からの潜熱を受け取る冷媒管17に流れるよう、ステップS705で切替弁14が操作される(切替制御18)。冷媒管17を出た冷媒は、室外熱交換器5に流入後、再び圧縮機1の吸込に供給される。
Next, the operation method of the preheating heating in the air conditioning system 70 will be described. FIG. 11 shows a flowchart 700 according to the heating cycle operation method of the air conditioning system 70.
In the flowchart 700, first, in step S701, the user sets whether or not to use preheating heating at the time of heating activation through an operation remote controller or the like. If the user makes a setting for preheating heating in step S702, the user sets a timer for starting the preheating heating operation automatically before starting heating in step S703. When the time set in step S704 is reached, the control unit 16 starts the preheating heating operation of the air conditioning system 70. When the preheating heating operation is started, the switching valve 14 is operated in step S705 so that the refrigerant discharged from the compressor 1 flows into the refrigerant pipe 17 that receives the latent heat from the heat storage unit 15 (switching control 18). The refrigerant that has exited the refrigerant pipe 17 flows into the outdoor heat exchanger 5 and is then supplied to the suction of the compressor 1 again.

圧縮機1の内壁温度推定手段8は、予熱暖房運転中の内壁温度(T)を検知し、検知した値が、暖房運転開始前にて予め定められた下限値(Tcl)より高く、かつ、上限値(Tcu)より低くなるよう、圧縮機1の周波数等を制御する。
次に、ステップS706でユーザから暖房の指示を受けると、制御部16はステップS707で圧縮機1吐出の冷媒が室内熱交換器3へと流れるよう切替弁14を操作する。室内熱交換器3では吹出し口を開け、圧縮機1から吐出した冷媒を空気と熱交換させて温風を吹き出す。
上記予熱暖房運転を利用した暖房方法では、予熱中に生成する吐出冷媒の熱を蓄熱部15の潜熱蓄熱材110に貯蔵する。蓄熱部15が圧縮機1と接触する形で配置された場合、吐出冷媒を吸熱して温度が上昇した蓄熱部15から圧縮機1に熱を与えるため、圧縮機1内壁の温度(T)を短時間でTclより高くなるように上昇させることができる。さらに、暖房運転中に、切替弁14の切替によって除霜動作がなされた場合などには、予熱中に潜熱蓄熱材110に蓄熱した熱を利用して室外熱交換器5の除霜を促進することが可能となる。
The inner wall temperature estimating means 8 of the compressor 1 detects the inner wall temperature (T c ) during the preheating heating operation, and the detected value is higher than the lower limit (T cl ) determined in advance before starting the heating operation, And the frequency etc. of the compressor 1 are controlled so that it may become lower than an upper limit ( Tcu ).
Next, when a heating instruction is received from the user in step S706, the control unit 16 operates the switching valve 14 so that the refrigerant discharged from the compressor 1 flows to the indoor heat exchanger 3 in step S707. In the indoor heat exchanger 3, a blower opening is opened, and the refrigerant discharged from the compressor 1 is heat-exchanged with air to blow out hot air.
In the heating method using the preheating heating operation, the heat of the discharged refrigerant generated during preheating is stored in the latent heat storage material 110 of the heat storage unit 15. When the heat storage unit 15 is arranged in contact with the compressor 1, the temperature of the inner wall of the compressor 1 (T c ) is applied to heat the compressor 1 from the heat storage unit 15 that has absorbed the discharged refrigerant and has risen in temperature. Can be raised above T cl in a short time. Further, when the defrosting operation is performed by switching the switching valve 14 during the heating operation, the defrosting of the outdoor heat exchanger 5 is promoted using the heat stored in the latent heat storage material 110 during the preheating. It becomes possible.

以上、本発明の実施形態を説明したが、本発明は上記実施形態そのままに限定解釈されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。例えば、変形例の様に異なる実施形態にわたる構成要素を適宜組み合わせても良い。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, you may combine suitably the component covering different embodiment like a modification.

50、60、70…空気調和装置(システム)、1…圧縮機、2…冷暖切り替え四方弁、3…室内熱交換器、4…絞り弁、5…室外熱交換器、P…配管、6、12、16…制御部、7…入口冷媒圧力取得手段、8…入口冷媒温度取得手段、9…内壁面温度取得手段、10…出口冷媒圧力取得手段、11、蓄熱材充填カバー、13…発核制御、14…切替弁、15…蓄熱部、17…冷媒管、18…切替制御、110…潜熱蓄熱材、111…発核機構、112…容器蓄熱材、L…配線、P…配管   50, 60, 70 ... air conditioner (system), 1 ... compressor, 2 ... cooling / heating switching four-way valve, 3 ... indoor heat exchanger, 4 ... throttle valve, 5 ... outdoor heat exchanger, P ... piping, 6, DESCRIPTION OF SYMBOLS 12, 16 ... Control part, 7 ... Inlet refrigerant | coolant pressure acquisition means, 8 ... Inlet refrigerant | coolant temperature acquisition means, 9 ... Inner wall surface temperature acquisition means, 10 ... Outlet refrigerant | coolant pressure acquisition means, 11, Thermal storage material filling cover, 13 ... Nucleation Control, 14 ... Switching valve, 15 ... Heat storage section, 17 ... Refrigerant pipe, 18 ... Switching control, 110 ... Latent heat storage material, 111 ... Nucleation mechanism, 112 ... Container heat storage material, L ... Wiring, P ... Piping

Claims (5)

圧縮機と、冷暖切り替え四方弁と、室内熱交換器と、絞り弁と、室外熱交換器と、配管と、制御部とを有し、
前記配管は、前記圧縮機と前記室内熱交換器と前記室外熱交換器との間に冷媒を循環させる循環回路を形成し、
前記圧縮機は、前記室外熱交換器と前記室内熱交換器との間の循環回路に配置され、
前記四方弁は、前記圧縮機と前記室内熱交換器及び前記圧縮機と前記室外熱交換器の間に配置され、
前記絞り弁は、前記循環回路の前記室内熱交換器と前記室外熱交換器とを挟んで配置され、
前記制御部は、前記冷媒のエントロピが前記圧縮機の入口よりも出口の方が大きく、前記圧縮機の温度は、前記冷媒の臨界点の温度よりも低くなるように暖房運転開始前に予熱暖房運転を制御し、
前記制御部による制御は、前記圧縮機の回転周波数の制御であることを特徴とする空気調和システム。
A compressor, a cooling / heating switching four-way valve, an indoor heat exchanger, a throttle valve, an outdoor heat exchanger, piping, and a control unit,
The pipe forms a circulation circuit for circulating a refrigerant between the compressor, the indoor heat exchanger, and the outdoor heat exchanger,
The compressor is disposed in a circulation circuit between the outdoor heat exchanger and the indoor heat exchanger,
The four-way valve is disposed between the compressor and the indoor heat exchanger and between the compressor and the outdoor heat exchanger,
The throttle valve is disposed across the indoor heat exchanger and the outdoor heat exchanger of the circulation circuit,
The controller is configured to preheat and heat before starting the heating operation so that the entropy of the refrigerant is larger at the outlet than the inlet of the compressor, and the temperature of the compressor is lower than the temperature of the critical point of the refrigerant. Control operation ,
The control by the control unit is control of a rotation frequency of the compressor .
前記制御部は、前記圧縮機に流入する冷媒の温度を取得する入口冷媒温度取得手段と、前記圧縮機内の圧縮室内壁の温度を取得する内壁面温度取得手段と、前記圧縮機に流入する冷媒の圧力を取得する入口冷媒圧力取得手段と、前記圧縮機から吐出する冷媒の圧力を取得する出口冷媒圧力取得手段と、を有し、
前記入口冷媒圧力取得手段によって入口冷媒圧力が取得され、
前記入口冷媒温度取得手段によって入口冷媒温度が取得され、
前記内壁面温度取得手段によって内壁面温度が取得され、
前記出口冷媒圧力取得手段によって出口冷媒圧力が取得され、
前記制御部は、前記冷媒のエントロピが前記圧縮機の入口よりも出口の方が大きくなるように、前記冷媒によって定まる圧力−エンタルピ線図の圧力が前記入口冷媒圧力で温度が前記入口冷媒温度から定まる入口状態点を定め、前記圧力−エンタルピ線図の入口状態点からの等エントロピ線上の圧力が前記出口冷媒圧力における温度よりも前記内壁面温度が高くなるように制御し、かつ、前記圧縮機の温度が前記冷媒の臨界点の温度よりも低くなるように、前記冷媒の臨界点の温度よりも前記内壁面温度が低くなるように制御し、
前記制御部による制御は、前記圧縮機の回転周波数の制御であることを特徴とする請求項1に記載の空気調和システム。
The control unit includes an inlet refrigerant temperature acquisition unit that acquires a temperature of a refrigerant flowing into the compressor, an inner wall surface temperature acquisition unit that acquires a temperature of a compression chamber wall in the compressor, and a refrigerant that flows into the compressor Inlet refrigerant pressure acquisition means for acquiring the pressure of the refrigerant, and outlet refrigerant pressure acquisition means for acquiring the pressure of the refrigerant discharged from the compressor,
The inlet refrigerant pressure is acquired by the inlet refrigerant pressure acquisition means,
An inlet refrigerant temperature is acquired by the inlet refrigerant temperature acquisition means,
An inner wall surface temperature is acquired by the inner wall surface temperature acquisition means,
The outlet refrigerant pressure is acquired by the outlet refrigerant pressure acquisition means,
The control unit is configured such that the pressure in the pressure-enthalpy diagram determined by the refrigerant is the inlet refrigerant pressure and the temperature is higher than the inlet refrigerant temperature so that the entropy of the refrigerant is larger at the outlet than the inlet of the compressor. A predetermined inlet state point is determined, and the pressure on the isentropic line from the inlet state point of the pressure-enthalpy diagram is controlled so that the inner wall surface temperature is higher than the temperature at the outlet refrigerant pressure, and the compressor The inner wall surface temperature is controlled to be lower than the critical point temperature of the refrigerant, so that the temperature of the refrigerant is lower than the critical point temperature of the refrigerant ,
The air conditioning system according to claim 1, wherein the control by the control unit is control of a rotation frequency of the compressor .
前記圧縮機の回転周波数を変えることに加え、前記室内熱交換器に備えられたファンの回転数を変えること、及び前記室内熱交換器の吹き出し口の開度を変えることのうちの少なくともいずれかの手段によって前記内壁面温度を調整することを特徴とする請求項2に記載の空気調和システム。 In addition to changing the rotational frequency of the compressor, at least one of changing the rotational speed of a fan provided in the indoor heat exchanger and changing the opening of the outlet of the indoor heat exchanger The air conditioning system according to claim 2, wherein the inner wall surface temperature is adjusted by the means. 前記圧縮機の少なくとも一部を覆うように蓄熱材充填カバーを更に備え、
前記蓄熱材充填カバーには、過冷却性を有する潜熱蓄熱材が充填され、前記潜熱蓄熱材を発核させる発核機構を備え、
前記制御部は、前記発核機構を制御し、前記潜熱蓄熱材を発核させることを特徴とする請求項1乃至3のいずれか1項に記載の空気調和システム。
A heat storage material filling cover so as to cover at least a part of the compressor;
The heat storage material filling cover is filled with a latent heat storage material having supercooling property, and includes a nucleation mechanism that nucleates the latent heat storage material,
The air conditioning system according to any one of claims 1 to 3, wherein the control unit controls the nucleation mechanism to nucleate the latent heat storage material.
前記圧縮機と熱的に接触する潜熱蓄熱材を有する蓄熱部と、前記室外熱交換器と四方弁間を接続し前記蓄熱部と熱的に接触する冷媒管と、切替弁とを更に備え、
前記制御部は、前記圧縮機から吐出する冷媒を前記四方弁へと流す、又は前記冷媒菅へと流すよう、前記切替弁を切り替えることを特徴とする請求項1乃至4のいずれか1項に記載の空気調和システム。
A heat storage unit having a latent heat storage material that is in thermal contact with the compressor, a refrigerant pipe that is connected between the outdoor heat exchanger and a four-way valve and is in thermal contact with the heat storage unit, and a switching valve.
The said control part switches the said switching valve so that the refrigerant | coolant discharged from the said compressor may flow into the said four-way valve, or it may flow into the said refrigerant | coolant tank, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. The air conditioning system described.
JP2013256509A 2013-12-11 2013-12-11 Air conditioning system Active JP6342150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256509A JP6342150B2 (en) 2013-12-11 2013-12-11 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256509A JP6342150B2 (en) 2013-12-11 2013-12-11 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2015114052A JP2015114052A (en) 2015-06-22
JP6342150B2 true JP6342150B2 (en) 2018-06-13

Family

ID=53528019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256509A Active JP6342150B2 (en) 2013-12-11 2013-12-11 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6342150B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907825A (en) * 2017-02-06 2017-06-30 美的集团股份有限公司 Air-conditioning system and air-conditioner control method
JP2018169052A (en) * 2017-03-29 2018-11-01 株式会社富士通ゼネラル Air conditioner
CN108692431B (en) * 2018-05-28 2020-12-25 南京派佳科技有限公司 Intelligent air conditioning system based on gas entropy change measurement
CN113218034A (en) * 2021-05-08 2021-08-06 珠海格力电器股份有限公司 Compressor preheating control method and device and air conditioning equipment
CN113203178B (en) * 2021-06-01 2022-03-29 宁波奥克斯电气股份有限公司 Air conditioner low-temperature heating starting control method, storage medium and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138960A (en) * 2006-12-04 2008-06-19 Matsushita Electric Ind Co Ltd Air conditioner
JP5448390B2 (en) * 2008-08-22 2014-03-19 東芝キヤリア株式会社 Air conditioner
JP5429273B2 (en) * 2011-12-26 2014-02-26 パナソニック株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2015114052A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6342150B2 (en) Air conditioning system
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
TWI328100B (en) Refrigerating apparatus
JP6323431B2 (en) Air conditioner
JP5790736B2 (en) Air conditioner
JP6611905B2 (en) refrigerator
JP5452581B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP DEVICE CONTROL METHOD
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP6950191B2 (en) Air conditioner
JP6410686B2 (en) Refrigerant recovery device
JP6745985B2 (en) Air conditioning hot water supply system
TW571060B (en) Air conditioner
JP7084916B2 (en) Air conditioning hot water supply system
JP6653588B2 (en) Air conditioners and air conditioners
JP2009058222A (en) Outdoor unit
JP2018080884A (en) Air conditioner
JP5718629B2 (en) Refrigerant amount detection device
JP5212330B2 (en) Air conditioner
KR20110013979A (en) Air conditioner and control method thereof
JP2016080201A (en) Electronic control device
JP2016023921A (en) Heat pump hot water supply system
JPWO2019171485A1 (en) Heat pump system
JP6931047B2 (en) Air conditioning hot water supply system
JP5818601B2 (en) Heat pump heat source machine
JP2016114319A (en) Heating system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150