JP2015113489A - Dip tube for use in refining apparatus - Google Patents

Dip tube for use in refining apparatus Download PDF

Info

Publication number
JP2015113489A
JP2015113489A JP2013256188A JP2013256188A JP2015113489A JP 2015113489 A JP2015113489 A JP 2015113489A JP 2013256188 A JP2013256188 A JP 2013256188A JP 2013256188 A JP2013256188 A JP 2013256188A JP 2015113489 A JP2015113489 A JP 2015113489A
Authority
JP
Japan
Prior art keywords
refractory
dip tube
groove
recess
regular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256188A
Other languages
Japanese (ja)
Other versions
JP6235890B2 (en
Inventor
藤井 哲郎
Tetsuo Fujii
哲郎 藤井
佐藤 正治
Masaharu Sato
正治 佐藤
敏明 伊東
Toshiaki Ito
敏明 伊東
宣光 鷹居
Norimitsu Takai
宣光 鷹居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, Nippon Steel and Sumitomo Metal Corp filed Critical Krosaki Harima Corp
Priority to JP2013256188A priority Critical patent/JP6235890B2/en
Publication of JP2015113489A publication Critical patent/JP2015113489A/en
Application granted granted Critical
Publication of JP6235890B2 publication Critical patent/JP6235890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dip tube for use in a refining apparatus, having shaped refractories arranged to cover the lower end part of a cylindrical mandrel, with a structure to prevent occurrence of large cracks in the shaped refractories and falling of the shaped refractories.SOLUTION: The dip tube includes shaped refractories 20 at least in the lower end part. The shaped refractory 20 include a groove 21 in which the lower end part of a mandrel 10 is inserted, and a castable refractory 30 applied into the groove. The inner surface of the groove 21 includes a recess 21a having an arc-shaped longitudinal section. In the longitudinal section passing the deepest part of the recess 21a, the length of the recess 21a is represented by L. The center location of the tip of a supporting hardware 11 projecting from the mandrel 10 is set to within 0.3L from the horizontal line connecting from the deepest position of the recess 21a, normal to the surface of the mandrel 10.

Description

本発明は、溶融金属の精錬装置に用いられる浸漬管に関する。   The present invention relates to a dip tube used in a molten metal refining apparatus.

転炉等で精錬が行われた溶鋼の二次精錬のため、浸漬管を介して取鍋中の溶鋼の成分調整を行うCAS(Composition Ajustment by Sealed Argon Bubbling)、取鍋に入れられた溶鋼を減圧脱ガス装置側に吸い上げて脱ガスし取鍋側に戻すRH(Ruhrstahl-Heraus)やDH(Dortmunt-Horde)等の脱ガス装置が用いられる。   CAS (Composition Ajustment by Sealed Argon Bubbling), which adjusts the composition of the molten steel in the ladle through a dip tube, for the secondary refining of molten steel that has been refined in a converter, etc. A degassing device such as RH (Ruhrstahl-Heraus) or DH (Dortmunt-Horde) is used which sucks up the degassing device and degass it and returns it to the ladle side.

これら溶鋼を処理する二次精錬装置に接続される浸漬管は、基本的には円筒状の芯金の内外表面に耐火物を設けた構造を有し、かつてはその耐火物として不定形耐火物を主体とした構造がとられていたが、溶鋼の精錬中は少なくとも先端が溶鋼及びスラグ中に浸漬されるため、スラグによる溶損が大きく寿命が短かった。そこで不定形耐火物よりも耐用性に優れるマグネシア−クロム質れんがやマグネシア−カーボンれんが等の定形耐火物をスラグや溶鋼に接触する部位に配置し、溶損を抑えるようにした浸漬管を得るようになった。   The dip tube connected to the secondary refining equipment that processes these molten steels basically has a structure in which a refractory is provided on the inner and outer surfaces of a cylindrical cored bar. However, since at least the tip is immersed in the molten steel and slag during refining of the molten steel, the slag has a large melting loss and a short life. Therefore, a fixed pipe refractory such as magnesia-chromic brick or magnesia-carbon brick, which has better durability than an irregular refractory, is placed at the part in contact with slag or molten steel, so as to obtain a dip tube that suppresses melting damage. Became.

しかしながら、二次精錬装置における精錬処理が完了すると、浸漬管は取鍋の溶鋼やスラグの液面より退避させられ次の精錬処理に移行する。すなわち浸漬管は、精錬処理中は1600℃を超える溶鋼にさらされ、処理と処理の間は外気にさらされるため、急激な加熱と冷却を繰り返される。この繰り返しが継続されることで、定形耐火物や不定形耐火物に亀裂が発生してしまう。   However, when the refining process in the secondary refining apparatus is completed, the dip tube is withdrawn from the liquid surface of the molten steel and slag in the ladle, and the process proceeds to the next refining process. That is, the dip tube is exposed to molten steel having a temperature of over 1600 ° C. during the refining process, and is exposed to the outside air between the processes, so that rapid heating and cooling are repeated. If this repetition is continued, cracks will occur in the regular refractory and the irregular refractory.

一般的に不定形耐火物は芯金に対し複数の金属製のスタッドで固定されているのに対し、定形耐火物はスタッドの設置が容易ではなく、芯金に対してはモルタル等によって接着されている程度であり、その固定力は比較的小さい。そのため、定形耐火物に亀裂が発生してしまうと、定形耐火物は脱落に至る可能性が高く、浸漬管の寿命を悪化させる可能性がある。   In general, the irregular refractory is fixed to the core with multiple metal studs, whereas the fixed refractory is not easy to install the stud and is attached to the core with mortar. The fixing force is relatively small. For this reason, if a crack occurs in the regular refractory, the regular refractory is likely to fall off, which may deteriorate the life of the dip tube.

そこで特許文献1には、筒状の芯金の内外表面に耐火物を設けた脱ガス装置の浸漬管において、浸漬管の下端部の定形耐火物に、芯金が入る溝と芯金の厚み方向に形成された固定穴に連通する係止穴とを設け、芯金を定形耐火物の溝に挿入し、固定穴と係止穴に固定ピンを挿入して芯金と定形耐火物とを固定する構造が提案されている。特許文献2には、芯金の周囲を不定形耐火物とし、その不定形耐火物の下方に定形耐火物を配し、両者をスタッドで結合し、使用段階において定形耐火物が脱落することを防止する構造が提案されている。   Therefore, in Patent Document 1, in a dip tube of a degassing apparatus in which a refractory is provided on the inner and outer surfaces of a cylindrical core metal, a groove in which the core metal enters the core refractory at the lower end of the dip tube and the thickness of the core metal A locking hole communicating with the fixing hole formed in the direction is provided, the cored bar is inserted into the groove of the standard refractory, and the fixing pin is inserted into the fixing hole and the locking hole to connect the cored bar and the standard refractory. A fixed structure has been proposed. Patent Document 2 states that the refractory around the metal core is an irregular refractory, the regular refractory is arranged below the irregular refractory, and both are joined with studs, and the regular refractory falls off at the stage of use. Preventing structures have been proposed.

また、特許文献3には、定形耐火物を浸漬管の内表面の上部から下部にかけて配置し、芯金と定形耐火物との間に不定形耐火物を配置し、不定形耐火物は金属製のスタッドで芯金に結合され、定形耐火物は不定形耐火物との境界面に部分的に凹状または凸状に形成された凹凸によって固定された構造が提案されている。   In Patent Document 3, a regular refractory is arranged from the upper part to the lower part of the inner surface of the dip tube, an irregular refractory is arranged between the core metal and the regular refractory, and the irregular refractory is made of metal. A structure has been proposed in which a fixed refractory is fixed to a boundary surface with an irregular refractory by irregularities that are partially formed in a concave shape or a convex shape.

特開2010−248557号公報JP 2010-248557 A 特開2011−074439号公報JP 2011-074439 A 特開2008−127677号公報JP 2008-127777 A

特許文献1の浸漬管では、固定ピンによって係止固定された部分に定形耐火物の全重量が掛かるため、当該部位から先行して亀裂が入りやすい点と、精錬中に溶鋼に浸漬される溶鋼浸漬部の定形耐火物に亀裂が生じた場合、亀裂より下部は支持効果が薄れてしまい定形耐火物が脱落しやすいという懸念があった。特許文献2の浸漬管では、スタッドを定形耐火物内部に直接配置する構造であり、スタッドと定形耐火物の接触点を起点とした亀裂が入りやすいという問題があった。   In the dip tube of Patent Document 1, since the entire weight of the shaped refractory is applied to the portion locked and fixed by the fixing pin, the point where cracks are likely to occur in advance from the portion, and the molten steel immersed in the molten steel during refining When cracks occur in the fixed refractory in the immersion part, there is a concern that the support effect is reduced below the crack and the fixed refractory is likely to fall off. The dip tube of Patent Document 2 has a structure in which a stud is directly arranged inside a regular refractory, and there is a problem that a crack is likely to start from a contact point between the stud and the regular refractory.

また、特許文献3の浸漬管では、定形耐火物・不定形耐火物・スタッドのそれぞれの熱伝導率が大きく異なることに起因して、使用中に凹凸部の周辺やスタッドの周辺に温度差が発生してしまい、その温度差によって発生する熱応力で亀裂が入りやすいという問題があった。   Further, in the dip tube of Patent Document 3, due to the fact that the thermal conductivity of each of the regular refractory, the irregular refractory, and the stud is greatly different, there is a temperature difference around the uneven part and the stud during use. There has been a problem that cracks are likely to occur due to the thermal stress generated by the temperature difference.

そこで、本発明が解決しようとする課題は、円筒状の芯金の下端部を覆うように定形耐火物を配置した精錬装置用の浸漬管において、定形耐火物の亀裂発生及び脱落を防止できる構造を提供することにある。   Therefore, the problem to be solved by the present invention is a structure capable of preventing the occurrence of cracks and dropping off of a regular refractory in a dip tube for a refining apparatus in which a regular refractory is arranged so as to cover the lower end portion of a cylindrical metal core. Is to provide.

上記課題を解決するため、本発明者は、円筒状の芯金の下端部を覆うように定形耐火物を配置した精錬装置用の浸漬管において、定形耐火物に設けた溝に、支持金物を設けた芯金の下端部を挿入し、当該溝内に不定形耐火物を施工する構造を採用することとし、この構造において溝の形状及び支持金物の位置関係に着目して検討を重ねた結果、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventor, in a dip tube for a refining apparatus in which a fixed refractory is arranged so as to cover the lower end portion of a cylindrical metal core, a support metal fitting is provided in a groove provided in the fixed refractory. The result of repeated investigations focusing on the shape of the groove and the positional relationship of the support hardware in this structure by adopting a structure that inserts the lower end of the cored bar and constructing an irregular refractory in the groove The present invention has been completed.

すなわち、本発明は、以下の精錬装置用の浸漬管を提供する。
(1)円筒状の芯金の内外表面に耐火物を設けた精錬装置用の浸漬管であって、当該浸漬管の少なくとも下端部を定形耐火物とし、当該定形耐火物に設けた溝に前記芯金の下端部を挿入し、当該溝内に不定形耐火物を施工してなり、前記溝は、その内面に縦断面形状が円弧状の窪み部を有し、前記芯金は、その周面から半径方向に突出する支持金物を有し、前記窪み部の最深部を通る縦断面において、当該窪み部の長さをLとしたときに、前記窪み部の最深部位置から芯金の周面に対し垂直に結んだ水平線から0.3Lの範囲内に支持金物の先端部中心位置が含まれる精錬装置用の浸漬管。
(2)前記定形耐火物が、精錬中に局部的に損傷する部位に配置される(1)に記載の精錬装置用の浸漬管。
That is, this invention provides the dip tube for the following refining apparatuses.
(1) A dip tube for a refining apparatus in which a refractory is provided on the inner and outer surfaces of a cylindrical core metal, wherein at least the lower end of the dip tube is a regular refractory, and the groove is provided in the regular refractory. The lower end portion of the cored bar is inserted, and an irregular refractory is constructed in the groove. The groove has a hollow part with an arc-shaped longitudinal section on the inner surface, and the cored bar A support metal that protrudes in a radial direction from the surface, and in a longitudinal section passing through the deepest part of the hollow part, when the length of the hollow part is L, the circumference of the core metal from the deepest part position of the hollow part A dip tube for a refining apparatus in which the center position of the tip end portion of the support hardware is included in a range of 0.3 L from a horizontal line connected perpendicularly to the surface.
(2) The dip tube for a refining apparatus according to (1), wherein the fixed refractory is disposed at a site that is locally damaged during refining.

このように本発明の浸漬管は、下端部の定形耐火物に設けた溝に芯金の下端部を挿入し、当該溝内に不定形耐火物を施工した構造において、溝の内面に縦断面形状が円弧状の窪み部を設け、定形耐火物が不定形耐火物と円弧状の窪み部をもって接するようにしたことで、定形耐火物の脱落を防止できる。   Thus, the dip tube of the present invention has a longitudinal section on the inner surface of the groove in the structure in which the lower end portion of the metal core is inserted into the groove provided in the fixed shape refractory at the lower end portion and the amorphous refractory is constructed in the groove. By providing a hollow portion having an arcuate shape so that the regular refractory is in contact with the irregular refractory by the arcuate hollow portion, the regular refractory can be prevented from falling off.

また、本発明の浸漬管では、溝内の不定形耐火物を保持することを目的として芯金の周面からスタッドなどの支持金物を半径方向に突出させて設けている。ここで、浸漬管が精錬中に溶融金属に浸漬されると、稼働面側の定形耐火物を介して芯金に向かって伝熱され、特に本発明のように芯金にスタッドなどの支持金物を設けている場合、通常は定形耐火物と近接する支持金物の先端部に向かって優先的に伝熱すると考えられる。このことは、定形耐火物の溝内面から支持金物の先端部までの距離に応じて当該溝内面からの伝熱量が変わり、結果として定形耐火物の溝内面に部位によって温度差が生じることを意味する。この温度差は、定形耐火物の膨張差となり局部的応力を生じさせると考えられる。   Further, in the dip tube of the present invention, a support metal such as a stud protrudes in the radial direction from the peripheral surface of the core bar for the purpose of holding the irregular refractory in the groove. Here, when the dip tube is immersed in the molten metal during refining, heat is transferred toward the cored bar via the fixed surface refractory on the working surface side. In general, it is considered that heat is transferred preferentially toward the tip of the support metal adjacent to the fixed refractory. This means that the amount of heat transfer from the inner surface of the groove changes depending on the distance from the inner surface of the groove of the standard refractory to the tip of the support metal, resulting in a temperature difference depending on the location on the inner surface of the groove of the standard refractory. To do. This temperature difference is considered to be a difference in expansion of the regular refractory and cause local stress.

例えば特許文献3の浸漬管のように窪み(凹凸)やスタッドが任意の配置であると、それぞれの熱伝導率が大きく異なることに起因して、使用中に凹凸部の周辺やスタッドの周辺に温度差が発生してしまい、その温度差によって発生する熱応力で亀裂が入りやすかった。   For example, if the depressions (concave / convex) and studs are arbitrarily arranged as in the dip tube of Patent Document 3, the respective thermal conductivity greatly differs, so that there are no irregularities or studs around during use. A temperature difference occurred, and cracks were likely to occur due to the thermal stress generated by the temperature difference.

本発明者はこれらのことが定形耐火物の亀裂発生や脱落に直接影響するという点に着目し、上記温度差を小さくするための構成を採用することとした。すなわち、本発明の浸漬管は、「前記窪み部の最深部を通る縦断面において、当該窪み部の長さをLとしたときに、前記窪み部の最深部位置から芯金の周面に対し垂直に結んだ水平線から0.3Lの範囲内に支持金物の先端部中心位置が含まれる」という構成を有する。この構成により、定形耐火物の溝(窪み部)内面から支持金物の先端部までの距離の部位による違いを小さくすることができ、上記温度差を小さくすることができる。この温度差をより小さくする点からは、前記窪み部は、前記支持金物の先端部中心位置を中心とした円に沿う縦断面形状とすることが好ましい。   The inventor of the present invention pays attention to the fact that these directly affect the occurrence of cracks and dropout of the fixed refractory, and adopts a configuration for reducing the temperature difference. That is, the dip tube of the present invention has the following: “In the longitudinal section passing through the deepest part of the hollow part, when the length of the hollow part is L, the position from the deepest part of the hollow part to the peripheral surface of the cored bar. The center position of the tip end portion of the support hardware is included within a range of 0.3 L from a horizontal line connected vertically. By this structure, the difference by the site | part of the distance from the groove | channel (dent part) inner surface of a fixed form refractory to the front-end | tip part of a support metal fitting can be made small, and the said temperature difference can be made small. From the point of making this temperature difference smaller, it is preferable that the said hollow part is made into the longitudinal cross-sectional shape along the circle centering on the front-end | tip part center position of the said support metal object.

このように本発明の浸漬管は、下端部の定形耐火物に設けた溝に芯金の下端部を挿入し、当該溝内に不定形耐火物を施工した構造において、溝の内面に縦断面形状が円弧状の窪み部を設けること、及びその窪み部と溝内の不定形耐火物を支持する支持金物との位置関係を適正化することにより、定形耐火物の大亀裂発生及び脱落を防止でき、浸漬管の寿命を延長することができる。   Thus, the dip tube of the present invention has a longitudinal section on the inner surface of the groove in the structure in which the lower end portion of the metal core is inserted into the groove provided in the fixed shape refractory at the lower end portion and the amorphous refractory is constructed in the groove. Preventing the occurrence of large cracks and falling off of a regular refractory by providing an arc-shaped recess and optimizing the positional relationship between the recess and the support hardware that supports the irregular refractory in the groove. And the life of the dip tube can be extended.

本発明の実施例1による浸漬管を中心軸で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the dip tube by Example 1 of this invention by the central axis. 図1の浸漬管において、定形耐火物を設けた部位を拡大した図である。It is the figure which expanded the site | part which provided the regular refractory in the dip tube of FIG. 本発明の実施例1における、定形耐火物の窪み部と支持金物との位置関係を示す図である。It is a figure which shows the positional relationship of the hollow part of a fixed form refractory, and a support metal in Example 1 of this invention. 本発明の実施例4における、定形耐火物の窪み部と支持金物との位置関係を示す図である。In Example 4 of this invention, it is a figure which shows the positional relationship of the hollow part of a fixed form refractory, and a support metal object. 本発明の比較例1における、定形耐火物の窪み部と支持金物との位置関係を示す図である。It is a figure in the comparative example 1 of this invention which shows the positional relationship of the hollow part of a regular refractory, and a support metal object. 本発明の比較例2における、定形耐火物の窪み部と支持金物との位置関係を示す図である。It is a figure in the comparative example 2 of this invention which shows the positional relationship of the hollow part of a regular refractory, and a support metal object.

図1に示すように本発明の浸漬管は、上部にフランジを有する円筒状の芯金10の内外表面に耐火物(定形耐火物20及び不定形耐火物30)を設けた精錬装置用の浸漬管であって、その少なくとも下端部を定形耐火物20とし、定形耐火物20に設けた溝21に芯金10の下端部を挿入し、溝21内と定形耐火物20の上部とに不定形耐火物30を施工してなる。   As shown in FIG. 1, the dip tube of the present invention is a dip for a refining apparatus in which a refractory (a regular refractory 20 and an irregular refractory 30) is provided on the inner and outer surfaces of a cylindrical metal core 10 having a flange on the top. At least the lower end of the tube is a fixed refractory 20, the lower end of the cored bar 10 is inserted into a groove 21 provided in the fixed refractory 20, and the amorphous is formed in the groove 21 and the upper part of the fixed refractory 20. The refractory 30 is constructed.

溝21は、その内面に縦断面形状が円弧状の窪み部21aを有し、芯金10は、その周面から半径方向に突出する棒状の支持金物11を有する。そして本発明では、窪み部21aの最深部を通る縦断面(図1)において、窪み部21aの長さをLとしたときに、窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線に対し0.3Lの範囲内に支持金物11の先端部中心位置が含まれる。なお、図1及び図2において最下端に位置する支持金物11はY字状であるが、このように先端が分岐した支持金物11において上記の「先端部中心位置」とは、分岐した先端を直線で結んだ線の中間点のことをいう。   The groove 21 has a recess 21a having an arc-shaped longitudinal section on its inner surface, and the cored bar 10 has a bar-shaped support metal 11 protruding in the radial direction from its peripheral surface. And in this invention, when the length of the hollow part 21a is set to L in the longitudinal cross-section (FIG. 1) which passes through the deepest part of the hollow part 21a, it is perpendicular | vertical to the surrounding surface of the metal core 10 from the deepest part position of the hollow part 21a. The center position of the tip end portion of the support hardware 11 is included in the range of 0.3 L with respect to the horizontal line connected to the. 1 and 2, the support metal 11 located at the lowermost end is Y-shaped. However, in the support metal 11 having the tip branched in this way, the above-mentioned “tip center position” means the branched tip. This is the midpoint of a line connected by a straight line.

以上の構成において、定形耐火物20は、不定形耐火物30と円弧状の窪み部21aをもって接するので、その窪み部21aのアンカー効果により不定形耐火物30を介して芯金10に強固に保持される。更に不定形耐火物30は、支持金物11によって芯金10に強固に保持される。したがって、定形耐火物20は不定形耐火物30を介して芯金10に強固に保持されるため、定形耐火物20の脱落を防止できる。   In the above configuration, the fixed refractory 20 is in contact with the irregular refractory 30 through the arc-shaped depression 21a, and is thus firmly held on the core metal 10 via the irregular refractory 30 by the anchor effect of the depression 21a. Is done. Further, the amorphous refractory 30 is firmly held by the cored bar 10 by the support metal 11. Therefore, since the fixed refractory 20 is firmly held by the cored bar 10 via the irregular refractory 30, the fixed refractory 20 can be prevented from falling off.

また本発明では、窪み部21aの最深部位置と支持金物11の先端部中心位置との位置関係を上記のとおりに規定することで、定形耐火物20の窪み部21a内面から支持金物11の先端部までの距離の部位による違いを小さくしている。これにより、先に説明した定形耐火物20の溝21内面の部位による「温度差」を小さくすることができ、定形耐火物20の大亀裂発生及び脱落を防止できる。すなわち、定形耐火物20の窪み部21a内面から支持金物11の先端部中心位置までの部位による「距離の差」(距離のバラツキ)を小さくすることにより、先に説明した精錬稼働中の伝熱に伴う、定形耐火物の溝21内面に局部的に温度が異なる現象が発生することを防止できる。   Further, in the present invention, by defining the positional relationship between the deepest position of the recess 21a and the center position of the tip of the support metal 11 as described above, the tip of the support metal 11 from the inner surface of the recess 21a of the fixed refractory 20 is provided. The difference by the part of the distance to the part is made small. Thereby, the "temperature difference" by the site | part of the groove | channel 21 inner surface of the fixed refractory 20 demonstrated previously can be made small, and the large crack generation | occurrence | production and dropping-off of the fixed refractory 20 can be prevented. That is, the heat transfer during the refining operation described above is reduced by reducing the “distance difference” (distance variation) depending on the portion from the inner surface of the hollow portion 21a of the fixed refractory 20 to the center position of the tip of the support metal 11. Accordingly, it is possible to prevent a phenomenon in which the temperature differs locally on the inner surface of the groove 21 of the fixed refractory.

本発明において窪み部21aの縦断面形状を円弧状とする理由は、上記「距離の差」を小さくすることが容易であることに加え、窪み部21aが熱応力による亀裂の起点となり難いこと、定形耐火物の製造において形状をなすことが容易なことが挙げられる。   In the present invention, the reason why the vertical cross-sectional shape of the hollow portion 21a is an arc shape is that the above-mentioned "distance difference" is easy to reduce, and the hollow portion 21a is unlikely to become a starting point of cracks due to thermal stress. It is easy to make a shape in the manufacture of a regular refractory.

窪み部21aは、溝21の内面の全周にわたって連続的に、又は周方向に対し断続的にされる。断続的に窪み部が形成される場合には窪み部21aの幅(円周方向の長さ)は、水平方向への温度差を小さくする点から、縦断面における窪み部21aの長さL以上であれば十分である。また、窪み部21aの長さLは20mm以上100mm以下が適している。Lが20mm未満では温度差が大きくなり、100mmを超えると使用時に定形耐火物と不定形耐火物との熱膨張差に起因する亀裂が定形耐火物に発生しやすくなる。支持金物11の長さは、支持金物11を設けた芯金10が溝21に入る程度の長さまでとすることが製造時の作業性の面から好ましい。窪み部21aの深さ、すなわち窪み部の最深部位置は、支持金物11の先端部中心位置からL/2以上であればよい。   The hollow portion 21a is made continuously over the entire circumference of the inner surface of the groove 21 or intermittently in the circumferential direction. When the depressions are intermittently formed, the width (circumferential length) of the depressions 21a is equal to or greater than the length L of the depressions 21a in the longitudinal section from the viewpoint of reducing the temperature difference in the horizontal direction. If it is enough. The length L of the recess 21a is suitably 20 mm or greater and 100 mm or less. If L is less than 20 mm, the temperature difference becomes large, and if it exceeds 100 mm, cracks due to the difference in thermal expansion between the regular refractory and the irregular refractory tend to occur in the regular refractory during use. It is preferable from the viewpoint of workability at the time of manufacturing that the length of the support metal 11 is set to a length that allows the core metal 10 provided with the support metal 11 to enter the groove 21. The depth of the recessed portion 21a, that is, the deepest position of the recessed portion may be L / 2 or more from the center position of the tip end portion of the support hardware 11.

本発明の浸漬管において、スラグと溶融金属の境界位置、すなわちスラグラインは、精錬中に局部的に損傷する部位(局損部)となるため、その部位に一般的に不定形耐火物よりも耐食性に優れる定形耐火物を配置することが好ましい。スラグラインの位置は、浸漬管の浸漬深さなどの諸条件によって変化するため、局損部はスラグラインの位置の変化に応じた範囲を持つ。具体的に局損部に配置される定形耐火物20の材質としては、高耐食性で耐スポーリング性に優れるマグネシア−カーボン材質やマグネシア−スピネル−カーボン材質が挙げられる。この定形耐火物20は、芯金10の円周方向に複数個でリング状に配置される。   In the dip tube of the present invention, the boundary position between the slag and the molten metal, that is, the slag line is a part that is locally damaged during refining (local loss part). It is preferable to arrange a regular refractory having excellent corrosion resistance. Since the position of the slag line changes depending on various conditions such as the immersion depth of the dip tube, the local loss portion has a range corresponding to the change in the position of the slag line. Specific examples of the material of the fixed refractory 20 disposed in the local loss portion include a magnesia-carbon material and a magnesia-spinel-carbon material that have high corrosion resistance and excellent spalling resistance. A plurality of the fixed refractories 20 are arranged in a ring shape in the circumferential direction of the cored bar 10.

一方、不定形耐火物30としては、施工性、膨張性、熱伝導率及び強度のバランスから、アルミナ質又はアルミナ−マグネシア質の流し込み材が好適に使用される。   On the other hand, as the amorphous refractory 30, an alumina or alumina-magnesia casting material is preferably used from the balance of workability, expansibility, thermal conductivity and strength.

各実施例及び比較例において、定形耐火物の窪み部の温度に対する支持金物の位置が与える影響について、シミュレーション計算で各部の温度と熱膨張を計算し、更に実炉テストを行った結果を表1に示す。   In each example and comparative example, the influence of the position of the support hardware on the temperature of the hollow portion of the regular refractory is calculated by calculating the temperature and thermal expansion of each part by simulation calculation, and the results of further actual furnace tests are shown in Table 1. Shown in

Figure 2015113489
Figure 2015113489

表1では、図3〜図6に示すように窪み部21aの最深部位置に対する支持金物11の先端部中心位置を変えて、それぞれの場合の定形耐火物の窪み部の温度のシミュレーション計算結果を示した。なお、図中A位置は窪み部21aの最上端位置、B位置はA位置から45°下方の窪み部21aの内面位置、C位置は窪み部21aの最深部位置である。   In Table 1, the simulation calculation result of the temperature of the hollow part of the shaped refractory in each case is changed by changing the center position of the tip of the support metal 11 with respect to the deepest part position of the hollow part 21a as shown in FIGS. Indicated. In the figure, the position A is the uppermost end position of the recess 21a, the position B is the inner surface position of the recess 21a 45 ° below the position A, and the position C is the deepest position of the recess 21a.

シミュレーション計算は、定形耐火物としてカーボン含有量が15質量%のマグネシア−カーボンれんがを適用して実施した。これは直接溶鋼に浸漬する部位ではカーボン含有量が少ないと熱衝撃による割れが発生し、カーボン含有量が多いと溶鋼中へのカーボン溶出が懸念されることから、カーボン含有量15質量%のマグカーボンれんがが一般的であるためである。また、不定形耐火物としてはハイアルミナ質流し込み材を適用した。これは耐火性を有し、かつ定形耐火物と芯金との間を隙間なく充填するためである。   The simulation calculation was performed by applying a magnesia-carbon brick having a carbon content of 15% by mass as a regular refractory. This is because cracks occur due to thermal shock if the carbon content is low at the part immersed directly in the molten steel, and if the carbon content is high, there is a concern about carbon elution into the molten steel. This is because carbon brick is common. In addition, a high-alumina casting material was used as the amorphous refractory. This is to have fire resistance and to fill the space between the regular refractory and the core metal without any gap.

定形耐火物(マグネシア−カーボンれんが)の1000℃における熱伝導率を17W・m-1・K-1、不定形耐火物(ハイアルミナ質流し込み材)の600℃における熱伝導率を2W・m-1・K-1、溶融金属に接する定形耐火物稼働表面の温度を1600℃、芯金の温度を220℃と想定して計算を行った。この計算結果の温度における各材料の熱膨張率は、各材料の熱膨張率を予め測定したデータを使用した。 Thermal conductivity at 1000 ° C. of standard refractory (magnesia-carbon brick) is 17 W · m −1 · K −1 , and thermal conductivity at 600 ° C. of amorphous refractory (high alumina cast material) is 2 W · m − The calculation was performed assuming 1 · K −1 , the temperature of the working surface of the fixed refractory in contact with the molten metal was 1600 ° C., and the temperature of the cored bar was 220 ° C. As the thermal expansion coefficient of each material at the temperature of the calculation result, data obtained by measuring the thermal expansion coefficient of each material in advance was used.

なお、表中温度の計算に使用した熱伝導率は、JIS R 2616に記載の熱流法に準じて測定されたものであり、熱膨張率(%)は、JIS
R 2207の押し棒式法に準じ窒素雰囲気下で測定されたデータを用いた。
The thermal conductivity used for calculating the temperature in the table is measured according to the heat flow method described in JIS R 2616, and the coefficient of thermal expansion (%) is JIS R 2616.
Data measured under a nitrogen atmosphere according to the push rod method of R 2207 was used.

実炉テストは、実施例1、実施例4、実施例5、比較例1及び比較例2について行った。   The actual furnace test was performed for Example 1, Example 4, Example 5, Comparative Example 1 and Comparative Example 2.

図1に示す実施例1の浸漬管は、フランジ、芯金10、及び支持金物11を溶接によって一体化し、この一体化物を、定形耐火物20の溝21に装入し、溝21と定形耐火物20の上部に不定形耐火物30を施工することで製造した。定形耐火物20は、円周方向に30個に分割されたものでその高さは500mmとした。定形耐火物20と不定形耐火物30としては、それぞれ前記のシミュレーション計算で使用したマグネシア−カーボンれんがとハイアルミナ質流し込み材を使用した。なお、溝21と窪み21aは定形耐火物に成形後に加工することで設けた。   In the dip tube of the first embodiment shown in FIG. 1, the flange, the core metal 10 and the support metal 11 are integrated by welding, and this integrated product is inserted into the groove 21 of the standard refractory 20 to form the groove 21 and the standard refractory fire. It was manufactured by constructing an irregular refractory 30 on the top of the object 20. The regular refractory 20 was divided into 30 pieces in the circumferential direction, and its height was 500 mm. As the regular refractory 20 and the irregular refractory 30, the magnesia-carbon brick and the high-alumina cast material used in the simulation calculation were used, respectively. In addition, the groove | channel 21 and the hollow 21a were provided by processing after shaping | molding into a fixed form refractory.

溝21は、深さが350mm、幅が82mmである。窪み部21aは溝21の壁に連続して芯金10と同心円状になるように設けている。窪み部21aは縦断面形状が半径15mmの半円で、長さLは30mmである。芯金10は、厚みが22mmで内径が1184mmである。芯金の側面に位置する支持金物11は円柱で長さが25mm、外径が10mmである。最下端に位置する支持金物11は、外径が5mmのY字状で長さは25mmである。   The groove 21 has a depth of 350 mm and a width of 82 mm. The recessed portion 21 a is provided continuously with the wall of the groove 21 so as to be concentric with the cored bar 10. The hollow portion 21a is a semicircle having a radius of 15 mm in longitudinal cross section, and the length L is 30 mm. The cored bar 10 has a thickness of 22 mm and an inner diameter of 1184 mm. The support metal 11 located on the side surface of the core metal is a cylinder having a length of 25 mm and an outer diameter of 10 mm. The support hardware 11 located at the lowermost end has a Y shape with an outer diameter of 5 mm and a length of 25 mm.

なお、実施例2〜実施例4及び比較例1〜比較例2は支持金物の位置以外の構造は実施例1と同じである。実施例5は、窪み部は縦断面形状が半径10mmの半円で、長さLは20mmとし、これら以外は実施例1と同じである。   The structures of Examples 2 to 4 and Comparative Examples 1 to 2 are the same as those of Example 1 except for the position of the support metal. The fifth embodiment is the same as the first embodiment except that the hollow portion is a semicircle having a longitudinal cross-sectional shape of a radius of 10 mm and a length L of 20 mm.

これら浸漬管を実機のRHにて使用した。当該RHは浸漬管を2本有しており、浸漬管はそれぞれフランジ構造にてボルト止めされる。2本の浸漬管はアルゴンガスを流し、溶鋼を上昇させる側を上昇側、逆側を下降側と呼んでおり、本実施例では、本発明浸漬管も比較用浸漬管もそれぞれ下降側にて使用した。この際、取鍋には平均410トンの溶鋼が入っており、1鍋処理ごとに1chと数え、浸漬管の寿命を交換するまで使用したch数で比較した。なお、1chあたりの平均処理時間、すなわち浸漬管が溶鋼にさらされる時間は17分、処理間の時間は5分〜20分であった。   These dip tubes were used in actual RH. The RH has two dip tubes, each of which is bolted with a flange structure. The two dip tubes flow argon gas, and the side that raises the molten steel is called the ascending side, and the opposite side is called the descending side. In this example, both the dip tube of the present invention and the comparative dip tube are on the descending side. used. At this time, the ladle contained an average of 410 tons of molten steel. Each ladle was counted as 1 ch and compared with the number of channels used until the life of the dip tube was replaced. The average treatment time per channel, that is, the time for which the dip tube was exposed to the molten steel was 17 minutes, and the time between treatments was 5 to 20 minutes.

表1において実施例1は、図3に示すように支持金物11の先端部中心位置を窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線に合わせた例である。C位置とA位置との温度差は86℃で、そのときの膨張率の差は0.10である。実炉テストでは52chで交換となった。定形耐火物の小さな亀裂は見られたものの脱落は見られず、耐用回数を大幅に向上させることができた。   In Table 1, Example 1 is an example in which the center position of the tip end portion of the support metal 11 is aligned with a horizontal line perpendicularly connected to the peripheral surface of the cored bar 10 from the deepest position of the recess 21a as shown in FIG. The temperature difference between the C position and the A position is 86 ° C., and the difference in expansion coefficient at that time is 0.10. In the actual furnace test, it was replaced in 52ch. Although small cracks were seen in the regular refractory, they did not fall off, and the service life could be greatly improved.

実施例4は、図5に示すように支持金物11の先端部中心位置が、窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線から0.3L離れている場合であり、A位置とC位置との温度差は433℃、及び膨張率の差は0.48である。定形耐火物の小さな亀裂は見られたものの脱落は見られず、耐用回数は48回と良好であった。   In Example 4, as shown in FIG. 5, the center position of the tip end of the support metal 11 is 0.3 L away from the horizontal line connected perpendicularly to the peripheral surface of the core bar 10 from the deepest position of the recess 21 a. The temperature difference between the A position and the C position is 433 ° C., and the difference in expansion coefficient is 0.48. Although small cracks of the regular refractory were seen, no dropout was seen, and the durability was good at 48 times.

実施例5は、Lが20mmの場合で、支持金物11の先端部中心位置が窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線から0.3L離れている場合であり、A位置とC位置との温度差は137℃、及び膨張率の差は0.15である。定形耐火物の小さな亀裂は見られたものの脱落は見られず、耐用回数は50回と良好であった。   Example 5 is a case where L is 20 mm, and the center position of the tip end of the support metal 11 is 0.3 L away from the horizontal line connected perpendicularly to the peripheral surface of the core bar 10 from the deepest position of the recess 21a. The temperature difference between the A position and the C position is 137 ° C., and the difference in expansion coefficient is 0.15. Although small cracks of the regular refractory were seen, no dropout was observed, and the durability was 50 times, which was good.

比較例1は、図5に示すように支持金物11の先端部中心位置が、窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線から0.4L離れている場合であり、A位置とC位置との温度差は551℃、及び膨張率の差も0.61と大きい。実炉テストでは定形耐火物に大きな亀裂が発生したため35chで交換となった。   In the first comparative example, as shown in FIG. 5, the center position of the tip end of the support metal 11 is 0.4 L away from the horizontal line perpendicular to the peripheral surface of the core bar 10 from the deepest position of the recess 21 a. Yes, the temperature difference between the A position and the C position is as large as 551 ° C., and the difference in expansion coefficient is as large as 0.61. In the actual furnace test, a large crack occurred in the regular refractory, so it was replaced at 35ch.

比較例2は、図6に示すように支持金物11の先端部中心位置が、窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線から0.5L離れている場合であり、A位置とC位置との温度差は653℃、及び膨張率の差も0.72と大きい。実炉テストでは定形耐火物に大きな亀裂が発生し、一部の定形耐火物が脱落したため30chで交換となった。   In Comparative Example 2, as shown in FIG. 6, the center position of the tip of the support metal 11 is 0.5 L away from the horizontal line connected perpendicularly to the peripheral surface of the core metal 10 from the deepest position of the recess 21 a. Yes, the temperature difference between the A position and the C position is as large as 653 ° C., and the difference in expansion coefficient is also as large as 0.72. In the actual furnace test, a large crack occurred in the regular refractory, and a part of the regular refractory dropped out.

実施例2及び3については、図示は省略するが、実施例2は支持金物11の先端部中心位置が、窪み部21aの最深部位置から芯金10の周面に垂直に結んだ水平線から0.1L離れている場合、実施例3は同様に0.2L離れている場合である。いずれも実施例4に比べ、A位置とC位置との温度差及び膨張率の差は小さい。したがって、実炉においても、実施例4より優れた結果が得られると考えられる。   Although the illustrations of Examples 2 and 3 are omitted, in Example 2, the center position of the tip of the support metal 11 is 0 from the horizontal line that is perpendicularly connected to the peripheral surface of the cored bar 10 from the deepest position of the recess 21a. When the distance is 1 L, Example 3 is the case where the distance is 0.2 L. As compared with Example 4, the temperature difference and the expansion coefficient difference between the A position and the C position are small. Therefore, it is considered that a result superior to that of Example 4 can be obtained even in an actual furnace.

また、定形耐火物の厚みは一定のため内面での上下方向での温度差はほとんどないため、支持金物の先端中心位置と窪み部の最新部位置を結ぶ直線に対して、温度分布はほぼ対称になっていると考えられる。したがって表1より、支持金物の先端部中心位置が、窪み部の最深部位置から芯金の周面に対し垂直に結んだ水平線から0.3Lの範囲であれば、本発明の効果が得られる。   Also, since the thickness of the fixed refractory is constant, there is almost no temperature difference in the vertical direction on the inner surface, so the temperature distribution is almost symmetrical with respect to the straight line connecting the center position of the tip of the support metal and the latest position of the recess. It is thought that. Therefore, from Table 1, the effect of the present invention can be obtained when the center position of the tip of the support metal is within 0.3 L from the horizontal line connected perpendicularly to the peripheral surface of the core metal from the deepest position of the depression. .

10 芯金
11 支持金物
20 定形耐火物
21 溝
21a 窪み部
30 不定形耐火物
10 Core 11 Support metal 20 Fixed refractory 21 Groove 21a Recess 30 Unshaped refractory

Claims (2)

円筒状の芯金の内外表面に耐火物を設けた精錬装置用の浸漬管であって、当該浸漬管の少なくとも下端部を定形耐火物とし、当該定形耐火物に設けた溝に前記芯金の下端部を挿入し、当該溝内に不定形耐火物を施工してなり、前記溝は、その内面に縦断面形状が円弧状の窪み部を有し、前記芯金は、その周面から半径方向に突出する支持金物を有し、前記窪み部の最深部を通る縦断面において、当該窪み部の長さをLとしたときに、前記窪み部の最深部位置から芯金の周面に対し垂直に結んだ水平線から0.3Lの範囲内に支持金物の先端部中心位置が含まれる精錬装置用の浸漬管。   A dip tube for a refining apparatus in which a refractory is provided on the inner and outer surfaces of a cylindrical core metal, wherein at least the lower end of the dip tube is a regular refractory, and the core metal is inserted into a groove provided in the regular refractory. A lower end portion is inserted, and an irregular refractory is constructed in the groove. The groove has a hollow portion with a circular cross-sectional shape on the inner surface, and the cored bar has a radius from the peripheral surface. In the longitudinal section passing through the deepest part of the hollow part, and having a length of the hollow part as L in the longitudinal section passing through the deepest part of the hollow part, from the deepest part position of the hollow part to the peripheral surface of the core metal A dip tube for a refining apparatus in which the center position of the tip end portion of the support hardware is included within a range of 0.3 L from a horizontal line connected vertically. 前記定形耐火物が、精錬中に局部的に損傷する部位に配置される請求項1に記載の精錬装置用の浸漬管。   The dip tube for a refining apparatus according to claim 1, wherein the fixed refractory is disposed at a site that is locally damaged during refining.
JP2013256188A 2013-12-11 2013-12-11 Dip tube for refining equipment Active JP6235890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256188A JP6235890B2 (en) 2013-12-11 2013-12-11 Dip tube for refining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256188A JP6235890B2 (en) 2013-12-11 2013-12-11 Dip tube for refining equipment

Publications (2)

Publication Number Publication Date
JP2015113489A true JP2015113489A (en) 2015-06-22
JP6235890B2 JP6235890B2 (en) 2017-11-22

Family

ID=53527587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256188A Active JP6235890B2 (en) 2013-12-11 2013-12-11 Dip tube for refining equipment

Country Status (1)

Country Link
JP (1) JP6235890B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002448A (en) * 2018-06-29 2020-01-09 東京窯業株式会社 Immersion pipe
JP2020186445A (en) * 2019-05-15 2020-11-19 東京窯業株式会社 Immersion tube for molten steel treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283829A (en) * 1995-03-30 1996-10-29 Veitsch Radex Ag Fuer Feuerfeste Erzeugnisse Blast pipe for degassing container
JP2008127677A (en) * 2006-11-24 2008-06-05 Tokyo Yogyo Co Ltd Immersion tube for vacuum-degassing apparatus
JP2010248557A (en) * 2009-04-14 2010-11-04 Kurosaki Harima Corp Immersion tube
JP2011032523A (en) * 2009-07-31 2011-02-17 Tokyo Yogyo Co Ltd Immersion tube for vacuum-degassing furnace
JP2011074439A (en) * 2009-09-30 2011-04-14 Tokyo Yogyo Co Ltd Immersion tube for refining apparatuses
JP2011111627A (en) * 2009-11-24 2011-06-09 Tokyo Yogyo Co Ltd Immersion tube of vacuum degassing furnace
JP2013011002A (en) * 2011-06-30 2013-01-17 Tokyo Yogyo Co Ltd Immersed pipe of vacuum degassing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283829A (en) * 1995-03-30 1996-10-29 Veitsch Radex Ag Fuer Feuerfeste Erzeugnisse Blast pipe for degassing container
JP2008127677A (en) * 2006-11-24 2008-06-05 Tokyo Yogyo Co Ltd Immersion tube for vacuum-degassing apparatus
JP2010248557A (en) * 2009-04-14 2010-11-04 Kurosaki Harima Corp Immersion tube
JP2011032523A (en) * 2009-07-31 2011-02-17 Tokyo Yogyo Co Ltd Immersion tube for vacuum-degassing furnace
JP2011074439A (en) * 2009-09-30 2011-04-14 Tokyo Yogyo Co Ltd Immersion tube for refining apparatuses
JP2011111627A (en) * 2009-11-24 2011-06-09 Tokyo Yogyo Co Ltd Immersion tube of vacuum degassing furnace
JP2013011002A (en) * 2011-06-30 2013-01-17 Tokyo Yogyo Co Ltd Immersed pipe of vacuum degassing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002448A (en) * 2018-06-29 2020-01-09 東京窯業株式会社 Immersion pipe
JP2020186445A (en) * 2019-05-15 2020-11-19 東京窯業株式会社 Immersion tube for molten steel treatment
JP7045347B2 (en) 2019-05-15 2022-03-31 東京窯業株式会社 Immersion tube for molten steel processing

Also Published As

Publication number Publication date
JP6235890B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6235890B2 (en) Dip tube for refining equipment
CN215033385U (en) Device for multilayer pouring casting of high-temperature alloy master alloy
JP5393231B2 (en) Dip tube
CN215002884U (en) Intermediate frequency induction furnace ramming type crucible fence
JP5491815B2 (en) Immersion pipe for refining equipment
JP2016188411A (en) Multi hole plug
JP2015229800A (en) Brick structure of reflux pipe and immersion pipe of rh vacuum degasser
JP5462601B2 (en) Immersion tube for vacuum degassing furnace
JP6834502B2 (en) Amorphous refractory structure, manufacturing method of amorphous refractory structure, and heat-resistant fiber support material
RU2786514C1 (en) Device for blowing liquid metal with gas in ladder
CN106424654B (en) Lift tube for low-pressure casting of heat-resistant alloy and manufacturing mold and manufacturing method thereof
JP4676927B2 (en) Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method
JP2009068099A (en) Structure for gas-blowing tuyere in refining vessel
WO2021106120A1 (en) Dip tube for molten steel processing
JP7309468B2 (en) dip tube
JP5877123B2 (en) Degassing equipment dip tube
JP5781385B2 (en) Degassing equipment dip tube
JP3719605B2 (en) Construction method of uncoated refractories for lance pipes by horizontal casting.
JP3002119U (en) Immersion pipe for RH vacuum degassing equipment
RU2706911C1 (en) Device for bottom blowing of metal by gas in ladle
JPS5920418A (en) Immersed riser of rh degassing apparatus
JP6003960B2 (en) Casting method for lining refractories in molten metal containers
RU2606824C2 (en) Method of centrifugal casting of thin-wall tubes of heat-resistant alloys
JP2017094386A (en) Upper nozzle
JP2017179518A (en) Dip tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171027

R150 Certificate of patent or registration of utility model

Ref document number: 6235890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250