JP6834502B2 - Amorphous refractory structure, manufacturing method of amorphous refractory structure, and heat-resistant fiber support material - Google Patents

Amorphous refractory structure, manufacturing method of amorphous refractory structure, and heat-resistant fiber support material Download PDF

Info

Publication number
JP6834502B2
JP6834502B2 JP2017003483A JP2017003483A JP6834502B2 JP 6834502 B2 JP6834502 B2 JP 6834502B2 JP 2017003483 A JP2017003483 A JP 2017003483A JP 2017003483 A JP2017003483 A JP 2017003483A JP 6834502 B2 JP6834502 B2 JP 6834502B2
Authority
JP
Japan
Prior art keywords
heat
resistant fiber
support
amorphous refractory
support material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017003483A
Other languages
Japanese (ja)
Other versions
JP2017198438A (en
Inventor
利光 栗原
利光 栗原
拓男 上原
拓男 上原
石川 隆一
隆一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2017198438A publication Critical patent/JP2017198438A/en
Application granted granted Critical
Publication of JP6834502B2 publication Critical patent/JP6834502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、不定形耐火物構造体及びその製造方法、並びに、不定形耐火物構造体に使用する耐熱繊維製支持材に関するものである。 The present invention relates to an amorphous refractory structure, a method for producing the same, and a heat-resistant fiber support material used for the amorphous refractory structure.

製鉄所などにおいて高温下で使用される各種工業炉や設備には、使用環境や必要とされる機能に応じて耐火煉瓦や不定形耐火物、セラミックファイバーなど各種耐火物が施工されている。近年、その中でも施工や形状の自由度、品質の高性能化から不定形耐火物(キャスタブル、プラスチック等)の使用率が増大している。 Various refractories such as refractory bricks, irregular refractories, and ceramic fibers are installed in various industrial furnaces and equipment used at high temperatures in steelworks, etc., depending on the usage environment and required functions. In recent years, the usage rate of amorphous refractories (castables, plastics, etc.) has been increasing due to the degree of freedom in construction and shape, and the improvement in quality.

不定形耐火物内部には、通常、アンカー又はスタッドと呼ばれるL形、V形、Y形になどに加工された金属製支持材が埋設され、当該金属製支持材の端部は、不定形耐火物の支持体である鉄皮やパイプに固定される。この金属製支持材は、不定形耐火物が鉄皮やパイプ等から剥離、脱落するのを防止したり、亀裂の伸展を抑制したりする役割を果たしている。 Inside the amorphous refractory, a metal support usually called an anchor or stud, which is processed into an L-shape, V-shape, Y-shape, etc., is embedded, and the end of the metal support is an amorphous refractory. It is fixed to the iron skin or pipe that is the support of the object. This metal support material plays a role of preventing the amorphous refractory from peeling off and falling off from the iron skin, the pipe, etc., and suppressing the growth of cracks.

また、金属製支持材以外を支持材に使用する場合もある。その一例として、アルミナ質、ムライト質、炭化珪素質等からなるセラミックスピンを支持材に使用することが提案されている(特許文献1)。 Further, a support material other than the metal support material may be used as the support material. As an example, it has been proposed to use a ceramic pin made of alumina, mullite, silicon carbide or the like as a support material (Patent Document 1).

また、金属製支持材を用いることで生じる不定形耐火物の亀裂の発生や熱損失の増大化の問題を低減することを目的として、Al,SiO,Al−SiO,Al−SiO−B材質からなる無機質の耐熱繊維製支持材を支持材に使用することが提案されている(特許文献2)。 Further, for the purpose of reducing the problems of cracking of the amorphous refractory and increase in heat loss caused by using the metal support material, Al 2 O 3 , SiO 2 , Al 2 O 3- SiO 2 , Al 2 O 3- SiO 2- B 2 O 3 It has been proposed to use an inorganic heat-resistant fiber support material as a support material (Patent Document 2).

不定形耐火物構造体は、前述の不定形耐火物及び支持材からなる構造体のことで、鉄皮やパイプ等の支持体に耐熱性や断熱性を付与した構造体のことである。当該支持体としては、例えば、鉄鋼プロセスの中では、加熱炉の炉殻やスキッドの水冷パイプ、二次精錬の浸漬管、ガス吹き込み用のランス等が挙げられる。使用される支持体の大きさや構造によって違いはあるが、数千から数万さらには数十万本の支持材が、接着材による施工、手溶接、又は半自動溶接によって、鉄皮やパイプ等の支持体に固定されて、使用されている。 The amorphous refractory structure is a structure composed of the above-mentioned amorphous refractory and a support material, and is a structure in which heat resistance and heat insulating properties are imparted to a support such as an iron skin or a pipe. Examples of the support include, in the steel process, a furnace shell of a heating furnace, a water-cooled pipe of a skid, a dipping pipe for secondary refining, a lance for gas blowing, and the like. Thousands to tens of thousands or even hundreds of thousands of supports can be made of iron skin, pipes, etc. by adhesive construction, manual welding, or semi-automatic welding, depending on the size and structure of the support used. It is fixed to the support and used.

特開平10―197161号公報Japanese Unexamined Patent Publication No. 10-197161 特開2014―145529号公報Japanese Unexamined Patent Publication No. 2014-145529

一般的な不定形耐火物構造体では、高温に曝される耐火物の稼働面近くに金属製支持材が存在することになる。金属は熱間での膨張率が耐火物よりも大きいため、金属製支持材と不定形耐火物との膨張差により不定形耐火物の亀裂発生の原因になることや、熱伝導率が高いために金属製支持材を通じて熱が炉殻鉄皮や水冷パイプ等に逃げることで、大きな熱損失が生じるといった問題があった。また、金属製支持材を酸化雰囲気下で長期間使用した場合、金属の酸化により支持材の強度劣化が生じ、不定形耐火物の保持力が低下し、特に支持材の先端部から不定形耐火物が剥離するといった問題点もあった。 In a general amorphous refractory structure, a metal support is present near the working surface of the refractory exposed to high temperatures. Since metal has a higher coefficient of thermal expansion than refractories, the difference in expansion between the metal support and the amorphous refractory may cause cracks in the irregular refractory, and the thermal conductivity is high. In addition, there is a problem that a large heat loss occurs when heat escapes to a furnace shell iron skin, a water-cooled pipe, etc. through a metal support material. In addition, when the metal support material is used for a long period of time in an oxidizing atmosphere, the strength of the support material deteriorates due to the oxidation of the metal, and the holding power of the amorphous refractory decreases, especially from the tip of the support material. There was also a problem that the object peeled off.

工業炉の不定形耐火物施工には、炉の大きさや構造によって違いはあるが、数千から数万さらには数十万本もの金属製支持材が使用されている。 Thousands to tens of thousands or even hundreds of thousands of metal supports are used in the construction of amorphous refractories in industrial furnaces, depending on the size and structure of the furnace.

高温下で稼働後の不定形耐火物を観察すると、金属製支持材が設置された位置から亀裂が発生している状況を多く見受けることができる。亀裂が伸展し、個々が繋がることで不定形耐火物の剥離・脱落の危険性が高くなる。よって、亀裂の発生量が不定形耐火物構造体の寿命を決定付ける一要因となっている。 When observing the amorphous refractory after operation at high temperature, it can be seen that cracks are often generated from the position where the metal support material is installed. The cracks grow and the individual pieces are connected, increasing the risk of peeling and falling off of the amorphous refractory. Therefore, the amount of cracks generated is one of the factors that determine the life of the amorphous refractory structure.

一方で、金属製支持材の代わりにセラミックスピンを支持材として使用することが提案されている(特許文献1)。しかしながら、セラミックスピンを使用した場合、セラミックスピンを支持体に対して溶接できないため、支持材と支持体の固定が難しいといった問題点がある。特許文献1では、固定方法として無機質接着剤を使用しているが、無機質接着剤は接着強度が低いため、重量物を支持できない。更に、セラミックスピンは折れやすいといった欠点もある。これらの理由より、セラミックスピンからなる支持材は、実情ほとんど使用されていない。 On the other hand, it has been proposed to use a ceramic pin as a support material instead of a metal support material (Patent Document 1). However, when the ceramic pin is used, there is a problem that it is difficult to fix the support material and the support because the ceramic pin cannot be welded to the support. In Patent Document 1, an inorganic adhesive is used as a fixing method, but since the inorganic adhesive has low adhesive strength, it cannot support a heavy object. Further, the ceramic pin has a drawback that it is easily broken. For these reasons, support materials made of ceramic pins are rarely used in reality.

そこで、金属製支持材を用いることで生じる不定形耐火物の亀裂の発生や熱損失の増大の問題を低減することを目的に、Al,SiO,Al−SiO,Al−SiO−B材質等の無機質長繊維からなるロープ状の耐熱繊維製支持材(耐熱繊維ロープ)が提案された(特許文献2)。しかしながら、耐熱繊維製支持材は、繊維の自立性が低いため、硬化剤を用いたとしても、不定形耐火物の施工時に耐火物の荷重に耐えきれず、該耐熱繊維製支持材の先端部が垂れ下るといった欠点があった。 Therefore, for the purpose of reducing the problems of cracking of the irregular refractory and increase in heat loss caused by using the metal support material, Al 2 O 3 , SiO 2 , Al 2 O 3- SiO 2 , A rope-shaped support material made of heat-resistant fiber (heat-resistant fiber rope) made of inorganic long fibers such as Al 2 O 3- SiO 2- B 2 O 3 material has been proposed (Patent Document 2). However, since the heat-resistant fiber support material has low fiber self-sustaining property, even if a curing agent is used, the heat-resistant fiber support material cannot withstand the load of the refractory material during construction of the amorphous refractory material, and the tip portion of the heat-resistant fiber support material. There was a drawback that it hung down.

本発明は、上記事情に鑑みてなされたものであり、耐熱繊維製支持材の自立性を改善できる不定形耐火物構造体及びその製造方法、並びに当該不定形耐火物構造体に用いる耐熱繊維製支持材を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is an amorphous refractory structure capable of improving the independence of the heat-resistant fiber support material, a method for producing the same, and a heat-resistant fiber used for the amorphous refractory structure. The purpose is to provide a support material.

本願発明者等は、上述の金属製支持材や従来の耐熱繊維製支持材の欠点を鑑みて、ロープ状の耐熱繊維製支持材中に芯として金属ワイヤーを内在させることで、耐熱繊維の特性を生かすとともに、耐熱繊維製支持材の自立性を高めることができ、従来の耐熱繊維製支持材にあった課題を解決できると考えた。 In view of the above-mentioned drawbacks of the metal support material and the conventional heat-resistant fiber support material, the inventors of the present application have created the characteristics of the heat-resistant fiber by incorporating a metal wire as a core in the rope-shaped heat-resistant fiber support material. It was thought that it would be possible to improve the independence of the heat-resistant fiber support material and solve the problems that existed in the conventional heat-resistant fiber support material.

金属と不定形耐火物に使用される酸化物とでは、熱膨張係数が大きく異なり、金属の方が一般的により大きな値をとる。よって、熱間では金属製支持材と不定形耐火物とでは膨張量に差が生じ、金属が大きく伸長する際に内部応力が発生し、不定形耐火物の亀裂発生の大きな要因となっている。このため、金属製支持材の膨張代を設けるために、支持材表面に樹脂コーティングやビニールテープを巻き付けて施工し、昇温時に焼き飛ばすことで、不定形体耐火物に埋設された金属製支持材の周囲に空間を確保しているほどである。 The coefficient of thermal expansion differs greatly between metals and oxides used in amorphous refractories, with metals generally taking larger values. Therefore, there is a difference in the amount of expansion between the metal support material and the amorphous refractory in the heat, and internal stress is generated when the metal is greatly extended, which is a major factor in the occurrence of cracks in the amorphous refractory. .. For this reason, in order to provide an expansion allowance for the metal support material, a resin coating or vinyl tape is wrapped around the surface of the support material and burned off when the temperature rises, so that the metal support material embedded in the irregular refractory It is enough to secure a space around.

一方、耐熱繊維は、不定形耐火物と同様に無機材料であり、熱膨張係数が低く、さらに弾性率も低いので、不定形耐火物内に耐熱繊維製支持材を埋設しても、両者の膨張差により内部応力が発生しにくい。そして、耐熱繊維製支持材中に金属ワイヤーが内在しても、その膨張は耐熱繊維製支持材に拘束されるので、不定形耐火物に影響することは殆どない。 On the other hand, the heat-resistant fiber is an inorganic material like the amorphous refractory, has a low coefficient of thermal expansion, and also has a low elastic modulus. Therefore, even if a heat-resistant fiber support material is embedded in the amorphous refractory, both of them Internal stress is less likely to occur due to the difference in expansion. Even if the metal wire is contained in the heat-resistant fiber support material, its expansion is restricted by the heat-resistant fiber support material, so that the amorphous refractory material is hardly affected.

また、通常、金属製支持材に使用される材質のSUS鋼や耐熱鋳鋼の熱伝導率が15〜50W/mK程度であるのに対して、アルミナ長繊維に代表される耐熱繊維の熱伝導率は0.1W/mK程度である。金属の端部を指で持ち、もう一方を火炎で炙れば、たちまち持つことが出来なくなるが、同様のことを耐熱繊維で行っても持ち続けることが出来ることから、その違いは明白である。そして、耐熱繊維製支持材中に熱伝導率が高い金属ワイヤーが内在していても、該金属ワイヤーは、耐熱繊維製支持材が接続される支持体に接触する構造ではないため、熱が金属ワイヤーを通じて支持体に逃げることがなく、熱損失に影響することはない。 Further, while the thermal conductivity of SUS steel and heat-resistant cast steel, which are usually used for metal support materials, is about 15 to 50 W / mK, the thermal conductivity of heat-resistant fibers typified by long alumina fibers Is about 0.1 W / mK. If you hold the end of the metal with your finger and bake the other with a flame, you will not be able to hold it immediately, but the difference is clear because you can continue to hold it even if you do the same with heat-resistant fiber. .. Even if a metal wire having a high thermal conductivity is contained in the heat-resistant fiber support material, the metal wire does not have a structure in contact with the support to which the heat-resistant fiber support material is connected, so that the heat is metal. It does not escape to the support through the wire and does not affect the heat loss.

更には、耐熱繊維は主にAlやSiOといった酸化物で構成されるため、高温酸化雰囲気下における長期間の使用においても、金属とは異なり、酸化により劣化することはない。一方で、耐熱繊維製支持材中に内在する金属ワイヤーは、酸化により劣化する。しかしながら、金属ワイヤーは酸化してもなお、不定形耐火物の数倍程度の強度は維持できるので、全く問題とはならない。 Furthermore, since the heat-resistant fiber is mainly composed of oxides such as Al 2 O 3 and SiO 2, it does not deteriorate due to oxidation even when used for a long period of time in a high-temperature oxidizing atmosphere, unlike metals. On the other hand, the metal wire contained in the heat-resistant fiber support material is deteriorated by oxidation. However, even if the metal wire is oxidized, it can maintain the strength several times that of the amorphous refractory, so that there is no problem at all.

即ち、発明者等が鋭意検討した結果、無機質長繊維からなる耐熱繊維ロープの芯に金属ワイヤーが内在された支持材を適用することで、不定形耐火物の亀裂の発生の抑制や、支持材を通じた抜熱量の低減ができるとともに、耐熱繊維製支持材の自立性が向上することで、不定形耐火物を施工する時の耐熱繊維製支持材の垂れ下りを抑制し、不定形耐火物の支持効果が向上し、実機使用時の不定形耐火物の剥離損耗を低減できることを見出して、本発明を為すに至った。 That is, as a result of diligent studies by the inventors, by applying a support material in which a metal wire is embedded in the core of a heat-resistant fiber rope made of inorganic long fibers, it is possible to suppress the occurrence of cracks in an amorphous refractory and the support material. By reducing the amount of heat removed through the heat-resistant fiber support material and improving the independence of the heat-resistant fiber support material, it is possible to prevent the heat-resistant fiber support material from hanging down when constructing an amorphous refractory material. The present invention has been made by finding that the supporting effect is improved and the peeling wear of an irregular refractory material can be reduced when the actual machine is used.

本発明の要旨は以下の通りである。 The gist of the present invention is as follows.

(1)本発明のある観点によれば、不定形耐火物と、鉛直な壁面を有し、前記壁面に施工された前記不定形耐火物を支持する支持体と、前記支持体の壁面に接続された状態で前記不定形耐火物の内部に埋設される耐熱繊維製支持材と、を備え、前記耐熱繊維製支持材は、無機質長繊維からなる耐熱繊維ロープを有し、前記耐熱繊維ロープは、環状部を有し、且つ前記耐熱繊維ロープの芯に金属ワイヤーが内在し、前記環状部は、前記金属ワイヤーの弾性により前記支持体の壁面に対して自立した状態で、前記不定形耐火物に埋設されており、前記自立した状態とは、前記不定形耐火物が施工された状態において前記環状部がたわまない又はたわみが少ない状態であって、前記たわまない又はたわみが少ない状態とは、前記環状部の先端に荷重2Nを印可した場合のたわみ量が6.04mm以下となる耐熱繊維製支持材を用いることで得られる状態であることを特徴とする、不定形耐火物構造体が提供される。
(1) According to a certain viewpoint of the present invention, a support having an amorphous refractory and a vertical wall surface and supporting the amorphous refractory installed on the wall surface is connected to the wall surface of the support. The refractory fiber support material is provided with a heat-resistant fiber support material embedded inside the irregular refractory in a state of being formed, and the heat-resistant fiber support material has a heat-resistant fiber rope made of inorganic long fibers, and the heat-resistant fiber rope is The amorphous refractory has an annular portion and a metal wire is embedded in the core of the heat-resistant fiber rope, and the annular portion is self-supporting with respect to the wall surface of the support due to the elasticity of the metal wire. The self-supporting state is a state in which the annular portion does not bend or has little deflection in the state where the irregular refractory is constructed, and the said non-deflection or little deflection occurs. The state is a state obtained by using a heat-resistant fiber support material having a deflection amount of 6.04 mm or less when a load of 2N is applied to the tip of the annular portion, which is an amorphous refractory. The structure is provided.

)前記金属ワイヤーは、硬鋼線、ピアノ線、ステンレス鋼線のうち、いずれかの材質からなるようにしてもよい。
( 2 ) The metal wire may be made of any one of a hard steel wire, a piano wire, and a stainless steel wire.

)前記無機質長繊維は、Al質、SiO質、Al−SiO質、Al−SiO−B質のうち1種又は2種以上の材質からなるようにしてもよい。
(3) the inorganic lengthy fibers, Al 2 O 3 quality, SiO 2 quality, Al 2 O 3 -SiO 2 quality, Al 2 O 3 -SiO 2 -B 2 O 3 1 , two or more of the quality It may be made of a material.

)前記耐熱繊維ロープは、硬化剤にて硬化されているようにしてもよい。
( 4 ) The heat-resistant fiber rope may be cured with a curing agent.

)前記耐熱繊維製支持材は、前記耐熱繊維ロープと、前記耐熱繊維ロープと前記支持体を接続する接続部材と、を有するようにしてもよい。
( 5 ) The heat-resistant fiber support material may have the heat-resistant fiber rope and a connecting member connecting the heat-resistant fiber rope and the support.

)前記接続部材は、前記支持体に固定される金属管からなり、前記金属管の内部に前記耐熱繊維ロープの端部が挿入された状態で密着しているようにしてもよい。
( 6 ) The connecting member may be made of a metal pipe fixed to the support, and may be brought into close contact with the heat-resistant fiber rope with the end portion inserted inside the metal pipe.

)前記耐熱繊維ロープに前記不定形耐火物の荷重が作用する方向と、前記耐熱繊維ロープの端部が前記金属管から引き抜かれる方向とが異なるようにしてもよい。
( 7 ) The direction in which the load of the irregular refractory material acts on the heat-resistant fiber rope may be different from the direction in which the end portion of the heat-resistant fiber rope is pulled out from the metal pipe.

)前記金属管が、スタッド溶接により前記支持体に固定されていてもよい。
( 8 ) The metal pipe may be fixed to the support by stud welding.

(9)本発明の別の観点によれば、不定形耐火物と、前記不定形耐火物を支持する支持体とを備える不定形耐火物構造体の製造方法において、無機質長繊維からなる耐熱繊維ロープと、前記耐熱繊維ロープの芯に内在する金属ワイヤーとを有し、且つ、前記耐熱繊維ロープが環状部を有する耐熱繊維製支持材を、前記支持体の鉛直な壁面に対して略直角に、且つ、前記環状部が、前記金属ワイヤーの弾性により前記支持体の壁面に対して自立した状態で固定する工程と、前記耐熱繊維製支持材が固定された前記支持体の壁面の周囲に前記不定形耐火物を流し込み施工する工程と、を含み、前記自立した状態とは、前記不定形耐火物が施工された状態において前記環状部がたわまない又はたわみが少ない状態であって、前記たわまない又はたわみが少ない状態とは、前記環状部の先端に荷重2Nを印可した場合のたわみ量が6.04mm以下となる耐熱繊維製支持材を用いることで得られる状態であることを特徴とする、不定形耐火物構造体の製造方法が提供される。
(9) According to another viewpoint of the present invention, in a method for producing an amorphous refractory structure including an amorphous refractory and a support supporting the amorphous refractory, heat-resistant fibers made of inorganic long fibers. A refractory fiber support material having a rope and a metal wire inside the core of the refractory fiber rope and having an annular portion of the refractory fiber rope is placed substantially perpendicular to the vertical wall surface of the support. In addition, the step of fixing the annular portion independently to the wall surface of the support by the elasticity of the metal wire, and the step of fixing the annular portion around the wall surface of the support to which the heat-resistant fiber support material is fixed. The self-supporting state includes a step of pouring an amorphous refractory into the construction, and the self-supporting state is a state in which the annular portion does not bend or has little deflection in the state where the amorphous refractory is constructed. The state of no bending or little bending means that the state can be obtained by using a refractory fiber support material having a bending amount of 6.04 mm or less when a load of 2N is applied to the tip of the annular portion. A method for producing an amorphous refractory structure is provided.

10)前記耐熱繊維製支持材を前記支持体の壁面に固定する工程では、前記耐熱繊維製支持材を、スタッド溶接により前記支持体の壁面に固定するようにしてもよい。
( 10 ) In the step of fixing the heat-resistant fiber support material to the wall surface of the support, the heat-resistant fiber support material may be fixed to the wall surface of the support by stud welding.

11)前記耐熱繊維製支持材は、前記支持体に固定される金属管を更に有し、前記金属管の内部に前記耐熱繊維ロープの端部が挿入された状態で密着しており、前記耐熱繊維製支持材を前記支持体の壁面に固定する工程では、前記耐熱繊維製支持材の前記金属管を、スタッド溶接により前記支持体の壁面に固定するようにしてもよい。
( 11 ) The heat-resistant fiber support material further has a metal tube fixed to the support, and is in close contact with the heat-resistant fiber rope with the end of the heat-resistant fiber rope inserted inside the metal tube. In the step of fixing the heat-resistant fiber support material to the wall surface of the support, the metal pipe of the heat-resistant fiber support material may be fixed to the wall surface of the support by stud welding.

12)前記金属管には、前記支持体に固定される側の先端に薄肉部が形成されており、前記金属管の前記薄肉部を、スタッド溶接により前記支持体の壁面に固定するようにしてもよい。
( 12 ) The metal pipe has a thin-walled portion formed at the tip on the side fixed to the support, and the thin-walled portion of the metal pipe is fixed to the wall surface of the support by stud welding. You may.

(13)本発明の別の観点によれば、不定形耐火物を支持する支持体の鉛直な壁面に接続され、前記支持体の鉛直な壁面に施工される前記不定形耐火物の内部に埋設される耐熱繊維製支持材であって、無機質長繊維からなる耐熱繊維ロープと、前記耐熱繊維ロープと前記支持体の壁面を接続する接続部材と、を備え、前記耐熱繊維ロープは、環状部を有し、且つ前記耐熱繊維ロープの芯に金属ワイヤーが内在し、前記環状部は、前記金属ワイヤーの弾性により前記支持体の壁面に対して自立し、前記自立するとは、前記耐熱繊維製支持材が前記壁面に固定され、且つ前記不定形耐火物が施工された状態において、前記環状部がたわまない又はたわみが少ない状態を保持することであって、前記たわまない又はたわみが少ない状態とは、前記耐熱繊維製支持材が前記壁面に固定された状態で前記環状部の先端に荷重2Nを印可した場合のたわみ量が6.04mm以下となる耐熱繊維製支持材を用いることで得られる状態であることを特徴とする、耐熱繊維製支持材が提供される。
(13) According to another aspect of the present invention, it is connected to the vertical wall surface of the support that supports the amorphous fireproof material and is embedded inside the amorphous fireproof material to be installed on the vertical wall surface of the support. The heat-resistant fiber support material is provided with a heat-resistant fiber rope made of inorganic long fibers and a connecting member for connecting the heat-resistant fiber rope and the wall surface of the support, and the heat-resistant fiber rope has an annular portion. A metal wire is contained in the core of the heat-resistant fiber rope, and the annular portion is self-supporting with respect to the wall surface of the support due to the elasticity of the metal wire. Is fixed to the wall surface and the amorphous fireproof material is installed, the annular portion is maintained in a state of no bending or little bending, and the said non-deflection or little bending is small. state, by using a heat-resistant textile support material which deflection amount is equal to or less than 6.04mm when the heat textile support material is by applying a load 2N at the tip of the annular portion in a state of being fixed to the wall surface A heat-resistant fiber support material is provided, which is in a obtained state.

14)前記金属ワイヤーは、硬鋼線、ピアノ線、ステンレス鋼線のうち、いずれかの材質からなるようにしてもよい。
( 14 ) The metal wire may be made of any one of a hard steel wire, a piano wire, and a stainless steel wire.

15)前記接続部材は、前記支持体に固定される金属管からなり、前記金属管の内部に前記耐熱繊維ロープの端部が挿入された状態で及び密着しているようにしてもよい。
( 15 ) The connecting member may be made of a metal tube fixed to the support, and the end portion of the heat-resistant fiber rope may be inserted into the metal tube and may be in close contact with the metal tube.

16)前記金属管は、前記支持体に固定される側の先端に薄肉部が形成されているようにしてもよい。
( 16 ) The metal tube may have a thin-walled portion formed at the tip on the side fixed to the support.

本発明を適用することで、金属製支持材が原因となる不定形耐火物の亀裂発生を抑制できるため、不定形耐火物構造体の耐用を上げることが可能である。また、耐熱繊維製支持材は熱伝導率が低いため、不定形耐火物構造体からの熱損失を低減できる。
更に、不定形耐火物を施工する時の耐熱繊維製支持材の垂れ下りを抑制することで、耐熱繊維製支持材による不定形耐火物の支持効果が向上し、不定形耐火物の耐用性を上げることが可能である。
以上の効果により、熱損失エネルギーを減少することによるコストダウン化や省エネルギー化、不定形耐火物構造体の寿命向上に貢献することができる。
By applying the present invention, it is possible to suppress the occurrence of cracks in the amorphous refractory caused by the metal support material, so that the durability of the amorphous refractory structure can be improved. Further, since the heat-resistant fiber support material has a low thermal conductivity, the heat loss from the amorphous refractory structure can be reduced.
Furthermore, by suppressing the sagging of the heat-resistant fiber support material when constructing the amorphous refractory material, the support effect of the amorphous refractory material by the heat-resistant fiber support material is improved, and the durability of the amorphous refractory material is improved. It is possible to raise it.
By the above effects, it is possible to contribute to cost reduction, energy saving, and improvement of the life of the amorphous refractory structure by reducing the heat loss energy.

従来の耐熱繊維ロープと金属管から構成される耐熱繊維製支持材を表す図である。It is a figure showing the support material made of heat-resistant fiber composed of the conventional heat-resistant fiber rope and a metal tube. 従来の耐熱繊維ロープと金属管から構成される耐熱繊維製支持材を表す図である。It is a figure showing the support material made of heat-resistant fiber composed of the conventional heat-resistant fiber rope and a metal tube. 本発明の第1の実施形態に係る金属ワイヤーが挿入された耐熱繊維ロープと金属管から構成される耐熱繊維製支持材を表す図である。It is a figure which shows the heat-resistant fiber support material composed of the heat-resistant fiber rope which inserted the metal wire which concerns on 1st Embodiment of this invention, and a metal tube. 本発明の第2の実施形態に係る金属ワイヤーが挿入された耐熱繊維ロープと金属管から構成される耐熱繊維製支持材を表す図である。It is a figure showing the heat-resistant fiber support material composed of the heat-resistant fiber rope into which the metal wire which concerns on 2nd Embodiment of this invention is inserted, and a metal tube. 不定形耐火物の流し込み施工時の耐熱繊維製支持材のたわみを視覚的に評価すための試験を表す図である。It is a figure which shows the test for visually evaluating the deflection of the heat-resistant fiber support material at the time of pouring construction of an amorphous refractory. 荷重印加によるたわみ量測定方法を表す図である。It is a figure which shows the method of measuring the amount of deflection by applying a load. 荷重印加時のたわみ量と荷重解放後のたわみ量を表す図である。It is a figure which shows the amount of deflection at the time of applying a load, and the amount of deflection at the time of releasing a load. 耐熱繊維製支持材のたわみ時の不定形耐火物支持率を表す図である。It is a figure which shows the amorphous refractory support rate at the time of bending of the support material made of heat-resistant fiber. 耐熱繊維ロープの引張強度試験を表す図である。It is a figure which shows the tensile strength test of a heat-resistant fiber rope. 本実施形態に係る耐熱繊維製支持材が適用されたスキッドポストの構造を表す図である。It is a figure which shows the structure of the skid post to which the heat-resistant fiber support material which concerns on this embodiment is applied. 一般的な不定形耐火物構造体を示す図である。It is a figure which shows the general amorphous refractory structure. 一般的なスキッドを表す図である。It is a figure showing a general skid. 本発明の第3の実施形態に係る金属ワイヤーが挿入された耐熱繊維ロープとスタッド溶接用金属管から構成される耐熱繊維製支持材を表す図である。It is a figure which shows the heat-resistant fiber support material which comprises the heat-resistant fiber rope which inserted the metal wire which concerns on 3rd Embodiment of this invention, and the metal tube for stud welding. 本発明の第3の実施形態に係るスタッド溶接用金属管の細部を表す図である。It is a figure which shows the detail of the metal pipe for stud welding which concerns on 3rd Embodiment of this invention. 本発明の第2の実施形態に係る金属ワイヤーが挿入された耐熱繊維ロープと、図4とは異なる形状の金属管から構成される耐熱繊維製支持材を表す図である。It is a figure showing the heat-resistant fiber support material composed of the heat-resistant fiber rope into which the metal wire which concerns on 2nd Embodiment of this invention is inserted, and the metal tube of the shape different from FIG. 金属管の溶接強度を評価する引張強度試験を表す図である。It is a figure which shows the tensile strength test which evaluates the welding strength of a metal pipe. 本発明の第3の実施形態に係る耐熱繊維製支持材が適用されたスキッドポストの構造を表す図である。It is a figure which shows the structure of the skid post to which the heat-resistant fiber support material which concerns on 3rd Embodiment of this invention is applied.

以下に添付図面を参照しながら、本発明の好適な実施の形態に係る耐熱繊維製支持材、及びそれを用いた不定形耐火物構造体について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The heat-resistant fiber support material according to the preferred embodiment of the present invention and the amorphous refractory structure using the same will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

本発明の実施形態に係る耐熱繊維製支持材を用いた不定形耐火物構造体を説明する前に、先ずは、従来の金属製支持材を用いた不定形耐火物構造体について説明する。 Before explaining the amorphous refractory structure using the heat-resistant fiber support material according to the embodiment of the present invention, first, the amorphous refractory structure using the conventional metal support material will be described.

一般的に、不定形耐火物構造体は、図11に示すように、基本構造として、支持体22と、当該支持体22に対して溶接等で固定された金属のスタッドやアンカーのような金属製支持材23と、不定形耐火物19から構成される。 In general, as shown in FIG. 11, the amorphous refractory structure has, as a basic structure, a support 22 and a metal such as a metal stud or an anchor fixed to the support 22 by welding or the like. It is composed of a support material 23 and an amorphous refractory material 19.

また、支持体22を被覆する耐火物は単層または、複層からなり、不定形耐火物19の他にセラミックスファイバーや断熱ボード、断熱シート等の定形耐火物が併用される場合もある。ここでいう支持体22とは、金属やセラミックス製の部材を組み合わせてできた構造物で、炉殻、パイプ、梁、柱等が挙げられる。例えば、鉄鋼プロセスに用いられる支持体としては、加熱炉の炉殻、図12に示すようなスキッドのポスト部25内に設けられる水冷パイプ、二次精錬の浸漬管、又はガス吹き込み用のランス等が挙げられる。 Further, the refractory material covering the support 22 is composed of a single layer or a plurality of layers, and in addition to the amorphous refractory material 19, a standard refractory material such as a ceramic fiber, a heat insulating board, and a heat insulating sheet may be used in combination. The support 22 referred to here is a structure formed by combining members made of metal or ceramics, and examples thereof include a hearth, a pipe, a beam, and a pillar. For example, the support used in the steel process includes a furnace shell of a heating furnace, a water-cooled pipe provided in the post portion 25 of the skid as shown in FIG. 12, a dipping pipe for secondary refining, a lance for gas blowing, and the like. Can be mentioned.

また、不定形耐火物構造体は、支持体22に溶接等にて一定間隔で金属製支持材23を固定し、その後、周囲に設置された任意の形状の型枠に不定形耐火物19を流し込み、養生・乾燥させることで施工され、かかる施工後に、各設備の実機で不定形耐火物構造体が使用される。 Further, in the amorphous refractory structure, the metal support 23 is fixed to the support 22 at regular intervals by welding or the like, and then the amorphous refractory 19 is placed on a formwork of an arbitrary shape installed around the support. It is constructed by pouring, curing and drying, and after such construction, an amorphous refractory structure is used in the actual machine of each facility.

本発明の実施形態に係る金属ワイヤーが内在した耐熱繊維製支持材は、上記金属のスタッドやアンカーのような金属製支持材23に替わるものである。また、本実施形態に係る不定形耐火物構造体は、当該金属ワイヤーが内在した耐熱繊維製支持材を用いて構築した不定形耐火物構造体であり、支持材が異なる以外は、上記一般的な不定形耐火物構造体と同様の構成および用途を適用できる。すなわち、本実施形態に係る不定形耐火物構造体は、支持体、耐熱繊維製支持材、及び、不定形耐火物から構成される。そして、本実施形態は、支持体が鉛直な壁面を有し、該鉛直な壁面に対して耐熱繊維製支持材が水平方向に起立するように取り付けられ、該鉛直な壁面に不定形耐火物が施工される場合において、好適に適用される。 The heat-resistant fiber support material containing the metal wire according to the embodiment of the present invention replaces the metal support material 23 such as the metal studs and anchors. Further, the amorphous refractory structure according to the present embodiment is an amorphous refractory structure constructed by using a heat-resistant fiber support material containing the metal wire, and is generally described above except that the support material is different. The same configuration and application as the amorphous refractory structure can be applied. That is, the amorphous refractory structure according to the present embodiment is composed of a support, a heat-resistant fiber support material, and an amorphous refractory. In the present embodiment, the support has a vertical wall surface, and the heat-resistant fiber support material is attached to the vertical wall surface so as to stand upright in the horizontal direction, and an amorphous refractory is formed on the vertical wall surface. When it is constructed, it is preferably applied.

ここで、本実施形態に係る不定形耐火物構造体の製造方法(施工方法)の概要について説明する。まず、鉄扉又は水冷パイプ等の支持体の鉛直な壁面に対して、複数の耐熱繊維製支持材を所定間隔で溶接により固定する。この際、各耐熱繊維製支持材が支持体の壁面から略水平方向に起立するように、耐熱繊維製支持材を壁面に固定する。次いで、支持体の壁面の周囲に不定形耐火物を流し込み施工する。例えば、不定形耐火物による被覆対象である支持体の壁面の周囲に、任意形状の型枠を設置した後に、当該型枠と壁面との間の空間に、流動性を有する固化前の不定形耐火物を流し込む。そして、当該型枠内で不定形耐火物を養生及び乾燥させて、固化させる。かかる不定形耐火物の流し込み施工により、支持体の壁面周囲は、固化した不定形耐火物で被覆され、流し込み施工前に支持体の壁面に固定された耐熱繊維製支持材は、固化した不定形耐火物の内部に埋設される。この結果、支持体は耐熱繊維製支持材を通じて不定形耐火物を安定的に支持でき、不定形耐火物が支持体から剥離することを防止できる。 Here, the outline of the manufacturing method (construction method) of the amorphous refractory structure according to the present embodiment will be described. First, a plurality of heat-resistant fiber support members are fixed to the vertical wall surface of a support such as an iron door or a water-cooled pipe by welding at predetermined intervals. At this time, the heat-resistant fiber support material is fixed to the wall surface so that each heat-resistant fiber support material stands up substantially horizontally from the wall surface of the support. Next, an amorphous refractory is poured around the wall surface of the support for construction. For example, after installing a formwork of an arbitrary shape around the wall surface of a support to be covered with an amorphous refractory, the space between the formwork and the wall surface has fluidity and is an amorphous shape before solidification. Pour refractory material. Then, the amorphous refractory is cured and dried in the mold to solidify it. By pouring the amorphous refractory, the wall surface of the support is covered with the solidified amorphous refractory, and the heat-resistant fiber support material fixed to the wall of the support before the pouring is solidified amorphous. It is buried inside a refractory. As a result, the support can stably support the amorphous refractory through the heat-resistant fiber support material, and can prevent the amorphous refractory from peeling off from the support.

また、上記耐熱繊維製支持材に用いられる耐熱繊維とは、耐熱性を有する無機質長繊維のことであって、例えば、構成される化学成分がAl質、SiO質、Al−SiO質、Al−SiO−B質のうち1種又は2種以上である、長繊維(連続繊維)である。当該耐熱繊維は、金属製支持材では熱損失の増加や強度の低下が生じる様な、例えば600℃以上、更には、1000℃以上の高温下でも、耐熱性、強度を有する。耐熱繊維の材質が、Al質、SiO質、Al−SiO質、Al−SiO−B質のうち1種又は2種以上であれば、このような耐熱条件を満たすことから、好ましい。特に、Al−SiO質は、耐高温性、コストパフォーマンス等に優れるので、より好ましい。Al−SiO質の中でも、Alが72質量%、SiOが28質量%なる組成の耐熱繊維は、手に入れやすく、コストパフォーマンスがよい。また、Alが90質量%、SiOが10質量%の耐熱繊維は、より耐熱性に優れている。 Further, the heat-resistant fiber used for the heat-resistant fiber support material is an inorganic long fiber having heat resistance, and for example, the constituent chemical components are Al 2 O 3 quality, SiO 2 quality, and Al 2 O. 3 -SiO 2 quality is Al 2 O 3 -SiO 2 -B 2 O 3 quality one or more of a long fiber (continuous fibers). The heat-resistant fiber has heat resistance and strength even at a high temperature of, for example, 600 ° C. or higher, and further 1000 ° C. or higher, which causes an increase in heat loss or a decrease in strength in a metal support material. If the material of the heat-resistant fiber is one or more of Al 2 O 3 quality, SiO 2 quality, Al 2 O 3 −SiO 2 quality, Al 2 O 3 −SiO 2 −B 2 O 3 quality, It is preferable because it satisfies such heat resistance conditions. In particular, Al 2 O 3- SiO 2 quality is more preferable because it is excellent in high temperature resistance, cost performance and the like. Of Al 2 O 3 -SiO 2 quality, Al 2 O 3 is 72 wt%, heat resistance fiber composition SiO 2 is 28 mass% is likely to get a good cost performance. Further, the heat-resistant fiber containing 90% by mass of Al 2 O 3 and 10% by mass of SiO 2 is more excellent in heat resistance.

この耐熱繊維は、複数本まとめて撚ってヤーンとすることができ、更に当該ヤーンを複数束ねてロープ状に加工できることが必要である。これにより、本実施形態に係る耐熱繊維製支持材の要部である耐熱繊維ロープが製造される。 It is necessary that a plurality of these heat-resistant fibers can be twisted together to form a yarn, and a plurality of the yarns can be bundled and processed into a rope shape. As a result, the heat-resistant fiber rope, which is a main part of the heat-resistant fiber support material according to the present embodiment, is manufactured.

また、上述のような、Al質、SiO質、Al−SiO質、Al−SiO−B質のうちの2種以上の耐熱繊維を使用して、耐熱繊維ロープを製造すれば、例えば、耐熱繊維ロープの芯と外層とで材質を分けるような、多層構造とすることができる。 Further, as described above, two or more heat-resistant fibers of Al 2 O 3 quality, SiO 2 quality, Al 2 O 3 −SiO 2 quality, and Al 2 O 3 −SiO 2 −B 2 O 3 quality are used. Then, if the heat-resistant fiber rope is manufactured, for example, a multi-layer structure can be formed in which the material is separated between the core and the outer layer of the heat-resistant fiber rope.

また、他の材質でも、無機質長繊維でロープ状にすることができる耐熱繊維を用いて耐熱繊維ロープを製造すれば、当該耐熱繊維ロープをあまり高温にならないような箇所に使用することは可能である。例えば、炭素繊維や、Al−SiO−CaO質、CaO−SiO質等の繊維を適用可能である。 In addition, even with other materials, if a heat-resistant fiber rope is manufactured using heat-resistant fibers that can be made into a rope shape with inorganic long fibers, the heat-resistant fiber rope can be used in places where the temperature does not become too high. is there. For example, carbon fiber, Al 2 O 3 -SiO 2 -CaO matter is applicable to fibers such as CaO-SiO 2 quality.

以下に、図3〜図10を参照して、本発明の好適な実施の形態に係る金属ワイヤー5が内在した耐熱繊維製支持材6を用いた不定形耐火物構造体について詳細に説明する。 Hereinafter, an amorphous refractory structure using a heat-resistant fiber support 6 containing a metal wire 5 according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 3 to 10.

本実施形態に係る金属ワイヤーが内在した耐熱繊維製支持材6は、耐熱繊維ロープ1と該耐熱繊維ロープ1の芯に内在する金属ワイヤー5と、接続部材とから構成されている(図3参照)。接続部材は、耐熱繊維ロープ1と支持体22とを接続する機能を有するもので、後述する金属管2などがこれに該当する。耐熱繊維ロープ1は、上記耐熱繊維を用いて組紐されたロープ状の形態を有する。組紐の種類としては、8打ち、16打ち、金剛打ち等が挙げられるが、特にその種類に限定されることはない。スリーブ等の中空形状でも適用可能であるが、好ましくはロープ内に空間ができるだけ少ないものが良い。 The heat-resistant fiber support member 6 in which the metal wire according to the present embodiment is contained is composed of the heat-resistant fiber rope 1, the metal wire 5 contained in the core of the heat-resistant fiber rope 1, and a connecting member (see FIG. 3). ). The connecting member has a function of connecting the heat-resistant fiber rope 1 and the support 22, and a metal pipe 2 or the like described later corresponds to this. The heat-resistant fiber rope 1 has a rope-like shape braided using the heat-resistant fibers. Examples of the type of braid include 8 strokes, 16 strokes, and Kongo strokes, but the type is not particularly limited. A hollow shape such as a sleeve can also be applied, but preferably one having as little space as possible in the rope is preferable.

耐熱繊維ロープ1が、不定形耐火物19の支持材としての強度を担保するには、耐熱繊維ロープ1の材質として長繊維を用いることが必須である。短繊維を使用した場合でも、ロープ形状に組紐することは可能ではあるが、繊維が絡み合っているだけで容易に引き抜けるため、支持材としての機能を果たさない。長繊維を用いた場合、支持材として必要な引張強度はロープ径を変化させることで調整可能である。なお、長繊維とは、繊維長がm(メートル)オーダー以上(通常はkm(キロメートル)オーダー以上が多い)のものであり、繊維長が1〜50mm程度である短繊維とは区別される。 In order for the heat-resistant fiber rope 1 to ensure the strength as a support material for the irregular refractory material 19, it is essential to use long fibers as the material of the heat-resistant fiber rope 1. Even when short fibers are used, it is possible to braid them into a rope shape, but the fibers are simply entangled and easily pulled out, so that they do not function as a support material. When long fibers are used, the tensile strength required as a support material can be adjusted by changing the rope diameter. The long fibers are those having a fiber length on the order of m (meters) or more (usually on the order of km (kilometers) or more), and are distinguished from short fibers having a fiber length of about 1 to 50 mm.

耐熱繊維ロープ1は柔軟性を有するために、不定形耐火物19を施工する際、耐熱繊維ロープ1が不定形耐火物19の荷重を受けて荷重方向に垂れ下がってしまう、不定形耐火物19内で湾曲する、折れ曲がる等の可能性がある。これらの現象は、耐熱繊維製支持材6による不定形耐火物19の支持性能を低減させるものである。 Since the heat-resistant fiber rope 1 has flexibility, the heat-resistant fiber rope 1 hangs down in the load direction under the load of the amorphous refractory 19 when the amorphous refractory 19 is constructed. There is a possibility of bending or bending. These phenomena reduce the support performance of the amorphous refractory material 19 by the heat-resistant fiber support material 6.

そこで、本実施形態に係る耐熱繊維製支持材6においては、図3及び図4に示すように、耐熱繊維ロープ1の芯に、金属ワイヤー5を内在させる。金属ワイヤー5は、耐熱繊維ロープ1と略同一の長さを有する金属製の線材である。該金属ワイヤー5は、耐熱繊維ロープ1内の中心部(芯)に長手方向に挿入される。金属ワイヤー5の周囲は耐熱繊維ロープ1により覆われているので、該金属ワイヤー5が外部に露出することはない。 Therefore, in the heat-resistant fiber support material 6 according to the present embodiment, as shown in FIGS. 3 and 4, the metal wire 5 is embedded in the core of the heat-resistant fiber rope 1. The metal wire 5 is a metal wire having substantially the same length as the heat-resistant fiber rope 1. The metal wire 5 is inserted in the central portion (core) of the heat-resistant fiber rope 1 in the longitudinal direction. Since the periphery of the metal wire 5 is covered with the heat-resistant fiber rope 1, the metal wire 5 is not exposed to the outside.

かかる金属ワイヤー5を設けることにより、耐熱繊維ロープ1の自立性は向上する。更に、不定形耐火物19の流し込み施工時に荷重を受けても、耐熱繊維ロープ1は殆ど垂れ下がることがなく、支持体22の鉛直な壁面に対して垂直方向(環状部面は地面に対し水平)に延びた状態を維持できる。本発明では、不定形耐火物の施工前にたわまないこと、及び施工後にもたわまない又はたわみが少ない状態を、自立状態と呼ぶ。その結果、耐熱繊維製支持材6による不定形耐火物19の支持率が向上し、実機使用時に支持体22からの不定形耐火物19の剥離を低減できる。 By providing such a metal wire 5, the independence of the heat-resistant fiber rope 1 is improved. Further, even if a load is applied during the pouring of the irregular refractory material 19, the heat-resistant fiber rope 1 hardly hangs down and is perpendicular to the vertical wall surface of the support 22 (the annular portion surface is horizontal to the ground). Can be maintained in a stretched state. In the present invention, a state in which the amorphous refractory does not bend before construction and does not bend or has little bending after construction is referred to as an independent state. As a result, the support rate of the amorphous refractory 19 by the heat-resistant fiber support 6 is improved, and the peeling of the amorphous refractory 19 from the support 22 can be reduced when the actual machine is used.

ここで支持率について説明する。図8は、耐熱繊維製支持材6のたわみ時の不定形耐火物19の支持率を説明するための模式図である。図8は、施工断面を示し、左端の支持体に耐熱繊維製支持材6が接続され、該耐熱繊維製支持材6の周囲に不定形耐火物19が施工されている。この時の支持体の壁面からの不定形耐火物19の施工厚みをB、耐熱繊維製支持材6の高さをAとするとき、下記式(1)を支持率と定義する。
支持率=A/B (1)
Here, the approval rating will be described. FIG. 8 is a schematic view for explaining the support ratio of the amorphous refractory material 19 when the heat-resistant fiber support member 6 is bent. FIG. 8 shows a construction cross section, in which a heat-resistant fiber support 6 is connected to the leftmost support, and an amorphous refractory material 19 is constructed around the heat-resistant fiber support 6. When the construction thickness of the amorphous refractory 19 from the wall surface of the support at this time is B and the height of the heat-resistant fiber support 6 is A, the following formula (1) is defined as the support ratio.
Support rate = A / B (1)

ここで、Aは、不定形耐火物19の施工後の耐熱繊維製支持材6の実質高さ(支持体の壁面から耐熱繊維製支持材6の耐熱繊維ロープ1の先端までの水平距離)、即ち、不定形耐火物支持量17(耐熱繊維製支持材6により不定形耐火物19を支持可能な範囲)とする。不定形耐火物支持量17は、耐熱繊維製支持材6のたわみの程度により変化する。不定形耐火物厚みBが一定の場合、不定形耐火物支持量17の変化によって、不定形耐火物未支持量18は変化し、不定形耐火物未支持量18が大きいほど、不定形耐火物19の剥離性が高まる。逆に言えば、不定形耐火物支持量17が大きいほど、即ち支持率が大きいほど、不定形耐火物19の剥離は低減される。 Here, A is the actual height of the heat-resistant fiber support 6 after the construction of the amorphous refractory material 19 (horizontal distance from the wall surface of the support to the tip of the heat-resistant fiber rope 1 of the heat-resistant fiber support 6). That is, the support amount of the indefinite refractory is 17 (the range in which the indefinite refractory 19 can be supported by the heat-resistant fiber support member 6). The amorphous refractory support amount 17 varies depending on the degree of deflection of the heat-resistant fiber support member 6. When the thickness B of the amorphous refractory is constant, the unsupported amount 18 of the amorphous refractory changes due to the change of the supporting amount 17 of the amorphous refractory. The larger the unsupported amount 18 of the amorphous refractory, the more the amorphous refractory The peelability of 19 is enhanced. Conversely, the larger the support amount 17 of the amorphous refractory, that is, the larger the support ratio, the less the peeling of the amorphous refractory 19.

支持率の上限は、耐火物の施工厚みと、耐熱繊維製支持材6の高さによって決まるものであり、特定の数値に限定されるものではなく、相対的に大きい方が剥離は低減されるという指標である。 The upper limit of the support rate is determined by the construction thickness of the refractory material and the height of the heat-resistant fiber support material 6, and is not limited to a specific value. The larger the value, the smaller the peeling. It is an index.

本実施形態に用いる金属ワイヤー5の材質としては、銅線又はアルミ線などを使用することも可能であるが、金属ワイヤー5の弾性を向上させる観点からは、硬鋼線、ピアノ線、又はステンレス鋼線のうち、いずれかの材質を用いることが好ましい。これら硬鋼線、ピアノ線、又はステンレス鋼線は、容易に入手でき、比較的弾性も高く、耐酸化性もあるからである。 As the material of the metal wire 5 used in the present embodiment, a copper wire, an aluminum wire, or the like can be used, but from the viewpoint of improving the elasticity of the metal wire 5, a hard steel wire, a piano wire, or stainless steel is used. Of the steel wires, it is preferable to use any material. This is because these hard steel wires, piano wires, or stainless steel wires are easily available, have relatively high elasticity, and have oxidation resistance.

より好ましくは、金属ワイヤー5として、ステンレス鋼線を用いる。ステンレス鋼線は弾性率が高いために、不定形耐火物19の流し込み施工時に、不定形耐火物19の荷重により、該ステンレス鋼線が内在する耐熱繊維製支持材6がたわんでも、施工後に戻りがあって、支持率を高めることができる。図7に示すように、荷重により下方にたわんだ耐熱繊維製支持材8のたわみ量16は、荷重印加時(実線を参照。)よりも、荷重解放時(破線を参照。)の方が小さくなる。そして、耐熱繊維製支持材6の耐熱繊維ロープ1に内在する金属ワイヤー5の弾性率が高いほど、荷重により変形した耐熱繊維ロープ1の戻りが大きくなるので、荷重解放時のたわみ量16は小さくなる。 More preferably, a stainless steel wire is used as the metal wire 5. Since the stainless steel wire has a high elastic modulus, even if the heat-resistant fiber support member 6 containing the stainless steel wire bends due to the load of the amorphous refractory material 19 when the amorphous refractory material 19 is poured, it returns after the construction. There is, and the approval rating can be increased. As shown in FIG. 7, the amount of deflection 16 of the heat-resistant fiber support member 8 flexed downward by the load is smaller when the load is released (see the broken line) than when the load is applied (see the solid line). Become. The higher the elastic modulus of the metal wire 5 contained in the heat-resistant fiber rope 1 of the heat-resistant fiber support member 6, the larger the return of the heat-resistant fiber rope 1 deformed by the load, so that the amount of deflection 16 at the time of releasing the load is small. Become.

また、金属ワイヤー5の径は、特に規定されない。不定形耐火物の施工時の耐熱繊維製支持材6のたわみを抑制でき、かつ、耐熱繊維ロープ1の芯に金属ワイヤー5を内在させることができれば、金属ワイヤー5の径は適宜の径であってよい。一般に、金属ワイヤー5の径が大きいほど、抵抗性は増すが、不必要に大きくしなくてもよい。発明者の検討では、ステンレス鋼線を用いた場合、ステンレス鋼線の直径は、例えば、0.8mm程度もあれば十分である。 Further, the diameter of the metal wire 5 is not particularly specified. If the deflection of the heat-resistant fiber support member 6 during the construction of an irregular refractory can be suppressed and the metal wire 5 can be contained in the core of the heat-resistant fiber rope 1, the diameter of the metal wire 5 is an appropriate diameter. You can. In general, the larger the diameter of the metal wire 5, the higher the resistance, but it does not have to be unnecessarily large. According to the inventor's examination, when a stainless steel wire is used, a diameter of the stainless steel wire of, for example, about 0.8 mm is sufficient.

なお、たわみ量は負荷荷重に比例し、弾性率及び断面二次モーメントに反比例する。直線状のワイヤーなど断面形状が単純な円の場合には、断面二次モーメントは直径の四乗に比例する。定性的には、弾性率が高く、径が大きい方がたわみ量は少ない。 The amount of deflection is proportional to the load and inversely proportional to the elastic modulus and the moment of inertia of area. In the case of a circle with a simple cross-sectional shape such as a straight wire, the moment of inertia of area is proportional to the fourth power of the diameter. Qualitatively, the higher the elastic modulus and the larger the diameter, the smaller the amount of deflection.

上記のように、耐熱繊維ロープ1中に内在する金属ワイヤー5の材質及び径等を調整することで、耐熱繊維製支持材6のたわみ量(垂れ下り量)を制御することができる。ここで、耐熱繊維製支持材6のたわみ量は、できるだけ少ない方がよく、たわみ量を抑制する観点のみからは、金属ワイヤー5の弾性率、及び径はいずれも、大きい方がよい。従って、例えば、(a)金属ワイヤー5の弾性率と、金属ワイヤー5の入手容易性、施工性及び経済性等との兼ね合いや、(b)不定形耐火物19の流し込み施工時の負荷応力の上限、(c)耐熱繊維ロープ1の形状の制約(例えば、ロープ外径の制限)などに応じて、金属ワイヤー5の材質及び径等を適切に決定することで、不定形耐火物19の流し込み施工後の耐熱繊維製支持材6のたわみ量が、所定の目標上限値以下となるように調整すればよい。なお、当該耐熱繊維製支持材6のたわみ量の目標上限値は、不定形耐火物構造体の実用上で不定形耐火物の剥離に支障が生じないような数値(例えば、数[mm]〜十数[mm]のレベル)に適宜設定することが好ましい。 As described above, the amount of deflection (the amount of sagging) of the heat-resistant fiber support member 6 can be controlled by adjusting the material and diameter of the metal wire 5 contained in the heat-resistant fiber rope 1. Here, the amount of deflection of the heat-resistant fiber support member 6 should be as small as possible, and from the viewpoint of suppressing the amount of deflection, both the elastic modulus and the diameter of the metal wire 5 should be large. Therefore, for example, (a) the balance between the elastic coefficient of the metal wire 5 and the availability, workability, and economic efficiency of the metal wire 5, and (b) the load stress during the pouring of the amorphous fireproof material 19 By appropriately determining the material and diameter of the metal wire 5 according to the upper limit, (c) restrictions on the shape of the heat-resistant fiber rope 1 (for example, restrictions on the outer diameter of the rope), etc., the amorphous fireproof material 19 can be poured. The amount of deflection of the heat-resistant fiber support member 6 after construction may be adjusted so as to be equal to or less than a predetermined target upper limit value. The target upper limit of the amount of deflection of the heat-resistant fiber support 6 is a numerical value (for example, several [mm] to that does not hinder the peeling of the amorphous refractory in practical use of the amorphous refractory structure. It is preferable to set the level to a dozen [mm] as appropriate.

本実施形態においては更に、耐熱繊維ロープ1を構成する耐熱繊維が予め硬化剤にて硬化され、常温で耐熱繊維ロープ1の弾性を向上させておいてもよい(ここでいう弾性とは、施工時に耐熱繊維ロープ1が不定形耐火物19の荷重により垂れ下がる、湾曲する、折れ曲がるといった変形に耐えうることを指す。)。硬化剤としては、昇温過程で揮発するような市販品の油性ニス等の樹脂が挙げられる。型枠等を用いて耐熱繊維ロープ1を固定し、硬化剤を用いて耐熱繊維ロープ1を硬化させることで、任意の形状に耐熱繊維ロープ1を成型することも可能となる。 In the present embodiment, the heat-resistant fibers constituting the heat-resistant fiber rope 1 may be further cured with a curing agent in advance to improve the elasticity of the heat-resistant fiber rope 1 at room temperature (the elasticity referred to here is construction). It means that the heat-resistant fiber rope 1 can withstand deformation such as hanging, bending, or bending due to the load of the amorphous fireproof material 19). Examples of the curing agent include commercially available resins such as oil-based varnish that volatilize in the process of raising the temperature. By fixing the heat-resistant fiber rope 1 using a mold or the like and curing the heat-resistant fiber rope 1 with a curing agent, it is possible to mold the heat-resistant fiber rope 1 into an arbitrary shape.

また、高温域で炭化して強度を維持できるようなフェノール樹脂、コールタールピッチや高温域でガラス質のネットワークを形成するリン酸、リン酸塩、ケイ酸塩、シリカゾル、アルミナゾル等を硬化剤に用いても良い。 In addition, phenolic resin that can be carbonized in the high temperature range to maintain strength, phosphoric acid, phosphate, silicate, silica sol, alumina sol, etc. that form a vitreous network in the high temperature range and coal tar pitch are used as curing agents. You may use it.

耐熱繊維はその構造上内部に多くの空間を有しており、多くの水分を含有することが可能である。不定形耐火物19の品質精度を決定付ける要素の一つに添加水分量が挙げられるが、耐熱繊維を用いた場合、前述の理由により、水分が耐熱繊維に吸収され、不定形耐火物19の流動性がなくなる場合がある。硬化剤の使用は、耐熱繊維内の空間を埋める効果があるので、水分が耐熱繊維に含水されることを防ぐという効果も発揮するようになる。よって、硬化剤を用いることで不定形耐火物19の品質精度を下げることなく施工することが可能となる。 The heat-resistant fiber has a lot of space inside due to its structure, and can contain a lot of water. One of the factors that determines the quality accuracy of the amorphous refractory material 19 is the amount of added water. When the heat-resistant fiber is used, the moisture is absorbed by the heat-resistant fiber for the reason described above, and the amorphous refractory material 19 It may lose fluidity. Since the use of the curing agent has the effect of filling the space in the heat-resistant fiber, it also exerts the effect of preventing water from being contained in the heat-resistant fiber. Therefore, by using a curing agent, it is possible to carry out the construction without lowering the quality accuracy of the amorphous refractory material 19.

本実施形態では、図3に示すように、後述する接続部材(例えば金属管2)を用いて耐熱繊維ロープ1の両端を接続し、環状とした耐熱繊維ロープ1を不定形耐火物19内に埋設することで、効果的に不定形耐火物19を支持できる。また、図4に示すような形状に、耐熱繊維ロープ1を環状にしてもよい。更には、この耐熱繊維ロープ1の環状部の設置数は、2つ以上の任意の数であってよい。例えば、環状部の設置数が2つであれば、耐熱繊維ロープ1は8の字形となる。 In the present embodiment, as shown in FIG. 3, both ends of the heat-resistant fiber rope 1 are connected by using a connecting member (for example, a metal tube 2) described later, and the annular heat-resistant fiber rope 1 is placed in the amorphous refractory material 19. By burying it, the amorphous refractory material 19 can be effectively supported. Further, the heat-resistant fiber rope 1 may be made into an annular shape as shown in FIG. Further, the number of the annular portions of the heat-resistant fiber rope 1 may be any number of two or more. For example, if the number of annular portions installed is two, the heat-resistant fiber rope 1 has a figure eight shape.

図10は、本実施形態に係る不定形耐火物構造体の例として、スキッドポストの構造を示している。本実施形態に係る不定形耐火物構造体を各種工業炉や設備に適用する際、鉄皮や水冷パイプ21等の金属から成る支持体22に耐熱繊維製支持材6を固定する場合が多い。施工性や鉄皮との接着強度を考慮すると、図3又は図4に示したように、耐熱繊維製支持材6は、耐熱繊維ロープ1と、金属製の接続部材(例えば金属管2)とから構成され、当該金属製の接続部材を水冷パイプ21等の金属製の支持体22に溶接して固定することが好ましい。このように支持体22に対して溶接にて固定可能な材質の接続部材により耐熱繊維ロープ1の両端部を挟持した状態で、当該接続部材を支持体22に固定することにより、耐熱繊維ロープ1を支持体22に取り付けることができる。 FIG. 10 shows the structure of a skid post as an example of the amorphous refractory structure according to the present embodiment. When the amorphous refractory structure according to the present embodiment is applied to various industrial furnaces and equipment, the heat-resistant fiber support member 6 is often fixed to the support 22 made of metal such as an iron skin or a water-cooled pipe 21. Considering workability and adhesive strength with the iron skin, as shown in FIG. 3 or 4, the heat-resistant fiber support member 6 includes the heat-resistant fiber rope 1 and a metal connecting member (for example, a metal pipe 2). It is preferable that the metal connecting member is welded to and fixed to a metal support 22 such as a water-cooled pipe 21. By fixing both ends of the heat-resistant fiber rope 1 to the support 22 with the connecting members made of a material that can be fixed to the support 22 by welding in this way, the heat-resistant fiber rope 1 Can be attached to the support 22.

図3又は図4に示す、金属管2は、内部に貫通孔を有する環状の金属部材であり、当該金属管2の貫通孔に挿入した耐熱繊維ロープ1の端部をかしめることが可能なものである。この金属管2は、支持体22に対して容易に溶接して固定できる。かかる金属管2の内部に耐熱繊維ロープ1の端部を挿入し、プレスして耐熱繊維ロープ1と金属管2とを圧着させて、圧着部3を形成する。このようにして、不定形耐火物19内で耐熱繊維製支持材6に荷重や熱応力がかかった際でも、耐熱繊維ロープ1の端部が金属管2等の接続部材から容易に引き抜けない構造の耐熱繊維製支持材6とすることが好ましい。 The metal tube 2 shown in FIG. 3 or FIG. 4 is an annular metal member having a through hole inside, and can crimp the end portion of the heat-resistant fiber rope 1 inserted into the through hole of the metal tube 2. It is a thing. The metal pipe 2 can be easily welded and fixed to the support 22. The end portion of the heat-resistant fiber rope 1 is inserted into the inside of the metal tube 2 and pressed to crimp the heat-resistant fiber rope 1 and the metal tube 2 to form the crimping portion 3. In this way, even when a load or thermal stress is applied to the heat-resistant fiber support member 6 in the irregular refractory material 19, the end portion of the heat-resistant fiber rope 1 cannot be easily pulled out from the connecting member such as the metal tube 2. It is preferable to use the heat-resistant fiber support material 6 having a structure.

耐熱繊維ロープ1を環状にして環状部を設けることで、不定形耐火物19との接触面積が増すので、不定形耐火物19と耐熱繊維ロープ1の摩擦力も増すとともに、耐熱繊維ロープ1の形状安定性も増すといった効果がある。ここでいう形状安定性とは、不定形耐火物19の施工時において耐熱繊維ロープ1の元の形状からの変形が少ないことを指す。また、不定形耐火物19が環状の耐熱繊維ロープ1を跨いで存在することになるため、耐熱繊維ロープ1は、不定形耐火物19の荷重を面で受けることができ、より大きな荷重を受けることが可能となる。 By forming the heat-resistant fiber rope 1 into an annular shape and providing an annular portion, the contact area with the amorphous refractory material 19 is increased, so that the frictional force between the irregular refractory material 19 and the heat-resistant fiber rope 1 is also increased, and the shape of the heat-resistant fiber rope 1 is increased. It also has the effect of increasing stability. The shape stability referred to here means that the heat-resistant fiber rope 1 is less deformed from the original shape during construction of the amorphous refractory material 19. Further, since the amorphous refractory material 19 exists straddling the annular heat-resistant fiber rope 1, the heat-resistant fiber rope 1 can receive the load of the irregular refractory material 19 on the surface and receives a larger load. It becomes possible.

さらに、耐熱繊維ロープ1の環状部を設け、かつ、その耐熱繊維ロープ1の環状部の内部に金属ワイヤー5が挿入されているので、耐熱繊維ロープ1の環状部の上記形状安定性が更に高まるだけでなく、該耐熱繊維ロープ1の環状部全体の自立性も高まる。これにより、不定形耐火物19の流し込み施工時に、耐熱繊維ロープ1の環状部は、不定形耐火物19の荷重を面で受けるので、垂れ下り変形しにくくなり、かつ、流し込み施工後に、金属ワイヤー5の弾性により、耐熱繊維ロープ1の環状部は、支持体22の鉛直な壁面に対して自立した元の水平状態に復元しやすくなる。 Further, since the annular portion of the heat-resistant fiber rope 1 is provided and the metal wire 5 is inserted inside the annular portion of the heat-resistant fiber rope 1, the shape stability of the annular portion of the heat-resistant fiber rope 1 is further enhanced. Not only that, the independence of the entire annular portion of the heat-resistant fiber rope 1 is also enhanced. As a result, when the amorphous refractory material 19 is poured, the annular portion of the heat-resistant fiber rope 1 receives the load of the irregular refractory 19 on the surface, so that it is less likely to hang down and deform, and the metal wire is not easily deformed after the casting. Due to the elasticity of 5, the annular portion of the heat-resistant fiber rope 1 can be easily restored to the original horizontal state that is independent with respect to the vertical wall surface of the support 22.

上記の耐熱繊維製支持材6を支持体22に固定した後は、通常の金属製支持材と同様に、不定形耐火物19を施工することが可能である。本手法を用いれば、通常の金属製支持材と同様の溶接作業を行うのみなので、支持部材の設置作業効率は同じである。 After the heat-resistant fiber support member 6 is fixed to the support body 22, the amorphous refractory material 19 can be constructed in the same manner as the normal metal support material. If this method is used, the welding work is only performed in the same manner as that of a normal metal support material, so that the installation work efficiency of the support member is the same.

ところで、図4に示す第2の実施形態では、耐熱繊維ロープ1の金属管2との接続部において、耐熱繊維ロープ1に不定形耐火物19の荷重が作用する方向と、耐熱繊維ロープ1の端部が金属管2から引き抜かれる方向が同一方向(図の上下方向)である。これに対し、図3に示す第1の実施形態では、耐熱繊維ロープ1に不定形耐火物19の荷重が作用する方向(図の上下方向)と、耐熱繊維ロープ1の端部が金属管2から引き抜かれる方向(図の左右方向)とが異なる。これにより、金属管2から耐熱繊維ロープ1の端部が抜けにくくなり、支持材として高耐用化につながることから、図3の耐熱繊維製支持材がより好ましい。 By the way, in the second embodiment shown in FIG. 4, at the connection portion of the heat-resistant fiber rope 1 with the metal pipe 2, the direction in which the load of the irregular refractory material 19 acts on the heat-resistant fiber rope 1 and the direction of the heat-resistant fiber rope 1 The direction in which the end portion is pulled out from the metal tube 2 is the same direction (vertical direction in the figure). On the other hand, in the first embodiment shown in FIG. 3, the direction in which the load of the irregular refractory 19 acts on the heat-resistant fiber rope 1 (vertical direction in the figure) and the end of the heat-resistant fiber rope 1 are metal pipes 2. The direction in which the fiber is pulled out (the left-right direction in the figure) is different. As a result, the end portion of the heat-resistant fiber rope 1 is less likely to come off from the metal tube 2, which leads to higher durability as a support material. Therefore, the heat-resistant fiber support material of FIG. 3 is more preferable.

また、本実施形態に係る金属ワイヤー5が内在した耐熱繊維製支持材6は、他の従来の支持材と併用しても良い。例えば、天井等の支持材に不定形耐火物の荷重が大きくかかる場合は、保持力の比較的高い金属製支持材やハンガー煉瓦と併用して耐熱繊維製支持材を使用した構造とすることもできる。 Further, the heat-resistant fiber support material 6 containing the metal wire 5 according to the present embodiment may be used in combination with other conventional support materials. For example, when a heavy load of an amorphous refractory is applied to a support material such as a ceiling, a structure using a heat-resistant fiber support material in combination with a metal support material having a relatively high holding power or a hanger brick may be used. it can.

本実施形態に係る金属ワイヤー5が内在した耐熱繊維製支持材6、及び、それを用いた不定形耐火物構造体は、各工業炉や設備において、従来の金属製支持材、及び、それを用いた不定形耐火物構造体を適用していた箇所に、適用することができる。また、本実施形態に係る金属ワイヤー5が内在した耐熱繊維製支持材6は、金属製支持材を従来用いていた位置に、これに置き換えて(全量又は一部)適用することが可能である。特に、水冷又は空冷で支持体22の冷却を行っている場合は、耐熱繊維製支持材6は金属製支持材に比べて炉体からの損失熱が低下するので効果的である。 The heat-resistant fiber support material 6 containing the metal wire 5 according to the present embodiment and the amorphous refractory structure using the same are the conventional metal support material and the conventional metal support material in each industrial furnace and equipment. It can be applied to the place where the used amorphous refractory structure was applied. Further, the heat-resistant fiber support material 6 containing the metal wire 5 according to the present embodiment can be applied (in whole or in part) to a position where the metal support material has been conventionally used. .. In particular, when the support 22 is cooled by water cooling or air cooling, the heat-resistant fiber support 6 is effective because the heat loss from the furnace body is lower than that of the metal support.

このような設備の例として鋼片の圧延用加熱炉のスキッドが挙げられる。スキッドとは、加熱炉内で鋼片を支持・搬送するための設備である。スキッドは金属製のパイプからなり、熱間強度を保つ目的でパイプ内部が水冷されており、水冷損失を抑制するために外周を耐火断熱材で被覆した構造となっている。この際、水冷パイプの断熱を行わないと、加熱炉から冷却水への抜熱が大きくなり、莫大な熱損失が生じることになる。 An example of such equipment is a skid of a heating furnace for rolling steel pieces. A skid is a facility for supporting and transporting steel pieces in a heating furnace. The skid is made of a metal pipe, and the inside of the pipe is water-cooled for the purpose of maintaining hot strength, and the outer circumference is covered with a fire-resistant heat insulating material to suppress water cooling loss. At this time, if the water-cooled pipe is not insulated, the heat extracted from the heating furnace to the cooling water becomes large, resulting in a huge heat loss.

スキッドの基本構造は図12のように、梁にあたるビーム部24と、柱にあたるポスト部25からなる。例えば、ポスト部25に本実施形態に係る不定形耐火物構造を適用するには、図10に示すように、不定形耐火物19の支持体22である水冷パイプ21に、耐熱繊維製支持材6を溶接し、水冷パイプ21の周囲にこの耐熱繊維製支持材6を包み込むように不定形耐火物19を流し込み施工すればよい。 As shown in FIG. 12, the basic structure of the skid includes a beam portion 24 corresponding to a beam and a post portion 25 corresponding to a pillar. For example, in order to apply the amorphous refractory structure according to the present embodiment to the post portion 25, as shown in FIG. 10, a heat-resistant fiber support material is attached to the water-cooled pipe 21 which is the support 22 of the amorphous refractory 19. 6 may be welded, and an amorphous refractory material 19 may be poured around the water-cooled pipe 21 so as to wrap the heat-resistant fiber support member 6.

図10に示すスキッドポストへの適用例では、楕円状の環状部を有する耐熱繊維ロープ1を備えた複数の耐熱繊維製支持材6が、鉛直方向に延びる水冷パイプ21の周方向及び上下方向に沿って所定間隔で並設されており、各耐熱繊維製支持材6は水冷パイプ21の外壁(鉛直な壁面)から水平方向に張り出すように取り付けられている。ここで、耐熱繊維ロープ1の環状部の向きが交互に鉛直方向又は水平方向になるように、上記複数の耐熱繊維製支持材6が水冷パイプ21の周方向及び上下方向に沿って設置されている。 In the application example to the skid post shown in FIG. 10, a plurality of heat-resistant fiber support members 6 provided with heat-resistant fiber ropes 1 having an elliptical annular portion are arranged in the circumferential direction and the vertical direction of the water-cooled pipe 21 extending in the vertical direction. The heat-resistant fiber support members 6 are juxtaposed along the line at predetermined intervals, and are attached so as to project horizontally from the outer wall (vertical wall surface) of the water-cooled pipe 21. Here, the plurality of heat-resistant fiber support members 6 are installed along the circumferential direction and the vertical direction of the water-cooled pipe 21 so that the directions of the annular portions of the heat-resistant fiber rope 1 are alternately in the vertical direction or the horizontal direction. There is.

かかる構造によって、水冷パイプ21の周囲を覆う不定形耐火物19を複数の耐熱繊維製支持材6によって効果的に支持し、不定形耐火物19が水冷パイプ21から剥離することを防止できる。さらに、耐熱繊維ロープ1中に金属ワイヤー5が内在しているので、不定形耐火物19の流し込み施工時に、耐熱繊維ロープ1の環状部は、金属ワイヤー5の弾性により、不定形耐火物19の荷重に対抗して、水冷パイプ21(支持体22の一例)の鉛直壁面に対して自立状態を維持しようとするので、環状の耐熱繊維ロープ1の垂れ下がりを抑制できる。さらに、流し込み施工後に、金属ワイヤー5の弾性力により、耐熱繊維ロープ1の環状部の形状を流し込み前の状態に復元することができる。よって、施工後に、不定形耐火物19に埋設された耐熱繊維ロープ1の環状部の形状を適正形状に維持でき、当該耐熱繊維ロープ1の環状部により不定形耐火物19を高い支持率で、より効果的に支持できる。 With such a structure, the amorphous refractory material 19 that covers the periphery of the water-cooled pipe 21 can be effectively supported by the plurality of heat-resistant fiber support members 6, and the amorphous refractory material 19 can be prevented from peeling off from the water-cooled pipe 21. Further, since the metal wire 5 is contained in the heat-resistant fiber rope 1, when the amorphous refractory material 19 is poured, the annular portion of the heat-resistant fiber rope 1 is formed by the elasticity of the metal wire 5 to form the amorphous refractory material 19. Since it tries to maintain an independent state with respect to the vertical wall surface of the water-cooled pipe 21 (an example of the support 22) against the load, it is possible to suppress the hanging of the annular heat-resistant fiber rope 1. Further, after the pouring work, the shape of the annular portion of the heat-resistant fiber rope 1 can be restored to the state before pouring by the elastic force of the metal wire 5. Therefore, after construction, the shape of the annular portion of the heat-resistant fiber rope 1 embedded in the amorphous refractory material 19 can be maintained in an appropriate shape, and the annular portion of the heat-resistant fiber rope 1 allows the amorphous refractory material 19 to have a high support rate. Can be supported more effectively.

耐熱繊維ロープ1を固定する金属管2の形状は、特に限定されず、上記図3又は図4等で示した金属管2以外の形状であってもよい。金属管2を耐熱繊維ロープ1に対して圧着して、摩擦抵抗で耐熱繊維ロープ1を固定するために、金属管2の直径は、例えば直径10〜17mm程度が用いられる。耐熱繊維ロープ1の直径より著しく大きい金属管2であると、耐熱繊維ロープ1の端部を金属管2に挿入しプレスした時に、耐熱繊維ロープ1が金属管2から抜けたり、または、圧着部3から外れることがあったりする。また、金属管2の圧着変形が大きいと、支持体22に対する金属管2の固定が困難となる。 The shape of the metal tube 2 for fixing the heat-resistant fiber rope 1 is not particularly limited, and may be a shape other than the metal tube 2 shown in FIGS. 3 or 4 above. In order to crimp the metal tube 2 to the heat-resistant fiber rope 1 and fix the heat-resistant fiber rope 1 with frictional resistance, the diameter of the metal tube 2 is, for example, about 10 to 17 mm. If the metal tube 2 is significantly larger than the diameter of the heat-resistant fiber rope 1, the heat-resistant fiber rope 1 may come off from the metal tube 2 or be crimped when the end of the heat-resistant fiber rope 1 is inserted into the metal tube 2 and pressed. It may deviate from 3. Further, if the crimping deformation of the metal pipe 2 is large, it becomes difficult to fix the metal pipe 2 to the support 22.

金属管2の長さは、例えば20〜30mm程度が用いられる。金属管2が短すぎると耐熱繊維ロープ1と金属管2の圧着部3以外の溶接部が変形する。また、金属管2が長すぎると、水冷損失が大きくなり熱損失を生じる。 The length of the metal tube 2 is, for example, about 20 to 30 mm. If the metal pipe 2 is too short, the welded portions of the heat-resistant fiber rope 1 and the metal pipe 2 other than the crimping portion 3 are deformed. Further, if the metal tube 2 is too long, the water cooling loss becomes large and heat loss occurs.

次に、図13〜図15を参照して、本発明の第3の実施形態に係るスタッド溶接用の薄肉部26が形成された金属管2を備えた耐熱繊維製支持材27と、当該耐熱繊維製支持材27を用いた不定形耐火物構造体の製造方法について説明する。 Next, with reference to FIGS. 13 to 15, a heat-resistant fiber support material 27 having a metal tube 2 on which a thin-walled portion 26 for stud welding according to a third embodiment of the present invention is formed, and the heat-resistant material. A method of manufacturing an amorphous refractory structure using the fiber support member 27 will be described.

従来では、耐熱繊維製支持材についても、金属製支持材と同様に、手溶接又は半自動溶接によって鉄皮やパイプ等の支持体22に固定していた。このため、耐熱繊維製支持材の設置に時間を要するという問題があった。 Conventionally, the heat-resistant fiber support material has also been fixed to the support body 22 such as an iron skin or a pipe by manual welding or semi-automatic welding in the same manner as the metal support material. Therefore, there is a problem that it takes time to install the heat-resistant fiber support material.

そこで、本願発明者等は、耐熱繊維製支持材の設置時間を短縮すべく鋭意検討し、スタッド溶接施工を適用するに至った。耐熱繊維ロープ1を固定している金属管2として、例えばSS鋼またはSUS鋼を使用した場合、スタッド溶接によってこれら材質の金属管2を鉄皮や水冷パイプ21等の支持体22に直接溶接することができる。また、スタッド溶接では、電気抵抗加熱するために溶接対象部材の先端形状が重要となるが、金属管2の先端部を加工することにより、スタッド溶接が容易となる適切な形状に調整ができ、該金属管2による耐熱繊維ロープ1の固定にも影響がなく、耐熱繊維製支持材を短時間で設置できる。以下の第3の実施形態では、支持体22に対する設置時間を短縮可能な、耐熱繊維製支持材の構造と、当該耐熱繊維製支持材を支持体22にスタッド溶接により固定する方法について説明する。 Therefore, the inventors of the present application have diligently studied in order to shorten the installation time of the heat-resistant fiber support material, and have come to apply the stud welding construction. When, for example, SS steel or SUS steel is used as the metal pipe 2 to which the heat-resistant fiber rope 1 is fixed, the metal pipe 2 made of these materials is directly welded to a support 22 such as an iron skin or a water-cooled pipe 21 by stud welding. be able to. Further, in stud welding, the shape of the tip of the member to be welded is important for heating by electric resistance, but by processing the tip of the metal pipe 2, it can be adjusted to an appropriate shape that facilitates stud welding. The fixing of the heat-resistant fiber rope 1 by the metal tube 2 is not affected, and the heat-resistant fiber support material can be installed in a short time. In the following third embodiment, the structure of the heat-resistant fiber support material capable of shortening the installation time on the support 22 and the method of fixing the heat-resistant fiber support material to the support 22 by stud welding will be described.

図13及び図14は、本発明の第3の実施形態に係るスタッド溶接用の薄肉部26が形成された金属管2を備えた耐熱繊維製支持材27を示す。図15は当該薄肉部26が形成されていない金属管2を備えた耐熱繊維製支持材28を示す。 13 and 14 show a heat-resistant fiber support material 27 provided with a metal tube 2 on which a thin-walled portion 26 for stud welding according to a third embodiment of the present invention is formed. FIG. 15 shows a heat-resistant fiber support member 28 provided with a metal tube 2 in which the thin-walled portion 26 is not formed.

図13〜図15は、かしめによって金属管2の周囲に形成された圧着部3を示す。金属管2の外周をかしめることで、金属管2の内部に挿入された耐熱繊維ロープ1の端部が金属管2に圧着され、金属管2と耐熱繊維ロープ1の端部との接合部が強固に固定される。かしめの位置、数、形状等は、耐熱繊維ロープ1が抜けることなく金属管2に圧着されれば、特に規定されない。図13〜図15の耐熱繊維製支持材27、28は、金属管2の管軸方向の2個所でかしめを行い、2つの環状の圧着部3を設けた例である。 13 to 15 show a crimping portion 3 formed around the metal pipe 2 by caulking. By crimping the outer circumference of the metal pipe 2, the end portion of the heat-resistant fiber rope 1 inserted inside the metal pipe 2 is crimped to the metal pipe 2, and the joint portion between the metal pipe 2 and the end portion of the heat-resistant fiber rope 1 is crimped. Is firmly fixed. The position, number, shape, etc. of the caulking are not particularly specified as long as the heat-resistant fiber rope 1 is crimped to the metal pipe 2 without coming off. The heat-resistant fiber support members 27 and 28 of FIGS. 13 to 15 are examples in which the metal tube 2 is crimped at two positions in the tube axial direction to provide two annular crimping portions 3.

また、図13及び図14に示すスタッド溶接用の耐熱繊維製支持材27の金属管2の先端(支持体22の一例である水冷パイプ21に固定される側の端部)には、スタッド溶接用の薄肉部26が形成されている。この薄肉部26は、耐熱繊維ロープ1を固定する金属管2の先端に形成され、金属管2の他の部分(外径G)よりも肉厚が薄い環状部分である。かかる薄肉部26は、スタッド溶接時に、耐熱繊維ロープ1を固定する金属管2の先端を溶融し易くするために設けられ、スタッド溶接時に溶融する溶接部として機能する。なお、金属管2の材質は例えばSS鋼またはSUS鋼であるので、同材質の薄肉部26はスタッド溶接により好適に溶融して、金属製の支持体22と溶け合う。 Further, stud welding is performed on the tip of the metal pipe 2 of the heat-resistant fiber support member 27 for stud welding shown in FIGS. 13 and 14 (the end on the side fixed to the water-cooled pipe 21 which is an example of the support 22). A thin-walled portion 26 for use is formed. The thin-walled portion 26 is an annular portion formed at the tip of the metal pipe 2 for fixing the heat-resistant fiber rope 1 and having a thinner wall thickness than the other portion (outer diameter G) of the metal pipe 2. The thin-walled portion 26 is provided to facilitate melting of the tip of the metal pipe 2 that fixes the heat-resistant fiber rope 1 during stud welding, and functions as a welded portion that melts during stud welding. Since the material of the metal pipe 2 is, for example, SS steel or SUS steel, the thin portion 26 of the same material is suitably melted by stud welding and melts with the metal support 22.

かかる薄肉部26は、金属管2の先端を切削加工等により加工して、金属管2の他の部分よりも薄肉化することによって形成される。例えば、図14に示すように、耐熱繊維ロープ1を固定する金属管2の先端の外周部を切削加工して薄肉化することで、金属管2の先端以外の部分(外径G)と比べて肉厚が例えば3分の1程度の薄肉部26を、金属管2の内周側に形成してもよい。しかし、薄肉部26の形成方法は、かかる例に限定されず、例えば、金属管2の先端の内周側を切削加工して、外周側に薄肉部26を形成してもよい。或いは、金属管2の先端の外周側及び内周側の双方を切削加工して、径方向の中央部分に薄肉部26を形成してもよい。或いは、金属管2の先端を切削加工して、先細りのテーパー状にしてもよい。 The thin-walled portion 26 is formed by processing the tip of the metal tube 2 by cutting or the like to make the thin-walled portion 26 thinner than the other parts of the metal tube 2. For example, as shown in FIG. 14, by cutting the outer peripheral portion of the tip of the metal pipe 2 to which the heat-resistant fiber rope 1 is fixed to make it thinner, the portion other than the tip of the metal pipe 2 (outer diameter G) is compared. A thin portion 26 having a wall thickness of, for example, about one-third may be formed on the inner peripheral side of the metal tube 2. However, the method of forming the thin-walled portion 26 is not limited to such an example, and for example, the inner peripheral side of the tip of the metal tube 2 may be cut to form the thin-walled portion 26 on the outer peripheral side. Alternatively, the thin portion 26 may be formed in the central portion in the radial direction by cutting both the outer peripheral side and the inner peripheral side of the tip of the metal tube 2. Alternatively, the tip of the metal tube 2 may be machined to form a tapered shape.

また、薄肉部26の寸法は、溶接時の溶け込みが最も好ましい寸法とすればよい。例えば、薄肉部26がスタッド溶接時の電気抵抗加熱で好適に融ける程度に、薄肉部26の肉厚D及び高さHを調整すればよい。 Further, the size of the thin-walled portion 26 may be the size in which penetration at the time of welding is most preferable. For example, the wall thickness D and height H of the thin wall portion 26 may be adjusted to such an extent that the thin wall portion 26 is suitably melted by electric resistance heating during stud welding.

上記のようにして金属管2の先端に薄肉部26を設けることにより、金属管2の先端をスタッド溶接が容易となる適切な形状に調整できる。これにより、金属管2を支持体22にスタッド溶接する時に、電気抵抗加熱により薄肉部26を好適に溶融させて、金属管2の先端を支持体22に強固に固定できるとともに、スタッド溶接により金属管2の溶接施工時間を大幅に短縮できる。よって、多数の耐熱繊維製支持材27を支持体22に対して短時間で設置でき、支持材の設置時間を大幅に短縮できる。さらに、金属管2に薄肉部26を形成したとしても、金属管2による耐熱繊維ロープ1の端部固定にも影響がない。 By providing the thin portion 26 at the tip of the metal tube 2 as described above, the tip of the metal tube 2 can be adjusted to an appropriate shape that facilitates stud welding. As a result, when the metal tube 2 is stud welded to the support 22, the thin portion 26 can be suitably melted by electric resistance heating, the tip of the metal tube 2 can be firmly fixed to the support 22, and the metal can be stud welded. The welding work time of the pipe 2 can be significantly shortened. Therefore, a large number of heat-resistant fiber support members 27 can be installed on the support 22 in a short time, and the installation time of the support materials can be significantly shortened. Further, even if the thin portion 26 is formed on the metal tube 2, the fixing of the end portion of the heat-resistant fiber rope 1 by the metal tube 2 is not affected.

また、耐熱繊維製支持材27を金属製の支持体22に固定する際に、通常のアーク溶接などを使用した場合、溶接中の熱によって耐熱繊維ロープ1のかしめ強度が低下するなどの問題もある。しかし、本実施形態では、短時間で固定可能なスタッド溶接を使用して耐熱繊維製支持材27を金属製の支持体22に固定するので、溶接時の耐熱繊維ロープ1のかしめ強度の低下を抑制できるなど、熱による悪影響を軽減できる。 Further, when the heat-resistant fiber support member 27 is fixed to the metal support 22 by normal arc welding or the like, there is a problem that the caulking strength of the heat-resistant fiber rope 1 is lowered by the heat during welding. is there. However, in the present embodiment, since the heat-resistant fiber support member 27 is fixed to the metal support 22 by using stud welding that can be fixed in a short time, the caulking strength of the heat-resistant fiber rope 1 during welding is reduced. The adverse effects of heat can be reduced, such as by suppressing it.

また、従来の金属製支持材は棒状であり、スタッド溶接時の電気抵抗値を上げるためは、金属製支持材の先端の溶接部を尖塔状ないしは相当に径を小さくしなければならない。しかし、上記第3の実施形態に係る耐熱繊維製支持材27の金属管2であれば、その先端の管径を小さくする切削加工により、溶接部である薄肉部26を比較的容易に製造が可能である。 Further, the conventional metal support material has a rod shape, and in order to increase the electric resistance value at the time of stud welding, the welded portion at the tip of the metal support material must have a spire shape or a considerably small diameter. However, in the case of the metal pipe 2 of the heat-resistant fiber support member 27 according to the third embodiment, the thin-walled portion 26, which is a welded portion, can be relatively easily manufactured by cutting to reduce the pipe diameter at the tip thereof. It is possible.

また、金属管2を金属製の支持体22にスタッド溶接するに当たり、金属管2の先端にスタッド溶接用のピンなどの別部材を溶接等で取り付ける方法も考えられる。しかし、当該方法では、耐熱繊維ロープ1のロープ部と金属管2の金属部との圧着後(例えば、金属管2をかしめて圧着部3を形成した後)に、金属管2にスタッド溶接用のピンなどの別部材を溶接するときに、上記のように溶接中の熱によって耐熱繊維ロープ1のかしめ強度に影響が出るという問題がある。さらに、上記スタッド溶接用のピンなどの別部材を金属管2に取り付ける方法として、熱影響の少ないスタッド溶接を採用したとしても、当該別部材を金属管2に取り付ける際に取付不良が発生しやすいという問題もある。また、上記熱影響や取付不良の問題を回避するため、スタッド溶接用のピンなどの別部材を金属管2の先端に予め取り付けてから、耐熱繊維ロープ1の端部が挿入された金属管2をかしめて圧着部3を形成することで、耐熱繊維製支持材を製造する方法も考えられる。しかし、このように製造された耐熱繊維製支持材であっても、金属管2及びピンなどの金属部分が多いので、施工後に当該金属部分を通じて支持体22から耐熱繊維製支持材への抜熱が多くなるという問題がある。 Further, when the metal pipe 2 is stud welded to the metal support 22, another member such as a pin for stud welding may be attached to the tip of the metal pipe 2 by welding or the like. However, in this method, after crimping the rope portion of the heat-resistant fiber rope 1 and the metal portion of the metal pipe 2 (for example, after crimping the metal pipe 2 to form the crimping portion 3), the metal pipe 2 is used for stud welding. When welding another member such as a pin, there is a problem that the caulking strength of the heat-resistant fiber rope 1 is affected by the heat during welding as described above. Further, even if stud welding having a small heat effect is adopted as a method of attaching another member such as a pin for stud welding to the metal pipe 2, mounting failure is likely to occur when the other member is attached to the metal pipe 2. There is also the problem. Further, in order to avoid the above-mentioned problems of heat effect and improper mounting, another member such as a pin for stud welding is attached to the tip of the metal pipe 2 in advance, and then the end of the heat-resistant fiber rope 1 is inserted into the metal pipe 2. A method of manufacturing a heat-resistant fiber support material by crimping to form the crimping portion 3 is also conceivable. However, even with the heat-resistant fiber support material manufactured in this way, since there are many metal parts such as the metal pipe 2 and the pin, heat is removed from the support 22 to the heat-resistant fiber support material through the metal parts after construction. There is a problem that the number increases.

これに対し、本発明の第3の実施形態に係る耐熱繊維製支持材27では、金属管2の先端を切削加工等により薄肉化することで、スタッド溶接用の薄肉部26を、圧着前に予め形成しており、金属管2と薄肉部26が一体化している。これにより、スタッド溶接用のピンを金属管2に取り付ける工程が不要であり、取付不良が発生しないという効果がある。さらに、スタッド溶接を簡便確実に行える薄肉部26を予め形成しておくことで、耐熱繊維製支持材27における金属部分を最小限にできるため、支持体22から耐熱繊維製支持材への抜熱を抑制でき、且つスタッド溶接時の熱による影響も低減できる。 On the other hand, in the heat-resistant fiber support material 27 according to the third embodiment of the present invention, the thin-walled portion 26 for stud welding is thinned by cutting or the like at the tip of the metal pipe 2 before crimping. It is formed in advance, and the metal tube 2 and the thin-walled portion 26 are integrated. As a result, the step of attaching the pin for stud welding to the metal pipe 2 is unnecessary, and there is an effect that an attachment defect does not occur. Further, by forming a thin portion 26 in advance that enables simple and reliable stud welding, the metal portion in the heat-resistant fiber support material 27 can be minimized, so that heat is removed from the support 22 to the heat-resistant fiber support material. Can be suppressed, and the influence of heat during stud welding can also be reduced.

以下、本発明の実施例に係る耐熱繊維製支持材及び不定形耐火物構造体について、詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the heat-resistant fiber support material and the amorphous refractory structure according to the examples of the present invention will be described in detail. The present invention is not limited to the following examples.

耐熱繊維にはAlが72質量%、SiOが28質量%の組成の長繊維をヤーンとしたものを用いた。このヤーンを用いて金剛打ちで直径5mmの耐熱繊維ロープ1に直径0.8mmの金属ワイヤー5を挿入し、組紐した。 As the heat-resistant fiber, a long fiber having a composition of 72% by mass of Al 2 O 3 and 28% by mass of SiO 2 was used as a yarn. Using this yarn, a metal wire 5 having a diameter of 0.8 mm was inserted into a heat-resistant fiber rope 1 having a diameter of 5 mm and braided.

(試験例1)
図3に示すように金属ワイヤー5が挿入された耐熱繊維ロープ1のもう一方の片端部を環状にして、その端部をSUS鋼からなる高さ20mm、内径10mmの金属管2(金属製の接続部材に相当する)に入れ、プレスすることで、耐熱繊維ロープ1のロープ部と金属管2の金属部を圧着させて、耐熱繊維ロープ1内に金属ワイヤー5が挿入された耐熱繊維製支持材6を製造した。
(Test Example 1)
As shown in FIG. 3, the other end of the heat-resistant fiber rope 1 into which the metal wire 5 is inserted is made annular, and the end is made of SUS steel and has a height of 20 mm and an inner diameter of 10 mm. By putting it in (corresponding to a connecting member) and pressing it, the rope part of the heat-resistant fiber rope 1 and the metal part of the metal tube 2 are crimped, and the heat-resistant fiber support in which the metal wire 5 is inserted in the heat-resistant fiber rope 1 Material 6 was manufactured.

SUS鋼、SS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6を図5に示すように、溝型鋼11に縦125mm(D)ピッチで溶接し、幅120mm(B)、厚み110mm(A)、高さ400mm(C)で不定形耐火物と同等比重1.3g/cmのグリセリン13を用いて流し込み施工試験を行い、流し込み施工直後と、流し込み施工から20分経過後の耐熱繊維製支持材6の耐熱繊維ロープ1の鉛直方向のたわみ量を測定した。 As shown in FIG. 5, the heat-resistant fiber support member 6 into which the metal wire 5 made of SUS steel or SS steel is inserted is welded to the channel steel 11 at a pitch of 125 mm (D) in length, 120 mm (B) in width and 110 mm in thickness. (A), a pouring construction test was conducted using glycerin 13 having a height of 400 mm (C) and a specific gravity of 1.3 g / cm 3 equivalent to that of an amorphous refractory material, and heat resistance immediately after pouring and 20 minutes after pouring. The amount of vertical deflection of the heat-resistant fiber rope 1 of the fiber support member 6 was measured.

この際、本発明例の支持材6の高さは全て、80mm(E)とし、耐熱繊維製支持材6の形状は図3および図4の2種類で試験を行った。 At this time, the heights of the support members 6 of the examples of the present invention were all 80 mm (E), and the shapes of the heat-resistant fiber support members 6 were tested with two types of FIGS. 3 and 4.

さらに、比較のために同条件で、図1および図2に示す金属ワイヤー5を含まない直径5mmの耐熱繊維製支持材4を用いて同様の施工試験を行った。 Further, for comparison, the same construction test was carried out under the same conditions using the heat-resistant fiber support material 4 having a diameter of 5 mm, which does not include the metal wire 5 shown in FIGS. 1 and 2.

試験結果を表1に示す。
図3に示した形状の耐熱繊維製支持材6を用いた場合、流し込み施工直後において、SUS製の金属ワイヤー5が挿入された耐熱繊維製支持材6のたわみ量は、発明例1〜3に示すように、最大で5mmであり、発明例4のSS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6のたわみ量は最大8mmであったのに対して、比較例1の耐熱繊維製支持材4は最大で30mmのたわみ量であった。
The test results are shown in Table 1.
When the heat-resistant fiber support material 6 having the shape shown in FIG. 3 is used, the amount of deflection of the heat-resistant fiber support material 6 into which the metal wire 5 made of SUS is inserted immediately after the pouring operation is shown in Examples 1 to 3. As shown, the maximum is 5 mm, and the amount of deflection of the heat-resistant fiber support member 6 into which the metal wire 5 made of SS steel of Invention Example 4 is inserted is up to 8 mm, whereas the heat resistance of Comparative Example 1 is high. The fiber support member 4 had a maximum deflection amount of 30 mm.

また、流し込み施工から20分後のたわみ量を測定した結果、発明例4の耐熱繊維製支持材6(SS鋼製の金属ワイヤー5)の場合は8mm、比較例1の耐熱繊維製支持材4の場合は27mmであったのに対して、発明例3の耐熱繊維製支持材6(SUS鋼製の金属ワイヤー5)の場合は0mmであった。 Further, as a result of measuring the amount of deflection 20 minutes after the pouring operation, the heat-resistant fiber support material 6 (SS steel metal wire 5) of Invention Example 4 was 8 mm, and the heat-resistant fiber support material 4 of Comparative Example 1 was used. In the case of, it was 27 mm, whereas in the case of the heat-resistant fiber support member 6 (metal wire 5 made of SUS steel) of Invention Example 3, it was 0 mm.

この発明例3では、グリセリン13の流し込み時にグリセリン13が耐熱繊維製支持材6の先端にあたり、耐熱繊維製支持材6にたわみが生じたが、SUS鋼製の金属ワイヤー5の弾性によって、耐熱繊維製支持材6のたわみが戻ることが確認された。 In Example 3 of the present invention, when the glycerin 13 was poured, the glycerin 13 hit the tip of the heat-resistant fiber support member 6, and the heat-resistant fiber support member 6 was bent. However, the elasticity of the metal wire 5 made of SUS steel caused the heat-resistant fiber. It was confirmed that the deflection of the support material 6 was restored.

したがって、図3に示した形状の耐熱繊維製支持材6を用いた場合に、金属ワイヤー5、好ましくはSUS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6を使用することで、不定形耐火物施工体の支持材としての機能を安定化できることが確認できた。 Therefore, when the heat-resistant fiber support material 6 having the shape shown in FIG. 3 is used, the heat-resistant fiber support material 6 into which the metal wire 5, preferably the metal wire 5 made of SUS steel is inserted is used. It was confirmed that the function as a support material for the irregular refractory construction body can be stabilized.

また、上記と同様に、図4に示した形状の耐熱繊維製支持材6を用いて、施工試験を行った。結果、SUS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6のたわみ量は、発明例5〜7に示すように、流し込み施工直後で最大で5mmであり、発明例8のSS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6のたわみ量は最大6mmであったのに対して、比較例2の耐熱繊維製支持材4は最大で15mmのたわみ量であった。 Further, in the same manner as described above, a construction test was conducted using the heat-resistant fiber support material 6 having the shape shown in FIG. As a result, as shown in Invention Examples 5 to 7, the amount of deflection of the heat-resistant fiber support member 6 into which the metal wire 5 made of SUS steel is inserted is 5 mm at the maximum immediately after the pouring operation, and the SS steel of Invention Example 8 is used. The heat-resistant fiber support member 6 into which the metal wire 5 was inserted had a maximum deflection amount of 6 mm, whereas the heat-resistant fiber support member 4 of Comparative Example 2 had a maximum deflection amount of 15 mm.

また、流し込み施工から20分後のたわみ量を測定した結果、発明例8の耐熱繊維製支持材6(SS鋼製の金属ワイヤー5)の場合は6mm、比較例2の耐熱繊維製支持材4の場合は15mmであったのに対して、発明例5〜7の耐熱繊維製支持材6(SUS鋼製の金属ワイヤー5)の場合は4mmであった。図3に示した形状の耐熱繊維製支持材6を用いた場合の試験と同様に、発明例3でも、グリセリン13の流し込み施工時にグリセリン13が耐熱繊維製支持材6の先端にあたり、耐熱繊維製支持材6にたわみが生じたが、SUS金属鋼製の金属ワイヤー5の弾性によって、耐熱繊維製支持材6のたわみが戻ることが確認された。 Further, as a result of measuring the amount of deflection 20 minutes after the pouring operation, the heat-resistant fiber support material 6 (SS steel metal wire 5) of Invention Example 8 was 6 mm, and the heat-resistant fiber support material 4 of Comparative Example 2 was used. In the case of, it was 15 mm, whereas in the case of the heat-resistant fiber support member 6 (metal wire 5 made of SUS steel) of Invention Examples 5 to 7, it was 4 mm. Similar to the test in the case of using the heat-resistant fiber support material 6 having the shape shown in FIG. 3, in Invention Example 3, the glycerin 13 hits the tip of the heat-resistant fiber support material 6 when the glycerin 13 is poured, and is made of heat-resistant fiber. Although the support member 6 was bent, it was confirmed that the elasticity of the metal wire 5 made of SUS metal steel returned the deflection of the heat-resistant fiber support member 6.

したがって、図4に示した形状の耐熱繊維製支持材6を用いた場合でも、金属ワイヤー5、好ましくはSUS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6を使用することで、不定形耐火物施工体の支持材としての機能を安定化できることが確認できた。 Therefore, even when the heat-resistant fiber support material 6 having the shape shown in FIG. 4 is used, the heat-resistant fiber support material 6 into which the metal wire 5, preferably the metal wire 5 made of SUS steel is inserted can be used. It was confirmed that the function as a support material for the irregular refractory construction body can be stabilized.

(試験例2)
実機において、不定形耐火物の流し込み施工時に、耐熱繊維製支持材6の先端に不定形耐火物があたり、耐熱繊維製支持材6がたわむことから、図6に示すように、耐熱繊維製支持材6の先端に一定荷重2Nを印加する試験を行った。
(Test Example 2)
In the actual machine, when the amorphous refractory is poured, the irregular refractory hits the tip of the heat-resistant fiber support 6 and the heat-resistant fiber support 6 bends. Therefore, as shown in FIG. 6, the heat-resistant fiber support A test was conducted in which a constant load of 2N was applied to the tip of the material 6.

この際の金属ワイヤー径はφ0.5〜0.8mmとした。
さらに、比較のために同条件で図1および図2に示すように金属ワイヤー5を含まない直径5mmの耐熱繊維製支持材4を用いて同様の荷重印加試験を行った。この際、本発明例の支持材6および比較例の支持材4の高さは全て80mm(E)とし(図1〜4参照)、耐熱繊維製支持材4の形状は図1および図2の2種類で試験を行った。
The metal wire diameter at this time was φ0.5 to 0.8 mm.
Further, for comparison, a similar load application test was carried out under the same conditions using a heat-resistant fiber support material 4 having a diameter of 5 mm and which does not contain the metal wire 5 as shown in FIGS. 1 and 2. At this time, the heights of the support material 6 of the present invention example and the support material 4 of the comparative example are all 80 mm (E) (see FIGS. 1 to 4), and the shapes of the heat-resistant fiber support material 4 are shown in FIGS. 1 and 2. Two types of tests were conducted.

試験結果を表1に示す。
図3に示した形状のSUS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6のたわみ量は、発明例1〜4に示すように、φ0.5mmで6.04mm、φ0.6mmで4.93mm、φ0.8mmで3.18mmであり、発明例4のSS鋼製の金属ワイヤー5が挿入されたた耐熱繊維製支持材6のたわみ量は、φ0.8mmで4.8mmであったのに対して、比較例1の耐熱繊維製支持材4のたわみ量は10.86mmであった。
The test results are shown in Table 1.
As shown in Invention Examples 1 to 4, the amount of deflection of the heat-resistant fiber support member 6 into which the metal wire 5 made of SUS steel having the shape shown in FIG. 3 is inserted is 6.04 mm and φ0.6 mm in φ0.5 mm. The amount of deflection of the heat-resistant fiber support member 6 into which the metal wire 5 made of SS steel of Invention Example 4 is inserted is 4.93 mm and 3.18 mm at φ0.8 mm, and is 4.8 mm at φ0.8 mm. On the other hand, the amount of deflection of the heat-resistant fiber support member 4 of Comparative Example 1 was 10.86 mm.

したがって、図3に示した形状の耐熱繊維製支持材6を用いた場合に、金属ワイヤー5、好ましくはSUS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6を使用することで、不定形耐火物の流し込み時に生じる耐熱繊維製支持材6のたわみが軽減され、不定形耐火物構造体の支持材としての機能を安定化できることが確認できた。 Therefore, when the heat-resistant fiber support material 6 having the shape shown in FIG. 3 is used, the heat-resistant fiber support material 6 into which the metal wire 5, preferably the metal wire 5 made of SUS steel is inserted is used. It was confirmed that the deflection of the heat-resistant fiber support material 6 that occurs when the amorphous refractory material is poured is reduced, and the function of the amorphous refractory structure as a support material can be stabilized.

同様に図4に示した形状の耐熱繊維製支持材6(SUS鋼製の金属ワイヤー5)のたわみ量は、発明例5〜7に示すように、φ0.5mmで2.54mm、φ0.6mmで1.56mm、φ0.8mmで1.38mmであり、発明例8の耐熱繊維製支持材6(SS鋼製の金属ワイヤー5)のたわみ量は、φ0.8mmで1.8mmであったのに対して、比較例2の耐熱繊維製支持材は6.66mmであった。 Similarly, the amount of deflection of the heat-resistant fiber support member 6 (metal wire 5 made of SUS steel) having the shape shown in FIG. 4 is 2.54 mm and φ0.6 mm at φ0.5 mm, as shown in Invention Examples 5 to 7. The amount of deflection of the heat-resistant fiber support member 6 (metal wire 5 made of SS steel) of Invention Example 8 was 1.8 mm at φ0.8 mm, which was 1.56 mm and 1.38 mm at φ0.8 mm. On the other hand, the heat-resistant fiber support material of Comparative Example 2 was 6.66 mm.

したがって、図4に示した形状の耐熱繊維製支持材6を用いた場合でも、金属ワイヤー5、好ましくはSUS鋼製の金属ワイヤー5が挿入された耐熱繊維製支持材6を使用することで、不定形耐火物の流し込み時に生じる耐熱繊維製支持材6のたわみが軽減され、不定形耐火物構造体の支持材としての機能を安定化できることが確認できた。 Therefore, even when the heat-resistant fiber support material 6 having the shape shown in FIG. 4 is used, the heat-resistant fiber support material 6 into which the metal wire 5, preferably the metal wire 5 made of SUS steel is inserted can be used. It was confirmed that the deflection of the heat-resistant fiber support member 6 generated when the amorphous refractory was poured was reduced, and the function of the amorphous refractory structure as a support could be stabilized.

(試験例3)
耐熱繊維製支持材6は、実機使用中に高温環境下に置かれて徐々に劣化が進行し、耐熱繊維ロープ1と金属ワイヤー5が破断して、不定形耐火物の剥離が起こることから、本発明例として、加熱処理した耐熱繊維ロープ1(金属ワイヤー5を含む。)を用いて、図9に示すように、引張強度試験を行い、耐熱繊維製支持材6の耐用性を評価した。試験条件としては、SUS鋼製の金属ワイヤー径をφ0.5〜0.8mmとし、焼成条件としては、1000℃×10時間、1200℃×10時間焼成とした。
(Test Example 3)
The heat-resistant fiber support material 6 is placed in a high-temperature environment during actual use and gradually deteriorates, the heat-resistant fiber rope 1 and the metal wire 5 are broken, and the amorphous fireproof material is peeled off. As an example of the present invention, a heat-resistant fiber rope 1 (including a metal wire 5) that has been heat-treated was used to perform a tensile strength test as shown in FIG. 9, and the durability of the heat-resistant fiber support member 6 was evaluated. The test conditions were a metal wire diameter made of SUS steel of φ0.5 to 0.8 mm, and the firing conditions were 1000 ° C. × 10 hours and 1200 ° C. × 10 hours.

さらに、比較例として、金属ワイヤー5を含まない直径5mmの耐熱繊維ロープに同様な焼成を行って引張試験を行った。この際、本発明例および比較例のロープの長さは全て200mmとして試験を行った。なお、この比較例(金属ワイヤー無し)の場合は、ワイヤーの芯に、上記金属ワイヤー5に代えて耐熱繊維が詰まっている。 Further, as a comparative example, a tensile test was conducted by performing the same firing on a heat-resistant fiber rope having a diameter of 5 mm and not containing the metal wire 5. At this time, the test was conducted with the rope lengths of the examples of the present invention and the comparative examples being all 200 mm. In the case of this comparative example (without metal wire), the core of the wire is clogged with heat-resistant fiber instead of the metal wire 5.

試験結果を表2に示す。
表2に示すように、本発明例では、高温環境下で、耐熱繊維ロープ1内の金属ワイヤー5が酸化するため、耐熱繊維のみからなる比較例よりも、支持材全体の引張強度が若干は低下している。しかし、SUS製の金属ワイヤー5が挿入された耐熱繊維ロープ1の引張強度は、1000℃での引張強度試験の場合は、3.1〜3.4kN程度であり、金属ワイヤー5を含まない耐熱繊維ロープの引張強度:3.5kNと大きな違いはない。1200℃で10時間焼成後の耐熱繊維ロープの引張強度は、φ0.5mmで0.9kN、φ0.6mmで0.8kN、φ0.8mmで0.6kNであったが、実機で使用されている不定形耐火物の発生応力以上の強度を維持していることから実機で十分使用できることが確認できた。
The test results are shown in Table 2.
As shown in Table 2, in the example of the present invention, since the metal wire 5 in the heat-resistant fiber rope 1 is oxidized in a high-temperature environment, the tensile strength of the entire support material is slightly higher than that of the comparative example consisting of only heat-resistant fibers. It is declining. However, the tensile strength of the heat-resistant fiber rope 1 into which the metal wire 5 made of SUS is inserted is about 3.1 to 3.4 kN in the case of the tensile strength test at 1000 ° C., and the heat resistance does not include the metal wire 5. Tensile strength of fiber rope: There is no big difference with 3.5kN. The tensile strength of the heat-resistant fiber rope after firing at 1200 ° C. for 10 hours was 0.9 kN at φ0.5 mm, 0.8 kN at φ0.6 mm, and 0.6 kN at φ0.8 mm, but it is used in the actual machine. It was confirmed that it can be sufficiently used in the actual machine because it maintains the strength higher than the generated stress of the amorphous refractory.

(試験例4)
図10に示すように、操業温度が1350℃の加熱炉スキッドポストの水冷パイプ21に適用し、不定形耐火物の剥離量を測定する試験を行った。
(Test Example 4)
As shown in FIG. 10, a test was conducted in which the water-cooled pipe 21 of a heating furnace skid post having an operating temperature of 1350 ° C. was applied to measure the amount of peeling of an amorphous refractory.

表1に示すように、発明例3、4として、耐熱繊維ロープ1を環状にして、φ0.8のSUS鋼又はSS鋼製の金属ワイヤー5を挿入し、端部をSUS鋼からなる高さ20mm、内径10mmの金属管2に入れ、プレスすることでロープ部と金属部を圧着させて、図3に示す形態の金属ワイヤー5が挿入された耐熱繊維製支持材6を製造した。また、発明例7、8として、同様に、図4に示す形態の金属ワイヤー5が挿入された耐熱繊維製支持材6を製造した。 As shown in Table 1, as Invention Examples 3 and 4, the heat-resistant fiber rope 1 is made annular, a metal wire 5 made of φ0.8 SUS steel or SS steel is inserted, and the end portion is made of SUS steel. The rope portion and the metal portion were crimped by putting them in a metal tube 2 having a diameter of 20 mm and an inner diameter of 10 mm and pressing them to produce a heat-resistant fiber support member 6 into which the metal wire 5 in the form shown in FIG. 3 was inserted. Further, as Invention Examples 7 and 8, similarly, the heat-resistant fiber support member 6 into which the metal wire 5 in the form shown in FIG. 4 was inserted was manufactured.

さらに、図10に示すように円周方向8本の耐熱繊維製支持材6を配列し、耐熱繊維製支持材6の高さ方向の間隔は150mm間隔とし、耐熱繊維製支持材6を水冷パイプ21に溶接固定した。尚、図10の例では、円周方向に配列される耐熱繊維製支持材6については、耐熱繊維ロープ1に不定形耐火物19の荷重が作用する方向(左右方向)に配置される支持材6と、耐熱繊維ロープ1が金属管2から引き抜かれる方向(上下方向)に配置される支持材6とを、4本ずつ交互に配置した。そして高さ方向にも、耐熱繊維ロープ1の環状部の方向面が重ならないような配置とした。耐熱繊維製支持材6を溶接した水冷パイプ21に、不定形耐火物19の厚みを110mmとして流し込み施工を行った。 Further, as shown in FIG. 10, eight heat-resistant fiber support members 6 are arranged in the circumferential direction, the height-wise spacing of the heat-resistant fiber support members 6 is 150 mm, and the heat-resistant fiber support members 6 are water-cooled pipes. It was welded and fixed to 21. In the example of FIG. 10, the heat-resistant fiber support members 6 arranged in the circumferential direction are arranged in the direction (left-right direction) in which the load of the irregular fire-resistant material 19 acts on the heat-resistant fiber rope 1. 6 and the support member 6 arranged in the direction in which the heat-resistant fiber rope 1 is pulled out from the metal tube 2 (vertical direction) are alternately arranged by four. The arrangement is such that the directional surfaces of the annular portion of the heat-resistant fiber rope 1 do not overlap in the height direction. A water-cooled pipe 21 to which a heat-resistant fiber support member 6 was welded was poured into a water-cooled pipe 21 with an amorphous refractory material 19 having a thickness of 110 mm.

また、比較例1、2として、同条件で、図1、2に示す金属ワイヤー5を含まない耐熱繊維製支持材4を用いた水冷パイプを製造した。この際、本発明例3、4、7、8および比較例1、2の支持材の高さは全て80mmとした。 Further, as Comparative Examples 1 and 2, a water-cooled pipe using the heat-resistant fiber support material 4 which does not contain the metal wire 5 shown in FIGS. 1 and 2 was manufactured under the same conditions. At this time, the heights of the support materials of Examples 3, 4, 7, 8 of the present invention and Comparative Examples 1 and 2 were all set to 80 mm.

上記加熱炉を操業温度1350℃で6ヶ月稼働後に不定形耐火物19の損耗状況を確認した。 After operating the heating furnace at an operating temperature of 1350 ° C. for 6 months, the state of wear of the amorphous refractory material 19 was confirmed.

この結果、上記の表1に示すように、図1の耐熱繊維製支持材4を使用した比較例1では、12mmの不定形耐火物19の剥離が確認された。これに対し、図1と同形状の図3の金属ワイヤー5が挿入された耐熱繊維製支持材6を使用した発明例3、4では、不定形耐火物19の剥離量は、それぞれ、0mm、3mmであり、比較例1と比べて剥離量が大幅に少なかった。 As a result, as shown in Table 1 above, in Comparative Example 1 using the heat-resistant fiber support material 4 of FIG. 1, peeling of the 12 mm amorphous refractory material 19 was confirmed. On the other hand, in Invention Examples 3 and 4 using the heat-resistant fiber support member 6 into which the metal wire 5 of FIG. 3 having the same shape as that of FIG. 1 is inserted, the peeling amount of the amorphous refractory 19 is 0 mm, respectively. It was 3 mm, and the amount of peeling was significantly smaller than that of Comparative Example 1.

また、図2の耐熱繊維製支持材4を使用した比較例2では、3mmの不定形耐火物19の剥離が確認された。これに対し、図2と同形状の図4の金属ワイヤー5が挿入された耐熱繊維製支持材6を使用した発明例7、8では、不定形耐火物19の剥離量はともに0mmであり、不定形耐火物19の剥離を完全に防止できた。 Further, in Comparative Example 2 using the heat-resistant fiber support material 4 of FIG. 2, peeling of the 3 mm amorphous refractory material 19 was confirmed. On the other hand, in Invention Examples 7 and 8 using the heat-resistant fiber support member 6 into which the metal wire 5 of FIG. 4 having the same shape as that of FIG. 2 is inserted, the peeling amount of the amorphous refractory 19 is 0 mm. The peeling of the amorphous refractory 19 could be completely prevented.

(試験例5)
図13に示すように耐熱繊維ロープ1を環状にして、その両端部をSUS鋼又はSS鋼からなる金属管2に入れ、プレスすることで、耐熱繊維ロープ1の端部を金属管2に圧着させて、スタッド溶接用の耐熱繊維製支持材27を製造した。図14は金属管2の寸法例を示し、ここでは金属管2の高さFを22mm、外径Gを13.8mm、溶接部である薄肉部26の高さHを0.8mm、薄肉部26の肉厚Dを0.4mmとした。
(Test Example 5)
As shown in FIG. 13, the heat-resistant fiber rope 1 is made into an annular shape, both ends thereof are put into a metal pipe 2 made of SUS steel or SS steel, and pressed to crimp the end portion of the heat-resistant fiber rope 1 to the metal pipe 2. The heat-resistant fiber support material 27 for stud welding was manufactured. FIG. 14 shows a dimensional example of the metal pipe 2, where the height F of the metal pipe 2 is 22 mm, the outer diameter G is 13.8 mm, the height H of the thin-walled portion 26 which is the welded portion is 0.8 mm, and the thin-walled portion. The wall thickness D of 26 was set to 0.4 mm.

金属管2を水冷パイプに強固にスタッド溶接できる好ましい条件を探索するため、薄肉部26の高さHが0.8mm、1.0mm、1.2mmの3種類のスタッド溶接用の耐熱繊維製支持材27を製造し、電圧130V、140V、150V、160V、170V、180Vの条件でスタッド溶接施工試験を行った。 In order to search for preferable conditions under which the metal pipe 2 can be firmly stud welded to the water-cooled pipe, the height H of the thin portion 26 is 0.8 mm, 1.0 mm, and 1.2 mm, which are three types of heat-resistant fiber supports for stud welding. The material 27 was manufactured, and a stud welding construction test was conducted under the conditions of voltages of 130V, 140V, 150V, 160V, 170V, and 180V.

試験結果を表3に示す。表3中の溶接性の評価に関し、◎は溶け込み優良を示し、溶接後の金属管2の周囲にナゲット(溶け込み部分)が円を描くように溶け出していた。○は溶け込み良を示し、溶接後の金属管2の周囲にナゲット(溶け込み部分)が楕円を描くように溶け出していた。△は溶け込み不足を示し、溶接後の金属管2からナゲット(溶け込み部分)が溶け出していなかった。この試験結果によれば、SUS鋼からなる薄肉部26の高さH:0.8mmの金属管2を、140Vで溶接した場合に、金属管2の先端の薄肉部26の溶け込みが最も良好となる結果が得られた。表3の結果からは、金属管2を支持体22に適切に溶接するためには、金属管2の材質がSS鋼よりもSUS鋼であることが好ましく、また、溶接電圧は、130V以上、160V以下であることが好ましく、140Vであることがより好ましいといえる。 The test results are shown in Table 3. Regarding the evaluation of weldability in Table 3, ⊚ showed excellent penetration, and the nugget (melting portion) melted out in a circle around the metal pipe 2 after welding. ◯ indicates good penetration, and the nugget (melting portion) melted out in an elliptical shape around the metal pipe 2 after welding. Δ indicates insufficient penetration, and the nugget (melting portion) did not melt out from the metal pipe 2 after welding. According to this test result, when a metal tube 2 having a height H: 0.8 mm of a thin wall portion 26 made of SUS steel is welded at 140 V, the thin wall portion 26 at the tip of the metal tube 2 has the best penetration. The result was obtained. From the results in Table 3, in order to properly weld the metal pipe 2 to the support 22, the material of the metal pipe 2 is preferably SUS steel rather than SS steel, and the welding voltage is 130 V or more. It is preferably 160 V or less, and more preferably 140 V or less.

(試験例6)
耐熱繊維製支持材の施工強度不足は、実機使用中に耐熱繊維製支持材の溶接部が破断して不定形耐火物の脱落を発生させることから、試験例5で行ったスタッド溶接施工試験の金属管2の試料を用いて、図16に示すような引張強度試験を行い、溶接強度を評価した。試験条件は、常温で引張速度を100mm/minとした。
(Test Example 6)
Insufficient construction strength of the heat-resistant fiber support material causes the welded portion of the heat-resistant fiber support material to break during actual use, causing the irregular refractory to fall off. Therefore, in the stud welding construction test conducted in Test Example 5. A tensile strength test as shown in FIG. 16 was performed using the sample of the metal tube 2 to evaluate the welding strength. The test conditions were a tensile speed of 100 mm / min at room temperature.

試験結果を表4に示す。その結果、SUS鋼の薄肉部26の高さH:0.8mm、溶接電圧:130Vの場合に、引張強度が22kNとなり、また、薄肉部26の高さH:0.8mm、溶接電圧:140Vの場合に、引張強度:24kNとなり、いずれの場合も高強度を示した。大凡外観で薄肉部26の溶け込みの好ましい場合の引張強度が高かった。 The test results are shown in Table 4. As a result, when the height H of the thin portion 26 of the SUS steel is 0.8 mm and the welding voltage is 130 V, the tensile strength is 22 kN, and the height H of the thin portion 26 is 0.8 mm and the welding voltage is 140 V. In the case of, the tensile strength was 24 kN, and in each case, high strength was exhibited. In general appearance, the tensile strength was high when the thin-walled portion 26 was preferably blended.

耐熱繊維ロープ1は、常温での引張強度が3kN程度であり、表4の引張試験結果から安全率は7倍以上を有している。さらに、実機で使用されている不定形耐火物19の発生応力以上の強度も維持していることから、耐熱繊維製支持材27を実機で十分使用できることが確認できた。 The heat-resistant fiber rope 1 has a tensile strength of about 3 kN at room temperature, and has a safety factor of 7 times or more based on the tensile test results in Table 4. Furthermore, since the strength equal to or higher than the generated stress of the amorphous refractory material 19 used in the actual machine is maintained, it was confirmed that the heat-resistant fiber support material 27 can be sufficiently used in the actual machine.

(試験例7)
図17に示すように、操業温度が1300℃の加熱炉スキッドポストの水冷パイプ21に、SUS鋼製の金属管2を用いたスタッド溶接用の耐熱繊維製支持材27を適用した。耐熱繊維製支持材27の配列は、円周方向8本とし、高さ方向の間隔は120mm間隔とし、120本の耐熱繊維製支持材27を水冷パイプ21にスタッド溶接施工した。不定形耐火物19の厚みを110mmとして流し込み施工を行った。また、比較のため図15に示す耐熱繊維製支持材28を手溶接で同様に施工した。この際、耐熱繊維製支持材27、28の高さFは全て80mmとした。
(Test Example 7)
As shown in FIG. 17, a heat-resistant fiber support material 27 for stud welding using a metal pipe 2 made of SUS steel was applied to a water-cooled pipe 21 of a heating furnace skid post having an operating temperature of 1300 ° C. The arrangement of the heat-resistant fiber support members 27 was eight in the circumferential direction, the intervals in the height direction were 120 mm, and 120 heat-resistant fiber support members 27 were stud welded to the water-cooled pipe 21. The thickness of the amorphous refractory 19 was set to 110 mm, and the work was carried out. Further, for comparison, the heat-resistant fiber support member 28 shown in FIG. 15 was similarly constructed by hand welding. At this time, the heights F of the heat-resistant fiber support members 27 and 28 were all set to 80 mm.

試験結果を表5に示す。その結果、耐熱繊維製支持材27をスタッド溶接する場合の施工時間はわずか10分であり、耐熱繊維製支持材28を手溶接する場合よりも、施工時間を大幅に短縮することができた。 The test results are shown in Table 5. As a result, the construction time when the heat-resistant fiber support member 27 was stud-welded was only 10 minutes, and the construction time could be significantly shortened as compared with the case where the heat-resistant fiber support member 28 was manually welded.

さらに、上記加熱炉を操業温度1300℃で6ヶ月稼働後に不定形耐火物19の状況を確認すると、図13の耐熱繊維製支持材28および図15の耐熱繊維製支持材28を用いた場合ともに、不定形耐火物19の剥離は確認されず、健全な状態を確認した。 Further, when the condition of the amorphous refractory material 19 was confirmed after operating the heating furnace at an operating temperature of 1300 ° C. for 6 months, both when the heat-resistant fiber support material 28 of FIG. 13 and the heat-resistant fiber support material 28 of FIG. 15 were used. , The peeling of the amorphous refractory 19 was not confirmed, and the sound condition was confirmed.

以上の結果から、本発明の適用により不定形耐火物施工体の寿命向上に貢献できることが確認できた。 From the above results, it was confirmed that the application of the present invention can contribute to the improvement of the life of the amorphous refractory construction body.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical idea described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

1 耐熱繊維ロープ
2 金属管
3 圧着部
4 耐熱繊維製支持材
5 金属ワイヤー
6 耐熱繊維製支持材(金属ワイヤー内在)
8 たわみ時の耐熱繊維製支持材
9 アクリル容器
10 鉄板
11 溝型鋼
12 ビーカー
13 グリセリン
14 変位計
15 スライドゲージ
16 たわみ量[mm]
17 不定形耐火物支持量[mm]
18 不定形耐火物未支持量[mm]
19 不定形耐火物
20 引張試験機
21 水冷パイプ
22 支持体
23 金属製支持材
24 ビーム部
25 ポスト部
26 スタッド溶接用薄肉部
27 スタッド溶接用薄肉部を有する耐熱繊維製支持材
28 薄肉部を有さない耐熱繊維製支持材
1 Heat-resistant fiber rope 2 Metal tube 3 Crimping part 4 Heat-resistant fiber support material 5 Metal wire 6 Heat-resistant fiber support material (internal metal wire)
8 Heat-resistant fiber support material during deflection 9 Acrylic container 10 Iron plate 11 Grooved steel 12 Beaker 13 Glycerin 14 Displacement meter 15 Slide gauge 16 Deflection amount [mm]
17 Amount of support for amorphous refractories [mm]
18 Unsupported amount of amorphous refractory [mm]
19 Amorphous refractory 20 Tensile tester 21 Water-cooled pipe 22 Support 23 Metal support 24 Beam part 25 Post part 26 Thin-walled part for stud welding 27 Heat-resistant fiber support material with thin-walled part for stud welding 28 Thin-walled part No heat-resistant fiber support material

Claims (16)

不定形耐火物と、
鉛直な壁面を有し、前記壁面に施工された前記不定形耐火物を支持する支持体と、
前記支持体の壁面に接続された状態で前記不定形耐火物の内部に埋設される耐熱繊維製支持材と、
を備え、
前記耐熱繊維製支持材は、無機質長繊維からなる耐熱繊維ロープを有し、
前記耐熱繊維ロープは、環状部を有し、且つ前記耐熱繊維ロープの芯に金属ワイヤーが内在し、
前記環状部は、前記金属ワイヤーの弾性により前記支持体の壁面に対して自立した状態で、前記不定形耐火物に埋設されており、
前記自立した状態とは、前記不定形耐火物が施工された状態において前記環状部がたわまない又はたわみが少ない状態であって、前記たわまない又はたわみが少ない状態とは、前記環状部の先端に荷重2Nを印可した場合のたわみ量が6.04mm以下となる前記耐熱繊維製支持材を用いることで得られる状態であることを特徴とする、不定形耐火物構造体。
Amorphous refractory and
A support having a vertical wall surface and supporting the amorphous refractory constructed on the wall surface, and
A heat-resistant fiber support material embedded inside the amorphous refractory while being connected to the wall surface of the support.
With
The heat-resistant fiber support material has a heat-resistant fiber rope made of inorganic long fibers and has a heat-resistant fiber rope.
The heat-resistant fiber rope has an annular portion, and a metal wire is embedded in the core of the heat-resistant fiber rope.
The annular portion is embedded in the amorphous refractory in a state of being self-supporting with respect to the wall surface of the support due to the elasticity of the metal wire.
The self-supporting state is a state in which the annular portion is not bent or has little deflection in the state where the amorphous refractory is constructed, and the state in which the annular portion is not bent or has little bending is the state in which the annular portion is not bent or has little bending. An amorphous refractory structure characterized in that it is in a state obtained by using the heat-resistant fiber support material in which the amount of deflection when a load of 2N is applied to the tip of the portion is 6.04 mm or less.
前記金属ワイヤーは、硬鋼線、ピアノ線、ステンレス鋼線のうち、いずれかの材質からなることを特徴とする、請求項1に記載の不定形耐火物構造体。 The amorphous refractory structure according to claim 1, wherein the metal wire is made of any one of a hard steel wire, a piano wire, and a stainless steel wire. 前記無機質長繊維は、Al質、SiO質、Al−SiO質、Al−SiO−B質のうち1種又は2種以上の材質からなることを特徴とする、請求項1又は2に記載の不定形耐火物構造体。 Said inorganic lengthy fibers are composed of one or more of the material of the Al 2 O 3 quality, SiO 2 quality, Al 2 O 3 -SiO 2 quality, Al 2 O 3 -SiO 2 -B 2 O 3 Quality The amorphous refractory structure according to claim 1 or 2, characterized in that. 前記耐熱繊維ロープは、硬化剤にて硬化されていることを特徴とする、請求項1〜3のいずれか1項に記載の不定形耐火物構造体。 The amorphous refractory structure according to any one of claims 1 to 3, wherein the heat-resistant fiber rope is cured with a curing agent. 前記耐熱繊維製支持材は、
前記耐熱繊維ロープと、
前記耐熱繊維ロープと前記支持体を接続する接続部材と、
を有することを特徴とする、請求項1〜4のいずれか1項に記載の不定形耐火物構造体。
The heat-resistant fiber support material is
With the heat-resistant fiber rope
A connecting member that connects the heat-resistant fiber rope and the support,
The amorphous refractory structure according to any one of claims 1 to 4, wherein the structure is characterized by having.
前記接続部材は、前記支持体に固定される金属管からなり、
前記金属管の内部に前記耐熱繊維ロープの端部が挿入された状態で密着していることを特徴とする、請求項5に記載の不定形耐火物構造体。
The connecting member comprises a metal tube fixed to the support.
The amorphous refractory structure according to claim 5, wherein the end portion of the heat-resistant fiber rope is in close contact with the inside of the metal pipe.
前記耐熱繊維ロープに前記不定形耐火物の荷重が作用する方向と、前記耐熱繊維ロープの端部が前記金属管から引き抜かれる方向とが異なることを特徴とする、請求項6に記載の不定形耐火物構造体。 The amorphous shape according to claim 6, wherein the direction in which the load of the irregular refractory material acts on the heat-resistant fiber rope is different from the direction in which the end portion of the heat-resistant fiber rope is pulled out from the metal pipe. Refractory structure. 前記金属管が、スタッド溶接により前記支持体に固定されていることを特徴とする、請求項6又は7に記載の不定形耐火物構造体。 The amorphous refractory structure according to claim 6 or 7, wherein the metal pipe is fixed to the support by stud welding. 不定形耐火物と、前記不定形耐火物を支持する支持体とを備える不定形耐火物構造体の製造方法において、
無機質長繊維からなる耐熱繊維ロープと、前記耐熱繊維ロープの芯に内在する金属ワイヤーとを有し、且つ、前記耐熱繊維ロープが環状部を有する耐熱繊維製支持材を、前記支持体の鉛直な壁面に対して略直角に、且つ、前記環状部が、前記金属ワイヤーの弾性により前記支持体の壁面に対して自立した状態で固定する工程と、
前記耐熱繊維製支持材が固定された前記支持体の壁面の周囲に前記不定形耐火物を流し込み施工する工程と、
を含み、
前記自立した状態とは、前記不定形耐火物が施工された状態において前記環状部がたわまない又はたわみが少ない状態であって、前記たわまない又はたわみが少ない状態とは、前記環状部の先端に荷重2Nを印可した場合のたわみ量が6.04mm以下となる前記耐熱繊維製支持材を用いることで得られる状態であることを特徴とする、不定形耐火物構造体の製造方法。
In a method for manufacturing an amorphous refractory structure including an amorphous refractory and a support for supporting the amorphous refractory.
A heat-resistant fiber support material having a heat-resistant fiber rope made of inorganic long fibers and a metal wire internal to the core of the heat-resistant fiber rope and having an annular portion of the heat-resistant fiber rope is provided with a vertical support material. A step of fixing the annular portion substantially perpendicular to the wall surface and in a state where the annular portion is self-supporting with respect to the wall surface of the support by the elasticity of the metal wire.
A step of pouring the amorphous refractory around the wall surface of the support to which the heat-resistant fiber support material is fixed, and
Including
The self-supporting state is a state in which the annular portion is not bent or has little deflection in a state where the amorphous refractory is constructed, and the state in which the annular portion is not bent or has little bending is the state in which the annular portion is not bent or has little bending. A method for manufacturing an amorphous refractory structure, which is in a state obtained by using the heat-resistant fiber support material in which the amount of deflection when a load of 2N is applied to the tip of the portion is 6.04 mm or less. ..
前記耐熱繊維製支持材を前記支持体の壁面に固定する工程では、前記耐熱繊維製支持材を、スタッド溶接により前記支持体の壁面に固定することを特徴とする、請求項9に記載の不定形耐火物構造体の製造方法。 The deficiency according to claim 9, wherein in the step of fixing the heat-resistant fiber support material to the wall surface of the support, the heat-resistant fiber support material is fixed to the wall surface of the support by stud welding. A method for manufacturing a standard refractory structure. 前記耐熱繊維製支持材は、前記支持体に固定される金属管を更に有し、前記金属管の内部に前記耐熱繊維ロープの端部が挿入された状態で密着しており、
前記耐熱繊維製支持材を前記支持体の壁面に固定する工程では、前記耐熱繊維製支持材の前記金属管を、スタッド溶接により前記支持体の壁面に固定することを特徴とする、請求項10に記載の不定形耐火物構造体の製造方法。
The heat-resistant fiber support material further has a metal tube fixed to the support, and is in close contact with the heat-resistant fiber rope with the end portion inserted inside the metal tube.
10. The step of fixing the heat-resistant fiber support material to the wall surface of the support is characterized in that the metal pipe of the heat-resistant fiber support material is fixed to the wall surface of the support by stud welding. A method for manufacturing an amorphous refractory structure according to.
前記金属管には、前記支持体に固定される側の先端に薄肉部が形成されており、
前記金属管の前記薄肉部を、スタッド溶接により前記支持体の壁面に固定することを特徴とする、請求項11に記載の不定形耐火物構造体の製造方法。
The metal tube has a thin-walled portion formed at the tip on the side fixed to the support.
The method for manufacturing an amorphous refractory structure according to claim 11, wherein the thin portion of the metal pipe is fixed to the wall surface of the support by stud welding.
不定形耐火物を支持する支持体の鉛直な壁面に接続され、前記支持体の鉛直な壁面に施工される前記不定形耐火物の内部に埋設される耐熱繊維製支持材であって、
無機質長繊維からなる耐熱繊維ロープと、
前記耐熱繊維ロープと前記支持体の壁面を接続する接続部材と、
を備え、
前記耐熱繊維ロープは、環状部を有し、且つ前記耐熱繊維ロープの芯に金属ワイヤーが内在し、
前記環状部は、前記金属ワイヤーの弾性により前記支持体の壁面に対して自立し、
前記自立するとは、前記耐熱繊維製支持材が前記壁面に固定され、且つ前記不定形耐火物が施工された状態において、前記環状部がたわまない又はたわみが少ない状態を保持することであって、前記たわまない又はたわみが少ない状態とは、前記耐熱繊維製支持材が前記壁面に固定された状態で前記環状部の先端に荷重2Nを印可した場合のたわみ量が6.04mm以下となる前記耐熱繊維製支持材を用いることで得られる状態であることを特徴とする、耐熱繊維製支持材。
A heat-resistant fiber support material that is connected to the vertical wall surface of a support that supports an amorphous refractory and is embedded inside the amorphous refractory that is installed on the vertical wall surface of the support.
Heat-resistant fiber rope made of inorganic long fibers and
A connecting member that connects the heat-resistant fiber rope and the wall surface of the support,
With
The heat-resistant fiber rope has an annular portion, and a metal wire is embedded in the core of the heat-resistant fiber rope.
The annular portion is self-supporting with respect to the wall surface of the support due to the elasticity of the metal wire.
The self-supporting means that the annular portion is not bent or has little bending in a state where the heat-resistant fiber support material is fixed to the wall surface and the amorphous refractory is applied. The state of non-deflection or less deflection means that the amount of deflection when a load of 2N is applied to the tip of the annular portion while the heat-resistant fiber support material is fixed to the wall surface is 6.04 mm or less. A heat-resistant fiber support material, which is in a state obtained by using the heat-resistant fiber support material.
前記金属ワイヤーは、硬鋼線、ピアノ線、ステンレス鋼線のうち、いずれかの材質からなることを特徴とする、請求項13に記載の耐熱繊維製支持材。 The heat-resistant fiber support material according to claim 13, wherein the metal wire is made of any one of a hard steel wire, a piano wire, and a stainless steel wire. 前記接続部材は、前記支持体に固定される金属管からなり、
前記金属管の内部に前記耐熱繊維ロープの端部が挿入された状態で密着していることを特徴とする、請求項13又は14に記載の耐熱繊維製支持材。
The connecting member comprises a metal tube fixed to the support.
The heat-resistant fiber support material according to claim 13 or 14, wherein the end portion of the heat-resistant fiber rope is in close contact with the inside of the metal tube in a state of being inserted.
前記金属管は、前記支持体に固定される側の先端に薄肉部が形成されていることを特徴とする、請求項15に記載の耐熱繊維製支持材。 The heat-resistant fiber support material according to claim 15, wherein the metal tube has a thin-walled portion formed at the tip on the side fixed to the support.
JP2017003483A 2016-04-21 2017-01-12 Amorphous refractory structure, manufacturing method of amorphous refractory structure, and heat-resistant fiber support material Active JP6834502B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085228 2016-04-21
JP2016085228 2016-04-21

Publications (2)

Publication Number Publication Date
JP2017198438A JP2017198438A (en) 2017-11-02
JP6834502B2 true JP6834502B2 (en) 2021-02-24

Family

ID=60238990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003483A Active JP6834502B2 (en) 2016-04-21 2017-01-12 Amorphous refractory structure, manufacturing method of amorphous refractory structure, and heat-resistant fiber support material

Country Status (1)

Country Link
JP (1) JP6834502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020459B2 (en) * 2019-07-24 2022-02-16 Jfeスチール株式会社 Support material, refractory structure and method for manufacturing refractory structure

Also Published As

Publication number Publication date
JP2017198438A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP5578247B2 (en) Amorphous refractory structure and heat-resistant fiber support
JP6834502B2 (en) Amorphous refractory structure, manufacturing method of amorphous refractory structure, and heat-resistant fiber support material
US3353808A (en) Refractory coated oxygen lance
JP6235890B2 (en) Dip tube for refining equipment
CN213873825U (en) High-temperature-resistant and bending-resistant spray gun structure
US8480951B2 (en) Tuyere structure of melting furnace
JPS586866B2 (en) Kanetsuroronaipipuno 2 Jiyuudanetsuhouhou
JP6201704B2 (en) Amorphous refractory precast structure and manufacturing method thereof
NZ195319A (en) Truncated triangular insulator and insulated pipe
JP2018021624A (en) Heat insulation structure
JPH04124213A (en) Lance pipe
JP7199479B1 (en) Refractory coated metal anchor and high temperature furnace using the same
JP3204664U (en) Immersion tube for vacuum degassing equipment
JP2015200448A (en) Agitation blade for molten metal
JP2013231219A (en) Immersed pipe of vacuum degassing apparatus
JP7020459B2 (en) Support material, refractory structure and method for manufacturing refractory structure
KR102641214B1 (en) Mold for repairing electric furnace roof and method for repairing electric furnace roof using the same
WO2021177101A1 (en) Integrated tuyere for converter
CN113913574B (en) Method for prolonging service life of main channel steel groove of blast furnace
JP6881403B2 (en) Manufacturing method of support material, refractory structure and refractory structure
JP6791677B2 (en) Precast block structure
JP4510191B2 (en) Lance pipe for blowing powder and gas
JP5523383B2 (en) Tuyere unit and thermocouple replacement method
JP6308787B2 (en) Lance pipe
JP5907351B2 (en) Immersion pipe of molten metal refining equipment and method of constructing refractory in the immersion pipe

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151