JP2015110812A - Method of manufacturing lead compound thin film, and crucible - Google Patents

Method of manufacturing lead compound thin film, and crucible Download PDF

Info

Publication number
JP2015110812A
JP2015110812A JP2013252805A JP2013252805A JP2015110812A JP 2015110812 A JP2015110812 A JP 2015110812A JP 2013252805 A JP2013252805 A JP 2013252805A JP 2013252805 A JP2013252805 A JP 2013252805A JP 2015110812 A JP2015110812 A JP 2015110812A
Authority
JP
Japan
Prior art keywords
lead
crucible
thin film
raw material
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013252805A
Other languages
Japanese (ja)
Other versions
JP6265721B2 (en
Inventor
睦 森田
Mutsumi Morita
睦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013252805A priority Critical patent/JP6265721B2/en
Publication of JP2015110812A publication Critical patent/JP2015110812A/en
Application granted granted Critical
Publication of JP6265721B2 publication Critical patent/JP6265721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead compound thin film of good quality.SOLUTION: A vapor deposition device is used that includes: a chamber; a plurality of vapor deposition sources which are arranged in the chamber, one of the vapor deposition sources including a crucible formed in a container shape of a member which is supplied with electric power to generate heat such that a side face part becomes higher in temperature than a bottom face part when the electric power is supplied, a lead raw material accommodated in the crucible, and a lead vapor deposition source having an electron gun irradiating the lead raw material accommodated in the crucible with an electron beam; and a substrate which is arranged in the chamber above the vapor deposition sources. While the electric power is supplied to the crucible of the lead vapor deposition source so as to heat the side face of the crucible to a higher temperature than the bottom face part, the lead raw material of the lead vapor deposition source is irradiated with the electron beam so as to vaporize the lead raw material, and a plurality of kinds of vapor deposition raw material are vaporized from the plurality of vapor deposition sources except the lead vapor deposition source so as to vapor-deposit a lead compound thin film on a surface of the substrate.

Description

本発明は、鉛を含む化合物薄膜を物理蒸着法により製造する方法、および、その製造方法に用いるルツボに関する。   The present invention relates to a method for producing a compound thin film containing lead by a physical vapor deposition method, and a crucible used for the production method.

チタン酸ジルコン酸鉛(PZT)やチタン酸ジルコン酸ランタン鉛(PLZT)等に代表される、鉛を含む多元系酸化物強誘電体は、優れた圧電性や焦電性、電気光学特性等を有し、様々な電子デバイスへ応用されている。このような多元系酸化物強誘電体は、真空蒸着法やイオンプレーティング法等の物理蒸着法を用いて、基板上に成膜することができる。たとえば、特許文献1,2には、圧力勾配型アーク放電プラズマガンで生成した高密度プラズマで、蒸発源から蒸発した各種ソースガスを活性化し、酸素雰囲気中で、基板上に多元系酸化物強誘電体からなる薄膜を蒸着する、アーク放電反応式イオンプレーティング法、が提案されている。   Lead-containing multi-element oxide ferroelectrics such as lead zirconate titanate (PZT) and lead lanthanum zirconate titanate (PLZT) have excellent piezoelectricity, pyroelectricity, electro-optical properties, etc. It is applied to various electronic devices. Such a multi-element oxide ferroelectric can be formed on a substrate using a physical vapor deposition method such as a vacuum vapor deposition method or an ion plating method. For example, in Patent Documents 1 and 2, various source gases evaporated from an evaporation source are activated by high-density plasma generated by a pressure gradient arc discharge plasma gun, and a multi-component oxide strong oxide is formed on a substrate in an oxygen atmosphere. An arc discharge reactive ion plating method for depositing a thin film made of a dielectric has been proposed.

このような物理蒸着法において、蒸発原料は、一般に電子ビームを用いて溶融・蒸発される。特許文献3には、蒸発原料を溶融・蒸発させる際に生じうるスプラッシュ(突沸)を抑制するために、ヒータ等により蒸発原料を均一に加熱しながら、当該蒸発原料に電子ビームを照射して、当該蒸発原料を溶融・蒸発させる方法が提案されている。蒸発原料の突沸は、当該蒸発原料に含有されるガス(空気等)が、加熱され融液化したPb原料から放出される際に生じるものと考えられる。   In such a physical vapor deposition method, the evaporation material is generally melted and evaporated using an electron beam. In Patent Document 3, in order to suppress splash (bumping) that may occur when the evaporation material is melted / evaporated, the evaporation material is irradiated with an electron beam while the evaporation material is uniformly heated by a heater or the like. A method for melting and evaporating the evaporation raw material has been proposed. The bumping of the evaporation material is considered to occur when a gas (air or the like) contained in the evaporation material is released from the heated and melted Pb material.

特許4138196号公報Japanese Patent No. 4138196 特開2011−204776号公報JP 2011-204776 A 特開平09−143694号公報JP 09-143694 A

蒸発原料が突沸すると融液化した当該蒸発原料が激しく飛散するため、成膜される薄膜に、当該蒸発原料の飛沫が付着して、当該蒸発原料からなる小塊(パーティクル)が形成されうる。このようなパーティクルは、薄膜の結晶性を劣化させる可能性があるため、薄膜におけるパーティクル数(ないしパーティクル密度)は極力低減させることが好ましい。   When the evaporating raw material bumps, the vaporized evaporating raw material scatters violently, so that droplets of the evaporating raw material adhere to the thin film to be formed, and a small lump (particle) made of the evaporating raw material can be formed. Since such particles may deteriorate the crystallinity of the thin film, it is preferable to reduce the number of particles (or particle density) in the thin film as much as possible.

また、本願発明者の検討によれば、PZT等の鉛化合物薄膜を蒸着する際に用いられる鉛原料は、特に突沸が生じやすいことがわかっている。   Further, according to the study by the present inventor, it has been found that lead raw materials used when vapor-depositing a lead compound thin film such as PZT are particularly prone to bumping.

本発明の目的は、良質な鉛化合物薄膜を提供することにある。   An object of the present invention is to provide a high-quality lead compound thin film.

本発明の1つの観点によれば、チャンバと、該チャンバ内に配置され、鉛を含む複数種類の蒸発原料を具備する複数の蒸発源と、該チャンバ内であって該複数の蒸発源の上方に配置され、基板を保持することができる基板ホルダと、を備える蒸着装置を用いた鉛化合物薄膜の製造方法であって、a)前記複数の蒸発源のうちの1つの蒸発源として、電力供給されることにより発熱する部材により構成され、容器状の形状を有し、電力供給された際に側面部が底面部よりも高温になるルツボ、前記ルツボに収容される鉛原料、前記ルツボに収容される前記鉛原料に電子ビームを照射する電子銃、および、前記ルツボに電力供給する電源、を含む鉛蒸発源を準備する工程と、b)前記基板ホルダに基板を配設する工程と、c)前記鉛蒸発源のルツボに電力供給して該ルツボの側面部を底面部よりも高温に加熱しつつ、該鉛蒸発源の鉛原料に電子ビームを照射して該鉛原料を蒸発させるとともに、該鉛蒸発源を除く前記複数の蒸発源からも複数種類の蒸発原料を蒸発させて、前記基板表面に鉛化合物薄膜を蒸着する工程と、を有する鉛化合物薄膜の製造方法、が提供される。   According to one aspect of the present invention, a chamber, a plurality of evaporation sources disposed in the chamber and including a plurality of types of evaporation materials including lead, and in the chamber above the plurality of evaporation sources A lead compound thin film manufacturing method using a vapor deposition apparatus comprising: a substrate holder capable of holding a substrate, wherein: a) a power supply as one of the plurality of evaporation sources It is composed of a member that generates heat, has a container-like shape, and when power is supplied, the side part is higher in temperature than the bottom part, the lead raw material contained in the crucible, and contained in the crucible Preparing a lead evaporation source including an electron gun for irradiating the lead raw material with an electron beam and a power source for supplying electric power to the crucible; b) disposing a substrate on the substrate holder; c ) Ruth of the lead evaporation source While supplying the power to the crucible and heating the side part of the crucible to a temperature higher than the bottom part, the lead raw material of the lead evaporation source is irradiated with an electron beam to evaporate the lead raw material, and the lead evaporation source is removed. There is provided a method for producing a lead compound thin film comprising the steps of evaporating a plurality of types of evaporation materials from a plurality of evaporation sources and depositing a lead compound thin film on the substrate surface.

本発明の他の観点によれば、電力供給されることにより発熱する部材により構成され、容器部および該容器部の外側に張り出す取手部を含む形状を有し、該取手部から電力供給されることにより、該容器部の側面が底面よりも高温になるルツボ、が提供される。   According to another aspect of the present invention, it is configured by a member that generates heat when supplied with electric power, and has a shape including a container part and a handle part projecting outside the container part, and is supplied with electric power from the handle part. Thus, a crucible in which the side surface of the container part is hotter than the bottom surface is provided.

鉛原料の突沸または飛散量が抑制され、良質な鉛化合物薄膜が得られる。   The bumping or scattering amount of the lead raw material is suppressed, and a high-quality lead compound thin film can be obtained.

図1は、アーク放電反応式イオンプレーティング装置の構成例を示す概略側面図である。FIG. 1 is a schematic side view showing a configuration example of an arc discharge reaction type ion plating apparatus. 図2Aは、鉛蒸発源の構成例を示す概略側面図であり、図2Bおよび図2Cは、当該鉛蒸発源に用いられるルツボの構造を示す平面図および断面図である。FIG. 2A is a schematic side view showing a configuration example of a lead evaporation source, and FIGS. 2B and 2C are a plan view and a cross-sectional view showing a structure of a crucible used for the lead evaporation source. 図3は、鉛化合物薄膜の製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a method for producing a lead compound thin film.

以下、鉛化合物薄膜としてPZT膜を形成する方法について説明する。なお、鉛化合物薄膜は、PZT膜に限らず、PLZT膜などであってもよい。   Hereinafter, a method for forming a PZT film as a lead compound thin film will be described. The lead compound thin film is not limited to the PZT film but may be a PLZT film or the like.

図1は、PZT膜を作製する際に用いるアーク放電反応性イオンプレーティング(ADRIP)装置100を示す概略側面図である。ADRIP装置100は、反応チャンバ(メインチャンバ)101に、主に、基板ホルダ104,各種蒸発源106〜108,ガス供給機構109,プラズマガン110およびサブチャンバ120等が取り付けられた構成である。   FIG. 1 is a schematic side view showing an arc discharge reactive ion plating (ADRIP) apparatus 100 used when producing a PZT film. The ADRIP apparatus 100 is configured such that a substrate holder 104, various evaporation sources 106 to 108, a gas supply mechanism 109, a plasma gun 110, a sub chamber 120, and the like are attached to a reaction chamber (main chamber) 101.

反応チャンバ101には真空排気装置130に接続されおり、反応チャンバ101内を高真空(1x10−4Pa以上の真空度、圧力としては1x10−4Pa以下)に排気することが可能である。 The reaction chamber 101 is connected to a vacuum exhaust device 130, and the inside of the reaction chamber 101 can be evacuated to a high vacuum (a vacuum degree of 1 × 10 −4 Pa or higher and a pressure of 1 × 10 −4 Pa or lower).

反応チャンバ101の上面を貫通して回転軸102が設けられており、背面に輻射加熱方式のヒータ103を備えた基板ホルダ104が接続されている。基板ホルダ104は、基板105を保持できる構成である。   A rotation shaft 102 is provided through the upper surface of the reaction chamber 101, and a substrate holder 104 provided with a radiant heating type heater 103 is connected to the rear surface. The substrate holder 104 is configured to hold the substrate 105.

また、反応チャンバ101の上面を貫通して、反応ガス供給機構109が設けられており、反応ガス供給機構109から基板105表面に反応ガス、たとえば酸素(O)を供給することができる。 Further, a reaction gas supply mechanism 109 is provided through the upper surface of the reaction chamber 101, and a reaction gas such as oxygen (O 2 ) can be supplied from the reaction gas supply mechanism 109 to the surface of the substrate 105.

反応チャンバ101の底部には、鉛(Pb)蒸発源106、ジルコニウム(Zr)蒸発源およびチタン(Ti)蒸発源108が備えられている。各種蒸発源106〜108は、それぞれPb,Zr,Ti原料がルツボに充填された構成を有している。各種蒸発原料は、たとえば電子ビーム照射により溶融・蒸発される。   At the bottom of the reaction chamber 101, a lead (Pb) evaporation source 106, a zirconium (Zr) evaporation source, and a titanium (Ti) evaporation source 108 are provided. Each of the various evaporation sources 106 to 108 has a configuration in which a crucible is filled with Pb, Zr, and Ti raw materials. Various evaporation raw materials are melted and evaporated by, for example, electron beam irradiation.

反応チャンバ101の側面には、陽極、陰極、磁場発生コイル等を備えたプラズマガン110が設けられている。プラズマガン110は、Ar,He等の不活性ガス(放電ガス)を、アーク放電により電離・活性化する。そして、磁場発生コイルにより発生する磁場・放電ガスの圧力勾配によって、チャンバ101内であって基板105と各種蒸発源106〜108との間にプラズマ118を導出する。   A plasma gun 110 having an anode, a cathode, a magnetic field generating coil, and the like is provided on the side surface of the reaction chamber 101. The plasma gun 110 ionizes and activates an inert gas (discharge gas) such as Ar or He by arc discharge. Then, the plasma 118 is led out between the substrate 105 and the various evaporation sources 106 to 108 in the chamber 101 by the pressure gradient of the magnetic field / discharge gas generated by the magnetic field generating coil.

なお、反応チャンバ101の側面には、サブチャンバ120が設けられている。サブチャンバ120は、高真空に排気が可能であり、また、基板105の収容が可能である。高真空に排気可能なサブチャンバ120を具備していることにより、反応チャンバ101内を高真空に維持したまま、基板105を反応チャンパ101に出し入れすることができる。   A sub chamber 120 is provided on the side surface of the reaction chamber 101. The sub-chamber 120 can be evacuated to a high vacuum and can accommodate the substrate 105. By including the sub-chamber 120 that can be evacuated to a high vacuum, the substrate 105 can be taken in and out of the reaction chamber 101 while the inside of the reaction chamber 101 is maintained at a high vacuum.

図2Aは、Pb蒸発源106の構成を示す概略断面図であり、図2Bおよび図2Cは、Pb蒸発源106に用いられるルツボ10を示す平面図および断面図である。なお、Zr蒸発源107およびTi蒸発源108は、Pb蒸発源106と同様の構成であってもよいが、とくにこれらの構成に制限されず、一般に知られた蒸発源の構成としてもよい。   2A is a schematic cross-sectional view showing the configuration of the Pb evaporation source 106, and FIGS. 2B and 2C are a plan view and a cross-sectional view showing the crucible 10 used in the Pb evaporation source 106. FIG. The Zr evaporation source 107 and the Ti evaporation source 108 may have the same configuration as that of the Pb evaporation source 106, but are not particularly limited to these configurations, and may have a generally known evaporation source configuration.

Pb蒸発源106は、図2Aに示すように、主に、ルツボ10、電源端子20、電源30、断熱部材40を含む構成である。なお、ルツボ10内には、Pb原料13が充填される。   As shown in FIG. 2A, the Pb evaporation source 106 mainly includes a crucible 10, a power supply terminal 20, a power supply 30, and a heat insulating member 40. The crucible 10 is filled with a Pb raw material 13.

ルツボ10は、図2Bおよび図2Cに示すように、底面部11a(図2Bにおいてピッチが相対的に狭い斜線模様を付している)および側面部11b(図2Bにおいてピッチが相対的に広い斜線模様を付している)から構成される円筒形状の容器部11と、容器部11の側面部11bから外側に張り出す一対の取手部(張り出し部)12と、を含む形状である。容器部11の高さHは15mm〜25mm程度であり、直径Lは30mm〜60mm程度である。また、底面部11aの厚みd1は、側面部11bの厚みd2みよりも厚く、取手部12の厚みd3よりも薄い(d2<d1<d3)。たとえば、側面部11bの厚みd2は底面部11aの厚みd1の1/2以下であり、取手部12の厚みd3は底面部11aの厚みd1の4/3以上である。なお、ルツボ10は、電力供給されることにより発熱する部材、たとえばカーボン(C)や炭化ケイ素(SiC)等により構成される。   As shown in FIGS. 2B and 2C, the crucible 10 has a bottom surface portion 11a (having a diagonal pattern with a relatively narrow pitch in FIG. 2B) and a side surface portion 11b (an oblique line with a relatively wide pitch in FIG. 2B). The shape includes a cylindrical container portion 11 configured with a pattern) and a pair of handle portions (projecting portions) 12 projecting outward from the side surface portion 11 b of the container portion 11. The height H of the container part 11 is about 15 mm to 25 mm, and the diameter L is about 30 mm to 60 mm. Further, the thickness d1 of the bottom surface portion 11a is thicker than the thickness d2 of the side surface portion 11b and is thinner than the thickness d3 of the handle portion 12 (d2 <d1 <d3). For example, the thickness d2 of the side surface portion 11b is ½ or less of the thickness d1 of the bottom surface portion 11a, and the thickness d3 of the handle portion 12 is 4/3 or more of the thickness d1 of the bottom surface portion 11a. The crucible 10 is composed of a member that generates heat when supplied with power, such as carbon (C) or silicon carbide (SiC).

このような構成を有するルツボ10は、図2Aに示すように、その容器部11の主要部分が断熱部材40によって取り囲まれるように配置される。また、ルツボ10は、その取手部12と電気的に接続する電源端子20を介して、電源30から電力供給される。ルツボ10の取手部12と電源端子20とは、ネジやバネ等、適当な手段を介して接続される。   As shown in FIG. 2A, the crucible 10 having such a configuration is arranged such that the main part of the container part 11 is surrounded by the heat insulating member 40. The crucible 10 is supplied with power from a power source 30 via a power terminal 20 that is electrically connected to the handle 12. The handle portion 12 of the crucible 10 and the power supply terminal 20 are connected via an appropriate means such as a screw or a spring.

なお、ルツボ10の下面に配置され、ルツボ10の温度を検出する熱電対31、および、熱電対31が検出したルツボ10の温度に基づいて、電源30による供給電力(出力電圧等)を制御する制御装置32を設けてもかまわない。電源30,熱電対31および制御装置32は、ルツボ10の温度を一定の温度に保持することができるフィードバックシステムを構成する。   The thermocouple 31 that is disposed on the lower surface of the crucible 10 and detects the temperature of the crucible 10, and the power supplied by the power source 30 (such as output voltage) is controlled based on the temperature of the crucible 10 detected by the thermocouple 31. A control device 32 may be provided. The power supply 30, the thermocouple 31, and the control device 32 constitute a feedback system that can maintain the temperature of the crucible 10 at a constant temperature.

ルツボ10に電力が供給されると、つまり一方の取手部12から容器部11(底面部11aおよび側面部11b)を通って他方の取手部12に電流が流れると、ルツボ10は発熱する。電力供給された際の底面部11a,側面部11bおよび取手部12の温度をそれぞれT1〜T3としたとき、底面部11a,側面部11bおよび取手部12の厚み関係(d2<d1<d3)、つまり抵抗率の関係から、それらの温度関係はT3<T1<T2になるものとする。ルツボ10の発熱により、ルツボ10に収容されるPb原料13を予備的に加熱することができる。なお、熱電対31および制御装置32等から構成されるフィードバックシステムを設けることにより、ルツボ10の温度を一定の温度にコントロールすることができる。   When electric power is supplied to the crucible 10, that is, when current flows from the one handle portion 12 through the container portion 11 (the bottom surface portion 11a and the side surface portion 11b) to the other handle portion 12, the crucible 10 generates heat. When the temperatures of the bottom surface portion 11a, the side surface portion 11b, and the handle portion 12 when power is supplied are T1 to T3, respectively, the thickness relationship between the bottom surface portion 11a, the side surface portion 11b, and the handle portion 12 (d2 <d1 <d3), In other words, from the relationship of resistivity, the temperature relationship is T3 <T1 <T2. The Pb raw material 13 accommodated in the crucible 10 can be preliminarily heated by the heat generated by the crucible 10. In addition, the temperature of the crucible 10 can be controlled to a constant temperature by providing a feedback system including the thermocouple 31 and the control device 32.

Pb蒸発源106は、さらに、電子銃50を備える。電子銃50から出射される電子ビーム51は、電界により加速され、また、磁界により集束・偏向されて、ルツボ10内のPb原料13に照射される。電子銃50の電子出射方式は、熱電子放出型でも電界放射型であってもよい。電子ビーム51の照射により、Pb原料13を溶融・蒸発させることができる。   The Pb evaporation source 106 further includes an electron gun 50. The electron beam 51 emitted from the electron gun 50 is accelerated by an electric field, focused and deflected by a magnetic field, and irradiated to the Pb raw material 13 in the crucible 10. The electron emission method of the electron gun 50 may be a thermionic emission type or a field emission type. By irradiation with the electron beam 51, the Pb raw material 13 can be melted and evaporated.

図3は、PZT膜の成膜工程を示すフローチャートである。以下、図1に示されるADRIP装置100の構成、および、図2に示されるPb蒸発源106の構成を参照しながら、PZT膜の成膜工程について説明する。   FIG. 3 is a flowchart showing the film forming process of the PZT film. The PZT film forming process will be described below with reference to the configuration of the ADRIP apparatus 100 shown in FIG. 1 and the configuration of the Pb evaporation source 106 shown in FIG.

まず、基板105を基板ホルダ104に配設する前に、反応チャンバ101内を、たとえば1x10−4Pa以上の高真空に排気する(工程S101)。このとき、基板105はサブチャンバ120内に収容されており、サブチャンバ120内も反応チャンバ101内と同程度の真空度に排気される。 First, before disposing the substrate 105 on the substrate holder 104, the inside of the reaction chamber 101 is evacuated to a high vacuum of, for example, 1 × 10 −4 Pa or more (step S101). At this time, the substrate 105 is accommodated in the sub-chamber 120, and the sub-chamber 120 is also evacuated to the same degree of vacuum as in the reaction chamber 101.

次に、基板105をサブチャンバ120から反応チャンバ101に移動し、反応チャンバ101内の基板ホルダ104に配設する(工程S102)。続けて、輻射加熱方式のヒータ103により基板105の温度が500℃になるように加熱する(工程S102)。   Next, the substrate 105 is moved from the sub-chamber 120 to the reaction chamber 101 and disposed on the substrate holder 104 in the reaction chamber 101 (step S102). Subsequently, the substrate 105 is heated by the radiant heating type heater 103 so that the temperature of the substrate 105 becomes 500 ° C. (step S102).

基板105の温度が約500℃に達した後、プラズマガン118にArガスを1sccm〜100sccm、Heガスを5sccm〜300sccm導入し、プラズマガン110の陰極と陽極との間に直流電圧を印加してアーク放電プラズマ118を発生させる。そして、磁場発生コイルにより発生する磁場・放電ガスの圧力勾配によってチャンバ101内にプラズマ118を導入する(工程S103)。続けて、反応ガス供給機構109から酸素ガスを50sccm〜400sccm導入して高密度の酸素プラズマ及び酸素の活性種を生成する(工程S104)。   After the temperature of the substrate 105 reaches about 500 ° C., Ar gas is introduced into the plasma gun 118 at 1 sccm to 100 sccm and He gas is introduced at 5 sccm to 300 sccm, and a DC voltage is applied between the cathode and the anode of the plasma gun 110. An arc discharge plasma 118 is generated. Then, the plasma 118 is introduced into the chamber 101 by the pressure gradient of the magnetic field / discharge gas generated by the magnetic field generating coil (step S103). Subsequently, 50 sccm to 400 sccm of oxygen gas is introduced from the reaction gas supply mechanism 109 to generate high-density oxygen plasma and oxygen active species (step S104).

その後、各種蒸発源106,107,108からそれぞれPb、Zr、Ti原料を蒸発させる(工程S105,工程S106)。特に、Pb原料蒸発工程S106においては、電源30によりルツボ10に電力供給して、少なくとも側面部11bを底面部11aよりも高温に加熱しつつ、Pb原料13に電子ビーム51を照射してPb原料13を蒸発させる(図2参照)。このとき、熱電対31および制御装置32等から構成されるフィードバックシステムにより、ルツボ10の温度が一定の温度になるようにコントロールする。   Thereafter, Pb, Zr, and Ti raw materials are evaporated from the various evaporation sources 106, 107, and 108, respectively (step S105, step S106). In particular, in the Pb raw material evaporation step S106, power is supplied to the crucible 10 by the power source 30, and the Pb raw material 13 is irradiated with the electron beam 51 while heating at least the side surface portion 11b to a temperature higher than the bottom surface portion 11a. 13 is evaporated (see FIG. 2). At this time, the temperature of the crucible 10 is controlled to be a constant temperature by a feedback system including the thermocouple 31 and the control device 32.

なお、各種蒸発原料の蒸発量は、Pbの蒸発量がZrおよびTiの蒸発量の合計に対して10倍までの範囲になるように、かつ、ZrおよびTiの蒸発量がほぼ同等になるように制御することが好ましい。各種蒸発原料の蒸発量は、各種原料に照射する電子ビームの強度を調整することにより制御することができ、また、水晶振動子式膜厚センサなどを用いることにより検出・監視することができる。   The evaporation amounts of various evaporation materials are such that the evaporation amount of Pb is up to 10 times the total evaporation amount of Zr and Ti, and the evaporation amounts of Zr and Ti are substantially equal. It is preferable to control. The amount of evaporation of the various evaporation materials can be controlled by adjusting the intensity of the electron beam applied to the various materials, and can be detected and monitored by using a crystal oscillator type film thickness sensor or the like.

蒸発源106,107,108から蒸発した各種原料蒸気は、プラズマ118を通過する際に活性化されて、基板105に到達する。反応ガス供給機構109から酸素ガスが導入されることによって、高密度の酸素プラズマ及び酸素の活性種が生成され、基板105近傍で各種原料蒸気と反応してPZT膜105aを形成する。これにより、基板ホルダ104に保持される基板105表面に、ペロブスカイト型結晶構造を有するPZT膜105aが成膜される。   Various raw material vapors evaporated from the evaporation sources 106, 107 and 108 are activated when passing through the plasma 118 and reach the substrate 105. By introducing oxygen gas from the reactive gas supply mechanism 109, high-density oxygen plasma and active species of oxygen are generated and react with various raw material vapors in the vicinity of the substrate 105 to form a PZT film 105a. As a result, a PZT film 105 a having a perovskite crystal structure is formed on the surface of the substrate 105 held by the substrate holder 104.

本願発明者の検討によれば、Pb原料は、Zr原料およびTi原料に比べて突沸が生じやすいことがわかっている。Pb原料13が突沸により飛散すると、Pb原料13の飛沫が基板105に付着してしまう。このような突沸は、Pb原料蒸発工程S106において、ルツボ10の側面が比較的低温の場合に、蒸発されたPb原料13の蒸気がルツボ10の側面で析出して固形物となり、この固形物がルツボ10内の材料に落ちることで発生することが一つの原因と考えられる。   According to the study of the present inventor, it is known that the Pb raw material is more likely to cause bumping compared to the Zr raw material and the Ti raw material. When the Pb raw material 13 scatters due to bumping, the splash of the Pb raw material 13 adheres to the substrate 105. Such bumping occurs when, in the Pb raw material evaporation step S106, when the side surface of the crucible 10 is at a relatively low temperature, the vapor of the evaporated Pb raw material 13 is deposited on the side surface of the crucible 10 to form a solid. One cause is considered to be caused by falling on the material in the crucible 10.

ルツボ10の側面部11bが高温、具体的にはPbが溶融する温度よりも高い温度である場合、ルツボ10の側面部11bで固形物が析出することを防止し、仮に析出が生じたとしても付着したPb固形物は、再溶融されて側面部11bから再蒸発するためルツボ内に落ち込むこと、如いては突沸を防止するものと考えられる。このため、ルツボ10の側面部11bに付着した後に基板105に付着するPb飛沫が低減するものと考えられる。また、このことによって、基板105に付着する総合的なPb飛沫量が低減し、成膜されるPZT膜105aのPbパーティクル密度も低減するものと考えられる。   When the side surface portion 11b of the crucible 10 is at a high temperature, specifically, a temperature higher than the temperature at which Pb is melted, the solid material is prevented from being deposited on the side surface portion 11b of the crucible 10, and even if precipitation occurs. The adhering Pb solid matter is considered to prevent the bumping by falling into the crucible because it is remelted and re-evaporates from the side surface portion 11b. For this reason, it is thought that the Pb splash adhering to the board | substrate 105 after adhering to the side part 11b of the crucible 10 reduces. Further, it is considered that this reduces the total amount of Pb droplets adhering to the substrate 105 and also reduces the Pb particle density of the PZT film 105a to be formed.

さらに、Pb原料蒸発工程S106では、ルツボ10の側面部11bのみならず底面部11aをも発熱させて、Pb原料13を全体的に加熱しつつ、Pb原料13に電子ビームを照射する。突沸の原因としてはPb原料13に溶け込んでいたガスによるものも考えられるが、これにより、Pb原料13の急激な温度変化ないし著しい温度分布が緩和され、Pb原料13の突沸が抑制される。Pb原料13の突沸が抑制されることにより、融液化したPb原料13の飛散量が低減し、PZT膜105aにおけるPbパーティクル密度はさらに低減するものと考えられる。なお、ルツボ10の取手部12は、これと接続する電源端子20の熱疲労・熱劣化を抑制する観点から、極力低い温度であることが好ましい。   Further, in the Pb raw material evaporation step S106, not only the side surface portion 11b of the crucible 10 but also the bottom surface portion 11a is heated to irradiate the Pb raw material 13 with an electron beam while heating the Pb raw material 13 as a whole. The cause of bumping may be due to the gas dissolved in the Pb raw material 13, but by this, a sudden temperature change or a significant temperature distribution of the Pb raw material 13 is relaxed, and the bumping of the Pb raw material 13 is suppressed. By suppressing the bumping of the Pb raw material 13, it is considered that the amount of the scattered Pb raw material 13 is reduced, and the Pb particle density in the PZT film 105a is further reduced. In addition, it is preferable that the handle part 12 of the crucible 10 is as low as possible from the viewpoint of suppressing thermal fatigue and thermal deterioration of the power supply terminal 20 connected thereto.

以上、本発明を実施するための形態について説明したが、本発明はこれらに制限されるものではない。たとえば、基板表面に形成する薄膜は、PZT膜に限らず、Pbを含む化合物薄膜であればよいであろう。また、薄膜の形成方法は、ADRIP法に限らず、真空蒸着法やイオンプレーティング法など、Pb原料を溶融・蒸発させて成膜する方法であればよいであろう。その他、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not restrict | limited to these. For example, the thin film formed on the substrate surface is not limited to the PZT film, but may be a compound thin film containing Pb. The thin film forming method is not limited to the ADRIP method, and any method may be used as long as it is a method of melting and evaporating the Pb raw material, such as a vacuum evaporation method or an ion plating method. It will be apparent to those skilled in the art that other various modifications, improvements, combinations, and the like can be made.

10…ルツボ、11…容器部、11a…底面部、11b…側面部、12…取手部、13…鉛原料、20…電源端子、30…電源、40…断熱部材、50…電子銃、51…電子ビーム、100…ADRIP装置、101…反応チャンバ(メインチャンバ)、102…回転軸、103…ヒータ、104…基板ホルダ、105…基板、105a…薄膜(PZT膜)、106〜108…蒸発源、109…反応ガス供給機構、110…プラズマガン、118…プラズマ、120…サブチャンバ、130…真空排気装置。 DESCRIPTION OF SYMBOLS 10 ... Crucible, 11 ... Container part, 11a ... Bottom part, 11b ... Side part, 12 ... Handle part, 13 ... Lead raw material, 20 ... Power supply terminal, 30 ... Power supply, 40 ... Thermal insulation member, 50 ... Electron gun, 51 ... Electron beam, 100 ... ADRIP apparatus, 101 ... Reaction chamber (main chamber), 102 ... Rotating shaft, 103 ... Heater, 104 ... Substrate holder, 105 ... Substrate, 105a ... Thin film (PZT film), 106-108 ... Evaporation source, 109 ... reactive gas supply mechanism, 110 ... plasma gun, 118 ... plasma, 120 ... subchamber, 130 ... evacuation apparatus.

Claims (7)

チャンバと、該チャンバ内に配置され、鉛を含む複数種類の蒸発原料を具備する複数の蒸発源と、該チャンバ内であって該複数の蒸発源の上方に配置され、基板を保持することができる基板ホルダと、を備える蒸着装置を用いた鉛化合物薄膜の製造方法であって、
a)前記複数の蒸発源のうちの1つの蒸発源として、
電力供給されることにより発熱する部材により構成され、容器状の形状を有し、電力供給された際に側面部が底面部よりも高温になるルツボ、
前記ルツボに収容される鉛原料、
前記ルツボに収容される前記鉛原料に電子ビームを照射する電子銃、および、
前記ルツボに電力供給する電源、
を含む鉛蒸発源を準備する工程と、
b)前記基板ホルダに基板を配設する工程と、
c)前記鉛蒸発源のルツボに電力供給して該ルツボの側面部を底面部よりも高温に加熱しつつ、該鉛蒸発源の鉛原料に電子ビームを照射して該鉛原料を蒸発させるとともに、該鉛蒸発源を除く前記複数の蒸発源からも複数種類の蒸発原料を蒸発させて、前記基板表面に鉛化合物薄膜を蒸着する工程と、
を有する鉛化合物薄膜の製造方法。
A chamber, a plurality of evaporation sources provided in the chamber and including a plurality of types of evaporation materials containing lead, and disposed in the chamber and above the plurality of evaporation sources to hold a substrate. A substrate holder, and a method for producing a lead compound thin film using a vapor deposition apparatus comprising:
a) As one of the plurality of evaporation sources,
A crucible composed of a member that generates heat when power is supplied, has a container-like shape, and when the power is supplied, the side surface portion has a higher temperature than the bottom surface portion,
Lead raw material contained in the crucible,
An electron gun that irradiates the lead raw material contained in the crucible with an electron beam; and
A power supply for powering the crucible,
Preparing a lead evaporation source comprising:
b) disposing a substrate on the substrate holder;
c) While supplying electric power to the crucible of the lead evaporation source and heating the side surface of the crucible to a temperature higher than that of the bottom surface, the lead material of the lead evaporation source is irradiated with an electron beam to evaporate the lead material. Evaporating a plurality of types of evaporation materials from the plurality of evaporation sources excluding the lead evaporation source, and depositing a lead compound thin film on the substrate surface;
A method for producing a lead compound thin film comprising:
前記ルツボは、上面が開放された円筒形状を有し、側面部の厚みが底面部の厚みの半分以下であり、高さが15mm〜25mmであり、直径が30mm〜60mmである請求項1記載の鉛化合物薄膜の製造方法。   The crucible has a cylindrical shape with an open top surface, a thickness of a side surface portion is less than half of a thickness of a bottom surface portion, a height of 15 mm to 25 mm, and a diameter of 30 mm to 60 mm. Manufacturing method of lead compound thin film. 前記ルツボは、さらに、側面部の外側に結合し、前記底面部の厚みよりも厚い一対の張り出し部を含み、
前記電源は、前記ルツボの一対の張り出し部に電気的に接続する請求項2記載の鉛化合物薄膜の製造方法。
The crucible further includes a pair of overhanging portions that are coupled to the outside of the side surface portion and are thicker than the thickness of the bottom surface portion,
The method for producing a lead compound thin film according to claim 2, wherein the power source is electrically connected to a pair of overhang portions of the crucible.
前記工程c)において、前記ルツボの側面部の温度は、前記鉛原料が溶融する温度よりも高い請求項1〜3いずれか1項記載の鉛化合物薄膜の製造方法。   The method for producing a lead compound thin film according to any one of claims 1 to 3, wherein, in the step c), a temperature of a side surface portion of the crucible is higher than a temperature at which the lead raw material melts. 前記複数の蒸発源は、前記鉛蒸発源のほかに、ジルコニウム原料を備えるジルコニウム蒸発源およびチタン原料を備えるチタン蒸発源を含み、前記鉛化合物薄膜は、PZT膜である請求項1〜4いずれか1項記載の鉛化合物薄膜の製造方法。   The plurality of evaporation sources include, in addition to the lead evaporation source, a zirconium evaporation source including a zirconium raw material and a titanium evaporation source including a titanium raw material, and the lead compound thin film is a PZT film. A method for producing a lead compound thin film according to item 1. 電力供給されることにより発熱する部材により構成され、容器部および該容器部の外側に張り出す取手部を含む形状を有し、該取手部から電力供給されることにより、該容器部の側面が底面よりも高温になるルツボ。   It is composed of a member that generates heat when supplied with electric power, and has a shape including a container part and a handle part projecting outside the container part, and by supplying electric power from the handle part, the side surface of the container part is A crucible that is hotter than the bottom. 前記容器部は、上面が開放された円筒形状を有し、側面の厚みが底面の厚みの半分以下であり、高さが15mm〜25mmであり、直径が30mm〜60mmである請求項6記載のルツボ。   The container portion has a cylindrical shape with an open top surface, a thickness of a side surface is half or less of a thickness of a bottom surface, a height of 15 mm to 25 mm, and a diameter of 30 mm to 60 mm. Crucible.
JP2013252805A 2013-12-06 2013-12-06 Method for producing lead compound thin film Active JP6265721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252805A JP6265721B2 (en) 2013-12-06 2013-12-06 Method for producing lead compound thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252805A JP6265721B2 (en) 2013-12-06 2013-12-06 Method for producing lead compound thin film

Publications (2)

Publication Number Publication Date
JP2015110812A true JP2015110812A (en) 2015-06-18
JP6265721B2 JP6265721B2 (en) 2018-01-24

Family

ID=53525844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252805A Active JP6265721B2 (en) 2013-12-06 2013-12-06 Method for producing lead compound thin film

Country Status (1)

Country Link
JP (1) JP6265721B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219071A (en) * 1990-01-23 1991-09-26 Fujitsu Ltd Vapor-deposition boat and vapor-deposition device using the boat
JP2008075168A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Crucible for vapor deposition
JP2011204776A (en) * 2010-03-24 2011-10-13 Stanley Electric Co Ltd Method of manufacturing piezoelectric element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219071A (en) * 1990-01-23 1991-09-26 Fujitsu Ltd Vapor-deposition boat and vapor-deposition device using the boat
JP2008075168A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Crucible for vapor deposition
JP2011204776A (en) * 2010-03-24 2011-10-13 Stanley Electric Co Ltd Method of manufacturing piezoelectric element

Also Published As

Publication number Publication date
JP6265721B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
TWI396758B (en) Vacuum evaporation method and device for organic material
JP2007063664A (en) Organic vapor deposition source and method for controlling heat source thereof
JP3929397B2 (en) Method and apparatus for manufacturing organic EL element
US6913675B2 (en) Film forming apparatus, substrate for forming oxide thin film, and production method thereof
JP6265721B2 (en) Method for producing lead compound thin film
JP2011122199A (en) Apparatus for vapor deposition
JP5789992B2 (en) Hearth liner with lid and deposition method using hearth liner with lid
JP4086786B2 (en) Hybrid EB cell and deposition material evaporation method using the same
JP5653052B2 (en) Deposition equipment
KR20140131916A (en) Method for depositing a lipon layer on a substrate
TW201718917A (en) Vapor deposition device and method employing plasma as an indirect heating medium
JP2005307354A (en) Method and device for producing organic el element
JP2009287087A (en) Vacuum film deposition apparatus
JP2008144192A (en) Vacuum vapor-deposition apparatus and method for controlling the same
JP2015098631A (en) Manufacturing method for lead-compound thin film
JP2017020056A (en) Alloy nitride film formation device and alloy nitride film formation method
JP3698680B2 (en) Deposition method
JPH07252645A (en) Thin film forming device
JP2014034698A (en) Film deposition method and apparatus
JP4161711B2 (en) Film forming method and film forming apparatus
JPS6339668B2 (en)
JP2012241257A (en) Apparatus and method for manufacturing semiconductor device
JPH08193262A (en) Formation of alumina film
JPH06101020A (en) Forming method of thin film
JP2504426B2 (en) Method and apparatus for forming cBN thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6265721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250