JP2015105739A - Condensing mixing device and boil-off gas re-liquefying apparatus having the same - Google Patents

Condensing mixing device and boil-off gas re-liquefying apparatus having the same Download PDF

Info

Publication number
JP2015105739A
JP2015105739A JP2013249220A JP2013249220A JP2015105739A JP 2015105739 A JP2015105739 A JP 2015105739A JP 2013249220 A JP2013249220 A JP 2013249220A JP 2013249220 A JP2013249220 A JP 2013249220A JP 2015105739 A JP2015105739 A JP 2015105739A
Authority
JP
Japan
Prior art keywords
diameter
evaporative gas
stepped
flow tube
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013249220A
Other languages
Japanese (ja)
Other versions
JP2015105739A5 (en
JP5945974B2 (en
Inventor
松本 繁則
Shigenori Matsumoto
繁則 松本
林 謙年
Kanetoshi Hayashi
謙年 林
以昌 山口
Mochimasa Yamaguchi
以昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013249220A priority Critical patent/JP5945974B2/en
Publication of JP2015105739A publication Critical patent/JP2015105739A/en
Publication of JP2015105739A5 publication Critical patent/JP2015105739A5/ja
Application granted granted Critical
Publication of JP5945974B2 publication Critical patent/JP5945974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a condensing mixing device for effectively re-liquefying boil-off gas, and a boil-off gas re-liquefying apparatus having the same.SOLUTION: The condensing mixing device has: a Venturi tube-type flow tube 7 including a diameter-reduced portion 7A, a throat portion 7B and a diameter-enlarged portion 7C that are formed from an upstream side toward a downstream side; and steam holes 10-1, 10-2... that are directed to a radial direction and a downstream-side direction of the flow tube and that are formed so as to have injection openings 10A-1, 10A-2, ... in an inner diameter surface of the diameter-enlarged portion at a plurality of axial X-direction positions of the flow tube. The condensing mixing device injects steam to a liquid flowing in the flow tube, from the injection openings of the steam holes, condenses the steam and mixes the same in the liquid. In the condensing mixing device, the diameter-enlarged portion 7C has stepped portions 10B-1, 10B-2,... in a plurality of axial-direction positions, and has stepped diameter-enlarged portions 7C-1, 7C-2,... successively diametrically enlarged at the stepped portions and extending toward the downstream side, and the injection openings 10A-1, 10A-2,... of the steam hole 10-1, 10-2,... are provided at an upstream-side position in a region of the stepped diameter-enlarged portion.

Description

本発明は、蒸気と低温液体を接触させ蒸気を凝縮し液化して低温液体に混合する凝縮混合装置及びこれを有する蒸発ガス再液化装置に関する。   The present invention relates to a condensing and mixing apparatus for bringing vapor into contact with a low-temperature liquid, condensing and liquefying the vapor, and mixing it into a low-temperature liquid, and an evaporative gas reliquefaction apparatus having the same.

液化天然ガス(LNG)をはじめとする低温液体をタンクで貯蔵する場合、外部からのタンクへの入熱によりタンク内の低温液体の一部が蒸発し、タンク内には蒸発ガスが発生する。低温液体がLNGの場合には、メタンを主成分とする蒸発ガスが発生する。   When low temperature liquid such as liquefied natural gas (LNG) is stored in a tank, a part of the low temperature liquid in the tank evaporates due to heat input to the tank from the outside, and evaporated gas is generated in the tank. When the low-temperature liquid is LNG, an evaporating gas mainly composed of methane is generated.

発生した蒸発ガスは、そのまま圧縮して都市ガスとして需要側へ供給することも可能であるが、圧縮動力が非常に大きくなる。そこで、かかる動力を削減するために、蒸発ガスを再液化して液の状態で昇圧した後に再びガス化して都市ガスとして供給することが考えられる。再液化するには、蒸発ガスを圧縮し、そして冷却する工程を経ることになるが、その冷却方法として、タンクからの低温液体としての払出LNGの冷熱で蒸発ガスを冷却する、つまり圧縮された蒸発ガスをLNGとの間で熱交換して冷却する方法が、特許文献1,2に開示されている。   The generated evaporative gas can be compressed as it is and supplied to the demand side as city gas, but the compression power becomes very large. Therefore, in order to reduce such power, it can be considered that the evaporated gas is re-liquefied and pressurized in a liquid state and then gasified again to be supplied as city gas. In order to reliquefy, evaporative gas is compressed and cooled, and as a cooling method, evaporative gas is cooled by the cold heat of LNG discharged as a low temperature liquid from the tank, that is, compressed. Patent Documents 1 and 2 disclose a method of cooling evaporative gas by exchanging heat with LNG.

特許文献1では、圧縮された蒸発ガスを熱交換器でLNGと熱交換して冷却する方式(間接熱交換方式)が開示されている。しかし、熱交換器を要するこの間接熱交換方式では、熱交換のための十分な伝熱面積を確保するために大型の熱交換器が必要となり、設備が大型になりコストが嵩むという問題がある。さらには、伝熱が伝熱面を介しての間接であるため、この伝熱面での伝熱性能の改善も求められる。   Patent Document 1 discloses a method (indirect heat exchange method) in which compressed evaporative gas is cooled by heat exchange with LNG in a heat exchanger. However, in this indirect heat exchange method that requires a heat exchanger, a large heat exchanger is required to secure a sufficient heat transfer area for heat exchange, and there is a problem that the equipment becomes large and costs increase. . Furthermore, since heat transfer is indirect through the heat transfer surface, improvement in heat transfer performance on this heat transfer surface is also required.

これに対し、特許文献2では、圧縮された蒸発ガスをLNG配管内に吹き込みLNGと直接に接触させて熱交換する方式(直接接触熱交換方式)が開示され、蒸発ガスのLNG中への吹込み方法として、LNG配管内を流れる払出しLNGの流れ方向と直交する方向もしくはLNGの流れ方向に逆らう方向になるように一つの蒸発ガス供給ノズルをLNG配管内に配置する装置が開示されている。該蒸発ガス供給ノズルは、LNG配管内でL字状に屈曲されていて、LNG配管の中心線上に該ノズルの吐出口が位置していて蒸発ガスがLNGの流れと逆方向に向けてLNG中へ吐出されている。吐出された蒸発ガスは、LNGとの熱交換により冷却され、凝縮して液化しLNGと混合される。   On the other hand, Patent Document 2 discloses a method (direct contact heat exchange method) in which compressed evaporative gas is blown into an LNG pipe and directly brought into contact with LNG to exchange heat, and evaporative gas is blown into LNG. As an injection method, an apparatus is disclosed in which one evaporative gas supply nozzle is arranged in the LNG pipe so as to be in a direction orthogonal to the flow direction of the discharge LNG flowing in the LNG pipe or in a direction opposite to the flow direction of the LNG. The evaporative gas supply nozzle is bent in an L shape in the LNG pipe, and the discharge port of the nozzle is located on the center line of the LNG pipe so that the evaporative gas is directed in the direction opposite to the flow of LNG. Is discharged. The discharged evaporative gas is cooled by heat exchange with LNG, condensed, liquefied and mixed with LNG.

このような特許文献2の直接接触熱交換方式は、伝熱面を介さずに熱交換するためLNGと蒸発ガスの両者が接する界面での伝熱性能は向上する。しかし、直接接触熱交換方式では、気体である蒸発ガスと低温液体であるLNGの密度の違いから、蒸発ガスと低温液体の接触、混合が十分に行われないことに起因して液化効率が悪くなりやすい。その改善のために、気体の蒸発ガスと低温液体のLNGとを混合し蒸発ガスを凝縮させ混合する効率的な装置が要望されているが、特許文献2の方法であっても、気体の蒸発ガスと液体のLNGの接触、混合を十分に確保でき、所望の液化性能を確保できるとは言い難い。   Since the direct contact heat exchange method of Patent Document 2 exchanges heat without passing through the heat transfer surface, the heat transfer performance at the interface where both the LNG and the evaporation gas are in contact with each other is improved. However, in the direct contact heat exchange system, the liquefaction efficiency is poor due to insufficient contact and mixing of the evaporating gas and the low temperature liquid due to the difference in density between the evaporating gas as the gas and the LNG as the low temperature liquid. Prone. In order to improve the efficiency, there is a demand for an efficient apparatus that mixes gas evaporative gas and low-temperature liquid LNG to condense and mix evaporative gas. It is difficult to say that contact and mixing of gas and liquid LNG can be sufficiently ensured, and desired liquefaction performance can be ensured.

一方、直接接触熱交換方式には、特許文献2の形式以外のものとして、ベンチュリ管型の流管内を流れる低温液体に蒸気を注入して直接接触させ蒸気を凝縮し混合する凝縮混合装置が特許文献3,4に開示されている。この特許文献3,4に開示されている形式の装置にあっては、流管に対して半径方向から蒸気を注入する蒸気孔が形成されていて、蒸気は、流管内を流れる低温液体のベンチュリ現象によって蒸気孔から流管内へ吸引される。吸引された直後の蒸気は低温液体中に気泡として存在し、その後、凝縮し低温液体に混合される。   On the other hand, as a direct contact heat exchange system, a condensing and mixing device that condenses and mixes steam by injecting steam into a low-temperature liquid flowing in a venturi-type flow tube and directly contacting it is patented. It is disclosed in documents 3 and 4. In the apparatus of the type disclosed in Patent Documents 3 and 4, steam holes for injecting steam from the radial direction are formed in the flow pipe, and the steam is a venturi of a low-temperature liquid flowing in the flow pipe. It is sucked into the flow tube from the vapor hole by the phenomenon. The vapor immediately after being sucked is present as bubbles in the cryogenic liquid, and then condensed and mixed with the cryogenic liquid.

先ず、特許文献3にあっては、ベンチュリ管の喉部よりも下流側をなす拡径部に、円周方向そして液体の流れ方向の複数位置に、小口径の蒸気孔が多数、形成されている。蒸気は、それら複数の蒸気孔から分散して上記拡径部へ吸引されるので、吸引された直後の蒸気の気泡径は小さい。その結果、蒸気の凝縮は短時間で完了し、拡径部内でのウォーターハンマー作用が抑制される。   First, in Patent Document 3, a large number of small-diameter steam holes are formed in a plurality of positions in the circumferential direction and in the liquid flow direction in the enlarged diameter portion that is downstream of the throat portion of the venturi tube. Yes. Since the steam is dispersed from the plurality of steam holes and sucked into the enlarged diameter portion, the bubble diameter of the steam immediately after being sucked is small. As a result, the condensation of the steam is completed in a short time, and the water hammer action in the enlarged diameter portion is suppressed.

次に、特許文献4にあっては、ベンチュリ管の喉部の直後に段差をもって急拡径されてから等径で下流側に延び流路断面積を一定とした区間を形成し、気体流入孔は、流路を段差で急拡径させた該段差の位置に1箇所だけ設けられている。   Next, in Patent Document 4, a section having a constant channel cross-sectional area is formed by forming a section with a constant diameter and extending downstream with a step immediately after the throat portion of the venturi tube and having a stepped diameter. Is provided at one position at the step where the flow path is rapidly expanded by the step.

また、他の方式の凝縮混合装置として、特許文献5には、管内の混合室を流通する低温液体としての水に蒸発ガスとしての蒸気を注入して該蒸気を凝縮して水に混合することにより温水を生成する凝縮混合装置が開示されている。この凝縮混合装置には、混合室内で水に旋回を付与するための固定旋回羽根が設けられており、該固定旋回羽根によって水と蒸気との混合効率の向上が図られている。   As another type of condensing and mixing apparatus, Patent Document 5 discloses that vapor as evaporating gas is injected into water as low-temperature liquid flowing through a mixing chamber in a pipe, and the vapor is condensed and mixed with water. Discloses a condensing and mixing device that produces hot water. This condensing and mixing device is provided with a fixed swirl vane for imparting swirl to water in the mixing chamber, and the efficiency of mixing water and steam is improved by the fixed swirl vane.

特開昭55‐145897JP 55-145897 特開平08‐173781JP 08-173781 特開平04‐045832JP 04-045832 A 特開2013-039497JP2013-039497A 特開平7−116486JP 7-116486 A

しかしながら、特許文献3,4のような装置においても、気体の蒸発ガスを昇圧して、低温液体としてのLNGに直接接触させる場合、十分な凝縮混合性能が確保されないと、LNGに合流した蒸発ガスが完全に液化されず、液化されないままで気泡が残留した状態で液送ポンプに供給されると、液送が困難になるのみならず、液送ポンプの故障の原因にもなる。   However, even in an apparatus such as Patent Documents 3 and 4, when the pressure of gaseous evaporative gas is increased and brought into direct contact with LNG as a low-temperature liquid, if sufficient condensing and mixing performance is not ensured, evaporative gas merged with LNG If the liquid is not liquefied completely and supplied to the liquid feed pump in a state where bubbles remain without being liquefied, not only liquid feeding becomes difficult, but also the liquid feeding pump may be broken.

このように、所定量の蒸気を液体のベンチュリ現象で、さらに効率的に吸引するには、蒸気を吸引する蒸気孔の配置、ベンチュリ管内の圧力損失の低減するための最適な形状や構造など、凝縮混合装置としての最適な構造が求められることになる。また、特許文献5のような凝縮混合性能を向上させる旋回付与機構を備えた凝縮混合装置において、該凝縮混合装置内の流体は固定旋回羽根を通過するため、凝縮混合装置の圧力損失が大きくなるという問題がある。   In this way, in order to suck a predetermined amount of vapor more efficiently with the liquid venturi phenomenon, the arrangement of the vapor holes for sucking the vapor, the optimal shape and structure for reducing the pressure loss in the venturi pipe, etc. An optimum structure as a condensing and mixing apparatus is required. Further, in the condensing and mixing apparatus provided with the swirl imparting mechanism that improves the condensing and mixing performance as in Patent Document 5, the fluid in the condensing and mixing apparatus passes through the fixed swirling blades, so that the pressure loss of the condensing and mixing apparatus increases. There is a problem.

かかる事情に鑑み、本発明は、気体の蒸発ガスを昇圧して、この蒸発ガスをLNG等の低温液体に直接接触させて再液化させる際に、蒸発ガスを効果的に凝縮して低温液体へ混合する凝縮混合装置及び該装置を有して再液化を効果的に実現できる蒸発ガス再液化装置を提供することを課題とする。   In view of such circumstances, the present invention increases the pressure of gaseous evaporative gas, and when this evaporative gas is brought into direct contact with a low temperature liquid such as LNG for reliquefaction, the evaporative gas is effectively condensed to a low temperature liquid. It is an object of the present invention to provide a condensing and mixing apparatus for mixing and an evaporative gas reliquefying apparatus having the apparatus and capable of effectively realizing reliquefaction.

上述した課題は、本発明によると、次のような構成の凝縮混合装置そしてこれを有する蒸発ガス再液化装置により解決される。   According to the present invention, the above-described problems are solved by a condensing and mixing apparatus having the following configuration and an evaporative gas reliquefaction apparatus having the same.

<凝縮混合装置>
上流側から下流側へ向け漸次内径を小さくする縮径部に引き続き最小径をなす喉部を経て該喉部から漸次内径を大きくする拡径部が形成されたベンチュリ管型の流管を有し、流管外から蒸気を流管内へ注入するために、該流管の半径方向かつ下流側方向に向いた蒸気孔が流管の軸線方向の複数位置で上記拡径部の内径面に注入開口を有するように形成されていて、流管内を下流に向け流れる低温液体へ蒸気孔の注入開口から蒸気を注入して該蒸気を凝縮して低温液体に混合する凝縮混合装置において、拡径部は、軸線方向で複数位置に段部が形成されていて、該段部で順次拡径され軸線方向で下流側に向け延びる内周面をもつ段状拡径部を有し、各段状拡径部の域内での上流側位置に蒸気孔の注入開口が設けられていることを特徴とする凝縮混合装置。
<Condensation mixer>
It has a venturi-type flow tube in which a diameter-reduced portion that gradually decreases from the upstream side toward the downstream side is followed by a throat portion that has a minimum diameter, and a diameter-expanded portion that gradually increases from the throat portion. In order to inject steam from the outside of the flow tube into the flow tube, steam holes directed in the radial direction and downstream direction of the flow tube are injected into the inner diameter surface of the enlarged diameter portion at a plurality of positions in the axial direction of the flow tube. In the condensing and mixing apparatus that injects steam from the injection opening of the vapor hole into the low-temperature liquid that flows downstream in the flow tube and condenses the vapor to mix with the low-temperature liquid, the enlarged diameter portion is The stepped portion is formed at a plurality of positions in the axial direction, and has stepped diameter-enlarged portions having inner peripheral surfaces that are sequentially expanded in diameter in the stepped portion and extending downstream in the axial direction. Condensation characterized in that a steam hole injection opening is provided at an upstream position within the region Coupling devices.

かかる本発明において、段部は、該段部に対して上流側で隣接する先行の段状拡径部と下流で隣接する後続の段状拡径部との半径差が上記先行の段状拡径部の内径の12〜30%の寸法となっていることが好ましい。   In the present invention, the stepped portion has a radius difference between a preceding stepped enlarged portion adjacent upstream on the stepped portion and a succeeding stepped enlarged portion adjacent downstream on the stepped portion. The size is preferably 12 to 30% of the inner diameter of the diameter portion.

また、本発明において、段状拡径部は、該段状拡径部の半径の2.5〜8倍の区間長にわたり軸線方向に延びていることが好ましい。   In the present invention, it is preferable that the stepped enlarged portion extends in the axial direction over a section length of 2.5 to 8 times the radius of the stepped enlarged portion.

<蒸発ガス再液化装置>
貯槽内に貯留された低温液体から発生する蒸発ガスを、貯槽から払い出された低温液体に混合して凝縮させ再液化する蒸発ガス再液化装置において、既出の凝縮混合装置と、蒸発ガスを圧縮する蒸発ガス圧縮機と、貯槽から低温液体を送出する送出ポンプとを備え、該送出ポンプで低温液体を凝縮混合装置の流管へ上流側から供給し、上記蒸発ガス圧縮機で蒸発ガスを凝縮混合装置の蒸気孔から上記流管内へ注入するようになっていることを特徴とする蒸発ガス再液化装置。
<Evaporative gas reliquefaction device>
Evaporative gas generated from cryogenic liquid stored in the storage tank is mixed with the low-temperature liquid discharged from the storage tank to condense and re-liquefy. An evaporative gas compressor, and a delivery pump for delivering cryogenic liquid from the storage tank. The evaporative gas is supplied from the upstream side to the flow pipe of the condensing and mixing device by the delivery pump, and the evaporative gas is condensed by the evaporative gas compressor. An evaporative gas reliquefaction apparatus, wherein the evaporative gas reliquefaction apparatus is adapted to inject into the flow pipe from a vapor hole of a mixing apparatus.

本発明によらない場合、蒸気孔から吸引された直後の蒸気は、低温液体との接触時間、接触面積が小さいため凝縮できず、液体中に気泡として存在してしまうが、本発明による凝縮混合装置そして蒸発ガス再液化装置では、蒸気孔を上記段状拡径部の域内での上流側位置に、すなわち、蒸気孔をベンチュリ管の拡径部の段部で急拡大した直後に位置するようにしたので、上記段部にて急拡大した直後の空間を、低温液体中に混じって蒸気の気泡が流れる十分な大きさの空間として確保でき、この空間において蒸気と低温液体との接触時間を十分に確保することができ、蒸気を低温液体により冷却し凝縮させ混合させることができる。さらに、段状拡径部の空間内で流管中の低温液体の流れにあまり影響を受けずに効率良く蒸気がベンチュリ現象で良好に吸引される。   If not according to the present invention, the vapor immediately after being sucked from the vapor hole cannot be condensed because the contact time and the contact area with the low-temperature liquid are small, and may exist as bubbles in the liquid. In the apparatus and the evaporative gas reliquefaction apparatus, the vapor hole is located at the upstream position in the region of the stepped enlarged diameter portion, that is, immediately after the vapor hole is suddenly enlarged at the stepped portion of the enlarged portion of the venturi pipe. Therefore, the space immediately after the sudden expansion at the stepped portion can be secured as a sufficiently large space for the vapor bubbles to mix with the cryogenic liquid, and the contact time between the vapor and the cryogenic liquid can be secured in this space. It can be ensured sufficiently, and the vapor can be cooled and condensed by the cryogenic liquid and mixed. Further, the vapor is efficiently sucked by the venturi phenomenon efficiently without being affected by the flow of the low-temperature liquid in the flow tube in the space of the stepped enlarged diameter portion.

また、本発明では、段状拡径部を複数設け、それぞれの段状拡径部に蒸気孔を形成させるので、蒸気孔は小口径で多数、円周方向ならびに液体の流れ方向に分散配置されているようにすることができるので、蒸気の気泡径が小さくなり、蒸気の凝縮と低温液体との混合が促進され、ウォーターハンマー作用は抑制される。   Further, in the present invention, a plurality of step-shaped enlarged diameter portions are provided, and vapor holes are formed in each step-shaped enlarged diameter portion. Therefore, a large number of vapor holes are dispersed in a circumferential direction and a liquid flow direction. Therefore, the bubble diameter of the vapor is reduced, the condensation of the vapor and the mixing with the low temperature liquid are promoted, and the water hammer action is suppressed.

本発明は、以上のように、凝縮混合装置の流管に段状拡径部を複数設けて順次拡径させると共に蒸気孔の注入開口を各段状拡径部の域内で上流側に位置させたので、先行する段状拡径部に対して拡径した部分の空間で、蒸発ガスを低温液体中へ確実に導入して凝縮させ混合する構成としたので、蒸発ガスを低温液体中に効果的に再液化させることができ、ポンプに蒸発ガスが気体のまま流入してポンプに障害が発生するのを防止できる。また、このような構成の凝縮混合装置を有する蒸発ガス再液化装置では、蒸発ガスの再液化が効率よく短時間で完了すると共に、その結果、装置構成がコンパクトにできる。   As described above, according to the present invention, a plurality of stepped diameter enlarged portions are provided in the flow tube of the condensing and mixing apparatus to sequentially increase the diameter, and the injection opening of the steam hole is positioned upstream in the region of each stepped enlarged diameter portion. Therefore, the evaporative gas is effectively introduced into the cryogenic liquid, mixed in the cryogenic liquid in the space where the diameter has been expanded relative to the preceding stepped enlarged portion, so that the evaporating gas is effective in the cryogenic liquid. Therefore, it is possible to prevent the pump from being damaged due to the evaporating gas flowing into the pump as a gas. Moreover, in the evaporative gas reliquefaction apparatus having the condensing and mixing apparatus having such a configuration, the reliquefaction of the evaporative gas can be completed efficiently in a short time, and as a result, the apparatus configuration can be made compact.

本発明の一実施形態装置の蒸発ガス再液化装置の概要構成図である。It is a schematic block diagram of the evaporative gas reliquefaction apparatus of one Embodiment apparatus of this invention. 図1装置に用いられる凝縮混合装置の断面図であり、(A)は装置全体、(B)は(A)の一部についての拡大断面図である。It is sectional drawing of the condensation mixing apparatus used for FIG. 1 apparatus, (A) is the whole apparatus, (B) is an expanded sectional view about a part of (A). 図2装置についての段状拡径部を設けることによる効率向上率に関する実験結果を示すグラフであり、(A)は段差寸法比、(B)は区間長寸法比についての効率向上率を示している。2 is a graph showing the experimental results regarding the efficiency improvement rate by providing a stepped diameter-enlarged portion for the device, (A) shows the step size ratio, (B) shows the efficiency improvement rate for the section length dimension ratio. Yes.

以下、添付図面にもとづき、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態としての凝縮混合装置を備えた蒸発ガス再液化装置の概要構成図である。   FIG. 1 is a schematic configuration diagram of an evaporative gas reliquefaction apparatus including a condensing and mixing apparatus as an embodiment of the present invention.

図1において、符号1は本実施形態の蒸発ガス再液化装置であり、後に図2に詳細に示される構造の凝縮混合装置2を有していて該凝縮混合装置2の入口側(図にて左側)には、該凝縮混合装置2へ低温液体11を送出する送出ポンプ3そして蒸発ガス12を注入する蒸発ガス圧縮機4が接続されている。   In FIG. 1, reference numeral 1 denotes an evaporative gas reliquefaction device according to the present embodiment, which has a condensing and mixing device 2 having a structure shown in detail in FIG. Connected to the left side) are a delivery pump 3 for delivering the cryogenic liquid 11 to the condensing and mixing device 2 and an evaporative gas compressor 4 for injecting the evaporative gas 12.

低温液体11は、例えば、タンク(図示せず)内に貯蔵されている液化天然ガス(LNG)の一部であり、また、蒸発ガス12は、例えば、上記タンク内の液化天然ガスの一部が蒸発して発生したボイルオフガス(BOG)である。   The cryogenic liquid 11 is, for example, a part of liquefied natural gas (LNG) stored in a tank (not shown), and the evaporative gas 12 is, for example, a part of liquefied natural gas in the tank. Is a boil-off gas (BOG) generated by evaporation.

図1に見られるように、低温液体11は送出ポンプ3により送出されて上記凝縮混合装置2へ流入する。この凝縮混合装置2内を流れる上記低温液体11へ、蒸発ガス圧縮機4で圧縮された蒸発ガス12が注入される。   As seen in FIG. 1, the cryogenic liquid 11 is delivered by the delivery pump 3 and flows into the condensation and mixing device 2. The evaporative gas 12 compressed by the evaporative gas compressor 4 is injected into the low-temperature liquid 11 flowing in the condensing and mixing apparatus 2.

上記凝縮混合装置2の出口側には、昇圧ポンプ5が接続されていて、低温液体11中への注入後に凝縮して該低温液体11に混合された蒸発ガス12を液化状態で含んで凝縮混合装置2から排出された混合低温液体11Aを昇圧する。昇圧された混合低温液体11Aは、例えば、該低温液体が液化天然ガスならば、気化器へもたらされ再びガス化されてから都市ガスとして需要側に送出される。   A booster pump 5 is connected to the outlet side of the condensing and mixing device 2 and condenses and mixes evaporative gas 12 condensed after being injected into the low temperature liquid 11 and mixed with the low temperature liquid 11 in a liquefied state. The mixed cryogenic liquid 11A discharged from the apparatus 2 is pressurized. For example, if the low-temperature liquid is liquefied natural gas, the mixed low-temperature liquid 11A whose pressure has been increased is brought to the vaporizer, gasified again, and then sent to the demand side as city gas.

凝縮混合装置2は、図2(A)に示されているように、横型筒状のケーシング6内に、ベンチュリ管型の流管7が収められており、ケーシング6と流管7の間には、ステンレススチールなどの繊維状金属細線の織物あるいは編物から成る挿填物8が挿填されている。   As shown in FIG. 2A, the condensing and mixing apparatus 2 includes a horizontal tube-shaped casing 6 in which a venturi-type flow tube 7 is housed, and between the casing 6 and the flow tube 7. Is inserted with an insert 8 made of a woven or knitted fiber metal fine wire such as stainless steel.

ケーシング6は、低温液体11の流れ方向における上流側に入口部6Aと、下流側に出口部6Bと、それらの中間位置で流管7が収容配置される流管収容部6Cとを有しており、入口部6Aと出口部6Bは内径が等しく、流管収容部6Cにて内径が増大されている。入口部6A、出口部6Bそして流管収容部6Cの中心となる軸線Xは同一の直線上に位置している。上記流管収容部6Cは、その内径が上記流管7の外径よりも大きく、該流管7の周囲に空間を形成し、この空間に分散して上記挿填物8が挿填されている。さらに、上記流管収容部6Cの上部上流側位置には、上方に開口する蒸発ガス注入部6Dが開口形成されていて、蒸発ガス圧縮機4から圧送されてくる蒸発ガス12を該蒸発ガス注入部6Dで受け入れるようになっている。   The casing 6 has an inlet portion 6A on the upstream side in the flow direction of the cryogenic liquid 11, an outlet portion 6B on the downstream side, and a flow tube housing portion 6C in which the flow tube 7 is housed and disposed at an intermediate position therebetween. The inlet portion 6A and the outlet portion 6B have the same inner diameter, and the inner diameter is increased in the flow tube housing portion 6C. The axis X that is the center of the inlet portion 6A, the outlet portion 6B, and the flow tube accommodating portion 6C is located on the same straight line. The flow tube accommodating portion 6C has an inner diameter larger than the outer diameter of the flow tube 7, forms a space around the flow tube 7, is dispersed in this space, and the insert 8 is inserted therein. Yes. Further, an evaporative gas injection part 6D that opens upward is formed at the upper upstream side position of the flow tube accommodating part 6C, and the evaporative gas 12 pumped from the evaporative gas compressor 4 is injected into the evaporative gas. Part 6D accepts it.

ベンチュリ管型の流管7は、軸線X方向の両側に半径外方に突出する取付フランジ9A,9Bを有していて、該取付フランジ9A,9Bで、上記ケーシング6の流管収容部6C内に、流管7、ケーシング6の入口部6Aそして出口部6Bの軸線Xが一致して一つの直線上に位置するように取り付けられている。   The venturi-type flow tube 7 has mounting flanges 9A and 9B projecting radially outward on both sides in the direction of the axis X, and the mounting flanges 9A and 9B are provided in the flow tube housing portion 6C of the casing 6. In addition, the flow tube 7, the inlet 6A of the casing 6 and the axis X of the outlet 6B are attached so that they are aligned and located on one straight line.

上記流管7の内部は、ケーシング6の入口部6A側に位置する縮径部7A、該縮径部7Aの直後に位置する喉部7B、そして該喉部7Bから出口部6Bに向け延びる拡径部7Cを順次形成している。上記縮径部7Aは曲面をもって比較的急激に内径が小さくなって流路断面積を絞り込んでおり、拡径部7Cは軸線X方向で長い距離にわたり内径を回復するように拡径している。喉部7Bは縮径部7Aと拡径部7Cとを低温液体の流れに対して低抵抗となるように円滑な曲線で結んでおり、最小の流路断面積となるように最小径に形成されている。   The inside of the flow tube 7 has a reduced diameter portion 7A positioned on the inlet 6A side of the casing 6, a throat portion 7B positioned immediately after the reduced diameter portion 7A, and an expansion extending from the throat portion 7B toward the outlet portion 6B. The diameter portion 7C is sequentially formed. The diameter-reduced portion 7A has a curved surface and the inner diameter is relatively abruptly reduced to narrow the cross-sectional area of the flow path, and the diameter-expanded portion 7C is expanded so as to recover the inner diameter over a long distance in the axis X direction. The throat portion 7B connects the reduced diameter portion 7A and the enlarged diameter portion 7C with a smooth curve so as to be low resistance to the flow of the low-temperature liquid, and is formed to have a minimum diameter so as to have a minimum flow path cross-sectional area. Has been.

上記拡径部7Cは、軸線X方向にて喉部7Bの直後の位置から右方のフランジ部9Bの位置までの範囲が区分されて複数の段状拡径部7C‐1,7C‐2,…,7C‐Nとして形成されている。各段状拡径部7C‐1,7C‐2,…,7C‐Nは円筒状内周面を有して同じ段状拡径部内では内径は変わらずに均一となっているが、最初の段状拡径部7C‐1に対し次の段状拡径部7C‐2、さらに次の段状拡径部7C‐3がそれぞれ上流側位置に形成された段部10B‐1,10B‐2,…でステップ状に拡径されている。   The diameter-expanded portion 7C is divided into a range from the position immediately after the throat portion 7B to the position of the right flange portion 9B in the direction of the axis X, and a plurality of step-shaped diameter-expanded portions 7C-1, 7C-2 ..., 7C-N. Each of the stepped enlarged portions 7C-1, 7C-2,..., 7C-N has a cylindrical inner peripheral surface, and the inner diameter is uniform without changing in the same stepped enlarged portion. Stepped portions 10B-1 and 10B-2 in which the next stepped enlarged portion 7C-2 and the next stepped enlarged portion 7C-3 are formed at the upstream position with respect to the stepped enlarged portion 7C-1. , ..., the diameter is expanded stepwise.

図2(B)は、上記拡径部7Cの複数の段状拡径部7C‐1,7C‐2,…,7C‐Nのうち、その一部として、段状拡径部7C‐1,7C‐2,そして7C‐3の部分を拡大して示している。   FIG. 2 (B) shows a stepped enlarged portion 7C-1, as a part of the plurality of stepped enlarged portions 7C-1, 7C-2, ..., 7C-N of the enlarged portion 7C. 7C-2 and 7C-3 are shown enlarged.

図2(B)において、軸線方向で中間に位置する段状拡径部7C‐2は、これに対して上流側で隣接する段状拡径部7C‐1の半径Rに対して段部10B‐2をなすようにΔRの段差寸法だけ拡大されたR+ΔRなる半径で、軸線方向に延びる区間長Lを有する円筒内面を形成している。これに対して下流側で隣接する段状拡径部7C‐3も同様に、段状拡径部7C‐2よりも拡径されて上記区間長Lだけ延びている。図2(B)において、段状拡径部7C‐1,7C‐2,…,7C‐Nの区間長Lは、最下流側の段状拡径部7C‐N以外の段状拡径部で一定の長さとしているが、下流側の段状拡径部になるほど区間長Lを長くするようにしてもよい。また、一段の段状拡径部の半径は軸線方向において、一定の寸法であって円筒内面を形成しているが、一段の段状拡径部において下流側になるほど拡径するようにしてもよい。このようにすることにより、段状拡径部の空間容積がさらに大きくなり、蒸発ガスを低温液体中へ導入して凝縮させ混合する空間をさらに大きくすることができ、より確実に蒸発ガスの凝縮混合を行うことができる。   In FIG. 2 (B), the stepped enlarged portion 7C-2 located in the middle in the axial direction has a stepped portion 10B with respect to the radius R of the stepped enlarged portion 7C-1 adjacent on the upstream side. A cylindrical inner surface having a section length L extending in the axial direction is formed with a radius of R + ΔR expanded by a step size of ΔR so as to form −2. On the other hand, the stepped enlarged portion 7C-3 adjacent on the downstream side is similarly expanded in diameter than the stepped enlarged portion 7C-2 and extends by the section length L. In FIG. 2B, the section length L of the stepped enlarged portions 7C-1, 7C-2,..., 7CN is the stepped enlarged portion other than the stepped enlarged portion 7C-N on the most downstream side. However, the section length L may be lengthened as the downstream diameter increases. In addition, the radius of the stepped diameter-enlarged portion has a constant dimension in the axial direction and forms the inner surface of the cylinder. Good. By doing so, the space volume of the step-shaped enlarged diameter portion is further increased, and the space for introducing and condensing the evaporative gas into the low-temperature liquid can be further increased, so that the evaporative gas can be condensed more reliably. Mixing can be performed.

上記段状拡径部7C‐2には、その域内での上流側位置に蒸気孔10‐2の注入開口10A‐2が位置している。図2(B)の例では、上記注入開口10A‐2の上流側縁が上記段部10B‐2の位置にくるように形成されている。上記蒸気孔10‐2は、流管7の管壁を半径方向に貫通して形成されていて、半径内方に向け軸線方向下流側に傾くように形成されている。他の蒸気孔10‐1,10‐3,…,10‐Nも同様に対応する段状拡径部7C‐1,7C‐3,…,7C‐Nに対して、それぞれの域内での上流側に注入開口10A‐1、10A‐3、10A‐Nが位置するようにして設けられている。   In the stepped enlarged diameter portion 7C-2, an injection opening 10A-2 of the steam hole 10-2 is located at an upstream position in the region. In the example of FIG. 2B, the upstream side edge of the injection opening 10A-2 is formed so as to be at the position of the stepped portion 10B-2. The steam hole 10-2 is formed so as to penetrate the tube wall of the flow tube 7 in the radial direction, and is inclined inward in the axial direction toward the radial inward. The other steam holes 10-1, 10-3,..., 10-N are similarly upstream of the corresponding step-shaped enlarged diameter portions 7C-1, 7C-3,. The injection openings 10A-1, 10A-3, 10A-N are provided on the side.

本発明では、蒸気孔10‐1,10‐2,…,10‐Nをベンチュリ管の拡径部の段部10B‐1,10B‐2,…で急拡大した直後に位置するようにしたので、上記段部10B‐1,10B‐2,…にて急拡大した直後の区間長Lにわたる空間を、低温液体中に混じって蒸発ガスの気泡が流れる十分な大きさの空間として確保でき、この空間において蒸発ガスと低温液体との接触時間を十分に確保することができ、蒸発ガスを低温液体により冷却し凝縮させ混合させることができる。さらに、段状拡径部の空間内で流管中の低温液体の流れにあまり影響を受けずに効率良く蒸発ガスがベンチュリ現象で良好に吸引されるようになる。   In the present invention, the steam holes 10-1, 10-2,..., 10-N are positioned immediately after the sudden expansion at the stepped portions 10B-1, 10B-2,. The space over the section length L immediately after the sudden expansion at the stepped portions 10B-1, 10B-2,... Can be secured as a sufficiently large space through which bubbles of the evaporative gas flow in the low temperature liquid. A sufficient contact time between the evaporative gas and the low-temperature liquid can be ensured in the space, and the evaporative gas can be cooled, condensed, and mixed with the low-temperature liquid. Further, the evaporative gas is efficiently sucked by the venturi phenomenon efficiently without being affected by the flow of the low-temperature liquid in the flow tube within the space of the stepped diameter-expanded portion.

上述の段部をもった段状拡径部の形態が蒸発ガスを低温液体中で凝縮させ混合するのに有効であるが、段状拡径部の寸法を適切に設定することにより、この効果をより確実に奏するようにできる。例えば、ベンチュリ管型の流管7の内径を急拡大させる段部10B‐1,10B‐2,…の寸法ΔRが大きすぎると、低温液体の流れにはこの段部の位置から乱れが生じ、蒸気孔10‐1,10‐2,…周辺での蒸発ガスの吸引を阻害する。この結果、低温液体のベンチュリ現象による蒸気の吸引の効率が低下する。したがって、ベンチュリ管拡径部内径を急拡大させる段差寸法を最適に設定する必要がある。   The form of the stepped enlarged portion having the stepped portion described above is effective for condensing and mixing the evaporative gas in the low-temperature liquid, but this effect can be achieved by appropriately setting the size of the stepped enlarged portion. Can be played more reliably. For example, if the dimension ΔR of the step portions 10B-1, 10B-2,... That rapidly expands the inner diameter of the venturi-type flow tube 7 is too large, the flow of the cryogenic liquid is disturbed from the position of the step portion, The vapor holes 10-1, 10-2,. As a result, the efficiency of sucking the vapor due to the venturi phenomenon of the low temperature liquid decreases. Accordingly, it is necessary to optimally set the step size for rapidly expanding the inner diameter of the venturi expanded portion.

そこで、発明者は、どのような段差寸法とすれば、蒸発ガスの低温液体への吸引の効率が良好となるか、種々実験を重ねた。その実験にもとづき、段差寸法とベンチュリ現象による吸引の効率性を検討した結果を図3(A)に示す。段差寸法比は、段差寸法のその直前半径に対する比率(%)、すなわち、段部の上流側に位置する段状拡径部の半径に対する段差寸法の比率(%)で表したものである。効率向上率は、低温液体をベンチュリ管に流送するのに必要な動力を同じとして、低温液体のベンチュリ現象によって吸引される蒸発ガスの流量が、段差を設けないときに比べて増加する比率を効率向上率(%)として表したものである。図3(A)に見られるように、段差寸法をその直前半径の5〜40%の範囲にすることにより段差を設けないときに比べて効率向上率が増加しており、段差寸法をその直前半径の12〜30%の範囲にすることにより効率向上率が70%以上となり高い吸引効率となることが判る。   Therefore, the inventor conducted various experiments to determine what step size the efficiencies of sucking the evaporative gas into the low-temperature liquid are good. FIG. 3A shows the result of examining the efficiency of suction based on the step size and the venturi phenomenon based on the experiment. The step size ratio is expressed as a ratio (%) of the step size to the immediately preceding radius, that is, a ratio (%) of the step size to the radius of the step-shaped enlarged diameter portion located on the upstream side of the step portion. The efficiency improvement rate is the ratio at which the flow rate of the evaporative gas sucked by the low temperature liquid venturi phenomenon increases compared to when no step is provided, assuming that the power required to flow the low temperature liquid to the venturi pipe is the same. It is expressed as an efficiency improvement rate (%). As shown in FIG. 3A, the efficiency improvement rate is increased by setting the step size in the range of 5 to 40% of the immediately preceding radius compared to when no step is provided, and the step size is set immediately before the step size. It can be seen that when the radius is in the range of 12 to 30%, the efficiency improvement rate is 70% or more and the suction efficiency is high.

さらに、本発明では、上記段差半径についてのみならず、ベンチュリ管拡径部内径を急拡大した段状拡径部の区間長(軸線方向長さである一区間の長さ)についても適正な範囲があると考え、これについても実験を行った。一区間の長さが短ければ、蒸発ガスと低温液体の混合が不十分なうちに、次の段状拡径部へ移行してしまうので、蒸気孔近傍の低温液体のみ温度が上昇してしまい、その結果、後流において蒸発ガスと低温液体の温度差が小さくなるので蒸発ガスが凝縮しにくくなってしまう。一方で、区間長が長すぎると、ベンチュリ管内の圧力損失が大きくなるのでより大きな動力を必要とし、また装置が大きくなるのでコストアップに繋がる。段状拡径部の半径に対する区間長寸法の比率である区間長寸法比とベンチュリ管の吸引の効率向上率(%)についての実験の結果、図3(B)に見られるように、区間長寸法は段状拡径部の半径の2.5〜8倍が適正であることが判明した。   Furthermore, in the present invention, not only the above step radius but also the section length (the length of one section which is the length in the axial direction) of the stepped diameter enlarged portion in which the inner diameter of the venturi expanded portion is rapidly expanded is an appropriate range. We thought that there was, and experimented about this. If the length of one section is short, the transition to the next step-shaped enlarged diameter portion occurs while mixing of the evaporating gas and the cryogenic liquid is insufficient, so that the temperature of only the cryogenic liquid near the vapor hole rises. As a result, since the temperature difference between the evaporative gas and the low-temperature liquid becomes small in the downstream, the evaporative gas is difficult to condense. On the other hand, if the section length is too long, the pressure loss in the venturi tube increases, so that more power is required, and the apparatus becomes larger, leading to an increase in cost. As a result of an experiment on the ratio of the section length dimension, which is the ratio of the section length dimension to the radius of the stepped enlarged portion, and the venturi tube suction efficiency improvement rate (%), as shown in FIG. It has been found that the appropriate size is 2.5 to 8 times the radius of the stepped enlarged portion.

次に、上述ように構成された本実施形態の蒸発ガス再液化装置そしてその動作を図1そして図2にもとづき説明する。   Next, the evaporative gas reliquefaction apparatus of this embodiment configured as described above and its operation will be described with reference to FIGS.

先ず、タンク(図示せず)内の低温液体(例えば、LNG)11の一部が、送出ポンプ3によって送出されて凝縮混合装置2に導入される。また、上記タンク内で発生した蒸発ガスは、蒸発ガス圧縮機4によって大気圧と都市ガス運用圧力(4〜7MPa)の間の圧力(「中間圧」)まで昇圧された後、凝縮混合装置2に導入される。   First, a part of a cryogenic liquid (for example, LNG) 11 in a tank (not shown) is sent out by the delivery pump 3 and introduced into the condensing and mixing apparatus 2. The evaporative gas generated in the tank is increased by the evaporative gas compressor 4 to a pressure (“intermediate pressure”) between the atmospheric pressure and the city gas operating pressure (4 to 7 MPa), and then the condensing and mixing device 2. To be introduced.

上記低温液体11は、凝縮混合装置2のケーシング6に設けられた入口部6Aを経て流管7に流入し、縮径部7A、喉部7Bそして拡径部7Cを流れ、ケーシング6の出口部6Bへ達する。流管7内を流れる低温液体11は、縮径部7Aで流速を高め、喉部7Bで最大流速に達し、その後、拡径部7Cで徐々に流速を低めるが、拡径部7Cでの右端における最大内径でも上記入口部6Aの内径より小さいので、拡径部7Cでの流速は入口部6Aの流入時の流速よりも高く、したがって、圧力は低くなっており、蒸気孔10‐1,10‐2,…に対しては吸引力をもたらす。   The low-temperature liquid 11 flows into the flow pipe 7 via the inlet 6A provided in the casing 6 of the condensing and mixing device 2, flows through the reduced diameter portion 7A, the throat portion 7B, and the enlarged diameter portion 7C, and exits from the casing 6. Reach 6B. The cryogenic liquid 11 flowing in the flow tube 7 increases the flow velocity at the reduced diameter portion 7A, reaches the maximum flow velocity at the throat portion 7B, and then gradually decreases the flow velocity at the expanded diameter portion 7C, but the right end at the expanded diameter portion 7C. Since the maximum inner diameter is smaller than the inner diameter of the inlet portion 6A, the flow velocity at the enlarged diameter portion 7C is higher than the flow velocity at the time of inflow of the inlet portion 6A. -Suction power is provided for 2, ...

一方、蒸発ガス12は蒸発ガス圧縮機4により昇圧されて、凝縮混合装置2のケーシング6に設けられた、蒸発ガス注入部6Dを経て上記ケーシング6内に注入される。流管7を収容しているケーシング6の流管収容部6Cには、流管7の外周に挿填物8が挿填されており、蒸発ガス圧縮機4で圧送されて上記蒸発ガス注入部6Dから注入された蒸発ガス12は、挿填物8により緩衝されそして流管収容部6C内で流管7の全周そして全長にわたり拡散する。   On the other hand, the evaporative gas 12 is pressurized by the evaporative gas compressor 4 and injected into the casing 6 through the evaporative gas injection part 6D provided in the casing 6 of the condensing and mixing apparatus 2. An insertion material 8 is inserted into the outer periphery of the flow tube 7 in the flow tube accommodating portion 6C of the casing 6 that accommodates the flow tube 7, and the evaporative gas injection portion is pumped by the evaporative gas compressor 4. The evaporative gas 12 injected from 6D is buffered by the insert 8 and diffuses over the entire circumference and the entire length of the flow tube 7 in the flow tube housing 6C.

上述の通り、流管7の拡径部7Cを流れる低温液体11は、ベンチュリ管現象により蒸気孔10‐1,10‐2,…に対して吸引力をもたらすので、上記流管収容部6C内に拡散している蒸発ガス12は、各蒸気孔10‐1,10‐2,…から拡径部7Cへ吸引導入される。例えば、図2(B)に示されている蒸気孔10‐2では、蒸発ガス12は、該蒸気孔10‐2から吸引されてその注入開口10A‐2を経て、段状拡径部7C‐2内に流入する。上記注入開口10A‐2は段状拡径部7C‐2の域内の上流側に位置していると共に、蒸気孔10‐2が半径内方に向け上流側に傾いているので、流入した蒸発ガスは、流管7内の低温液体11の流れに逆らうことなく低抵抗のもとで合流する。   As described above, the low-temperature liquid 11 flowing through the enlarged diameter portion 7C of the flow tube 7 provides a suction force to the vapor holes 10-1, 10-2,. The evaporative gas 12 diffusing in the gas is sucked and introduced into the enlarged diameter portion 7C from the vapor holes 10-1, 10-2,. For example, in the vapor hole 10-2 shown in FIG. 2B, the evaporative gas 12 is sucked from the vapor hole 10-2 and passes through the injection opening 10A-2, and then the step-shaped enlarged diameter portion 7C-. 2 flows in. The injection opening 10A-2 is located on the upstream side in the region of the stepped enlarged diameter portion 7C-2, and the vapor hole 10-2 is inclined upstream toward the radius inward. Are joined under low resistance without countering the flow of the cryogenic liquid 11 in the flow tube 7.

上記段状拡径部7C‐2は、これに対して上流側に位置する前段の段状拡径部7C‐1よりも段部10B‐2でΔR分だけ急拡径していて、この段部10B‐2よりも下流側で、区間長Lにわたる空間を形成しており、この空間を、低温液体11中に混じって蒸発ガス12の気泡が流れる十分な大きさの空間として確保でき、この空間において蒸発ガス12と低温液体11との接触時間を十分に確保することができ、蒸発ガス12を容易に低温液体11内に混入させて、蒸発ガス12を低温液体11により冷却し凝縮させ混合させることができる。この結果、蒸発ガス12は凝縮して確実に再液化し、低温液体11の一部として下流側へ流れる。このように蒸気孔から蒸発ガスの流入そして低温液体への混入による合流は、上記段状拡径部7C‐2以外の他の段状拡径部でも同様に行われる。かくして、再液化された蒸発ガスを含む混合低温液体11Aは昇圧ポンプ5で昇圧されて気化器へもたらされた後、気化器で気化されて都市ガスとして需要側に送出される。   The stepped diameter-enlarged portion 7C-2 has a diameter that is abruptly increased by ΔR at the stepped portion 10B-2 relative to the preceding stepped diameter-increased portion 7C-1 located on the upstream side. A space over the section length L is formed on the downstream side of the portion 10B-2, and this space can be secured as a sufficiently large space through which bubbles of the evaporative gas 12 flow in the cryogenic liquid 11, A sufficient contact time between the evaporative gas 12 and the cryogenic liquid 11 can be secured in the space, and the evaporative gas 12 can be easily mixed into the cryogenic liquid 11, and the evaporative gas 12 is cooled and condensed by the cryogenic liquid 11 and mixed. Can be made. As a result, the evaporation gas 12 is condensed and reliably liquefied, and flows downstream as a part of the low temperature liquid 11. In this way, the merging due to the inflow of evaporative gas from the vapor hole and mixing into the low-temperature liquid is performed in the same manner in the stepped enlarged portion other than the stepped enlarged portion 7C-2. Thus, the mixed cryogenic liquid 11A containing the re-liquefied evaporative gas is boosted by the booster pump 5 and brought to the vaporizer, then vaporized by the vaporizer and sent to the demand side as city gas.

1 蒸発ガス再液化装置
2 凝縮混合装置
3 送出ポンプ
4 蒸発ガス圧縮機
7 流管
7A 縮径部
7B 喉部
7C 拡径部
7C‐1,7C‐2 段状拡径部
9A 取付フランジ
9B 取付フランジ
10‐1,10‐2 蒸気孔
10A‐1,10A‐2 注入開口
10B‐1,10B‐2 段部
L 区間長
R 段状拡径部の半径
ΔR 半径差(段差寸法)
DESCRIPTION OF SYMBOLS 1 Evaporative gas reliquefaction apparatus 2 Condensation mixing apparatus 3 Delivery pump 4 Evaporative gas compressor 7 Flow pipe 7A Reduced diameter part 7B Throat part 7C Expanded diameter part 7C-1, 7C-2 Step-shaped expanded diameter part 9A Mounting flange 9B Mounting flange 10-1, 10-2 Vapor hole 10A-1, 10A-2 Injection opening 10B-1, 10B-2 Stepped portion L Section length R Radius of stepped enlarged portion ΔR Radius difference (step size)

Claims (4)

上流側から下流側へ向け漸次内径を小さくする縮径部に引き続き最小径をなす喉部を経て該喉部から漸次内径を大きくする拡径部が形成されたベンチュリ管型の流管を有し、流管外から蒸気を流管内へ注入するために、該流管の半径方向かつ下流側方向に向いた蒸気孔が流管の軸線方向の複数位置で上記拡径部の内径面に注入開口を有するように形成されていて、流管内を下流に向け流れる低温液体へ蒸気孔の注入開口から蒸気を注入して該蒸気を凝縮して低温液体に混合する凝縮混合装置において、
拡径部は、軸線方向で複数位置に段部が形成されていて、該段部で順次拡径され軸線方向で下流側に向け延びる内周面をもつ段状拡径部を有し、各段状拡径部の域内での上流側位置に蒸気孔の注入開口が設けられていることを特徴とする凝縮混合装置。
It has a venturi-type flow tube in which a diameter-reduced portion that gradually decreases from the upstream side toward the downstream side is followed by a throat portion that has a minimum diameter, and a diameter-expanded portion that gradually increases from the throat portion. In order to inject steam from the outside of the flow tube into the flow tube, steam holes directed in the radial direction and downstream direction of the flow tube are injected into the inner diameter surface of the enlarged diameter portion at a plurality of positions in the axial direction of the flow tube. In a condensing and mixing apparatus that injects steam from an injection opening of a vapor hole into a cryogenic liquid that flows downstream in the flow tube and condenses the vapor to mix with the cryogenic liquid.
The diameter-enlarged portion has stepped diameter-enlarged portions having stepped portions formed at a plurality of positions in the axial direction and having inner circumferential surfaces that are sequentially expanded in diameter in the stepped portion and extend toward the downstream side in the axial direction. A condensing and mixing apparatus characterized in that a steam hole injection opening is provided at an upstream position in the region of the step-shaped enlarged diameter portion.
段部に対して上流側で隣接する先行の段状拡径部と下流で隣接する後続の段状拡径部との半径差が、上記先行の段状拡径部の内径の12〜30%の寸法となっていることとする請求項1に記載の凝縮混合装置。   The radius difference between the preceding step-shaped enlarged portion adjacent to the stepped portion on the upstream side and the succeeding step-shaped enlarged portion adjacent downstream is 12-30% of the inner diameter of the preceding step-shaped enlarged portion. The condensing and mixing apparatus according to claim 1, wherein 段状拡径部は、該段状拡径部の半径の2.5〜8倍の区間長にわたり軸線方向に延びていることとする請求項1又は請求項2に記載の凝縮混合装置。   The condensing and mixing apparatus according to claim 1 or 2, wherein the stepped enlarged diameter portion extends in the axial direction over a section length of 2.5 to 8 times the radius of the stepped enlarged diameter portion. 貯槽内に貯留された低温液体から発生する蒸発ガスを、貯槽から払い出された低温液体に混合して凝縮させ再液化する蒸発ガス再液化装置において、
請求項1ないし請求項3のいずれか一つに記載の凝縮混合装置と、蒸発ガスを圧縮する蒸発ガス圧縮機と、貯槽から低温液体を送出する送出ポンプとを備え、該送出ポンプで低温液体を凝縮混合装置の流管へ上流側から供給し、上記蒸発ガス圧縮機で蒸発ガスを凝縮混合装置の蒸気孔から上記流管内へ注入するようになっていることを特徴とする蒸発ガス再液化装置。
In the evaporative gas reliquefaction device that mixes the condensed gas generated from the cryogenic liquid stored in the storage tank with the cryogenic liquid dispensed from the storage tank, condenses and reliquefies it,
A condensing and mixing apparatus according to any one of claims 1 to 3, an evaporative gas compressor for compressing evaporative gas, and a delivery pump for delivering a cryogenic liquid from a storage tank. The evaporative gas reliquefaction is characterized in that the evaporative gas is supplied from the upstream side to the flow tube of the condensing and mixing device, and the evaporative gas is injected into the flow tube from the vapor hole of the condensing and mixing device by the evaporative gas compressor. apparatus.
JP2013249220A 2013-12-02 2013-12-02 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same Active JP5945974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249220A JP5945974B2 (en) 2013-12-02 2013-12-02 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249220A JP5945974B2 (en) 2013-12-02 2013-12-02 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016107086A Division JP6090616B2 (en) 2016-05-30 2016-05-30 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same

Publications (3)

Publication Number Publication Date
JP2015105739A true JP2015105739A (en) 2015-06-08
JP2015105739A5 JP2015105739A5 (en) 2015-12-17
JP5945974B2 JP5945974B2 (en) 2016-07-05

Family

ID=53435963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249220A Active JP5945974B2 (en) 2013-12-02 2013-12-02 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same

Country Status (1)

Country Link
JP (1) JP5945974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018937A (en) * 2015-07-13 2017-01-26 Jfeエンジニアリング株式会社 Condenser
JP2017213494A (en) * 2016-05-31 2017-12-07 Jfeエンジニアリング株式会社 Gas-liquid mixer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB713064A (en) * 1950-04-14 1954-08-04 Holmes & Co Ltd W C Improvements in method and apparatus for the oxidation of solutions and/or suspensions of oxidisable solids by means of oxygen-containing gases
JPS50125359A (en) * 1974-03-05 1975-10-02
JPS6128427A (en) * 1983-08-23 1986-02-08 テヒニカ、エントヴイツクルングスゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング、ウント、コムパニ−、コムマンジツト、ゲゼルシヤフト Method and device for absorbing gas into liquid, particularly, method and device for absorbing carbonic acid gas into sprinkling water for gardener and gardener for pleasure
JPS6297633A (en) * 1985-08-16 1987-05-07 リクイツド カ−ボニツク コ−ポレ−シヨン Ejector for co2-process in neutralization of alkali water
JPH0445832A (en) * 1990-06-12 1992-02-14 Mitsuo Hoshi Device for preventing water hammer in jet mixer
JP2006045327A (en) * 2004-08-04 2006-02-16 Jfe Engineering Kk Method and apparatus for controlling dilution of calorific value of natural gas
JP2009507624A (en) * 2005-09-12 2009-02-26 ツヴィスター・ベー・ウイ Method and apparatus for improving condensation and separation in a fluid separator
JP2011025171A (en) * 2009-07-27 2011-02-10 Jfe Engineering Corp Fluid-mixing method using venturi tube and venturi-type mixing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB713064A (en) * 1950-04-14 1954-08-04 Holmes & Co Ltd W C Improvements in method and apparatus for the oxidation of solutions and/or suspensions of oxidisable solids by means of oxygen-containing gases
JPS50125359A (en) * 1974-03-05 1975-10-02
JPS6128427A (en) * 1983-08-23 1986-02-08 テヒニカ、エントヴイツクルングスゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング、ウント、コムパニ−、コムマンジツト、ゲゼルシヤフト Method and device for absorbing gas into liquid, particularly, method and device for absorbing carbonic acid gas into sprinkling water for gardener and gardener for pleasure
JPS6297633A (en) * 1985-08-16 1987-05-07 リクイツド カ−ボニツク コ−ポレ−シヨン Ejector for co2-process in neutralization of alkali water
JPH0445832A (en) * 1990-06-12 1992-02-14 Mitsuo Hoshi Device for preventing water hammer in jet mixer
JP2006045327A (en) * 2004-08-04 2006-02-16 Jfe Engineering Kk Method and apparatus for controlling dilution of calorific value of natural gas
JP2009507624A (en) * 2005-09-12 2009-02-26 ツヴィスター・ベー・ウイ Method and apparatus for improving condensation and separation in a fluid separator
JP2011025171A (en) * 2009-07-27 2011-02-10 Jfe Engineering Corp Fluid-mixing method using venturi tube and venturi-type mixing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018937A (en) * 2015-07-13 2017-01-26 Jfeエンジニアリング株式会社 Condenser
JP2017213494A (en) * 2016-05-31 2017-12-07 Jfeエンジニアリング株式会社 Gas-liquid mixer

Also Published As

Publication number Publication date
JP5945974B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5884995B2 (en) Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
US2852922A (en) Jet pump
KR20100052346A (en) Distributor and refrigerant circulation system comprising the same
JP5945974B2 (en) Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
JP2015105810A5 (en)
CN103380336B (en) Injector
JP6090616B2 (en) Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
JP2008133796A (en) Ejector and refrigerating cycle device
JP6887844B2 (en) Inhalation piping for compressors, compression units and refrigerators
WO2016194056A1 (en) Condensing and mixing device and evaporated gas re-liquefaction device having same
CN105758053A (en) Ejector and cooling apparatus having the same
JP5333186B2 (en) Evaporative gas reliquefaction equipment
JP2008008572A (en) Vapor compression type refrigerating cycle using ejector
JPH1163396A (en) Boiloff gas condensing device and liquefied gas storage equipment
JP6245544B2 (en) Uniform vaporization mixing apparatus and uniform vaporization mixing method
US11499711B2 (en) Liquefied fuel combustor with integrated evaporator device and associated method
JP5896172B2 (en) Condensation and mixing apparatus, condensation and mixing method, evaporative gas reliquefaction apparatus, and evaporative gas reliquefaction method
JP6036390B2 (en) Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas
WO2016194049A1 (en) Condensing and mixing device, condensing and mixing method, evaporated gas re-liquefaction device, and evaporated gas re-liquefaction method
JP6218867B2 (en) Condensing equipment
KR960004253B1 (en) Method &amp; device for vapourizing a liquid gas
JP5708702B2 (en) Evaporative gas reliquefaction method
JPH08173781A (en) Gas-liquid mixer for liquified natural gas
KR102141088B1 (en) Line mixer for cooling down
JP6673749B2 (en) Gas-liquid mixer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151027

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

R150 Certificate of patent or registration of utility model

Ref document number: 5945974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350