JP2013155879A - Method for reliquefying boil-off gas - Google Patents

Method for reliquefying boil-off gas Download PDF

Info

Publication number
JP2013155879A
JP2013155879A JP2013099846A JP2013099846A JP2013155879A JP 2013155879 A JP2013155879 A JP 2013155879A JP 2013099846 A JP2013099846 A JP 2013099846A JP 2013099846 A JP2013099846 A JP 2013099846A JP 2013155879 A JP2013155879 A JP 2013155879A
Authority
JP
Japan
Prior art keywords
evaporative gas
gas
temperature liquid
low
boil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013099846A
Other languages
Japanese (ja)
Other versions
JP5708702B2 (en
Inventor
Kanetoshi Hayashi
謙年 林
Isho Yamaguchi
以昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013099846A priority Critical patent/JP5708702B2/en
Publication of JP2013155879A publication Critical patent/JP2013155879A/en
Application granted granted Critical
Publication of JP5708702B2 publication Critical patent/JP5708702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for reliquefying boil-off gas capable of effectively achieving reliquefaction, by boosting gaseous boil-off gas and bringing it into direct contact with delivered low-temperature liquid such as LNG to attain reliquefaction.SOLUTION: In a method for reliquefying boil-off gas, boil-off gas generated from low-temperature liquid 5 stored in a storage tank 3 is compressed by a boil-off gas compressor 7 and is introduced into a micro bubble generator 11, the low-temperature liquid 5 in the storage tank 3 is delivered by a delivery pump 9 and is introduced into the micro bubble generator 11. In the micro bubble generator 11, the boil-off gas is mixed with the low-temperature liquid to reliquefy the boil-off gas, and the low-temperature liquid containing the reliquefied boil-off gas is boosted by a secondary pump 13. The boil-off gas introduced into the micro bubble generator 11 is turned into micro bubbles, and the micro bubbles of the boil-off gas are cooled to be reliquefied in the micro bubble generator 11 and in a pipe connecting the micro bubble generator 11 with the secondary pump 13, by the low-temperature liquid.

Description

本発明は、液化天然ガス(以下、「LNG」と言う場合あり)をはじめとする低温液体が貯留された貯槽内で発生する蒸発ガス(「ボイルオフガス」、「BOG」)を再液化する蒸発ガス再液化方法に関するものである。   The present invention is an evaporation that reliquefies evaporation gas ("boil-off gas", "BOG") generated in a storage tank in which a low-temperature liquid such as liquefied natural gas (hereinafter sometimes referred to as "LNG") is stored. The present invention relates to a gas reliquefaction method.

液化天然ガス(LNG)を始めとする低温液体をタンクで貯蔵する場合、タンクへの入熱によりタンク内の低温液体の一部が蒸発し、蒸発ガスが発生する。低温液体がLNGの場合には、メタンを主成分とする蒸発ガスが発生する。
発生した蒸発ガスは、そのまま圧縮して都市ガスとして供給することも可能であるが、圧縮動力が非常に大きくなる。そこで、動力を削減するために、蒸発ガスを再液化して液の状態で昇圧した後再びガス化して都市ガスとして供給することが考えられる。再液化するには、蒸発ガスを圧縮し、冷却する工程を経ることになるが、蒸発ガスの冷却を払出LNGの冷熱で冷却する、つまりLNGと圧縮された蒸発ガスを熱交換する例が、特許文献1〜3に提案されている。
When low temperature liquid such as liquefied natural gas (LNG) is stored in a tank, a part of the low temperature liquid in the tank evaporates due to heat input to the tank, and evaporative gas is generated. When the low-temperature liquid is LNG, an evaporating gas mainly composed of methane is generated.
The generated evaporative gas can be compressed as it is and supplied as city gas, but the compression power becomes very large. Therefore, in order to reduce power, it is conceivable to re-liquefy the vaporized gas, pressurize it in a liquid state, and then gasify it again to supply it as city gas. In order to reliquefy, the evaporative gas is compressed and cooled, but the evaporative gas is cooled and cooled by the cold heat of the LNG, that is, an example in which heat exchange is performed between the LNG and the compressed evaporative gas. It is proposed in Patent Documents 1 to 3.

特許文献1では、LNGと圧縮された蒸発ガスを熱交換器で熱交換する方式(間接熱交換方式)が開示されている。しかし、間接熱交換方式では、伝熱面積を確保するために大型の熱交換器が必要となるという問題がある。
特許文献2では、圧縮された蒸発ガスを払出LNG内に直接吹き込む方式(直接接触熱交換方式)が開示されている。直接接触熱交換方式は、伝熱面を介さずに熱交換するため両者が接している界面での伝熱性能は向上する。しかし、直接接触熱交換方式では、気体である蒸発ガスと液体であるLNGの密度の違いから二相に分離しやすく、界面面積(伝熱面積)が十分に確保できないため液化効率が悪くなりやすい。そのため、気体の蒸発ガスと液体のLNGの界面面積をいかにして確保するかが重要であるが、特許文献2にはこの点については何らの開示もない。
特許文献3においては、蒸発ガスのLNG中への吹込み方法として、払い出されるLNGの流れ方向と直交する方向もしくはLNGの流れ方向に逆らう方向になるように蒸発ガス供給ノズルを配置するものが開示されている。
In patent document 1, the system (indirect heat exchange system) which heat-exchanges LNG and the compressed vapor gas with a heat exchanger is disclosed. However, the indirect heat exchange method has a problem that a large heat exchanger is required to secure a heat transfer area.
Patent Document 2 discloses a method (direct contact heat exchange method) in which compressed evaporative gas is directly blown into the discharge LNG. In the direct contact heat exchange system, heat exchange performance is improved at the interface where both are in contact with each other because heat exchange is performed without going through the heat transfer surface. However, in the direct contact heat exchange method, it is easy to separate into two phases due to the difference in density between gas evaporative gas and liquid LNG, and the liquefaction efficiency tends to deteriorate because the interface area (heat transfer area) cannot be sufficiently secured. . Therefore, it is important how to secure the interface area between the gaseous evaporative gas and the liquid LNG, but Patent Document 2 does not disclose anything about this point.
In Patent Document 3, as a method of injecting evaporative gas into LNG, a method in which an evaporative gas supply nozzle is arranged so as to be in a direction orthogonal to the flow direction of discharged LNG or in a direction opposite to the flow direction of LNG is disclosed. Has been.

特開S55-145897号公報JP S55-145897 特開H9-59657号公報JP H9-59657 特開H8-173781号公報JP H8-173781

しかしながら、特許文献3の方法でも、気体の蒸発ガスと液体のLNGの界面面積(伝熱面積)を十分に確保できるとは言い難い。
以上のように、気体の蒸発ガスを昇圧して、払い出されるLNGに直接接触させる方法は効率的ではあるが、いかにして両者間の界面面積を十分に確保するかが重要である。界面面積が十分に確保されないと、LNGに合流した蒸発ガスが完全に液化されず、液化されないままで液送ポンプに供給されると、液送が困難になるのみならず、液送ポンプの故障の原因にもなる。
以上のように、蒸発ガスを払い出されるLNGに直接接触させる方法においては、両者間の界面面積を十分に確保することが重要なポイントとなるが、従来技術においては、この点を満足できるものはなく、かかる技術の開発が望まれていた。
However, even with the method of Patent Document 3, it is difficult to say that the interface area (heat transfer area) between the gaseous evaporative gas and the liquid LNG can be sufficiently secured.
As described above, the method of increasing the pressure of the gas evaporative gas and bringing it into direct contact with the discharged LNG is efficient, but it is important how to ensure a sufficient interface area between the two. If the interface area is not sufficiently secured, the evaporative gas that has joined the LNG will not be completely liquefied, and if it is supplied to the liquid feed pump without being liquefied, not only will the liquid feed be difficult, but the liquid feed pump will fail. It becomes the cause of.
As described above, in the method in which the evaporated gas is directly brought into contact with the LNG to be dispensed, it is important to ensure a sufficient interface area between the two. However, the development of such technology has been desired.

本発明は係る課題を解決するためになされたものであり、気体の蒸発ガスを昇圧して、払い出されるLNG等の低温液体に直接接触させて再液化させるものにおいて、再液化を効果的に実現できる蒸発ガス再液化方法を得ることを目的としている。   The present invention has been made in order to solve such problems, and effectively re-liquefaction is achieved by increasing the pressure of the gas evaporative gas and bringing it into direct contact with a low-temperature liquid such as LNG to be discharged to re-liquefy. The object is to obtain an evaporative gas reliquefaction method.

(1)本発明に係る蒸発ガス再液化方法は、貯槽内に貯留された低温液体から発生する蒸発ガスを蒸発ガス圧縮機によって圧縮して微細気泡発生器に導入するとともに、前記貯槽内の低温液体を送出ポンプによって送出して前記微細気泡発生器に導入し、前記微細気泡発生器において前記蒸発ガスと前記低温液体とを混合して前記蒸発ガスを再液化し、再液化された蒸発ガスを含む低温液体をセカンダリポンプによって昇圧する蒸発ガス再液化方法であって、
前記微細気泡発生器に導入された蒸発ガスは微細気泡となり、微細気泡となった蒸発ガスは、前記微細気泡発生器内及び、前記微細気泡発生器と前記セカンダリポンプをつなぐ配管内で低温液体によって冷却されて再液化することを特徴とするものである。
(1) In the evaporative gas reliquefaction method according to the present invention, the evaporative gas generated from the low temperature liquid stored in the storage tank is compressed by the evaporative gas compressor and introduced into the fine bubble generator, and the low temperature in the storage tank Liquid is delivered by a delivery pump and introduced into the fine bubble generator. In the fine bubble generator, the evaporative gas and the low-temperature liquid are mixed to re-liquefy the evaporative gas, and the re-liquefied evaporative gas is discharged. An evaporative gas reliquefaction method for boosting a low-temperature liquid containing by a secondary pump,
The evaporative gas introduced into the microbubble generator becomes microbubbles, and the evaporative gas that has become microbubbles is generated by the cryogenic liquid in the microbubble generator and in the pipe connecting the microbubble generator and the secondary pump. It is cooled and reliquefied.

(2)上記(1)に記載のものにおいて、前記蒸発ガス圧縮機に送出される蒸発ガスと前記貯槽から送出される低温液体との質量流量割合に応じて前記蒸発ガスおよび前記低温液体を昇圧する圧力を制御するようにしたことを特徴とするものである。 (2) In the device described in (1) above, the evaporative gas and the low-temperature liquid are boosted according to a mass flow rate ratio between the evaporative gas sent to the evaporative gas compressor and the low-temperature liquid sent from the storage tank. The pressure to control is controlled.

本発明においては、貯槽内に貯留された低温液体から発生する蒸発ガスを蒸発ガス圧縮機によって圧縮して微細気泡発生器に導入するとともに、前記貯槽内の低温液体を送出ポンプによって送出して微細気泡発生器に導入し、微細気泡発生器において蒸発ガスと低温液体とを混合して蒸発ガスを微細気泡化し、微細気泡となった蒸発ガスを、微細気泡発生器内及び、微細気泡発生器とセカンダリポンプをつなぐ配管内で低温液体によって冷却されて再液化させることができ、下流側に設置され低温液体を加圧するセカンダリポンプに蒸発ガスが気体のまま流入して障害が発生するのを防止できる。   In the present invention, the evaporative gas generated from the low-temperature liquid stored in the storage tank is compressed by the evaporative gas compressor and introduced into the fine bubble generator, and the low-temperature liquid in the storage tank is sent out by the delivery pump and finely discharged. Introduced into the bubble generator, the evaporative gas and the low-temperature liquid are mixed in the microbubble generator to make the evaporative gas into microbubbles, and the evaporated gas that has become microbubbles is contained in the microbubble generator and the microbubble generator. It can be cooled and reliquefied by the low-temperature liquid in the pipe connecting the secondary pump, and it can be prevented that the evaporative gas flows into the secondary pump that pressurizes the low-temperature liquid installed on the downstream side to cause a failure. .

さらに、蒸発ガスと低温液体との質量流量割合に応じて蒸発ガスおよび低温液体を昇圧する圧力を制御することにより、以下のような効果を奏する。
蒸発ガスの割合が少ない場合には、低温液体からの冷熱を十分に受けることができるので、昇圧する圧力を低くしても、蒸発ガスの再液化を確実に行うことができる。昇圧する圧力を低圧にすることで、蒸発ガス圧縮機の電力消費を低減できる。
他方、蒸発ガスの割合が多い場合には、低温液体からの冷熱を十分に受けることができないので、それに応じて蒸発ガスを高圧にすることで、少ない冷熱で再液化でき、蒸発ガス割合が多い場合でも確実に再液化できる。
Furthermore, by controlling the pressure at which the vaporized gas and the low-temperature liquid are boosted according to the mass flow rate ratio between the vaporized gas and the low-temperature liquid, the following effects can be obtained.
When the ratio of the evaporative gas is small, it is possible to sufficiently receive the cold heat from the low-temperature liquid, so that the evaporative gas can be reliably liquefied even if the pressure to be increased is lowered. By reducing the pressure to be increased, the power consumption of the evaporative gas compressor can be reduced.
On the other hand, when the proportion of the evaporative gas is large, it is not possible to sufficiently receive the cold heat from the low-temperature liquid. Therefore, the vapor can be reliquefied with a small amount of cold heat by increasing the vapor pressure accordingly, and the proportion of the vaporized gas is large. Even in cases, it can be reliquefied reliably.

本発明の一実施の形態に用いる蒸発ガス再液化装置の説明図である。It is explanatory drawing of the evaporative gas reliquefaction apparatus used for one embodiment of this invention. 図1に示した蒸発ガス再液化装置に用いる微細気泡発生器の一態様の説明図である。It is explanatory drawing of the one aspect | mode of the fine bubble generator used for the evaporative gas reliquefaction apparatus shown in FIG. 本発明の他の実施の形態に用いる蒸発ガス再液化装置の説明図である。It is explanatory drawing of the evaporative gas reliquefaction apparatus used for other embodiment of this invention. 図3に示した他の実施形態の制御装置による蒸発ガス圧縮機の制御方法の説明図である。It is explanatory drawing of the control method of the evaporative gas compressor by the control apparatus of other embodiment shown in FIG.

[実施の形態1]
図1に基づいて本発明の一実施形態を説明する。
本発明に係る蒸発ガス再液化方法に用いる蒸発ガス再液化装置1は、貯槽3内に貯留された低温液体5(例えば、LNG)から発生する蒸発ガスを圧縮する蒸発ガス圧縮機7と、該蒸発ガス圧縮機7によって圧縮された前記蒸発ガスと前記貯槽3からプライマリポンプ9(本発明の「送出ポンプ」に相当する)で送出された低温液体とを混合して前記低温液体5中に前記蒸発ガスの微細気泡を発生させる微細気泡発生器11とを備えている。微細気泡発生器11の下流側には蒸発ガスを再液化して混合した低温液体を昇圧するセカンダリポンプ13が設けられ、さらにその下流側には低温液体を気化する気化器15が設けられている。
蒸発ガス再液化装置1を構成する主な機器を詳細に説明する。
[Embodiment 1]
An embodiment of the present invention will be described with reference to FIG.
An evaporative gas reliquefaction apparatus 1 used in an evaporative gas reliquefaction method according to the present invention includes an evaporative gas compressor 7 that compresses evaporative gas generated from a low temperature liquid 5 (for example, LNG) stored in a storage tank 3, and The evaporative gas compressed by the evaporative gas compressor 7 and the cryogenic liquid sent from the storage tank 3 by the primary pump 9 (corresponding to the “delivery pump” of the present invention) are mixed and mixed into the cryogenic liquid 5. And a fine bubble generator 11 for generating fine bubbles of evaporating gas. A secondary pump 13 is provided downstream of the microbubble generator 11 to pressurize the low-temperature liquid obtained by re-liquefying the evaporative gas, and a vaporizer 15 for vaporizing the low-temperature liquid is further provided downstream thereof. .
The main equipment which comprises the evaporative gas reliquefaction apparatus 1 is demonstrated in detail.

<蒸発ガス圧縮機>
蒸発ガス圧縮機7は、蒸発ガスを大気圧と都市ガス運用圧力(4〜7MPa)の間の圧力(「中間圧」という場合あり)まで昇圧する。もっとも、蒸発ガス圧力は微細気泡発生器11に導入される低温液体と同等程度の圧力である必要があることから、一般的には0.5MPa以上とする。
<Evaporative gas compressor>
The evaporative gas compressor 7 raises the evaporative gas to a pressure between the atmospheric pressure and the city gas operating pressure (4 to 7 MPa) (sometimes referred to as “intermediate pressure”). However, since the evaporative gas pressure needs to be the same level as that of the low temperature liquid introduced into the fine bubble generator 11, it is generally set to 0.5 MPa or more.

<微細気泡発生器>
微細気泡発生器11は、低温液体と蒸発ガスを混合して低温液体中に蒸発ガスの微細気泡を発生させるものである。微細気泡とは、通常100μm以下の気泡をいう。微細気泡を発生させる方式としては、旋回液流式、スタティックミキサー式、細孔式、超音波式、ベンチュリ式(衝撃波式)など公知の方式を用いることができる。このうち、図1においては、旋回流式の微細気泡発生器11を示してある。旋回流式の微細気泡発生器11の具体例としては、例えば図2に示す特開2007−69071号公報に開示された微細気泡発生装置110があり、本実施の形態でもこれと同様の方式を用いることができる。
<Microbubble generator>
The fine bubble generator 11 mixes a low temperature liquid and evaporating gas to generate fine bubbles of evaporating gas in the low temperature liquid. The fine bubbles usually mean bubbles of 100 μm or less. As a method for generating fine bubbles, a known method such as a swirling liquid flow method, a static mixer method, a pore method, an ultrasonic method, or a venturi method (shock wave method) can be used. Among these, FIG. 1 shows a swirling flow type fine bubble generator 11. As a specific example of the swirling flow type fine bubble generator 11, there is a fine bubble generator 110 disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-69071 shown in FIG. 2, and the same method is used in this embodiment as well. Can be used.

図2に基づいて、微細気泡発生器11を概説すると、以下の通りである。
微細気泡発生装置110は、図2に示すように、円錐形状の気液混合用の空間111が形成された混合容器113を有し、該混合容器113における大径側の底面部115の中心には蒸発ガスを空間111に導く気体導入管117が接続され、側面部119には、液体導入管121が接線方向に接続されている。空間111の先端側には気液混合体を排出する排出管123が接続されている。
An outline of the fine bubble generator 11 is as follows based on FIG.
As shown in FIG. 2, the microbubble generator 110 includes a mixing container 113 in which a conical gas-liquid mixing space 111 is formed, and the mixing container 113 has a center on the bottom surface portion 115 on the large-diameter side. Is connected to a gas introduction pipe 117 that guides the evaporated gas to the space 111, and a liquid introduction pipe 121 is connected to the side surface portion 119 in a tangential direction. A discharge pipe 123 that discharges the gas-liquid mixture is connected to the front end side of the space 111.

上記のように構成された微細気泡発生器11において、液体導入管121から空間111へ加圧液体が導入されるときに、加圧液体は円錐形状の空間111の円形断面の接線方向に沿って流れる。そのため、空間111において旋回流が生じ、その旋回流の影響で、円錐形状の空間111が負圧になる。それにより、気体導入管117内の気体は、底面部115から旋回流の中心軸に沿って、空間111へ吸引され、その結果、図2に示すように、気柱125が発生する。一方、気柱125は円錐の頂点部または排出管123の近傍においては、外部の静止流体によって旋回が急激に弱められ、気柱125には、ねじられによる一様な剪断応力が生じる。その結果、気泡がさらに細かく分裂して微細気泡となる。   In the fine bubble generator 11 configured as described above, when the pressurized liquid is introduced from the liquid introduction pipe 121 into the space 111, the pressurized liquid is along the tangential direction of the circular cross section of the conical space 111. Flowing. Therefore, a swirl flow is generated in the space 111, and the conical space 111 becomes negative pressure due to the swirl flow. Thereby, the gas in the gas introduction pipe 117 is sucked into the space 111 along the central axis of the swirling flow from the bottom surface portion 115, and as a result, an air column 125 is generated as shown in FIG. On the other hand, in the air column 125, in the vicinity of the apex of the cone or in the vicinity of the discharge pipe 123, the swirl is suddenly weakened by the external stationary fluid, and the air column 125 is subjected to a uniform shearing stress due to twisting. As a result, the bubbles are further finely divided into fine bubbles.

<動作説明>
上記のように構成された蒸発ガス再液化装置1の動作を説明する。
貯槽3内の低温液体5(例えば、LNG)は、プライマリポンプ9によって送出されて微細気泡発生装置11に導入される。また、蒸発ガスは、蒸発ガス圧縮機7によって中間圧力に昇圧された後、微細気泡発生器11に導入される。微細気泡発生器11に導入された低温液体は、旋回流となり、上述したように蒸発ガスの気柱125を発生させ、蒸発ガスは微細気泡となる。微細気泡となることにより、蒸発ガスと低温液体の接触界面面積(伝熱面積)が非常に大きくなり、微細気泡となった蒸発ガスは低温液体によって効率的に冷却されて再液化される。また、微細気泡になることで、蒸発ガスは低温液体中での上昇速度が小さくなるため、微細気泡と低温液体との接触時間が長くなり、また、気泡が低温液体の上方に集合・合一して気液二相に分離した状態となるのを防止できる。このことによっても確実に蒸発ガスを再液化させることが可能となる。
気泡径と接触面積は反比例の関係にあり、また気泡径と気泡の液中上昇速度の関係は気泡径が1mm以下では概略比例関係にある。このため、例えば直径100μm(0.1mm)の微細気泡は、一般の手法で生成される直径1mm以上の気泡に比べて、接触面積が10倍以上、上昇速度が1/10以下となる。従って、本発明の目的である蒸発ガスの再液化において気泡径を微細化することにより、圧倒的に優位な再液化性能を得ることが可能となる。
<Description of operation>
Operation | movement of the evaporative gas reliquefaction apparatus 1 comprised as mentioned above is demonstrated.
The low-temperature liquid 5 (for example, LNG) in the storage tank 3 is sent out by the primary pump 9 and introduced into the fine bubble generator 11. The evaporative gas is boosted to an intermediate pressure by the evaporative gas compressor 7 and then introduced into the fine bubble generator 11. The low-temperature liquid introduced into the fine bubble generator 11 turns into a swirl flow, generates the vapor column 125 of the evaporated gas as described above, and the evaporated gas becomes a fine bubble. By forming the fine bubbles, the contact interface area (heat transfer area) between the evaporation gas and the low-temperature liquid becomes very large, and the evaporation gas that has become the fine bubbles is efficiently cooled and re-liquefied by the low-temperature liquid. Moreover, since the evaporative gas has a lower rising speed in the low-temperature liquid due to the formation of fine bubbles, the contact time between the fine bubbles and the low-temperature liquid becomes longer, and the bubbles gather and coalesce above the low-temperature liquid. Thus, it is possible to prevent the gas and liquid from being separated into two phases. This also makes it possible to liquefy the evaporated gas with certainty.
The bubble diameter and the contact area are in an inversely proportional relationship, and the relationship between the bubble diameter and the rising speed of the bubbles in the liquid is approximately proportional when the bubble diameter is 1 mm or less. For this reason, for example, a fine bubble having a diameter of 100 μm (0.1 mm) has a contact area of 10 times or more and an ascending speed of 1/10 or less as compared with a bubble having a diameter of 1 mm or more generated by a general method. Therefore, it is possible to obtain an overwhelmingly superior reliquefaction performance by reducing the bubble diameter in the reliquefaction of evaporative gas, which is the object of the present invention.

微細気泡となった蒸発ガスは、微細気泡発生器11内及び、微細気泡発生器11とセカンダリポンプ13をつなぐ配管内で低温液体中に再液化する。再液化された蒸発ガスを含む低温液体はセカンダリポンプ13で昇圧され、気化器15で気化されて都市ガスとして需要側に送出される。   The evaporated gas that has become fine bubbles is reliquefied into a low-temperature liquid in the fine bubble generator 11 and in a pipe connecting the fine bubble generator 11 and the secondary pump 13. The low-temperature liquid containing the re-liquefied evaporative gas is pressurized by the secondary pump 13, vaporized by the vaporizer 15, and sent to the demand side as city gas.

本実施の形態においては、微細気泡発生器11を用いて蒸発ガスを低温液体中に微細気泡化して吹き込むようにしたので、蒸発ガスを低温液体中に効果的に再液化させることができ、セカンダリポンプ13に蒸発ガスが気体のまま流入してセカンダリポンプ13に障害が発生するのを防止できる。
また、蒸発ガスを微細気泡にしたことにより、蒸発ガスの再液化が効率よく短時間で完了する。微細気泡発生器11からセカンダリポンプ13までの距離を短く設定することができるため、機器レイアウトの自由度が向上し、設置面積を低減できるという効果もある。
In the present embodiment, since the evaporation gas is made into fine bubbles and blown into the low-temperature liquid using the fine bubble generator 11, the evaporation gas can be effectively re-liquefied into the low-temperature liquid. It is possible to prevent the evaporative gas from flowing into the pump 13 as a gas and causing a failure in the secondary pump 13.
Further, since the evaporation gas is made into fine bubbles, the re-liquefaction of the evaporation gas is efficiently completed in a short time. Since the distance from the fine bubble generator 11 to the secondary pump 13 can be set short, there is an effect that the degree of freedom of equipment layout is improved and the installation area can be reduced.

なお、蒸発ガス圧縮機7によって中間圧に圧縮された蒸発ガスと、セカンダリポンプ13で昇圧された低温液体とを熱交換器を用いて熱交換させるようにしてもよい。このようにすることで、蒸発ガスは冷却され、再液化が促進され、また低温液体は加熱されることで気化器15での気化が促進される。   The evaporative gas compressed to an intermediate pressure by the evaporative gas compressor 7 and the low-temperature liquid pressurized by the secondary pump 13 may be heat-exchanged using a heat exchanger. By doing in this way, evaporative gas is cooled and reliquefaction is accelerated | stimulated and vaporization in the vaporizer 15 is accelerated | stimulated by heating a low temperature liquid.

[実施の形態2]
図3、図4に基づいて本発明の実施の形態2を説明する。
図3において、図1と同一部分には同一の符号を付してある。本実施の形態の蒸発ガス再液化方法に用いる蒸発ガス再液化装置16は、実施の形態1に示したものに加えて、蒸発ガス圧縮機7に送出される蒸発ガスの流量を検知する蒸発ガス流量検知器17と、貯槽3から送出される低温液体の流量を検知する低温液体流量検知器19と、低温液体流量検知器19と蒸発ガス流量検知器17の検知信号を入力して、これらの検知信号に基づいて前記蒸発ガス圧縮機7によって蒸発ガスを昇圧する圧力およびプライマリポンプ9(本発明の「送出ポンプ」に相当する)で低温液体を昇圧する圧力を制御する制御装置21とを備えたものである。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS.
In FIG. 3, the same parts as those in FIG. The evaporative gas reliquefaction device 16 used in the evaporative gas reliquefaction method of the present embodiment is an evaporative gas that detects the flow rate of the evaporative gas sent to the evaporative gas compressor 7 in addition to the one shown in the first embodiment. The flow rate detector 17, the low temperature liquid flow rate detector 19 for detecting the flow rate of the low temperature liquid delivered from the storage tank 3, the detection signals of the low temperature liquid flow rate detector 19 and the evaporative gas flow rate detector 17 are input, and these And a control device 21 for controlling the pressure for increasing the pressure of the evaporative gas by the evaporative gas compressor 7 based on the detection signal and the pressure for increasing the temperature of the low temperature liquid by the primary pump 9 (corresponding to the “delivery pump” of the present invention). It is a thing.

図4は、制御装置21による蒸発ガス圧縮機7の制御方法の説明図であり、蒸発ガス圧縮機7およびプライマリポンプ9の昇圧する圧力と、蒸発ガスの割合との関係の一例を示すグラフである。縦軸が、蒸発ガス圧縮機7とプライマリポンプ9の吐出圧力(MPa)で、横軸が蒸発ガスと低温液体の質量流量比(蒸発ガス/低温液体)を示している。
図4に示されるように、制御装置21は、蒸発ガスの割合が多くなるほど、吐出圧力を高くするように蒸発ガス圧縮機7およびプライマリポンプ9を制御する。
FIG. 4 is an explanatory diagram of a control method of the evaporative gas compressor 7 by the control device 21, and is a graph showing an example of the relationship between the pressure of the evaporative gas compressor 7 and the primary pump 9 and the ratio of the evaporative gas. is there. The vertical axis indicates the discharge pressure (MPa) of the evaporative gas compressor 7 and the primary pump 9, and the horizontal axis indicates the mass flow ratio (evaporated gas / low temperature liquid) between the evaporated gas and the low temperature liquid.
As shown in FIG. 4, the control device 21 controls the evaporative gas compressor 7 and the primary pump 9 to increase the discharge pressure as the evaporative gas ratio increases.

このように、蒸発ガスと低温液体との質量流量割合に応じて蒸発ガスおよび低温液体を昇圧する圧力を制御することにより、以下のような効果が得られる。
蒸発ガスの割合が少ない場合には、低温液体からの冷熱を十分に受けることができるので、昇圧する圧力を低くしても、蒸発ガスの再液化を確実に行うことができる。昇圧する圧力を低圧にすることで、蒸発ガス圧縮機7の電力消費を低減できる。
他方、蒸発ガスの割合が多い場合には、低温液体からの冷熱を十分に受けることができないので、それに応じて蒸発ガスを高圧にすることで、少ない冷熱で再液化でき、蒸発ガス割合が多い場合でも確実に再液化できる。
In this way, by controlling the pressure for boosting the evaporation gas and the low-temperature liquid according to the mass flow rate ratio between the evaporation gas and the low-temperature liquid, the following effects can be obtained.
When the ratio of the evaporative gas is small, it is possible to sufficiently receive the cold heat from the low-temperature liquid, so that the evaporative gas can be reliably liquefied even if the pressure to be increased is lowered. By reducing the pressure to be increased, the power consumption of the evaporative gas compressor 7 can be reduced.
On the other hand, when the proportion of the evaporative gas is large, it is not possible to sufficiently receive the cold heat from the low-temperature liquid. Therefore, the vapor can be reliquefied with a small amount of cold heat by increasing the vapor pressure accordingly, and the proportion of the vaporized gas is large. Even in cases, it can be reliquefied reliably.

以上のように、本実施の形態によれば、蒸発ガス圧縮機7を最低限の電力消費量に抑えながら、蒸発ガスの再液化を確実に行うことができる。
なお、蒸発ガス圧縮機7とプライマリポンプ9の吐出圧力を制御する際、セカンダリポンプ13の吐出圧力を都市ガスとして送出する運用圧力となるようにセカンダリポンプの昇圧幅を制御することは言うまでもない。
As described above, according to the present embodiment, it is possible to reliably reliquefy the evaporative gas while suppressing the evaporative gas compressor 7 to the minimum power consumption.
In addition, when controlling the discharge pressure of the evaporative gas compressor 7 and the primary pump 9, it goes without saying that the pressure increase width of the secondary pump is controlled so that the discharge pressure of the secondary pump 13 becomes the operation pressure for sending out as city gas.

また、蒸発ガスと低温液体との質量流量割合に応じて蒸発ガスおよび低温液体を昇圧する圧力を制御する方法としては、蒸発ガス圧縮機7を多段式の多段蒸発ガス圧縮機とし、またプライマリポンプ9を多段式の多段昇圧ポンプとし、制御装置21は、低温液体流量検知器19と蒸発ガス流量検知器17の検知信号に基づいて多段蒸発ガス圧縮機の圧縮段数および多段昇圧ポンプの昇圧段数を制御するようにすればよい。   As a method for controlling the pressure for boosting the evaporative gas and the low temperature liquid according to the mass flow rate ratio between the evaporative gas and the low temperature liquid, the evaporative gas compressor 7 is a multistage multistage evaporative gas compressor, and the primary pump 9 is a multistage multistage booster pump, and the control device 21 determines the number of compression stages of the multistage evaporative gas compressor and the number of booster stages of the multistage booster pump based on the detection signals of the low-temperature liquid flow rate detector 19 and the evaporative gas flow rate detector 17. What is necessary is just to control.

1 蒸発ガス再液化装置
3 貯槽
5 低温液体
7 蒸発ガス圧縮機
9 プライマリポンプ
11 微細気泡発生器
13 セカンダリポンプ
15 気化器
16 蒸発ガス再液化装置
17 蒸発ガス流量検知器
19 低温液体流量検知器
21 制御装置
110 微細気泡発生装置
113 混合器
115 底面部
117 気体導入管
119 側面部
121 液体導入管
123 排出管
125 気柱
DESCRIPTION OF SYMBOLS 1 Evaporative gas reliquefaction apparatus 3 Storage tank 5 Low temperature liquid 7 Evaporative gas compressor 9 Primary pump 11 Fine bubble generator 13 Secondary pump 15 Evaporator 16 Evaporative gas reliquefaction device 17 Evaporative gas flow detector 19 Low temperature liquid flow detector 21 Control Device 110 Microbubble generator 113 Mixer 115 Bottom surface portion 117 Gas introduction tube 119 Side surface portion 121 Liquid introduction tube 123 Discharge tube 125 Air column

Claims (2)

貯槽内に貯留された低温液体から発生する蒸発ガスを蒸発ガス圧縮機によって圧縮して微細気泡発生器に導入するとともに、前記貯槽内の低温液体を送出ポンプによって送出して前記微細気泡発生器に導入し、前記微細気泡発生器において前記蒸発ガスと前記低温液体とを混合して前記蒸発ガスを再液化し、再液化された蒸発ガスを含む低温液体をセカンダリポンプによって昇圧する蒸発ガス再液化方法であって、
前記微細気泡発生器に導入された蒸発ガスは微細気泡となり、微細気泡となった蒸発ガスは、前記微細気泡発生器内及び、前記微細気泡発生器と前記セカンダリポンプをつなぐ配管内で低温液体によって冷却されて再液化することを特徴とする蒸発ガス再液化方法。
The evaporative gas generated from the low temperature liquid stored in the storage tank is compressed by an evaporative gas compressor and introduced into the fine bubble generator, and the low temperature liquid in the storage tank is sent out by a delivery pump to the fine bubble generator. An evaporative gas re-liquefaction method for introducing and re-liquefying the evaporative gas by mixing the evaporative gas and the low-temperature liquid in the fine bubble generator, and boosting the low-temperature liquid containing the re-liquefied evaporative gas by a secondary pump Because
The evaporative gas introduced into the microbubble generator becomes microbubbles, and the evaporative gas that has become microbubbles is generated by the cryogenic liquid in the microbubble generator and in the pipe connecting the microbubble generator and the secondary pump. An evaporative gas reliquefaction method characterized by being cooled and reliquefied.
前記蒸発ガス圧縮機に送出される蒸発ガスと前記貯槽から送出される低温液体との質量流量割合に応じて前記蒸発ガスおよび前記低温液体を昇圧する圧力を制御するようにしたことを特徴とする請求項1記載の蒸発ガス再液化方法。   The pressure for boosting the evaporative gas and the cryogenic liquid is controlled according to the mass flow rate ratio between the evaporative gas delivered to the evaporative gas compressor and the cryogenic liquid delivered from the storage tank. The evaporative gas reliquefaction method according to claim 1.
JP2013099846A 2013-05-10 2013-05-10 Evaporative gas reliquefaction method Active JP5708702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099846A JP5708702B2 (en) 2013-05-10 2013-05-10 Evaporative gas reliquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099846A JP5708702B2 (en) 2013-05-10 2013-05-10 Evaporative gas reliquefaction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009277099A Division JP5333186B2 (en) 2009-12-05 2009-12-05 Evaporative gas reliquefaction equipment

Publications (2)

Publication Number Publication Date
JP2013155879A true JP2013155879A (en) 2013-08-15
JP5708702B2 JP5708702B2 (en) 2015-04-30

Family

ID=49051255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099846A Active JP5708702B2 (en) 2013-05-10 2013-05-10 Evaporative gas reliquefaction method

Country Status (1)

Country Link
JP (1) JP5708702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029085B2 (en) * 2015-03-20 2021-06-08 Chiyoda Corporation BOG processing apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220297U (en) * 1985-07-23 1987-02-06
JPH08173781A (en) * 1994-12-27 1996-07-09 Osaka Gas Co Ltd Gas-liquid mixer for liquified natural gas
JPH10227398A (en) * 1997-02-17 1998-08-25 Osaka Gas Co Ltd Disposal facility of boiloff gas and method thereof, manufacturing facility of natural gas and method thereof
JP2000093772A (en) * 1998-09-22 2000-04-04 Terabondo:Kk Micro-gas bubble liquid gas mixing and dissolving device
US6745576B1 (en) * 2003-01-17 2004-06-08 Darron Granger Natural gas vapor recondenser system
US20050150236A1 (en) * 2004-01-09 2005-07-14 Harsco Technologies Corporation Pressure control device for cryogenic liquid vessel
JP2007069071A (en) * 2005-09-05 2007-03-22 Sharp Corp Minute bubble generator and minute bubble circulation system incorporated with it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220297U (en) * 1985-07-23 1987-02-06
JPH08173781A (en) * 1994-12-27 1996-07-09 Osaka Gas Co Ltd Gas-liquid mixer for liquified natural gas
JPH10227398A (en) * 1997-02-17 1998-08-25 Osaka Gas Co Ltd Disposal facility of boiloff gas and method thereof, manufacturing facility of natural gas and method thereof
JP2000093772A (en) * 1998-09-22 2000-04-04 Terabondo:Kk Micro-gas bubble liquid gas mixing and dissolving device
US6745576B1 (en) * 2003-01-17 2004-06-08 Darron Granger Natural gas vapor recondenser system
US20050150236A1 (en) * 2004-01-09 2005-07-14 Harsco Technologies Corporation Pressure control device for cryogenic liquid vessel
JP2007069071A (en) * 2005-09-05 2007-03-22 Sharp Corp Minute bubble generator and minute bubble circulation system incorporated with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029085B2 (en) * 2015-03-20 2021-06-08 Chiyoda Corporation BOG processing apparatus

Also Published As

Publication number Publication date
JP5708702B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5333186B2 (en) Evaporative gas reliquefaction equipment
KR101741741B1 (en) Fuel gas supplying system in ships
JP2009062982A (en) Gas supply device for internal combustion engine driven by gaseous fuel
JP5884995B2 (en) Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
US20080264492A1 (en) Methods for pressurizing boil off gas
JP6407054B2 (en) Calorific value adjustment system for liquefied gas shipping equipment
KR101924536B1 (en) Bunkering vessel, and method of processing return gas of the same
JP5708702B2 (en) Evaporative gas reliquefaction method
CN105164462A (en) Low-temperature liquefied gas tank
KR20170135147A (en) liquefaction system of boil-off gas and ship having the same
JP6245544B2 (en) Uniform vaporization mixing apparatus and uniform vaporization mixing method
JPH1163396A (en) Boiloff gas condensing device and liquefied gas storage equipment
KR101984978B1 (en) Liquefied fuel vessel
WO2016194056A1 (en) Condensing and mixing device and evaporated gas re-liquefaction device having same
JP7330446B2 (en) An extraction system for extracting natural gas liquids (NGL) from liquefied natural gas (LNG)
KR102138916B1 (en) Liquified gas carrier
JP5945974B2 (en) Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
JP2011105955A (en) Method of adjusting dilution calorie of natural gas
JP2016147997A (en) Heat amount control system for liquefied gas shipping facility
JP6036390B2 (en) Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas
CN112444100B (en) Process and apparatus for treating lean liquid LNG
JP2000146430A (en) Method for reliquefying bog utilizing lng
JP2002338977A (en) Process and apparatus for reliquefying boil-off gas from liquefied natural gas
JPH08173781A (en) Gas-liquid mixer for liquified natural gas
JP2016183781A (en) Condensing mixing device and boil-off gas re-liquefying device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5708702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350