JP2015103788A - Semiconductor array substrate reuse method - Google Patents

Semiconductor array substrate reuse method Download PDF

Info

Publication number
JP2015103788A
JP2015103788A JP2013246058A JP2013246058A JP2015103788A JP 2015103788 A JP2015103788 A JP 2015103788A JP 2013246058 A JP2013246058 A JP 2013246058A JP 2013246058 A JP2013246058 A JP 2013246058A JP 2015103788 A JP2015103788 A JP 2015103788A
Authority
JP
Japan
Prior art keywords
dam
cover glass
semiconductor element
substrate
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013246058A
Other languages
Japanese (ja)
Other versions
JP6191417B2 (en
Inventor
大亮 中村
Daisuke Nakamura
大亮 中村
大熊 隆正
Takamasa Okuma
隆正 大熊
甲季 林
Koki Hayashi
甲季 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013246058A priority Critical patent/JP6191417B2/en
Publication of JP2015103788A publication Critical patent/JP2015103788A/en
Application granted granted Critical
Publication of JP6191417B2 publication Critical patent/JP6191417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an art to reuse a semiconductor substrate by separating a cover glass and the semiconductor substrate when malfunction which exceeds an allowable limit is found in a dam before cutting of a wafer.SOLUTION: A reuse method of a semiconductor element array substrate 2 comprises: a process of melting or destroying a dam 4 by irradiating laser beams 7 on a wafer-like member 1 on which a sensor substrate 6 which is provided with an on-chip color filter layer 3 composed of a color separation filter 3a and a microlens array 3b on an upper part of a semiconductor element array formed on a silicon wafer 10 and a cover glass 5 are bonded by a lattice-shaped dam 4 around the semiconductor element array 2a of the sensor substrate 6 at the lattice-shaped dam part 4 from the cover glass 5 side; a process of separating the cover glass 5 and the sensor substrate 6; and a process of removing the on-chip color filter layer 3 by performing ashing treatment and cleaning treatment on the sensor substrate 6.

Description

本発明は、固体撮像装置に係わり、特にはウエハサイズで多面付け製造されたカバーガラス付の固体撮像素子基板から、ウエハサイズのままでカバーガラスを外して加工前の半導体素子アレイ基板に戻す技術に関する。   The present invention relates to a solid-state imaging device, and in particular, from a solid-state imaging device substrate with a cover glass manufactured in a multifaceted manner with a wafer size, removing the cover glass in the wafer size and returning it to a semiconductor element array substrate before processing. About.

デジタルカメラ等に内蔵される固体撮像装置は、センサ本体となる多数の光電変換素子(CCDあるいはCMOS)の上に、色分解フィルタとマイクロレンズアレイ(一括して以下、OCF:オンチップカラーフィルタ、と記す。)が、光電変換素子に対応する形態で作りこまれたものである。CCD等は、シリコンウエハを用いてウエハプロセスにて製造されるが、OCF工程は前記工程とまったく独立な後工程として、ウエハプロセスに類似な工程である。   A solid-state imaging device built in a digital camera or the like has a color separation filter and a microlens array (hereinafter collectively referred to as OCF: on-chip color filter,) on a large number of photoelectric conversion elements (CCD or CMOS) serving as a sensor body. Is made in a form corresponding to the photoelectric conversion element. A CCD or the like is manufactured by a wafer process using a silicon wafer, but the OCF process is a process similar to the wafer process as a post process completely independent of the above process.

固体撮像装置は、図2に示すように径が30cm程度のシリコンウエハW上に多面付けで製造され、最終的に個片の固体撮像装置1に断裁される。1個の固体撮像装置用のエリアが、周辺も含めて概ね1cm角程度とすれば、一枚のウエハWから数百の固体撮像装置1が得られる。   As shown in FIG. 2, the solid-state imaging device is manufactured in a multifaceted manner on a silicon wafer W having a diameter of about 30 cm, and finally cut into individual solid-state imaging devices 1. If the area for one solid-state imaging device is approximately 1 cm square including the periphery, several hundred solid-state imaging devices 1 can be obtained from one wafer W.

また、固体撮像装置は、光電変換素子上にOCF層が積層されるだけではなく、素子全体の信頼性向上のために、光が入射する受光面側を封止する必要がある。このために、シリコン基板10上の半導体素子(受光)領域8を避けた領域に、枠状のダム(スペーサ:障壁)4を、有機材料を用いて形成し、このダム4にカバーガラス5を貼り付けて受光領域8を密閉するようにしている(特許文献1、特許文献2、図1も参照)。   Further, in the solid-state imaging device, not only the OCF layer is laminated on the photoelectric conversion element, but also the light receiving surface side on which light is incident needs to be sealed in order to improve the reliability of the entire element. For this purpose, a frame-shaped dam (spacer: barrier) 4 is formed using an organic material in a region avoiding the semiconductor element (light receiving) region 8 on the silicon substrate 10, and a cover glass 5 is formed on the dam 4. The light receiving region 8 is sealed by pasting (see also Patent Document 1, Patent Document 2, and FIG. 1).

個片化された半導体装置それぞれがカバーガラスでシールされているが、製造上は図2に示すように、ウエハWの個々の固体撮像装置1を区画する線上にダム4が格子状に一括形成されてから、ダム4を介してウエハWと略同サイズのカバーガラスと貼り合せた後、ダム4の中央がダイシングソーで切断されることになる。   Each of the separated semiconductor devices is sealed with a cover glass. However, as shown in FIG. 2, in manufacturing, dams 4 are collectively formed in a lattice pattern on a line separating individual solid-state imaging devices 1 of the wafer W. Then, after being bonded to the cover glass of approximately the same size as the wafer W through the dam 4, the center of the dam 4 is cut with a dicing saw.

従来技術におけるウエハW上のダムの形成方法としては、
未硬化のフィルムを隔壁の形状(枠状)に加工して、OCF層形成後の基板(以下、センサ基板と記す。)とカバーガラスとの間に配置した後、フィルムを硬化させて重合接着させて貼り合わせる方法がある。
As a method for forming a dam on the wafer W in the prior art,
An uncured film is processed into the shape of a partition wall (frame shape) and placed between a substrate (hereinafter referred to as a sensor substrate) after forming an OCF layer and a cover glass, and then the film is cured and polymerized. There is a method of sticking together.

別の方法としては、光硬化性樹脂と熱硬化性樹脂を含む接着層を用いる方法であって、ダム形成箇所に前記樹脂層を形成してから、選択的に露光して、所定の領域に接着層に含まれる光硬化性樹脂を硬化させる。そして、光硬化性樹脂が未硬化の領域を除去(現像)して樹脂層をパターニングし、パターニングされたダム層を加熱硬化させてセンサ基板とカバーガラスとを貼り合わせる方法がある。   Another method is a method using an adhesive layer containing a photocurable resin and a thermosetting resin, and after selectively forming the resin layer at the dam formation location, the predetermined area is exposed. The photocurable resin contained in the adhesive layer is cured. Then, there is a method of removing (developing) an uncured region of the photocurable resin to pattern the resin layer, and heat-curing the patterned dam layer to bond the sensor substrate and the cover glass.

露光と現像を含む前記方法では、隔壁の高さを50μmよりも高くすることは困難である。これよりも高さの高いダムは、スクリーン印刷法により光硬化性樹脂(又は光硬化性と熱硬化性を兼ねた樹脂)を印刷してから、光硬化によって被覆部を固定する技術が公知である(特許文献3参照)。   In the method including exposure and development, it is difficult to make the height of the partition wall higher than 50 μm. For dams with a height higher than this, a technology is known in which a photo-curing resin (or a resin that combines photo-curing properties and thermosetting properties) is printed by screen printing, and then the covering portion is fixed by photo-curing. Yes (see Patent Document 3).

特許文献3の方法では、枠状に光硬化性樹脂層をスクリーン印刷する工程〜光硬化性樹脂層を硬化する工程〜硬化した光硬化性樹脂層上に、更に枠状に光硬化性樹脂をスクリー
ン印刷する工程、を所望の回数だけ(ダムが所望の厚さになるまで)繰り返す。その後、カバーガラスで被覆してから光硬化性樹脂を硬化させている。
In the method of Patent Document 3, a step of screen printing a photocurable resin layer in a frame shape to a step of curing a photocurable resin layer to a photocurable resin layer in a frame shape on a cured photocurable resin layer. The process of screen printing is repeated as many times as desired (until the dam has the desired thickness). Thereafter, the photocurable resin is cured after being covered with a cover glass.

特開2008−40672号公報JP 2008-40672 A 特表2003−516634号公報Special table 2003-516634 gazette 特開2010−129643号公報JP 2010-129643 A 特開2008−16667号公報JP 2008-16667 A

ところがダム素材を硬化してセンサ基板とカバーガラスを固定する際に、ダム中に気泡が生じることがある。気泡が発生すると断裁したときに固体撮像装置の内部と大気とが連通してしまい固体撮像装置内部の密閉性が損なわれ、撮像装置としての信頼性が低下するという問題が生じる。   However, when the dam material is cured and the sensor substrate and the cover glass are fixed, bubbles may be generated in the dam. When cutting is performed when bubbles are generated, the inside of the solid-state imaging device and the atmosphere are communicated with each other, and the hermeticity inside the solid-state imaging device is impaired, and the reliability as the imaging device is reduced.

このような異常が見つかった場合には、個々の固体撮像装置からカバーガラスを剥がして対処したいが、無理に剥がすとセンサ基板側に損傷を与える。剥がせても再度ダムを形成してカバーガラスで被覆することは効率的でない。一方、断裁前の完全にカバーガラスが固着した状態からカバーガラスを剥がすことも困難である。   When such an abnormality is found, the cover glass is peeled off from each individual solid-state imaging device, but the sensor substrate side is damaged if it is forcibly removed. Even if it is peeled off, it is not efficient to form a dam again and cover it with a cover glass. On the other hand, it is also difficult to remove the cover glass from the state where the cover glass is completely fixed before cutting.

本発明は、上記事情に鑑みてなされたもので、ウエハの断裁前にダム中に許容限度以上の異常を発見した場合に、カバーガラスとセンサ基板を分離してOCF層が除去されたウエハサイズの半導体素子アレイ基板を再生する方法を提供することである。   The present invention has been made in view of the above circumstances, and when an abnormality exceeding an allowable limit is found in the dam before cutting the wafer, the wafer size in which the OCF layer is removed by separating the cover glass and the sensor substrate. A method for regenerating a semiconductor device array substrate is provided.

上記課題を達成するための請求項1に記載の発明は、シリコンウエハ上に半導体素子領域が形成された半導体素子アレイ基板の上部に色分解フィルタとマイクロレンズアレイからなるオンチップカラーフィルタ層を備えたセンサ基板と、カバーガラスと、が格子状ダムにより前記センサ基板の半導体素子領域を避けて接合されているウエハ様部材を、
カバーガラス側から格子状ダム部分にレーザ光を照射してダムを溶融もしくは破壊する工程、
カバーガラスとセンサ基板とを分離する工程、
を通すことを特徴とする半導体素子アレイ基板の再生方法としたものである。
According to a first aspect of the present invention for achieving the above object, an on-chip color filter layer comprising a color separation filter and a microlens array is provided on a semiconductor element array substrate in which a semiconductor element region is formed on a silicon wafer. A wafer-like member in which the sensor substrate and the cover glass are bonded to each other by avoiding the semiconductor element region of the sensor substrate by a lattice dam.
A process of melting or destroying the dam by irradiating a laser beam from the cover glass side to the lattice dam part,
A step of separating the cover glass and the sensor substrate;
In this method, the semiconductor element array substrate is reclaimed.

請求項2に記載の発明は、カバーガラスとセンサ基板とを分離した後、センサ基板に対しアッシング処理と洗浄処理を施してオンチップカラーフィルタ層を除去する工程、を通すことを特徴とする請求項1記載の半導体素子アレイ基板の再生方法としたものである。   The invention according to claim 2 is characterized in that after the cover glass and the sensor substrate are separated, an ashing process and a cleaning process are performed on the sensor substrate to remove the on-chip color filter layer. A method for reclaiming a semiconductor element array substrate according to Item 1.

また、請求項3に記載の発明は、前記ダムは、黒色であることを特徴とする請求項1または請求項2に記載の半導体素子アレイ基板の再生方法としたものである。   The invention described in claim 3 is the method for reclaiming a semiconductor element array substrate according to claim 1 or 2, wherein the dam is black.

本発明によれば、センサ基板とカバーガラスを接着する格子状のダムに欠陥が発見された場合に、オンチップカラーフィルタ層が形成される以前のウエハサイズの半導体素子アレイ基板を得ることができる。
請求項3の発明は、ダムを黒色系に帯色させておくとレーザ光の吸収効率が高いので短時間でダム素材を昇温・溶融もしくは破壊できる。半導体素子アレイ基板再生時間の短縮が期待できる。
According to the present invention, when a defect is found in a grid-like dam that bonds a sensor substrate and a cover glass, a wafer-sized semiconductor element array substrate before the on-chip color filter layer is formed can be obtained. .
In the invention of claim 3, if the dam is colored in black, the laser light absorption efficiency is high, so that the dam material can be heated, melted or destroyed in a short time. Reduction of the semiconductor element array substrate regeneration time can be expected.

(a)〜(d)本発明に係る半導体素子アレイ基板の再生過程を説明する断面視の工程図である。(A)-(d) It is process drawing of the cross sectional view explaining the reproduction | regeneration process of the semiconductor element array substrate based on this invention. センサ基板とカバーガラスが格子状ダムにより接合されたウエハ様部材の上面視の図である。It is a figure of the top view of the wafer-like member with which the sensor substrate and the cover glass were joined by the grid | lattice-like dam.

以下、先ず、固体撮像装置とその製造方法の概略を、図1を参照して説明する。
図1(a)は、本発明に係わる固体撮像装置の基本構造の概略を示す断面図である。
図1(b)〜(d)は、カバーガラスを分離する工程を説明する断面図である。
Hereinafter, first, an outline of a solid-state imaging device and a manufacturing method thereof will be described with reference to FIG.
FIG. 1A is a cross-sectional view showing an outline of a basic structure of a solid-state imaging device according to the present invention.
1B to 1D are cross-sectional views illustrating a process of separating the cover glass.

固体撮像装置1は、シリコンウエハ10上にCCDセンサやCMOSセンサ等の半導体素子領域(受光領域)8が形成された半導体素子アレイ基板2の上に、更にカラーフィルタ3a及びマイクロレンズ3bが形成されたセンサ基板6と封止用カバーガラス5から構成されている。センサ基板6には、受光領域に繋がる配線等が基板貫通ビアを介してシリコンウエハ裏面側に引き出されている。具体的には、センサ基板の表面部に、受光領域に繋がる配線が形成され、この配線に繋がるようにセンサ基板を貫通した貫通ビアが設けられている。そして、貫通ビアの下面が電極パッドに接続されている(いずれも図示せず。)。   In the solid-state imaging device 1, a color filter 3 a and a microlens 3 b are further formed on a semiconductor element array substrate 2 in which a semiconductor element region (light receiving region) 8 such as a CCD sensor or a CMOS sensor is formed on a silicon wafer 10. Sensor substrate 6 and sealing cover glass 5. In the sensor substrate 6, wiring and the like connected to the light receiving region are drawn out to the back side of the silicon wafer through the substrate through via. Specifically, wiring connected to the light receiving region is formed on the surface portion of the sensor substrate, and a through via penetrating the sensor substrate is provided so as to connect to the wiring. The bottom surface of the through via is connected to the electrode pad (none is shown).

センサ基板6の表面側で光電変化素子2a上には、カラーフィルタ3a及びマイクロレンズ3bからなるOCF層(On Chip Color Filter)3が設けられている。カラーフィルタ3aは、例えばRGBに対応して3種類の着色フィルタを有している。
尚、図1は、シリコンウエハ10上の数百個の固体撮像素子1のうちの3個だけを便宜上図示している。また、OCF層3は、数百万個の半導体素子2aの上に対応して形成されるが、そのうちの3個の色分解フィルタ3aとマイクロレンズ3bだけを図示している。
An OCF layer (On Chip Color Filter) 3 including a color filter 3a and a microlens 3b is provided on the photoelectric conversion element 2a on the surface side of the sensor substrate 6. The color filter 3a has, for example, three types of coloring filters corresponding to RGB.
FIG. 1 shows only three of several hundred solid-state imaging devices 1 on the silicon wafer 10 for convenience. The OCF layer 3 is formed corresponding to the millions of semiconductor elements 2a, and only the three color separation filters 3a and the microlenses 3b are shown.

センサ基板6の表面側には、OCF層3以外に受光領域8を避けて黒色樹脂からなる柱状のダム4が設けられている。このダム4は、厚さ(高さ)数十μmであり、受光領域を囲むように枠状に設けられている。ダム4の上面には、透明なカバーガラス5が接着固定されている。そして、このカバーガラス5の設置により、センサ基板6の受光領域側が封止されるものとなっている。   On the surface side of the sensor substrate 6, a columnar dam 4 made of a black resin is provided in addition to the OCF layer 3 so as to avoid the light receiving region 8. The dam 4 has a thickness (height) of several tens of μm, and is provided in a frame shape so as to surround the light receiving region. A transparent cover glass 5 is bonded and fixed to the upper surface of the dam 4. And the light reception area | region side of the sensor board | substrate 6 is sealed by installation of this cover glass 5. FIG.

前記の固体撮像装置1は、概ね次のようにして製造される。
まず、シリコンウエハ10の表面側に、CCDセンサやCMOSセンサ等の光電変換素子2aがウエハプロセスにて形成され、裏面側に電極パッドが形成されたウエハサイズの半導体素子アレイ基板2を用意する。一つの受光領域8は数百万個の光電変換素子2aを有している。
The solid-state imaging device 1 is generally manufactured as follows.
First, a wafer-sized semiconductor element array substrate 2 is prepared in which a photoelectric conversion element 2a such as a CCD sensor or a CMOS sensor is formed on the front surface side of the silicon wafer 10 by a wafer process and an electrode pad is formed on the back surface side. One light receiving region 8 has millions of photoelectric conversion elements 2a.

次いで、半導体素子アレイ基板2の表面側に、カラーフィルタ3a及びマイクロレンズ3bを、定法のフォトリソ法を用いて形成する。カラーフィルタ3a及びマイクロレンズ3bは、半導体素子アレイ基板2上に形成した光電変換素子2aごとに対応する位置に配置形成する。OCF層3が形成された半導体素子アレイ基板2をセンサ基板6と称する。   Next, the color filter 3 a and the microlens 3 b are formed on the surface side of the semiconductor element array substrate 2 by using a regular photolithography method. The color filter 3a and the microlens 3b are arranged and formed at positions corresponding to the photoelectric conversion elements 2a formed on the semiconductor element array substrate 2. The semiconductor element array substrate 2 on which the OCF layer 3 is formed is referred to as a sensor substrate 6.

なお、カラーフィルタ3aの配列は例えばRGBのベイヤー配列であるが、これらは何ら制限されるものではない。また、マイクロレンズ3bは、半導体素子2aへの集光性を高めるためのものであり、レンズ無しでも半導体素子2aの感度が十分に高い場合は省略することも可能である。さらに、半導体素子アレイ基板2あるいはカラーフィルタ3aの表面凹凸が問題になる場合は、それらの形成前に図示しない透明な表面平滑化層を設ける
ようにしても良い。
The arrangement of the color filters 3a is, for example, an RGB Bayer arrangement, but these are not limited at all. The microlens 3b is for enhancing the light condensing property to the semiconductor element 2a, and can be omitted when the sensitivity of the semiconductor element 2a is sufficiently high even without a lens. Furthermore, when the surface unevenness of the semiconductor element array substrate 2 or the color filter 3a becomes a problem, a transparent surface smoothing layer (not shown) may be provided before forming them.

次いで、図2に示すようにセンサ基板6の表面側に受光領域8を避けて格子状に幅が10数μmで20〜50μmの厚さにダムパターン4を形成する。ダム4は、感光性のドライフィルムや液状レジストから定法のフォトリソ法を適用して形成することができる。   Next, as shown in FIG. 2, the dam pattern 4 is formed on the surface side of the sensor substrate 6 so as to avoid the light receiving region 8 and to have a grid shape with a width of several tens of μm and a thickness of 20 to 50 μm. The dam 4 can be formed by applying a regular photolithography method from a photosensitive dry film or a liquid resist.

あるいは、黒色樹脂インキを用いてスクリーン印刷により形成されるが、これが簡便である。ダム4の材料としては、エポキシ樹脂を主成分とし、黒色フィラーを含有した液体インキで、熱硬化性(更にUV硬化性)を備える材料が好ましい。このような液体インキをダム4のパターンに印刷した後に、熱又はUV光の照射により硬化させる。   Or it is formed by screen printing using black resin ink, but this is simple. The material of the dam 4 is preferably a liquid ink that contains an epoxy resin as a main component and contains a black filler, and is provided with thermosetting (further UV curable). After such a liquid ink is printed on the pattern of the dam 4, it is hardened by irradiation with heat or UV light.

液体インキとしては、エポキシ系樹脂を主成分とする以外に、エポキシ−ウレタン系樹脂,及びイソシアネート系樹脂,シアノアクリレート系樹脂を挙げることができ、主成分の樹脂に、染料若しくは顔料の色材,比較的低分子量の溶剤可溶性樹脂,光重合性モノマー若しくはオリゴマー,光重合開始剤及び溶剤からなる感光性インキも採用できる。   Examples of liquid inks include epoxy-urethane resins, isocyanate resins, and cyanoacrylate resins, in addition to epoxy resins as the main component. A photosensitive ink comprising a solvent-soluble resin having a relatively low molecular weight, a photopolymerizable monomer or oligomer, a photopolymerization initiator, and a solvent can also be employed.

あるいは、アクリル樹脂(メタクリル酸20重量部,ヒドロキシエチルメタクリレート15重量部,メチルメタクリレート10重量部,ブチルメタクリレート55重量部をエチルセロソルブ300重量部に溶解し、窒素雰囲気下でアゾビスニトリル0.75重量部を加えて、70℃,5時間反応させ得られたアクリル樹脂)を主成分とする樹脂も使用できる。   Alternatively, acrylic resin (20 parts by weight of methacrylic acid, 15 parts by weight of hydroxyethyl methacrylate, 10 parts by weight of methyl methacrylate, 55 parts by weight of butyl methacrylate is dissolved in 300 parts by weight of ethyl cellosolve, and 0.75% by weight of azobisnitrile in a nitrogen atmosphere. An acrylic resin obtained by adding a part and reacting at 70 ° C. for 5 hours can also be used.

なお、添加する黒色顔料としては、350nm〜400nmの近紫外線域に対する透過率がカーボンブラックよりも高く、且つ600nm以上の可視光域に対する透過率がカーボンブラックよりも低いチタンブラックも好適に採用できる。カーボンブラック,チタンブラックの何れを添加する場合であっても、ダム4を形成した後の光学特性として、可視波長域での反射率が1.5%を下回ることが望ましい。   In addition, as a black pigment to be added, titanium black having a transmittance higher than that of carbon black in the near ultraviolet region of 350 nm to 400 nm and lower than that of carbon black in a visible light region of 600 nm or more can be suitably employed. Regardless of whether carbon black or titanium black is added, it is desirable that the reflectance in the visible wavelength region is less than 1.5% as the optical characteristics after the dam 4 is formed.

次に、ダム4の上面にウエハサイズのカバーガラス5を接触させ圧着することにより、断面視で図1(a)に示す構造の部材(以下、ウエハ様部材1と記す。)を得る。このとき、ダム4の形成材料であるインキ自体に接着性を有するため、特別に接着剤を用いなくてもカバーガラス5をダム4に接着固定することができる。ウエハ様部材1をカバーガラス5も含めてダム4にそってダイシングソーで断裁すると個片に分離した固体撮像素子1が得られる。   Next, a wafer-sized cover glass 5 is brought into contact with the upper surface of the dam 4 and pressed to obtain a member (hereinafter referred to as a wafer-like member 1) having a structure shown in FIG. At this time, since the ink itself which is a material for forming the dam 4 has adhesiveness, the cover glass 5 can be bonded and fixed to the dam 4 without using any special adhesive. When the wafer-like member 1 including the cover glass 5 is cut along a dam 4 with a dicing saw, the solid-state imaging device 1 separated into individual pieces is obtained.

しかしながら、接着工程でダム4の内部に気泡が発生すると、気泡自体もしくは分割された気泡により撮像素子内部が大気と連通する可能性がある。したがって、格子状ダム部分の検査により内部に気泡が検出された場合にはウエハ様部材1の段階で対策する必要がある。   However, when bubbles are generated inside the dam 4 in the bonding process, there is a possibility that the inside of the image sensor communicates with the atmosphere by the bubbles themselves or the divided bubbles. Therefore, when air bubbles are detected in the inside of the lattice-like dam, it is necessary to take measures at the wafer-like member 1 stage.

本発明は、問題の気泡が格子状ダムのどこにどれだけ検出されるかにもよるが、断裁後に、不良品の発生が相当数予想される場合には、いったん接合したカバーガラス5を剥がして、OCF層3のない元の半導体素子アレイ基板2に戻してから作り直すことにするものである。その際、ダム4だけ取り除くのが望ましいが困難なのでOCF層3ごと取り除くことになる。   The present invention depends on where and how much of the bubble in question is detected in the lattice dam. If a considerable number of defective products are expected after cutting, the cover glass 5 once bonded is peeled off. In this case, the original semiconductor element array substrate 2 without the OCF layer 3 is restored and recreated. At this time, it is desirable to remove only the dam 4, but it is difficult to remove the entire OCF layer 3.

以下、その具体的方法を図1(b)〜(d)を使って説明する。
先ず、カバーガラス5側から格子状ダム4部分にレーザ光7を照射してダム4を溶融もしくは破壊して、カバーガラス5とセンサ基板6との分離を容易にする(図1(b))。
エポキシ系材料、あるいはアクリル系材料からなるダム4部分だけに、マスクを用いて選
択的に高出力レーザ7を照射するとダム4が破壊されて接続を解除することができる。その後は、比較的容易にウエハサイズのカバーガラス5を取り外すことができる(図1(c)、特許文献4参照)。
Hereinafter, the specific method is demonstrated using FIG.1 (b)-(d).
First, the lattice dam 4 is irradiated with laser light 7 from the cover glass 5 side to melt or break the dam 4 to facilitate separation of the cover glass 5 and the sensor substrate 6 (FIG. 1B). .
By selectively irradiating only the dam 4 portion made of an epoxy material or an acrylic material with a high-power laser 7 using a mask, the dam 4 is broken and the connection can be released. Thereafter, the wafer-size cover glass 5 can be removed relatively easily (see FIG. 1C and Patent Document 4).

ダム材料にリワーク型の素材を用いれば、レーザ照射でダムの温度を200度程度に昇温すれば接着力が低下して取り外しやすくなる。リワーク型材料は、熱硬化型でも紫外線硬化型でも手に入れることができる。温度上昇にはダムを黒色にしておくのが効果的である。   If a rework-type material is used for the dam material, the adhesive strength is lowered and the dam material is easily removed when the temperature of the dam is raised to about 200 degrees by laser irradiation. The rework type material can be obtained in either a thermosetting type or an ultraviolet curable type. It is effective to keep the dam black for temperature rise.

次に、カバーガラス5を取り除いたセンサ基板6は、ダム4の残りや残渣、OCF他で被覆されているがこれらの有機材料を除去する必要がある。これらは、強酸、強アルカリ液を使った分解、あるいは有機溶剤による膨潤と研磨の併用で除去できる。あるいはリワーク性のある材料で組成されていれば昇温してからは、メタノール等で容易に溶解・除去できる。   Next, the sensor substrate 6 from which the cover glass 5 has been removed is covered with the remainder or residue of the dam 4, OCF, etc., but it is necessary to remove these organic materials. These can be removed by decomposition using a strong acid or strong alkali solution, or a combination of swelling and polishing with an organic solvent. Alternatively, if it is composed of a reworkable material, it can be easily dissolved and removed with methanol or the like after the temperature is raised.

上記のウエットプロセス以外には、センサ基板6に対しアッシング処理と洗浄処理を施してOCF層3他を同様に除去することもできる。プラズマアッシングは、基板上に残ったフォトレジストを酸素プラズマなどの反応性ガスのプラズマを発生して、気相中で有機物であるフォトレジストをCOやHOに分解して除去する装置である。
いずれかの工程あるいは併用しても構わないが、最後は洗浄・乾燥することで汚れのない半導体素子アレイ基板2を再生することができる(図1(d))。
In addition to the above wet process, the OCF layer 3 and the like can be similarly removed by subjecting the sensor substrate 6 to ashing and cleaning. Plasma ashing is an apparatus that generates a reactive gas plasma such as oxygen plasma from the photoresist remaining on the substrate, and decomposes and removes the organic photoresist into CO 2 and H 2 O in the gas phase. is there.
Any step or a combination of these steps may be used, but finally, the semiconductor element array substrate 2 with no contamination can be regenerated by washing and drying (FIG. 1D).

1…固体撮像装置(ウエハ様部材)
2…半導体素子アレイ基板
2a・・・光電変換素子
3…OCF層
3a…カラーフィルタ層
3b…マイクロレンズ
4…(格子状)ダム
4‘…破壊されたダム
5…カバーガラス
6…センサ基板
7…レーザ光
8…受光領域(半導体素子領域)
10…シリコンウエハ
W:ウエハサイズの半導体素子基板またはウエハ様部材
1. Solid-state imaging device (wafer-like member)
DESCRIPTION OF SYMBOLS 2 ... Semiconductor element array substrate 2a ... Photoelectric conversion element 3 ... OCF layer 3a ... Color filter layer 3b ... Micro lens 4 ... (Lattice-like) dam 4 '... Broken dam 5 ... Cover glass 6 ... Sensor substrate 7 ... Laser light 8: Light receiving region (semiconductor element region)
10. Silicon wafer W: Wafer-sized semiconductor element substrate or wafer-like member

Claims (3)

シリコンウエハ上に半導体素子領域が形成された半導体素子アレイ基板の上部に色分解フィルタとマイクロレンズアレイからなるオンチップカラーフィルタ層を備えたセンサ基板と、カバーガラスと、が格子状ダムにより前記センサ基板の半導体素子領域を避けて接合されているウエハ様部材を、
カバーガラス側から格子状ダム部分にレーザ光を照射してダムを溶融もしくは破壊する工程、
カバーガラスとセンサ基板とを分離する工程、
を通すことを特徴とする半導体素子アレイ基板の再生方法。
A sensor substrate having an on-chip color filter layer composed of a color separation filter and a microlens array on a semiconductor element array substrate on which a semiconductor element region is formed on a silicon wafer, and a cover glass include the sensor by a lattice dam. A wafer-like member bonded to avoid the semiconductor element region of the substrate,
A process of melting or destroying the dam by irradiating a laser beam from the cover glass side to the lattice dam part,
A step of separating the cover glass and the sensor substrate;
A method for reclaiming a semiconductor element array substrate, characterized by comprising:
カバーガラスとセンサ基板とを分離した後、センサ基板に対しアッシング処理と洗浄処理を施してオンチップカラーフィルタ層を除去する工程、を通すことを特徴とする請求項1記載の半導体素子アレイ基板の再生方法。   2. The semiconductor element array substrate according to claim 1, wherein after the cover glass and the sensor substrate are separated, the sensor substrate is subjected to an ashing process and a cleaning process to remove the on-chip color filter layer. Playback method. 前記ダムは、黒色であることを特徴とする請求項1または請求項2に記載の半導体素子アレイ基板の再生方法。   3. The method of reclaiming a semiconductor element array substrate according to claim 1, wherein the dam is black.
JP2013246058A 2013-11-28 2013-11-28 Method for regenerating semiconductor element array substrate Active JP6191417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246058A JP6191417B2 (en) 2013-11-28 2013-11-28 Method for regenerating semiconductor element array substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246058A JP6191417B2 (en) 2013-11-28 2013-11-28 Method for regenerating semiconductor element array substrate

Publications (2)

Publication Number Publication Date
JP2015103788A true JP2015103788A (en) 2015-06-04
JP6191417B2 JP6191417B2 (en) 2017-09-06

Family

ID=53379232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246058A Active JP6191417B2 (en) 2013-11-28 2013-11-28 Method for regenerating semiconductor element array substrate

Country Status (1)

Country Link
JP (1) JP6191417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618501B2 (en) 2019-02-08 2023-04-04 Autoliv Development Ab Vibration reduction structure for vehicle steering wheel

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343701A (en) * 1989-07-11 1991-02-25 Toppan Printing Co Ltd Method for peeling color filter
JP2002231918A (en) * 2001-02-06 2002-08-16 Olympus Optical Co Ltd Solid-state image pickup device and its manufacturing method
JP2003516634A (en) * 1999-12-10 2003-05-13 シェルケース リミティド Manufacturing method of packaged integrated circuit device and packaged integrated circuit device manufactured by the manufacturing method
JP2007188970A (en) * 2006-01-11 2007-07-26 Mitsumi Electric Co Ltd Semiconductor device
US20070190691A1 (en) * 2006-01-23 2007-08-16 Tessera Technologies Hungary Kft. Wafer level chip packaging
JP2008016667A (en) * 2006-07-06 2008-01-24 Fujifilm Corp Package opening method and device, polishing method and device, chip extraction method and device, and inspection method and device
JP2010040621A (en) * 2008-08-01 2010-02-18 Toshiba Corp Solid-state imaging device, and method of manufacturing the same
JP2010129643A (en) * 2008-11-26 2010-06-10 Kyoritsu Kagaku Sangyo Kk Semiconductor device manufacturing method
JP2011009333A (en) * 2009-06-24 2011-01-13 Panasonic Corp Method for manufacturing and inspecting solid-state imaging device
JP2012049401A (en) * 2010-08-27 2012-03-08 Canon Inc Method of manufacturing photosensor
JP2012049400A (en) * 2010-08-27 2012-03-08 Canon Inc Optical sensor manufacturing method, optical sensor, and camera
JP2013115104A (en) * 2011-11-25 2013-06-10 Toppan Printing Co Ltd Wafer sealing method for cmos image sensor
JP2013140916A (en) * 2012-01-06 2013-07-18 Toppan Printing Co Ltd Semiconductor device and manufacturing method of the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343701A (en) * 1989-07-11 1991-02-25 Toppan Printing Co Ltd Method for peeling color filter
JP2003516634A (en) * 1999-12-10 2003-05-13 シェルケース リミティド Manufacturing method of packaged integrated circuit device and packaged integrated circuit device manufactured by the manufacturing method
JP2002231918A (en) * 2001-02-06 2002-08-16 Olympus Optical Co Ltd Solid-state image pickup device and its manufacturing method
JP2007188970A (en) * 2006-01-11 2007-07-26 Mitsumi Electric Co Ltd Semiconductor device
US20070190691A1 (en) * 2006-01-23 2007-08-16 Tessera Technologies Hungary Kft. Wafer level chip packaging
JP2008016667A (en) * 2006-07-06 2008-01-24 Fujifilm Corp Package opening method and device, polishing method and device, chip extraction method and device, and inspection method and device
JP2010040621A (en) * 2008-08-01 2010-02-18 Toshiba Corp Solid-state imaging device, and method of manufacturing the same
JP2010129643A (en) * 2008-11-26 2010-06-10 Kyoritsu Kagaku Sangyo Kk Semiconductor device manufacturing method
JP2011009333A (en) * 2009-06-24 2011-01-13 Panasonic Corp Method for manufacturing and inspecting solid-state imaging device
JP2012049401A (en) * 2010-08-27 2012-03-08 Canon Inc Method of manufacturing photosensor
JP2012049400A (en) * 2010-08-27 2012-03-08 Canon Inc Optical sensor manufacturing method, optical sensor, and camera
JP2013115104A (en) * 2011-11-25 2013-06-10 Toppan Printing Co Ltd Wafer sealing method for cmos image sensor
JP2013140916A (en) * 2012-01-06 2013-07-18 Toppan Printing Co Ltd Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP6191417B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP3675402B2 (en) OPTICAL DEVICE AND ITS MANUFACTURING METHOD, OPTICAL MODULE, CIRCUIT BOARD AND ELECTRONIC DEVICE
JP3881888B2 (en) Optical device manufacturing method
JP4280085B2 (en) Wafer sawing method
US7619678B2 (en) Solid state imaging device and method for manufacturing the same
CN102150269B (en) Method for manufacturing solid-state imaging device
JP4832500B2 (en) Method for manufacturing electronic element wafer module and method for manufacturing optical element wafer module
JP2006228837A (en) Semiconductor device and its manufacturing method
TWI467747B (en) Solid photographic apparatus and method of manufacturing the same
JP2010103490A (en) Optical element, optical element wafer, optical element wafer module, optical element module, method of manufacturing optical element module, electron device wafer module, method of manufacturing electronic device module, electronic element module, and electronic information device
JP6191417B2 (en) Method for regenerating semiconductor element array substrate
US10663698B2 (en) Optical assemblies including a spacer adhering directly to a substrate
CN104992955A (en) Backside-illuminated image sensor wafer level packaging process and packaging structure
JP4947256B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006295481A (en) Semiconductor imaging apparatus and manufacturing method thereof
JP5061580B2 (en) Solid-state imaging device and manufacturing method thereof
JP4407800B2 (en) Manufacturing method of semiconductor device
JP2006080297A (en) Solid-state imaging apparatus and manufacturing method thereof
JP5261897B2 (en) Multi-sided protective material, manufacturing method thereof, and manufacturing method of sensor chip
JP2015060156A (en) Method for forming and using resist thick film, and method for manufacturing solid-state image sensor
JP2014216475A (en) Solid state image pickup device and manufacturing method of the same
JP2012099639A (en) Image sensor and method of manufacturing the same
JP2010165779A (en) Solid-state imaging apparatus and method of manufacturing the same
JP2016039335A (en) Solid state image pickup device manufacturing method
JP2015065210A (en) Cutting method of solid-state image sensor array substrate
KR20010010311A (en) Method for protecting microlens of solid static pick-up device during assembling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250