JP2015103487A - Gasification fuel cell hybrid power generation system, and method for operating gasification fuel cell hybrid power generation system - Google Patents

Gasification fuel cell hybrid power generation system, and method for operating gasification fuel cell hybrid power generation system Download PDF

Info

Publication number
JP2015103487A
JP2015103487A JP2013245225A JP2013245225A JP2015103487A JP 2015103487 A JP2015103487 A JP 2015103487A JP 2013245225 A JP2013245225 A JP 2013245225A JP 2013245225 A JP2013245225 A JP 2013245225A JP 2015103487 A JP2015103487 A JP 2015103487A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
solid oxide
combustor
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245225A
Other languages
Japanese (ja)
Other versions
JP6301118B2 (en
Inventor
雅人 村山
Masahito Murayama
雅人 村山
小山 智規
Tomonori Koyama
智規 小山
堤 孝則
Takanori Tsutsumi
孝則 堤
斎臣 吉田
Naoshige Yoshida
斎臣 吉田
貴 藤井
Takashi Fujii
貴 藤井
茂賢 武田
Shigemasa Takeda
茂賢 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013245225A priority Critical patent/JP6301118B2/en
Publication of JP2015103487A publication Critical patent/JP2015103487A/en
Application granted granted Critical
Publication of JP6301118B2 publication Critical patent/JP6301118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasification fuel cell hybrid power generation system which enables the stabilization of combustion in a combustor to be supplied with a combustible gas having passed through a solid oxide fuel cell; and a method for operating such a gasification fuel cell hybrid power generation system.SOLUTION: A gasification fuel cell hybrid power generation system comprises: a gasification furnace 10 which gasifies a carbon hydride-originating fuel; a gas-purification part 20 which purifies the resultant gasified gas; a solid oxide fuel cell 30 which is supplied with the purified combustible gas and generates a power; a gas turbine 40 which has a combustor 41 to be supplied with the combustible gas having passed through the solid oxide fuel cell 30, and drives a power generator G; and a branching part 80 which is provided downstream of the gas-purification part 20 and upstream of the solid oxide fuel cell 30, and which supplies the solid oxide fuel cell 30 with the combustible gas purified by the gas-purification part 20, and supplies the combustible gas to the combustor 41 without passing through the solid oxide fuel cell 30.

Description

本発明は、ガス化によって生成された可燃性ガスを用いるガス化燃料電池複合発電システム及びガス化燃料電池複合発電システムの運転方法に関するものである。   The present invention relates to a gasified fuel cell combined power generation system using a combustible gas generated by gasification and a method for operating the gasified fuel cell combined power generation system.

石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)では、炭化水素起源燃料(例えば、石炭、バイオ燃料又は石油残渣油)がガス化されて精製された可燃性ガスを燃焼することで得られるガスタービンの駆動力と、ガスタービンの排熱を回収することで得られる蒸気タービンの駆動力によって発電が行われる。
そして、上記IGCCに燃料電池を組み込んだ石炭ガス化燃料電池複合発電システム(IGFC:Integrated Coal Gasification Fuel Cell Combined Cycle)では、燃料電池が、ガス化されて精製された可燃性ガスを燃料ガスとして用いることによって、発電が行われる。
特許文献1には、複合発電システムに関する発明であって、燃料電池からガスタービンの燃焼器に未反応の燃料ガスが供給されるとき、燃焼器入口における発熱量が一定になるように、可燃性ガス供給手段から燃焼器に供給される可燃性ガスの量が制御されることが記載されている。
In the Integrated Coal Gasification Combined Cycle (IGCC), hydrocarbon-derived fuels (for example, coal, biofuel or petroleum residue oil) are obtained by burning combustible gas refined by gasification. Electricity is generated by the driving force of the gas turbine obtained and the driving force of the steam turbine obtained by collecting the exhaust heat of the gas turbine.
And in the coal gasification fuel cell combined cycle system (IGFC: Integrated Coal Gasification Fuel Cell Combined Cycle) in which the fuel cell is incorporated into the IGCC, the fuel cell uses the combustible gas purified by gasification as the fuel gas. Thus, power generation is performed.
Patent Document 1 discloses an invention relating to a combined power generation system. When unreacted fuel gas is supplied from a fuel cell to a combustor of a gas turbine, combustibility is ensured so that a calorific value at a combustor inlet is constant. It describes that the amount of combustible gas supplied from the gas supply means to the combustor is controlled.

特開2006−90287号公報JP 2006-90287 A

図2に示すように、IGFCにおいてガスタービンの上流側に燃料電池を設置した場合、可燃性ガスが燃料電池で燃料ガスとして用いられるため、ガスタービンの燃焼器入口における可燃性ガスの燃料ガス発熱量が低下する。図2に示すIGFCでは、燃料電池から燃焼器へ供給される未反応の燃料ガスの発熱量を上昇させて、ガスタービンの運転に適した温度まで燃焼器の燃焼温度を上昇させようとすると、燃焼器入口の燃料ガス量を増加させる必要がある。そのためには、可燃性ガスを生成するガス化炉での入熱を増加させなければならないが、石炭搬送用イナートガスや酸素など、系外から系内へ流入するガスの流量も増加する。   As shown in FIG. 2, when a fuel cell is installed on the upstream side of the gas turbine in the IGFC, the combustible gas is used as the fuel gas in the fuel cell, so that the fuel gas heat generation of the combustible gas at the gas turbine combustor inlet. The amount is reduced. In the IGFC shown in FIG. 2, when the calorific value of the unreacted fuel gas supplied from the fuel cell to the combustor is increased to increase the combustion temperature of the combustor to a temperature suitable for the operation of the gas turbine, It is necessary to increase the amount of fuel gas at the combustor inlet. For this purpose, heat input in the gasification furnace that generates combustible gas must be increased, but the flow rate of gas flowing from outside the system into the system, such as coal-conveying inert gas and oxygen, also increases.

また、燃料電池では、燃料極に供給される燃料ガスの全てが発電に寄与しない。発電に寄与しない燃料ガスは、燃料極を通過する間に副反応によって組成が変化し、発熱量が低下する。そのため、燃料極に供給される燃料ガスの量を増加させたとしても、増加分の燃料ガスについても副反応が生じて未反応の燃料ガスの発熱量が損失してしまう。
なお、図2で示したガス化燃料電池複合発電システムの構成は、本発明の一実施形態に係るガス化燃料電池複合発電設備と重複することから、図1を用いて後述する。
In the fuel cell, all of the fuel gas supplied to the fuel electrode does not contribute to power generation. The composition of the fuel gas that does not contribute to power generation changes due to side reactions while passing through the fuel electrode, and the calorific value is reduced. For this reason, even if the amount of fuel gas supplied to the fuel electrode is increased, a side reaction occurs with respect to the increased amount of fuel gas, and the heat value of unreacted fuel gas is lost.
The configuration of the gasified fuel cell combined power generation system shown in FIG. 2 overlaps with the gasified fuel cell combined power generation facility according to an embodiment of the present invention, and will be described later with reference to FIG.

本発明は、このような事情に鑑みてなされたものであって、燃焼器に供給される燃料ガスの発熱量を上昇させて、燃焼器入口の燃料ガス発熱量を増加させ、燃焼器での燃焼を安定化させるガス化燃料電池複合発電システム及びガス化燃料電池複合発電システムの運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and increases the calorific value of the fuel gas supplied to the combustor to increase the calorific value of the fuel gas at the combustor inlet. An object of the present invention is to provide a gasified fuel cell combined power generation system that stabilizes combustion and a method for operating the gasified fuel cell combined power generation system.

上記課題を解決するために、本発明のガス化燃料電池複合発電システム及びガス化燃料電池複合発電システムの運転方法は以下の手段を採用する。
すなわち、本発明に係るガス化燃料電池複合発電システムは、炭化水素起源燃料をガス化するガス化炉と、前記ガス化されたガスを精製するガス精製部と、前記精製された可燃性ガスが供給されて発電を行う固体酸化物形燃料電池と、前記固体酸化物形燃料電池を通過した前記可燃性ガスが供給される燃焼器を有し、発電機を駆動させるガスタービンと、前記ガス精製部の下流側、かつ、前記固体酸化物形燃料電池の上流側に設けられ、前記ガス精製部によって精製された前記可燃性ガスを前記固体酸化物形燃料電池へ供給し、かつ、前記固体酸化物形燃料電池を介さずに前記燃焼器へ供給する分岐部とを備える。
In order to solve the above problems, the gasified fuel cell combined power generation system and the operation method of the gasified fuel cell combined power generation system of the present invention employ the following means.
That is, the combined gasification fuel cell power generation system according to the present invention includes a gasification furnace for gasifying hydrocarbon-derived fuel, a gas purification unit for purifying the gasified gas, and the purified combustible gas. A solid oxide fuel cell that generates electricity by being supplied; a gas turbine that has a combustor that is supplied with the combustible gas that has passed through the solid oxide fuel cell; The combustible gas, which is provided on the downstream side of the unit and upstream of the solid oxide fuel cell and purified by the gas purification unit, is supplied to the solid oxide fuel cell, and the solid oxidation And a branch portion that supplies the combustor without using a physical fuel cell.

この構成によれば、ガス精製部からガスタービンの燃焼器へ供給される可燃性ガスは、固体酸化物形燃料電池を介して供給されるだけでなく、固体酸化物形燃料電池を通過せずバイパスして燃焼器へ供給される。その結果、燃焼器での可燃性ガスの燃料ガス発熱量を適切に保つことができ、燃焼器の安定燃焼を確保できる。また、固体酸化物形燃料電池の燃料利用率を低下させることなく固体酸化物形燃料電池へ可燃性ガスを供給したまま、燃焼器での燃料ガス発熱量を適切に保つことができる。   According to this configuration, the combustible gas supplied from the gas purification unit to the combustor of the gas turbine is not only supplied through the solid oxide fuel cell, but also does not pass through the solid oxide fuel cell. Bypassed to the combustor. As a result, the fuel gas calorific value of the combustible gas in the combustor can be appropriately maintained, and stable combustion of the combustor can be ensured. Further, the amount of heat generated by the fuel gas in the combustor can be appropriately maintained while the combustible gas is supplied to the solid oxide fuel cell without reducing the fuel utilization rate of the solid oxide fuel cell.

上記発明において、前記分岐部から前記固体酸化物形燃料電池を介さずに前記燃焼器へ供給される前記可燃性ガスの流量は、前記燃焼器の温度に基づいて調整されてもよい。   In the above invention, the flow rate of the combustible gas supplied from the branch portion to the combustor without going through the solid oxide fuel cell may be adjusted based on the temperature of the combustor.

この構成によれば、固体酸化物形燃料電池を通過せずバイパスして燃焼器へ供給される可燃性ガスの流量によって、燃焼器での燃焼温度を上昇させたり下降させたりすることができる。   According to this configuration, the combustion temperature in the combustor can be increased or decreased depending on the flow rate of the combustible gas that is bypassed and supplied to the combustor without passing through the solid oxide fuel cell.

上記発明において、前記ガス精製部によって精製された前記可燃性ガスに含まれる水を分離して、前記固体酸化物形燃料電池へ供給される前記可燃性ガスに対して、分離した前記水を添加する水分離部を更に備えてもよい。   In the above invention, the water contained in the combustible gas purified by the gas purification unit is separated, and the separated water is added to the combustible gas supplied to the solid oxide fuel cell. A water separation unit may be further provided.

この構成によれば、固体酸化物形燃料電池へ供給される可燃性ガスに水を添加することができ、S/C(スチーム/カーボン)比を調整することによって、固体酸化物形燃料電池での炭素析出を防止できる。   According to this configuration, water can be added to the combustible gas supplied to the solid oxide fuel cell, and by adjusting the S / C (steam / carbon) ratio, Carbon deposition can be prevented.

本発明に係るガス化燃料電池複合発電システムの運転方法は、ガス化炉が炭化水素起源燃料をガス化するステップと、ガス精製部が前記ガス化されたガスを精製するステップと、前記精製された可燃性ガスが供給されて固体酸化物形燃料電池が発電を行うステップと、前記固体酸化物形燃料電池を通過した未反応の前記可燃性ガスが供給される燃焼器を有するガスタービンが発電機を駆動させるステップと、前記ガス精製部によって精製された前記可燃性ガスを分岐して、前記固体酸化物形燃料電池へ前記可燃性ガスを供給し、かつ、前記固体酸化物形燃料電池を介さずに前記燃焼器へ前記可燃性ガスを供給するステップとを備える。   An operation method of a gasification fuel cell combined power generation system according to the present invention includes a step in which a gasification furnace gasifies a hydrocarbon-derived fuel, a step in which a gas purification unit purifies the gasified gas, and the purification. A gas turbine having a step in which a solid oxide fuel cell is supplied with the combustible gas supplied thereto and a combustor to which the unreacted combustible gas that has passed through the solid oxide fuel cell is supplied. Driving the machine, branching the combustible gas purified by the gas purification unit, supplying the combustible gas to the solid oxide fuel cell, and driving the solid oxide fuel cell Supplying the combustible gas to the combustor without intervention.

この発明によれば、燃焼器に供給される燃料ガスの発熱量を上昇させて、燃焼器入口の燃料ガス発熱量を増加させ、燃焼器での燃焼を安定化させることができる。   According to the present invention, the calorific value of the fuel gas supplied to the combustor can be increased, the fuel gas calorific value at the combustor inlet can be increased, and combustion in the combustor can be stabilized.

本発明の一実施形態に係るガス化燃料電池複合発電システムを示す構成図である。It is a block diagram which shows the gasification fuel cell combined power generation system which concerns on one Embodiment of this invention. 従来のガス化燃料電池複合発電システムを示す構成図である。It is a block diagram which shows the conventional gasification fuel cell combined power generation system.

以下、本発明の一実施形態に係るガス化燃料電池複合発電システムを図面に基づいて説明する。
本実施形態のガス化燃料電池複合発電システムは、例えば、石炭などの炭化水素起源燃料をガス化して得られる燃料を用いて複合発電をする石炭ガス化燃料電池複合発電システム(IGFC:Integrated Coal Gasification Fuel Cell Combined Cycle)である。なお、ガス化炉でのガス化の対象となる炭化水素起源燃料は、石炭に限定されることはなく、例えばバイオ燃料、石油残渣油などでもよい。
Hereinafter, a gasification fuel cell combined power generation system according to an embodiment of the present invention will be described with reference to the drawings.
The gasification fuel cell combined power generation system of this embodiment is, for example, a coal gasification fuel cell combined power generation system (IGFC) that performs combined power generation using fuel obtained by gasifying hydrocarbon-derived fuel such as coal. Fuel Cell Combined Cycle). In addition, the hydrocarbon origin fuel used as the object of gasification in a gasification furnace is not limited to coal, For example, biofuel, petroleum residue oil, etc. may be sufficient.

本実施形態に係るIGFCでは、炭化水素起源燃料がガス化炉10でガス化され、ガス化されたガスがガス精製部20において精製される。ガス化精製部20で精製されて生じるガス化ガスは、燃料ガスとして固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)30に供給され、SOFC30が発電を行う。また、IGFCでは、ガスタービン40を発電機Gの駆動源とする発電と、ガスタービン40から排出される燃焼排ガスの排熱を利用して発生した蒸気を導入して運転する蒸気タービン51を発電機Gの駆動源とする発電とが組み合わされて複合発電が行われる。   In the IGFC according to the present embodiment, the hydrocarbon-derived fuel is gasified in the gasification furnace 10, and the gasified gas is purified in the gas purification unit 20. The gasified gas generated by purification in the gasification purification unit 20 is supplied to a solid oxide fuel cell (SOFC) 30 as a fuel gas, and the SOFC 30 generates power. Further, in the IGFC, power generation is performed by using the gas turbine 40 as a drive source for the generator G and the steam turbine 51 that is operated by introducing steam generated using exhaust heat of the combustion exhaust gas discharged from the gas turbine 40. Combined power generation as a drive source of the machine G is combined to generate combined power generation.

ガス精製部20は、ガス化炉10でガス化されたガスに対して、脱硫処理等の各種処理を施す。その結果、ガス精製部20において精製されたガス化ガスは、SOFC30での発電及びガスタービン40の燃焼器41の燃焼に適した燃料ガスとなる。   The gas purification unit 20 performs various processes such as a desulfurization process on the gas gasified in the gasification furnace 10. As a result, the gasified gas purified in the gas purification unit 20 becomes a fuel gas suitable for power generation in the SOFC 30 and combustion in the combustor 41 of the gas turbine 40.

SOFC30は、燃料ガス及び酸化剤(例えば、空気あるいは酸素富化空気)の供給を受ける。SOFC30は、電解質を介した燃料ガスと酸化剤の電気化学反応によって発電を行う。SOFC30では、ガス精製部20から供給される燃料ガスと、大気から導入される空気とを用いて、発電が行われる。なお、SOFC30に導入される空気は、圧縮機42で圧縮された空気を分岐して用いてもよい。SOFC30は、発電に使用されなかった未反応の燃料ガス及び空気を燃焼器41へ供給する。   The SOFC 30 is supplied with fuel gas and oxidant (eg, air or oxygen-enriched air). The SOFC 30 generates power by an electrochemical reaction between fuel gas and oxidant via an electrolyte. In the SOFC 30, power generation is performed using fuel gas supplied from the gas purification unit 20 and air introduced from the atmosphere. The air introduced into the SOFC 30 may be branched from the air compressed by the compressor 42. The SOFC 30 supplies unreacted fuel gas and air that have not been used for power generation to the combustor 41.

ガスタービン40は、燃焼器41と、圧縮機42と、タービン43などを具備する。
燃焼器41は、圧縮機42から圧縮空気が供給され、SOFC30とHO分離・添加装置80から燃料ガスが供給される。燃焼器41は、燃料ガスを燃焼させて、高温高圧の燃焼排ガスを生成する。燃焼排ガスはタービン43へ供給されることによってタービン43を回転させ、タービン43は軸出力を発生させる。タービン43で発生した軸出力は、同軸に連結された発電機Gを駆動し、発電機Gにおいてガスタービン40を駆動源とする発電が行われる。また、タービン43の軸出力は、圧縮機42の継続運転にも使用される。タービン43で仕事をした燃焼排ガスは、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)50へ供給される。
The gas turbine 40 includes a combustor 41, a compressor 42, a turbine 43, and the like.
The combustor 41 is supplied with compressed air from the compressor 42 and is supplied with fuel gas from the SOFC 30 and the H 2 O separation / addition device 80. The combustor 41 burns fuel gas to generate high-temperature and high-pressure combustion exhaust gas. The combustion exhaust gas is supplied to the turbine 43 to rotate the turbine 43, and the turbine 43 generates a shaft output. The shaft output generated in the turbine 43 drives the generator G connected coaxially, and the generator G generates power using the gas turbine 40 as a drive source. Further, the shaft output of the turbine 43 is also used for the continuous operation of the compressor 42. The combustion exhaust gas that has worked in the turbine 43 is supplied to a heat recovery steam generator (HRSG) 50.

HRSG50は、ガスタービン40から供給され、依然として十分な熱量を保有している燃焼排ガスを熱源にして、水と熱交換して蒸気を生成する。この蒸気は蒸気タービン51に供給されることによって、蒸気タービン51を回転させ、蒸気タービン51は軸出力を発生させる。蒸気タービン51で発生した軸出力は、同軸に連結された発電機Gを駆動し、発電機Gにおいて蒸気タービン51を駆動源とする発電が行われる。HRSG50を通過した燃焼排ガスは、適宜排ガス処理が施された後、煙突52から大気へ放出される。
なお、図1で示した発電機Gは、ガスタービン40のタービン43及び蒸気タービン51と同軸に連結されているが、ガスタービン40及び蒸気タービン51に各々専用の発電機を連結して発電する構成としてもよい。
The HRSG 50 generates steam by exchanging heat with water using the combustion exhaust gas supplied from the gas turbine 40 and still having a sufficient amount of heat as a heat source. The steam is supplied to the steam turbine 51 to rotate the steam turbine 51, and the steam turbine 51 generates a shaft output. The shaft output generated in the steam turbine 51 drives a generator G connected coaxially, and the generator G generates power using the steam turbine 51 as a drive source. The combustion exhaust gas that has passed through the HRSG 50 is appropriately subjected to exhaust gas treatment and then released from the chimney 52 to the atmosphere.
The generator G shown in FIG. 1 is coaxially connected to the turbine 43 and the steam turbine 51 of the gas turbine 40, and generates power by connecting dedicated generators to the gas turbine 40 and the steam turbine 51, respectively. It is good also as a structure.

ガスタービン40の圧縮機42では、圧縮された空気の一部が抽気される。この空気は、抽気空気昇圧機70によって昇圧されてガス化炉10に供給され、炭化水素起源燃料のガス化に使用される。   In the compressor 42 of the gas turbine 40, a part of the compressed air is extracted. The air is boosted by a bleed air booster 70 and supplied to the gasification furnace 10 to be used for gasification of hydrocarbon-derived fuel.

酸素製造装置60は、空気から酸素や窒素(イナートガス)を製造する。酸素製造装置60は、例えばASU(Air Separation Unit:深冷空気分離装置)である。酸素製造装置60にて製造された酸素及び窒素は、ガス化炉10における炭化水素起源燃料のガス化に使用される。酸素製造装置60で製造された酸素は、抽気空気昇圧機70で昇圧された空気に合流されることで、昇圧された空気を酸素富化空気とする。   The oxygen production apparatus 60 produces oxygen and nitrogen (inert gas) from air. The oxygen production apparatus 60 is, for example, an ASU (Air Separation Unit). Oxygen and nitrogen produced by the oxygen production apparatus 60 are used for gasification of hydrocarbon-derived fuel in the gasification furnace 10. Oxygen produced by the oxygen producing apparatus 60 is merged with the air pressurized by the extraction air booster 70, so that the pressurized air becomes oxygen-enriched air.

O分離・添加装置80は、ガス精製部20の下流側、かつ、SOFC30及び燃焼器41の上流側に設けられる。HO分離・添加装置80は、ガス精製部20から可燃性ガスが供給され、ガス精製部20から供給された可燃性ガスをSOFC30及び燃焼器41の両方に供給する。また、HO分離・添加装置80は、ガス精製部20から供給された可燃性ガスに含まれる水を分離し、SOFC30に供給される可燃性ガスに分離した水を全て添加する。これにより、ガス精製部20の下流側にHO分離・添加装置80が設けられない場合に比べて、SOFC30へ供給される可燃性ガス中の水分量が増加する。その結果、SOFC30での炭素析出が生じにくくなる。なお、SOFC30で適切なS/C(スチーム/カーボン)比に満たない場合、SOFC30での炭素析出を防止するため、HO分離・添加装置80で外部から水を導入して、SOFC30に供給される可燃性ガスに外部から導入した水を添加してもよい。
例えば、HO分離・添加装置80の上流側に設けられた検知器(図示せず。)を用いて、SOFC30へ供給される可燃性ガスのガス組成を分析する。検知結果に基づいて、例えばS/C比が2から4程度となるように、HO分離・添加装置80が外部から水を添加する。
The H 2 O separation / addition device 80 is provided on the downstream side of the gas purification unit 20 and on the upstream side of the SOFC 30 and the combustor 41. The H 2 O separation / addition device 80 is supplied with the combustible gas from the gas purification unit 20 and supplies the combustible gas supplied from the gas purification unit 20 to both the SOFC 30 and the combustor 41. The H 2 O separation / addition device 80 separates water contained in the combustible gas supplied from the gas purification unit 20 and adds all the separated water to the combustible gas supplied to the SOFC 30. As a result, the amount of water in the combustible gas supplied to the SOFC 30 is increased as compared with the case where the H 2 O separation / addition device 80 is not provided on the downstream side of the gas purification unit 20. As a result, carbon deposition in the SOFC 30 is difficult to occur. If the SOFC 30 does not meet the appropriate S / C (steam / carbon) ratio, water is introduced from the outside by the H 2 O separation / addition device 80 and supplied to the SOFC 30 in order to prevent carbon deposition at the SOFC 30. Water introduced from the outside may be added to the combustible gas.
For example, the gas composition of the combustible gas supplied to the SOFC 30 is analyzed using a detector (not shown) provided on the upstream side of the H 2 O separation / addition device 80. Based on the detection result, the H 2 O separation / addition device 80 adds water from the outside so that the S / C ratio is about 2 to 4, for example.

ガス精製部20から供給された可燃性ガスは、SOFC30を介さずにバイパス流路84を介して、HO分離・添加装置80から燃焼器41に供給される。この可燃性ガスは、SOFC30で燃料ガスとして用いられずにバイパスされて燃焼器41へ供給されるため、SOFC30へ供給される可燃性ガスと比べて、燃焼器41入口での燃料ガス発熱量が低下しない。 The combustible gas supplied from the gas purification unit 20 is supplied from the H 2 O separation / addition device 80 to the combustor 41 via the bypass channel 84 without passing through the SOFC 30. Since this combustible gas is bypassed and supplied to the combustor 41 without being used as fuel gas in the SOFC 30, the calorific value of the fuel gas at the inlet of the combustor 41 is larger than that of the combustible gas supplied to the SOFC 30. It does not decline.

バイパス流路84には、圧力調整弁82が設けられる。例えばSOFC30の出口圧を測定し、SOFC30の出口圧とバイパス流路84の出口圧がほぼ等しくなるように、圧力調整弁82を調整する。SOFC30では圧力損失が生じるところ、圧力調整弁82によってバイパス流路84側の圧力とSOFC30側の圧力をほぼ等しくすることで、SOFC30へのガスの逆流を防止できる。その結果、バイパス流路84側からの可燃性ガスとSOFC30側からの可燃性ガスを合流させることができる。   A pressure regulating valve 82 is provided in the bypass channel 84. For example, the outlet pressure of the SOFC 30 is measured, and the pressure regulating valve 82 is adjusted so that the outlet pressure of the SOFC 30 and the outlet pressure of the bypass channel 84 are substantially equal. Since pressure loss occurs in the SOFC 30, the pressure regulating valve 82 makes the pressure on the bypass flow path 84 side and the pressure on the SOFC 30 side substantially equal to each other, thereby preventing the backflow of gas to the SOFC 30. As a result, the combustible gas from the bypass flow path 84 side and the combustible gas from the SOFC 30 side can be merged.

SOFC30を介さずにバイパス流路84を介して、HO分離・添加装置80から燃焼器41に供給される可燃性ガスの流量は、例えば燃焼器41の温度によって調整される。例えば、タービン43の入口の可燃性ガスの発熱量を分析して、分析された発熱量に基づいて可燃性ガスの流量を調整する。その結果、バイパス流路84が設けられず、SOFC30のみから可燃性ガスを燃焼器41へ供給する場合に比べて、燃焼器41での燃焼温度を上昇させることができる。 The flow rate of the combustible gas supplied from the H 2 O separation / addition device 80 to the combustor 41 through the bypass channel 84 without passing through the SOFC 30 is adjusted by, for example, the temperature of the combustor 41. For example, the calorific value of the combustible gas at the inlet of the turbine 43 is analyzed, and the flow rate of the combustible gas is adjusted based on the analyzed calorific value. As a result, the bypass channel 84 is not provided, and the combustion temperature in the combustor 41 can be increased compared to the case where the combustible gas is supplied to the combustor 41 only from the SOFC 30.

以上、本実施形態によれば、ガス精製部20からガスタービン40の燃焼器41へ供給される可燃性ガスは、SOFC30を介して供給されるだけでなく、SOFC30を通過せずバイパスして燃焼器41へ供給される。その結果、燃焼器41での可燃性ガスの燃料ガス発熱量を適切に保つことができ、燃焼器41の安定燃焼を確保できる。
また、SOFC30の燃料利用率を低下させることなくSOFC30へ可燃性ガスを供給したまま、燃焼器41での燃料ガス発熱量を適切に保つことができる。したがって、SOFC30での未反応の燃料ガスの副反応による発熱量の損失を低減でき、プラント効率を向上させることができる。例えば、燃料ガス発熱量の下限は、ガスタービン40の火が消えない(失火が生じない)ように決定され、燃料ガス発熱量の上限は、ガスタービン40の機器の耐久性が保持されるように決定される。
さらに、SOFC30に供給される可燃性ガスに含まれる水分量が従来に比べて多くなることから、SOFC30での炭素析出を起こしにくい運転状態とすることができる。
As described above, according to the present embodiment, the combustible gas supplied from the gas purification unit 20 to the combustor 41 of the gas turbine 40 is not only supplied via the SOFC 30 but also bypassed and burned without passing through the SOFC 30. Is supplied to the container 41. As a result, the fuel gas calorific value of the combustible gas in the combustor 41 can be appropriately maintained, and stable combustion of the combustor 41 can be ensured.
Further, the amount of heat generated from the fuel gas in the combustor 41 can be appropriately maintained while the combustible gas is supplied to the SOFC 30 without reducing the fuel utilization rate of the SOFC 30. Therefore, loss of heat generated by side reaction of unreacted fuel gas in the SOFC 30 can be reduced, and plant efficiency can be improved. For example, the lower limit of the fuel gas calorific value is determined so that the fire of the gas turbine 40 does not extinguish (no misfire occurs), and the upper limit of the fuel gas calorific value is such that the durability of the equipment of the gas turbine 40 is maintained. To be determined.
Furthermore, since the amount of water contained in the combustible gas supplied to the SOFC 30 is increased as compared with the conventional case, an operation state in which carbon deposition in the SOFC 30 is difficult to occur can be achieved.

10 ガス化炉
20 ガス精製部
30 固体酸化物形燃料電池(SOFC)
40 ガスタービン
41 燃焼器
42 圧縮機
43 タービン
50 排熱回収ボイラ(HRSG)
51 蒸気タービン
60 酸素製造装置
70 抽気空気昇圧機
80 HO分離・添加装置(分岐部)
82 圧力調整弁
G 発電機
10 Gasifier 20 Gas Refiner 30 Solid Oxide Fuel Cell (SOFC)
40 Gas turbine 41 Combustor 42 Compressor 43 Turbine 50 Waste heat recovery boiler (HRSG)
51 Steam turbine 60 Oxygen production device 70 Extraction air booster 80 H 2 O separation / addition device (branch part)
82 Pressure control valve G Generator

Claims (4)

炭化水素起源燃料をガス化するガス化炉と、
前記ガス化されたガスを精製するガス精製部と、
前記精製された可燃性ガスが供給されて発電を行う固体酸化物形燃料電池と、
前記固体酸化物形燃料電池を通過した前記可燃性ガスが供給される燃焼器を有し、発電機を駆動させるガスタービンと、
前記ガス精製部の下流側、かつ、前記固体酸化物形燃料電池の上流側に設けられ、前記ガス精製部によって精製された前記可燃性ガスを前記固体酸化物形燃料電池へ供給し、かつ、前記固体酸化物形燃料電池を介さずに前記燃焼器へ供給する分岐部と、
を備えるガス化燃料電池複合発電システム。
A gasifier for gasifying hydrocarbon-derived fuel;
A gas purification unit for purifying the gasified gas;
A solid oxide fuel cell that is supplied with the purified combustible gas to generate power; and
A gas turbine having a combustor to which the combustible gas that has passed through the solid oxide fuel cell is supplied and driving a generator;
Supplying the combustible gas purified by the gas purification unit downstream of the gas purification unit and upstream of the solid oxide fuel cell to the solid oxide fuel cell; and A branch that supplies the combustor without passing through the solid oxide fuel cell;
A combined gasification fuel cell power generation system.
前記分岐部から前記固体酸化物形燃料電池を介さずに前記燃焼器へ供給される前記可燃性ガスの流量は、前記燃焼器の温度に基づいて調整される請求項1に記載のガス化燃料電池複合発電システム。   The gasified fuel according to claim 1, wherein a flow rate of the combustible gas supplied from the branch portion to the combustor without passing through the solid oxide fuel cell is adjusted based on a temperature of the combustor. Combined battery power generation system. 前記ガス精製部によって精製された前記可燃性ガスに含まれる水を分離して、前記固体酸化物形燃料電池へ供給される前記可燃性ガスに対して、分離した前記水を添加する水分離部を更に備える請求項1又は2に記載のガス化燃料電池複合発電システム。   A water separation unit that separates water contained in the combustible gas purified by the gas purification unit and adds the separated water to the combustible gas supplied to the solid oxide fuel cell. The gasified fuel cell combined power generation system according to claim 1, further comprising: ガス化炉が炭化水素起源燃料をガス化するステップと、
ガス精製部が前記ガス化されたガスを精製するステップと、
前記精製された可燃性ガスが供給されて固体酸化物形燃料電池が発電を行うステップと、
前記固体酸化物形燃料電池を通過した前記可燃性ガスが供給される燃焼器を有するガスタービンが発電機を駆動させるステップと、
前記ガス精製部によって精製された前記可燃性ガスを前記固体酸化物形燃料電池へ供給し、かつ、前記固体酸化物形燃料電池を介さずに前記燃焼器へ供給するステップと、
を備えるガス化燃料電池複合発電システムの運転方法。
A gasification furnace gasifying the hydrocarbon-derived fuel;
A gas purification unit purifying the gasified gas;
The purified flammable gas is supplied and the solid oxide fuel cell generates power; and
A gas turbine having a combustor to which the combustible gas that has passed through the solid oxide fuel cell is supplied drives a generator;
Supplying the combustible gas purified by the gas purification unit to the solid oxide fuel cell and supplying the combustor without passing through the solid oxide fuel cell;
A method for operating a gasified fuel cell combined power generation system comprising:
JP2013245225A 2013-11-27 2013-11-27 Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system Active JP6301118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245225A JP6301118B2 (en) 2013-11-27 2013-11-27 Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245225A JP6301118B2 (en) 2013-11-27 2013-11-27 Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system

Publications (2)

Publication Number Publication Date
JP2015103487A true JP2015103487A (en) 2015-06-04
JP6301118B2 JP6301118B2 (en) 2018-03-28

Family

ID=53379013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245225A Active JP6301118B2 (en) 2013-11-27 2013-11-27 Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system

Country Status (1)

Country Link
JP (1) JP6301118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195377A (en) * 2017-05-12 2018-12-06 三菱日立パワーシステムズ株式会社 Fuel battery and composite power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286150A (en) * 1990-04-02 1991-12-17 Ishikawajima Harima Heavy Ind Co Ltd Control for turbine-compressor and power generator unit
JPH10214631A (en) * 1996-12-19 1998-08-11 Westinghouse Electric Corp <We> Device and method of reproducing electricity and by-producing hydrogen
JP2006090287A (en) * 2004-09-27 2006-04-06 Mitsubishi Heavy Ind Ltd Composite power generation system and fuel gas calorific value control method
JP2013053036A (en) * 2011-09-02 2013-03-21 Panasonic Corp Hydrogen generator, and fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286150A (en) * 1990-04-02 1991-12-17 Ishikawajima Harima Heavy Ind Co Ltd Control for turbine-compressor and power generator unit
JPH10214631A (en) * 1996-12-19 1998-08-11 Westinghouse Electric Corp <We> Device and method of reproducing electricity and by-producing hydrogen
JP2006090287A (en) * 2004-09-27 2006-04-06 Mitsubishi Heavy Ind Ltd Composite power generation system and fuel gas calorific value control method
JP2013053036A (en) * 2011-09-02 2013-03-21 Panasonic Corp Hydrogen generator, and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195377A (en) * 2017-05-12 2018-12-06 三菱日立パワーシステムズ株式会社 Fuel battery and composite power generation system
JP7073049B2 (en) 2017-05-12 2022-05-23 三菱重工業株式会社 Fuel cell and combined cycle

Also Published As

Publication number Publication date
JP6301118B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
KR102243776B1 (en) Methanation method and power plant comprising co₂ methanation of power plant flue gas
CA2813957C (en) Generating power using an ion transport membrane
US9719038B2 (en) Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
KR20040067952A (en) Generating method and system of MHD
AU2011279080B2 (en) Generating power using an ion transport membrane
JP6301118B2 (en) Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system
JP6336257B2 (en) Gasified fuel cell combined power generation system and operation method thereof
JP3977890B2 (en) Gasification power generation system
US20170183585A1 (en) Gasification unit, integrated gasification combined cycle facility, and method for starting gasification unit
US9328631B2 (en) Self-generated power integration for gasification
JP2014137978A (en) Hybrid power generating device and hybrid power generating method using fuel cell
JP5733974B2 (en) CO shift conversion system and method, coal gasification power plant
JP2011163294A (en) Coal-gasified gas supply plant
JP5808465B2 (en) Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility
JP2014101838A (en) Coal gasification combined generation facility
KR100990892B1 (en) Integrated gasification combined cycle power plant
JP2016037593A (en) Gasification furnace equipment, gasification composite power generating equipment, and method for controlling the gasification furnace unit
KR20210072227A (en) Fuel cell system with conventional fuel gasification based on coal gasification combined power generation system
JP2014136762A (en) Gasification furnace, gasification composite power generating equipment and method for starting gasification furnace
JPS61284066A (en) Starting method for fuel cell power generating plant and its equipment
JP2006105021A (en) Integrated coal gasification combined cycle power generation plant, control method and method of manufacturing fuel gas

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180228

R150 Certificate of patent or registration of utility model

Ref document number: 6301118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350