JP5808465B2 - Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility - Google Patents

Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility Download PDF

Info

Publication number
JP5808465B2
JP5808465B2 JP2014158566A JP2014158566A JP5808465B2 JP 5808465 B2 JP5808465 B2 JP 5808465B2 JP 2014158566 A JP2014158566 A JP 2014158566A JP 2014158566 A JP2014158566 A JP 2014158566A JP 5808465 B2 JP5808465 B2 JP 5808465B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
flow rate
gasification furnace
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014158566A
Other languages
Japanese (ja)
Other versions
JP2014208850A (en
Inventor
章悟 吉田
章悟 吉田
横濱 克彦
克彦 横濱
啓介 松尾
啓介 松尾
小山 智規
智規 小山
俊幸 山下
俊幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014158566A priority Critical patent/JP5808465B2/en
Publication of JP2014208850A publication Critical patent/JP2014208850A/en
Application granted granted Critical
Publication of JP5808465B2 publication Critical patent/JP5808465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Description

本発明は、例えば石炭ガス化複合発電設備(Integrated Gasification Combined Cycle/IGCC)等に適用されるガス化炉の起動方法に係り、特に、ガス化炉のフレア系統に関するものである。   The present invention relates to a gasification furnace start-up method applied to, for example, an integrated gasification combined cycle / IGCC, and more particularly to a flare system of a gasification furnace.

石炭ガス化複合発電設備(IGCC)は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。   Coal gasification combined power generation facility (IGCC) is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power generation by gasifying coal and combining it with combined cycle power generation. This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.

従来の石炭ガス化複合発電設備は、一般的に、給炭装置、石炭ガス化炉、チャー回収装置、ガス精製設備、ガスタービン設備、蒸気タービン設備、排熱回収ボイラを具備して構成される。従って、石炭ガス化炉に対して、給炭装置により石炭(微粉炭)が供給されると共に、ガス化剤(空気、酸素富化空気、酸素、水蒸気など)が取り込まれる。
この石炭ガス化炉では、石炭が燃焼してガス化され、可燃性ガス(石炭ガス)が生成される。そして、生成された可燃性ガスは、チャー回収装置にて石炭の未反応分(チャー)が除去されてからガス精製され、この後、ガスタービン設備に供給される。
Conventional coal gasification combined power generation facilities generally include a coal supply device, a coal gasification furnace, a char recovery device, a gas purification facility, a gas turbine facility, a steam turbine facility, and an exhaust heat recovery boiler. . Therefore, coal (pulverized coal) is supplied to the coal gasifier by the coal feeder, and gasifying agents (air, oxygen-enriched air, oxygen, water vapor, etc.) are taken in.
In this coal gasification furnace, coal burns and is gasified, and combustible gas (coal gas) is generated. And the produced combustible gas is gas refined after the unreacted part (char) of coal is removed by the char recovery device, and then supplied to the gas turbine equipment.

ガスタービン設備に供給された可燃性ガスは、燃料として燃焼器で燃焼することで高温・高圧の燃焼ガスを生成し、この燃焼ガスの供給を受けてガスタービン設備のガスタービンが駆動される。
ガスタービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収されて蒸気を生成する。この蒸気は、蒸気タービン設備に供給され、この蒸気により蒸気タービンが駆動される。従って、ガスタービン及び蒸気タービンを駆動源とする発電機により、発電を行うことができる。
一方、排熱回収ボイラで熱エネルギが回収された排気ガスは、煙突を介して大気へ放出される。
The combustible gas supplied to the gas turbine equipment is combusted as a fuel in a combustor to generate high-temperature and high-pressure combustion gas, and the gas turbine of the gas turbine equipment is driven by the supply of the combustion gas.
The exhaust gas after driving the gas turbine generates steam by recovering thermal energy in the exhaust heat recovery boiler. The steam is supplied to a steam turbine facility, and the steam turbine is driven by the steam. Therefore, it is possible to generate electric power with a generator using a gas turbine and a steam turbine as driving sources.
On the other hand, the exhaust gas from which thermal energy has been recovered by the exhaust heat recovery boiler is released to the atmosphere via a chimney.

上述した石炭ガス化複合発電設備において、石炭ガス化炉の起動プロセスは、以下に示す(1)から(9)のステップを備えている。
すなわち、石炭ガス化炉の一般的な起動プロセスは、(1)炉内窒素ガス(N)パージ、(2)ガス化炉内の加圧/ウォーミング、(3)空気通気及び補助燃料によるガス化炉点火、(4)ポーラスフィルタへの通ガス、(5)ランピング(加圧)、(6)ガス精製設備への通ガス、(7)ガス化炉燃料を補助燃料から石炭に切替、(8)ガスタービン燃料の切替、(9)負荷上昇、の順に実施される。
なお、上述したものは空気吹きの場合であるが、酸素吹きガス化による化学合成品プラントの場合も、上述したプロセスのステップ(7)までは共通である。
In the coal gasification combined power generation facility described above, the start process of the coal gasification furnace includes the following steps (1) to (9).
That is, the general start-up process of a coal gasifier is: (1) In-furnace nitrogen gas (N 2 ) purge, (2) Pressurization / warming in the gasifier, (3) Air ventilation and auxiliary fuel Gasifier ignition, (4) gas passing to porous filter, (5) ramping (pressurization), (6) gas passing to gas purification facility, (7) gasifier fuel switching from auxiliary fuel to coal, (8) Gas turbine fuel switching and (9) load increase are performed in this order.
In addition, although what was mentioned above is a case of air blowing, also in the case of the chemical synthesis plant by oxygen blowing gasification, it is common to the process (7) mentioned above.

このような起動プロセスにおいて、ステップ(3)のガス化炉点火時に使用される補助燃料としては、例えば灯油・軽油や天然ガス等を例示できる。
また、ガスタービン燃料切替のステップ(7)においては、石炭ガスの供給を受けられない起動時に使用する起動用燃料(例えば灯油・軽油等)から、ガス化炉で生成された石炭ガスに変更される。
In such a start-up process, examples of the auxiliary fuel used at the time of gasification furnace ignition in step (3) include kerosene / light oil and natural gas.
In addition, in the gas turbine fuel switching step (7), the starting fuel (for example, kerosene or light oil) used at the time of starting that cannot receive the supply of coal gas is changed to the coal gas generated in the gasifier. The

下記の特許文献1には、石炭ガス化複合発電設備の起動時において、ガス組成及び圧力が安定しガスタービンで燃焼できる条件になるまで、フレアスタック(フレア設備)で排ガスを燃焼しながらガス化炉やガス精製装置のウォーミングを行うことが記載されている。そして、環境条件の厳しい立地点では、フレアスタック用の排煙処理装置が必要になることも記載されている。
また、下記の特許文献2には、石炭ガス化炉と除塵装置とを連結する主系統ラインに、除塵装置の上流側で分岐してフレアスタックに至るバイパスラインを設けた石炭ガス化プラントが開示されている。
In Patent Document 1 below, gasification is performed while flue stack (flare equipment) is combusted with exhaust gas until the gas composition and pressure are stable and the gas turbine can be combusted at the start of the coal gasification combined power generation facility. It is described that warming of a furnace and a gas purifier is performed. In addition, it is also described that a flue stack treatment device for flare stacks is required at a location with severe environmental conditions.
Further, the following Patent Document 2 discloses a coal gasification plant in which a bypass line that branches from the upstream side of the dust removal device to the flare stack is provided in the main system line that connects the coal gasification furnace and the dust removal device. Has been.

特開昭62−182443号公報Japanese Patent Laid-Open No. 62-182443 特開2006−152081号公報JP 2006-152081 A

ところで、上述した起動プロセスにおいて、ステップ(1)〜(2)の間は窒素ガスを通ガスするため、例えば純度99vol%の窒素ガス中には、略酸素(O)は含有されない。しかし、ステップ(3)のガス化炉点火時には、少なくともガス化炉点火当初は、残存酸素を含有する燃焼排ガス(以下、「酸素含有ガス」ともいう)が発生する。
なお、「少なくともガス化炉点火当初」としたのは、ステップ(4)以降において、再び略酸素が含有されないガスをポーラスフィルタに通ガスするためである。
By the way, in the startup process described above, since nitrogen gas is passed between steps (1) and (2), for example, nitrogen gas having a purity of 99 vol% does not contain substantially oxygen (O 2 ). However, at the time of gasification furnace ignition in step (3), at least at the beginning of gasification furnace ignition, combustion exhaust gas containing residual oxygen (hereinafter also referred to as “oxygen-containing gas”) is generated.
The reason for “at least the beginning of gasifier ignition” is to pass a gas containing substantially no oxygen again through the porous filter after step (4).

従って、この燃焼排ガスを除塵のためポーラスフィルタまで通ガスすると、フィルタエレメント中に存在する石炭未燃分(以下、「チャー」と呼ぶ)が燃焼するので、この燃焼熱がフィルタエレメント温度を過上昇させる原因となる。
このようなフィルタエレメント温度の過上昇は、材料の設計温度超過や損傷の原因となるため、ガス化炉点火当初においては、少なくともポーラスフィルタをバイパスしてフレア系統で処理する必要がある。なお。一般的なバイパス流路は、例えば特許文献2に開示されているように、ガス化炉出口とサイクロンとの間を連結する配管流路において、サイクロン入口の上流側で分岐させている。
Therefore, when this combustion exhaust gas is passed to the porous filter for dust removal, unburned coal (hereinafter referred to as “char”) present in the filter element burns, so this combustion heat causes the filter element temperature to rise excessively. Cause it.
Such an excessive increase in the filter element temperature may cause the design temperature of the material to be exceeded or damage, and therefore, at the beginning of the gasification furnace ignition, it is necessary to bypass at least the porous filter and process the flare system. Note that. For example, as disclosed in Patent Document 2, a general bypass channel is branched on the upstream side of the cyclone inlet in a pipe channel that connects the gasifier outlet and the cyclone.

しかしながら、上述した方式(過程)によるガス化炉点火のステップでは、一時的にではあるものの、炉内及び配管内に残留するチャーがフレア設備の煙突より黒煙として排出されることが懸念される。このような黒煙の排出は、たとえ一時的なものであっても好ましいことではなく、従って、ガス化炉起動時における一時的な黒煙の発生を防止または抑制することが望まれる。   However, in the gasification furnace ignition step according to the above-described method (process), although temporarily, there is a concern that the char remaining in the furnace and the piping is discharged as black smoke from the flare of the flare equipment. . Such discharge of black smoke is not preferable even if it is temporary. Therefore, it is desirable to prevent or suppress the generation of temporary black smoke when the gasifier is started.

本発明は、上記の課題を解決するためになされたもので、その目的とするところは、ガス化炉起動時における一時的な黒煙発生の防止または抑制を可能にしたガス化炉の起動方法を提供することにある。換言すれば、本発明の目的は、ガス化炉起動時に発生する酸素含有ガスをポーラスフィルタに通ガスしないことに伴い、フィルタをバイパスする流路を経由してフレア設備からチャーが放出されることを防止することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to start a gasifier capable of preventing or suppressing temporary black smoke generation at the time of starting the gasifier. Is to provide. In other words, the object of the present invention is that char is released from the flare equipment via a flow path that bypasses the filter, because the oxygen-containing gas generated when the gasifier is started is not passed through the porous filter. Is to prevent.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の一態様に係るガス化炉の起動方法は、ガス化剤と固体炭素質燃料とを供給してガス化するガス化炉の起動方法であって、前記ガス化炉にイナートガスを通ガスする通ガス工程と、前記通ガス工程により前記イナートガスが通ガスされたイナート雰囲気下にある前記ガス化炉において起動用バーナへ起動用燃料及び酸素含有気体を供給して点火させる起動用バーナ点火工程と、を備え、該起動用バーナ点火工程は、前記起動用燃料と前記酸素含有気体が燃焼反応した後の燃焼ガスがイナートガスとなるように前記酸素含有気体の供給量を調整することを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A gasification furnace start-up method according to an aspect of the present invention is a gasification furnace start-up method in which a gasifying agent and a solid carbonaceous fuel are supplied to gasify, and an inert gas is supplied to the gasification furnace. And a start-up burner ignition step of supplying a start-up fuel and an oxygen-containing gas to the start-up burner and igniting the start-up burner in the gasification furnace in an inert atmosphere through which the inert gas is passed through the gas-passing step. And the starting burner ignition step adjusts the supply amount of the oxygen-containing gas so that the combustion gas after the starting fuel and the oxygen-containing gas undergo a combustion reaction becomes an inert gas. To do.

このようなガス化炉の起動方法によれば、イナートガスが通ガスされたイナート雰囲気下にあるガス化炉において、起動用バーナへ起動用燃料及び酸素含有気体を供給して点火させる起動用バーナ点火工程を備えているので、起動時に酸素が発生することを防止または大幅に抑制できる。すなわち、ガス化炉点火当初において、残存酸素を含有する燃焼排ガスの発生を防止または抑制でき、この結果、黒煙発生の原因となるチャーを除去するため、通常運転時と同様にポーラスフィルタへ通ガスすることが可能になる。
この場合、イナート雰囲気における起動用バーナ点火工程の空気比は、0.7〜1.1の範囲内に収めることが望ましく、より好ましい空気比は1である。なお、空気比が1より小さくなると煤や一酸化炭素の発生量が増すため0.7を下限とし、空気比が1より大きくなると酸素の発生量を増すため上限を1.1とする。
According to such a gasification furnace start-up method, in the gasification furnace in the inert atmosphere through which the inert gas is passed, the start-up burner ignition is performed by supplying the start-up fuel and the oxygen-containing gas to the start-up burner and igniting. Since the process is provided, it is possible to prevent or greatly suppress the generation of oxygen during startup. That is, at the beginning of gasification furnace ignition, the generation of combustion exhaust gas containing residual oxygen can be prevented or suppressed. As a result, in order to remove char that causes black smoke, it is passed through a porous filter as in normal operation. It becomes possible to gas.
In this case, the air ratio in the starting burner ignition process in the inert atmosphere is preferably within a range of 0.7 to 1.1, and a more preferable air ratio is 1. When the air ratio is less than 1, the generation amount of soot and carbon monoxide increases. Therefore, 0.7 is set as the lower limit, and when the air ratio is higher than 1, the generation amount of oxygen is increased and the upper limit is set to 1.1.

本発明の一態様に係るガス化炉は、ガス化剤と固体炭素質燃料とを供給してガス化するガス化炉であって、生成した可燃性ガスをチャー回収装置へ導くガス供給流路と、起動用バーナを設けた炉内へイナートガスを供給するイナートガス流量調整弁を有するイナートガス供給流路と、前記炉内へ酸素を供給する酸素流量調整弁を有する酸素供給流路と、前記炉内へ空気を供給する空気流量調整弁を有する空気供給流路と、前記イナートガス流量調整弁、前記酸素流量調整弁及び前記空気流量調整弁の流量制御部と、を備え、前記流量制御部は、前記ガス化炉の点火時に、前記イナートガス流量調整弁を開とし、かつ前記酸素流量調整弁及び前記空気流量調整弁を閉とするよう制御して前記起動用燃料と前記酸素含有気体が燃焼反応した後の燃焼ガスがイナートガスとなるように前記酸素含有気体の供給量を調整し、前記起動用バーナは、前記イナートガス供給流路から前記イナートガスが通ガスされたイナート雰囲気下にある前記ガス化炉において前記起動用燃料及び前記酸素含有気体を供給して点火させることを特徴とするものである。 A gasification furnace according to an aspect of the present invention is a gasification furnace that supplies and gasifies a gasifying agent and a solid carbonaceous fuel, and a gas supply passage that guides the generated combustible gas to a char recovery device An inert gas supply flow path having an inert gas flow rate adjustment valve for supplying an inert gas into the furnace provided with the start burner, an oxygen supply flow path having an oxygen flow rate adjustment valve for supplying oxygen into the furnace, and the interior of the furnace An air supply flow path having an air flow rate adjustment valve for supplying air to, and the inert gas flow rate adjustment valve, the oxygen flow rate adjustment valve, and a flow rate control unit of the air flow rate adjustment valve, the flow rate control unit, After the gasification furnace is ignited, after the inert gas flow rate adjustment valve is opened and the oxygen flow rate adjustment valve and the air flow rate adjustment valve are closed, the starting fuel and the oxygen-containing gas undergo a combustion reaction Burning Gas is adjusting the supply amount of the oxygen-containing gas such that the inert gas, the starting burner for the start in the gasification furnace under inert atmosphere the inert gas is passing gas from the inert gas supply passage The fuel and the oxygen-containing gas are supplied and ignited.

このようなガス化炉によれば、生成した可燃性ガスをチャー回収装置へ導くガス供給流路と、起動用バーナを設けた炉内へイナートガスを供給するイナートガス流量調整弁を有するイナートガス供給流路と、炉内へ酸素を供給する酸素開閉弁を有する酸素供給流路と、炉内へ空気を供給する空気開閉弁を有する空気供給流路と、イナートガス流量調整弁、酸素流量調整弁及び空気流量調整弁の流量制御部と、を備え、流量制御部は、ガス中酸素濃度を発火限度濃度以下まで低下させられる酸素量を供給するように流量制御を行うので、起動用バーナの周辺となる炉内をイナート雰囲気の状態にして、起動用バーナへ起動用燃料及び酸素含有気体を供給して点火させることができる。この結果、ガス化炉の起動時においては、酸素の発生を防止または大幅に抑制することができる。すなわち、ガス化炉点火当初において、残存酸素を含有する燃焼排ガスの発生を防止または抑制でき、この結果、黒煙発生の原因となるチャーを除去するため、通常運転時と同様にポーラスフィルタへ通ガスすることが可能になる。   According to such a gasification furnace, an inert gas supply flow path having a gas supply flow path for guiding the generated combustible gas to the char recovery device and an inert gas flow rate adjusting valve for supplying the inert gas into the furnace provided with the start burner. An oxygen supply channel having an oxygen on-off valve for supplying oxygen into the furnace, an air supply channel having an air on-off valve for supplying air into the furnace, an inert gas flow rate adjusting valve, an oxygen flow rate adjusting valve, and an air flow rate A flow rate control unit for the regulating valve, and the flow rate control unit controls the flow rate so as to supply an amount of oxygen that can reduce the oxygen concentration in the gas to below the ignition limit concentration. The inside is in an inert atmosphere, and the starting fuel and oxygen-containing gas can be supplied to the starting burner and ignited. As a result, when the gasifier is started, the generation of oxygen can be prevented or greatly suppressed. That is, at the beginning of gasification furnace ignition, the generation of combustion exhaust gas containing residual oxygen can be prevented or suppressed. As a result, in order to remove char that causes black smoke, it is passed through a porous filter as in normal operation. It becomes possible to gas.

本発明の一態様に係るガス化複合発電設備は、上記に記載のガス化炉で前記固体炭素質燃料を前記ガス化剤によりガス化した可燃性ガスを燃料としてガスタービン設備を駆動して発電するとともに、前記ガスタービン設備から排出される燃焼排ガスから熱回収して生成された蒸気で蒸気タービンを駆動して発電することを特徴とするものである。   A gasification combined power generation facility according to one aspect of the present invention drives a gas turbine facility using the combustible gas obtained by gasifying the solid carbonaceous fuel with the gasifying agent in the gasification furnace described above to generate power. In addition, the steam turbine is driven by steam generated by recovering heat from the combustion exhaust gas discharged from the gas turbine equipment to generate electric power.

このようなガス化複合発電設備によれば、上記に記載のガス化炉で固体炭素質燃料をガス化剤によりガス化した可燃性ガスを燃料として使用するので、ガス化炉起動時において、所望の性状を有する可燃性ガスが得られるまでの間に生成されたガスは、フレア設備等で処理される前の段階で、黒煙発生の原因となるガス中に含まれるチャー等の粒子が除去される。   According to such a gasification combined power generation facility, since the combustible gas obtained by gasifying the solid carbonaceous fuel with the gasifying agent in the gasification furnace described above is used as the fuel, it is desired to start the gasification furnace at the time of startup. The gas generated until the combustible gas with the above properties is obtained is free of particles such as char contained in the gas that causes the generation of black smoke at the stage before being processed by the flare equipment etc. Is done.

上述した本発明によれば、ガス化炉起動時における一時的な黒煙発生の防止または抑制を可能にしたガス化炉を提供することができる。すなわち、ガス化炉から発生するガス中酸素濃度を発火限度濃度以下まで低下させられたガスをポーラスフィルタや既存集塵設備に通ガスしてチャーを除去することが可能になるので、ガス化炉起動時の運転においても、一時的な黒煙の発生を防止または抑制することが可能になる。   According to the present invention described above, it is possible to provide a gasification furnace capable of preventing or suppressing the generation of temporary black smoke at the time of starting the gasification furnace. In other words, it is possible to remove the char by passing the gas whose oxygen concentration in the gas generated from the gasification furnace is reduced to the ignition limit concentration or less to the porous filter or the existing dust collection equipment. Even during startup, it is possible to prevent or suppress the generation of temporary black smoke.

本発明に係るガス化炉の起動方法及びガス化炉の第1実施形態として、ガス化炉を備えた石炭ガス化複合発電設(IGCC)の概略構成例を示す系統図である。1 is a system diagram showing a schematic configuration example of an integrated coal gasification combined power plant (IGCC) equipped with a gasification furnace as a gasification furnace start-up method and a gasification furnace according to a first embodiment of the present invention. 本発明に係るガス化炉の起動方法及びガス化炉の第2実施形態として、ガス化炉を備えた石炭ガス化複合発電設(IGCC)の概略構成例を示す系統図である。It is a system diagram which shows the schematic structural example of the coal gasification combined cycle power plant (IGCC) provided with the gasification furnace as 2nd Embodiment of the gasification furnace starting method and gasification furnace which concern on this invention.

以下、本発明に係るガス化炉の起動方法、ガス化炉及び石炭ガス化複合発電設備について、一実施形態を図面に基づいて説明する。
以下に説明するガス化炉は、例えば図1に示すような石炭ガス化複合発電設備(以下、「IGCC」と呼ぶ)1において、粉砕された石炭(微粉炭)を炉内に投入して可燃性ガス(石炭ガス)を生成するための装置に用いられる。なお、以下の説明では、微粉炭から可燃性ガスを生成する石炭ガス化炉10を例示するが、本発明のガス化炉は、例えば間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ等のバイオマス燃料など、他の固体炭素質燃料をガス化するものにも適用可能である。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a gasification furnace starting method, a gasification furnace, and a coal gasification combined power generation facility according to the present invention will be described with reference to the drawings.
The gasification furnace described below is combustible by putting pulverized coal (pulverized coal) into the furnace in a coal gasification combined power generation facility (hereinafter referred to as “IGCC”) 1 as shown in FIG. Used in an apparatus for producing sex gas (coal gas). In the following description, the coal gasification furnace 10 that generates flammable gas from pulverized coal is exemplified, but the gasification furnace of the present invention is, for example, thinned wood, waste wood, driftwood, grass, waste, sludge. It can also be applied to a gasification of another solid carbonaceous fuel such as a biomass fuel such as a tire.

図1に概略構成例を示す第1実施形態のIGCC1は、主な構成要素として、燃料の微粉炭を供給する給炭装置20と、ガス化剤とともに供給された微粉炭をガス化して可燃性ガスを生成する石炭ガス化炉10と、可燃性ガスとともに排出されるチャーを分離して回収するチャー回収装置30と、可燃性ガスを精製してガス中から不純物を取り除くガス精製設備40と、精製された可燃性ガスを燃料として運転されるガスタービン設備50と、ガスタービン設備50から排出される高温の燃焼排ガス中の熱を回収して蒸気を生成する排熱回収ボイラ(HRSG)60と、排熱回収ボイラ60から供給される蒸気により運転される蒸気タービン設備70と、を具備して構成される。   IGCC1 of 1st Embodiment which shows a schematic structural example in FIG. 1 is combustible by gasifying the pulverized coal supplied with the coal supply apparatus 20 which supplies pulverized coal of a fuel, and a gasifying agent as main components. A coal gasification furnace 10 that generates gas; a char recovery device 30 that separates and recovers char discharged together with combustible gas; a gas purification facility 40 that purifies the combustible gas and removes impurities from the gas; A gas turbine facility 50 that is operated using the purified combustible gas as a fuel, and an exhaust heat recovery boiler (HRSG) 60 that recovers heat in the high-temperature combustion exhaust gas discharged from the gas turbine facility 50 to generate steam. And a steam turbine facility 70 that is operated by steam supplied from the exhaust heat recovery boiler 60.

石炭ガス化炉10には、例えば空気吹き二段噴流床ガス化炉と呼ばれる方式の炉が採用されている。このガス化炉10は、灰の溶融安定が可能な高温燃焼を得るコンバスタ部(高空気比部)と、その高温ガスを有効利用してガス化反応を行うリダクタ部(低空気比部)と、による二段構成とされ、ガス化剤とともに導入した固体炭素質燃料の微粉炭をガス化させる装置である。そして、ガス化炉10で生成した可燃性ガスは、可燃性ガス供給系(ガス供給流路)11を介して、後述するチャー回収装置30へと導かれる。
ここで使用するガス化剤としては、空気、酸素富化空気、酸素、水蒸気等を例示でき、例えばガスタービン設備50から導入した圧縮空気に酸素分離装置(ASU)80から供給される酸素を混合して使用される。
For the coal gasification furnace 10, for example, a furnace called an air-blown two-stage entrained bed gasification furnace is employed. The gasification furnace 10 includes a combustor unit (high air ratio unit) that obtains high-temperature combustion capable of melting and stabilizing ash, and a reductor unit (low air ratio unit) that performs a gasification reaction by effectively using the high-temperature gas. Is a device for gasifying pulverized coal of solid carbonaceous fuel introduced together with a gasifying agent. And the combustible gas produced | generated in the gasification furnace 10 is guide | induced to the char collection | recovery apparatus 30 mentioned later through the combustible gas supply system (gas supply flow path) 11. FIG.
Examples of the gasifying agent used here include air, oxygen-enriched air, oxygen, water vapor, and the like. For example, oxygen supplied from an oxygen separator (ASU) 80 is mixed with compressed air introduced from the gas turbine equipment 50. Used.

酸素分離装置80とガス化炉10のコンバスタ部との間は、イナートガス供給流路81及び酸素供給流路83により接続されている。イナートガス供給流路81は、酸素分離装置80で得られた窒素ガス(イナートガス)をコンバスタ部へ供給する配管流路であり、流路途中にはイナートガス流量調整弁82が設けられている。
また、酸素供給流路83は、酸素分離装置80で得られた酸素ガスをコンバスタ部へ供給する配管流路であり、流路途中には酸素流量調整弁84が設けられている。
The oxygen separator 80 and the combustor section of the gasifier 10 are connected by an inert gas supply channel 81 and an oxygen supply channel 83. The inert gas supply flow path 81 is a piping flow path for supplying nitrogen gas (inert gas) obtained by the oxygen separation device 80 to the combustor unit, and an inert gas flow rate adjustment valve 82 is provided in the middle of the flow path.
The oxygen supply channel 83 is a piping channel that supplies oxygen gas obtained by the oxygen separator 80 to the combustor unit, and an oxygen flow rate adjustment valve 84 is provided in the middle of the channel.

さらに、コンバスタ部には、後述するガスタービン設備50の圧縮機52から、ガス化剤として抽気した圧縮空気の供給を受ける空気供給流路55が接続されている。この空気供給流路55は、流路途中に設けた空気流量調整弁56を備えている。
そして、上述したイナートガス流量調整弁82、酸素流量調整弁84及び空気流量調整弁56は、それぞれの流量制御を行う流量制御部CUを備えている。この流量制御部CUは、ガス化炉点火時にイナートガス流量調整弁82を開として流量制御を行い、かつ、酸素流量調整弁84及び空気流量調整弁56を閉とする制御を行うものである。
Further, an air supply passage 55 that receives supply of compressed air extracted as a gasifying agent from a compressor 52 of a gas turbine facility 50 described later is connected to the combustor unit. The air supply channel 55 includes an air flow rate adjustment valve 56 provided in the middle of the channel.
The inert gas flow rate adjustment valve 82, the oxygen flow rate adjustment valve 84, and the air flow rate adjustment valve 56 described above are provided with a flow rate control unit CU that performs respective flow rate control. The flow rate control unit CU performs flow rate control by opening the inert gas flow rate adjustment valve 82 and igniting the oxygen flow rate adjustment valve 84 and the air flow rate adjustment valve 56 when the gasifier is ignited.

上述した石炭ガス化炉10で生成された可燃性ガスは、チャーを含んだ状態でチャー回収装置30へ導かれる。チャー回収装置30は、サイクロン31とポーラスフィルタ32とが連結管33を介して直列に接続された構成とされ、上流側に設置されたサイクロン31で粒子を分離除去させた可燃性ガス成分がポーラスフィルタ32へ導入される。なお、ポーラスフィルタ32は、サイクロン31の後流側に設置されたフィルタであり、可燃性ガスの微細チャーを回収する設備である。   The combustible gas produced | generated in the coal gasification furnace 10 mentioned above is guide | induced to the char collection | recovery apparatus 30 in the state containing char. The char recovery device 30 has a configuration in which a cyclone 31 and a porous filter 32 are connected in series via a connecting pipe 33, and a combustible gas component obtained by separating and removing particles with the cyclone 31 installed on the upstream side is porous. It is introduced into the filter 32. The porous filter 32 is a filter installed on the downstream side of the cyclone 31, and is a facility for collecting the fine char of the combustible gas.

チャー回収装置30でチャーを分離除去された可燃性ガスは、可燃性ガス供給系統34を介してガス精製設備40へ導かれる。このガス精製設備40では、可燃性ガスを精製して不純物を取り除き、ガスタービン設備50の燃料ガスに適した性状のガスとする。
ガス精製設備40で生成された可燃性ガス(燃料ガス)は、可燃性ガス供給系統41を介してガスタービン設備50の燃焼器51に供給され、圧縮機52から導入した圧縮空気を用いて燃焼する。
The combustible gas from which the char is separated and removed by the char recovery device 30 is guided to the gas purification facility 40 via the combustible gas supply system 34. In the gas purification facility 40, the combustible gas is purified to remove impurities to obtain a gas having a property suitable for the fuel gas of the gas turbine facility 50.
The combustible gas (fuel gas) generated by the gas purification equipment 40 is supplied to the combustor 51 of the gas turbine equipment 50 via the combustible gas supply system 41 and burned using the compressed air introduced from the compressor 52. To do.

こうして可燃性ガスが燃焼すると、高温高圧の燃焼ガスが生成されて燃焼器51からガスタービン53へ供給される。この結果、高温高圧の燃焼ガスが仕事をしてガスタービン53を駆動し、高温の燃焼排ガスが排出される。そして、ガスタービン53の軸出力は、後述する発電機や圧縮機52の駆動源として使用される。
なお、圧縮機52から供給される圧縮空気は、可燃性ガス燃焼用として燃焼器51へ供給されるだけでなく、一部が抽気されて抽気空気昇圧器54で昇圧された後、空気供給流路55を通って石炭ガス化炉10のガス化剤としても使用される。
When the combustible gas burns in this way, high-temperature and high-pressure combustion gas is generated and supplied from the combustor 51 to the gas turbine 53. As a result, the high-temperature and high-pressure combustion gas works to drive the gas turbine 53, and the high-temperature combustion exhaust gas is discharged. The shaft output of the gas turbine 53 is used as a drive source for a generator and a compressor 52 described later.
Note that the compressed air supplied from the compressor 52 is not only supplied to the combustor 51 for combustible gas combustion but also partially extracted and boosted by the extracted air booster 54, and then supplied to the air supply flow. It is also used as a gasifying agent for the coal gasifier 10 through the passage 55.

ガスタービン53で仕事をした燃焼排ガスは、排熱回収ボイラ60へ導かれる。この排熱回収ボイラ60は、燃焼排ガスが保有する熱を回収して蒸気を生成する設備である。すなわち、排熱回収ボイラ60では、燃焼排ガスと水との熱交換により蒸気を生成し、生成された蒸気は蒸気タービン70へ供給され、温度低下した燃焼排ガスは必要な処理を施した後に大気へ放出される。
こうして駆動されたガスタービン53及び蒸気タービン70は、例えば同軸の発電機71を駆動して発電する駆動源となる。なお、ガスタービン53及び蒸気タービン70は、各々専用の発電機を駆動するようにしてもよく、特に限定されることはない。
The combustion exhaust gas that has worked in the gas turbine 53 is guided to the exhaust heat recovery boiler 60. The exhaust heat recovery boiler 60 is a facility that recovers heat held in the combustion exhaust gas to generate steam. That is, in the exhaust heat recovery boiler 60, steam is generated by heat exchange between the combustion exhaust gas and water, and the generated steam is supplied to the steam turbine 70, and the combustion exhaust gas whose temperature has been reduced is subjected to necessary processing and then returned to the atmosphere. Released.
The gas turbine 53 and the steam turbine 70 thus driven serve as a driving source for driving the coaxial generator 71 to generate electric power, for example. The gas turbine 53 and the steam turbine 70 may each drive a dedicated generator, and are not particularly limited.

上述した構成のIGCC1を起動する際の起動プロセスにおいて、従来技術で説明したステップ(1)の炉内窒素ガスパージ及びステップ(2)のガス化炉内の加圧/ウォーミングの過程では、例えば純度99vol%の窒素ガスが酸素分離装置80から通ガスされる。このため、ポーラスフィルタ32には、略酸素(O)を含有しない高純度の窒素ガスが通ガスされる。
しかし、ステップ(3)のガス化炉点火時には、少なくとも石炭ガス化炉10の点火当初に残存酸素を含有し、可燃性ガスとして使用しにくい燃焼排ガスが発生する。この燃焼排ガスは、除塵のためにポーラスフィルタ32を通過させると、フィルタエレメント中に残存するチャーを燃焼させる。このため、従来装置においては、チャー回収装置30をバイパスしてフレア設備90に至るバイパス配管系統のバイパス主流路91を設けることが行われている。
In the startup process when starting the IGCC 1 having the above-described configuration, in the process of the nitrogen gas purge in the furnace in step (1) and the pressurization / warming in the gasification furnace in step (2) described in the prior art, for example, purity 99 vol% nitrogen gas is passed from the oxygen separator 80. For this reason, high-purity nitrogen gas containing substantially no oxygen (O 2 ) is passed through the porous filter 32.
However, at the time of gasification furnace ignition in step (3), combustion exhaust gas that contains residual oxygen at least at the beginning of ignition of the coal gasification furnace 10 and is difficult to use as a combustible gas is generated. When the combustion exhaust gas passes through the porous filter 32 for dust removal, the char remaining in the filter element is combusted. For this reason, in the conventional apparatus, the bypass main flow path 91 of the bypass piping system that bypasses the char recovery device 30 and reaches the flare facility 90 is provided.

このバイパス主流路91は、サイクロン31の入口上流で可燃性ガス供給系統11から分岐してフレア設備90に至るガス流路であり、分岐後の両流路に流路切替用の開閉弁12,92が設けられている。   This bypass main flow path 91 is a gas flow path that branches from the combustible gas supply system 11 to the flare equipment 90 upstream of the inlet of the cyclone 31, and the flow path switching on-off valve 12, 92 is provided.

さらに、上述したバイパス主流路91には、ポーラスフィルタ32とガス精製設備40との間を接続する可燃性ガス供給系統(ガス供給流路)34から開閉弁35の上流側で分岐するとともに、分岐位置下流に開閉弁36を備えた分岐配管37と、ガス精製設備40と燃焼器51との間を接続する可燃性ガス供給系統(ガス供給流路)41から開閉弁42の上流側で分岐するとともに、分岐位置下流に開閉弁43を備えた分岐配管44と、が連結されている。
また、バイパス主流路91の分岐位置より下流側で、かつ、サイクロン31の入口より上流側の可燃性ガス供給系11には、流路入口開閉弁12が設けられている。
Further, the bypass main flow path 91 branches from the combustible gas supply system (gas supply flow path) 34 connecting the porous filter 32 and the gas purification equipment 40 upstream of the on-off valve 35 and branches. A branch pipe 37 provided with an on-off valve 36 downstream of the position, and a combustible gas supply system (gas supply flow path) 41 connecting the gas purification equipment 40 and the combustor 51 diverges upstream of the on-off valve 42. In addition, a branch pipe 44 having an on-off valve 43 is connected downstream of the branch position.
The combustible gas supply system 11 downstream from the branch position of the bypass main flow path 91 and upstream from the inlet of the cyclone 31 is provided with a flow path inlet opening / closing valve 12.

このように構成されたガス化炉10は、IGCC1を起動する際の起動プロセスにおいて、窒素ガスを用いたステップ(1)の炉内窒素ガスパージ及びステップ(2)のガス化炉内の加圧/ウォーミングの過程が終了した後、ステップ(3)に進んでガス化炉点火となる。このようなガス化炉点火時には、灯油・軽油や天然ガス等の補助燃料を起動用燃料として使用し、完全燃焼させるに足る十分な量の酸素含有気体を供給するが、石炭ガス化炉10の点火当初は残存酸素を含有し、可燃性ガスとして使用しにくい燃焼排ガスが発生する。   The gasification furnace 10 configured as described above is a process of starting up the IGCC 1, and the nitrogen gas purge in step (1) using the nitrogen gas and the pressure / pressure in the gasification furnace in step (2) are performed. After the warming process is completed, the routine proceeds to step (3), where gasifier ignition is performed. At the time of such gasification furnace ignition, auxiliary fuel such as kerosene / light oil or natural gas is used as a starting fuel, and a sufficient amount of oxygen-containing gas sufficient for complete combustion is supplied. Combustion exhaust gas that contains residual oxygen and is difficult to use as a combustible gas is generated at the beginning of ignition.

そこで、ガス化剤とともに導入した微粉炭をガス化して可燃性ガスを生成する石炭ガス化炉10に点火する起動時には、以下に説明する起動方法を採用する。
すなわち、イナート雰囲気下にあるガス化炉において、起動用バーナBSへ起動用燃料及び酸素含有気体を供給して点火させる起動用バーナ点火工程と、を備えたガス化炉の起動方法を実施する。
Then, the starting method demonstrated below is employ | adopted at the time of starting to ignite the coal gasification furnace 10 which gasifies the pulverized coal introduced with the gasifying agent and produces | generates combustible gas.
That is, in a gasification furnace under an inert atmosphere, a start-up burner ignition process is performed, which includes a start-up burner ignition step of supplying start-up fuel and oxygen-containing gas to the start-up burner BS and igniting.

起動用バーナ点火工程では、イナート雰囲気の状態にあるコンバスタ部10C内で、起動用バーナBSに酸素含有気体とともに起動用燃料を供給して着火させる。このとき、起動用燃料の着火は、酸素含有気体の酸素を用いて行われるため、周囲がイナート雰囲気であっても着火が妨げられることはない。
なお、このようなイナート雰囲気で起動用燃料を着火させる場合には、特に優れた着火性を有する天然ガス(LNG)を起動用燃料として採用することが望ましい。
In the starting burner ignition step, the starting fuel is supplied to the starting burner BS together with the oxygen-containing gas and ignited in the combustor section 10C in the inert atmosphere. At this time, since the ignition of the starting fuel is performed using oxygen of the oxygen-containing gas, the ignition is not hindered even if the surrounding is an inert atmosphere.
When starting fuel is ignited in such an inert atmosphere, it is desirable to employ natural gas (LNG) having particularly excellent ignitability as the starting fuel.

このようなガス化炉の起動方法は、生成した可燃性ガスをチャー回収装置30へ導くガス供給流路11と、起動用バーナBSを設けたコンバスタ部内へ窒素ガスを供給するイナートガス流量調整弁82を有するイナートガス供給流路81と、コンバスタ部内へ酸素を供給する酸素流量調整弁84を有する酸素供給流路83と、コンバスタ部内へ空気を供給する空気流量調整弁56を有する空気供給流路55と、イナートガス流量調整弁82、酸素流量調整弁84及び空気流量調整弁56の制御部CUと、を備えた構成とすることで可能となる。
そして、上述した流量制御部CUは、ガス化炉点火時にイナートガス流量調整弁82を開として流量制御を行い、かつ、酸素流量調整弁84及び空気流量調整弁56を閉とする制御を行うものである。
Such a gasification furnace start-up method includes an inert gas flow rate adjustment valve 82 for supplying nitrogen gas into a combustor section provided with a gas supply passage 11 for introducing the generated combustible gas to the char recovery device 30 and a start-up burner BS. An inert gas supply channel 81 having oxygen, an oxygen supply channel 83 having an oxygen flow rate adjusting valve 84 for supplying oxygen into the combustor unit, and an air supply channel 55 having an air flow rate adjusting valve 56 for supplying air into the combustor unit. This can be achieved by including the inert gas flow rate adjustment valve 82, the oxygen flow rate adjustment valve 84, and the control unit CU of the air flow rate adjustment valve 56.
The above-described flow rate control unit CU performs flow rate control by opening the inert gas flow rate adjustment valve 82 at the time of ignition of the gasifier, and performs control to close the oxygen flow rate adjustment valve 84 and the air flow rate adjustment valve 56. is there.

このようなガス化炉の起動方法によれば、起動用燃料と酸素含有気体が燃焼反応した後の燃焼ガスが略酸素を含まないイナートガスとなるように酸素含有気体の供給量を調整するので、起動時に酸素が発生することを防止または大幅に抑制できる。すなわち、ガス化炉点火当初においては、余分な酸素がほとんどない状況での着火となるため、残存酸素を含有する燃焼排ガスの発生を防止または抑制できるようになり、この結果、黒煙発生の原因となるチャーを除去するため、通常運転時と同様にポーラスフィルタ32へ通ガスすることが可能になる。   According to such a gasification furnace startup method, the supply amount of the oxygen-containing gas is adjusted so that the combustion gas after the combustion reaction of the startup fuel and the oxygen-containing gas becomes an inert gas containing substantially no oxygen, Oxygen generation can be prevented or greatly suppressed during startup. That is, at the beginning of ignition of the gasifier, ignition is performed in a state where there is almost no excess oxygen, so that generation of combustion exhaust gas containing residual oxygen can be prevented or suppressed. As a result, the cause of black smoke generation Therefore, gas can be passed through the porous filter 32 as in the normal operation.

この場合、イナート雰囲気における起動用バーナ点火工程の空気比は、0.7〜1.1の範囲内に収めることが望ましく、より好ましい空気比は1である。これは、空気比が1より小さくなると、煤や一酸化炭素の発生量が増すため0.7を空気比の下限とし、空気比が1より大きくなると、余分な酸素量の増加により酸素の発生量を増すため空気比の上限を1.1とするものである。   In this case, the air ratio in the starting burner ignition process in the inert atmosphere is preferably within a range of 0.7 to 1.1, and a more preferable air ratio is 1. This is because when the air ratio is less than 1, the generation amount of soot and carbon monoxide increases, so 0.7 is the lower limit of the air ratio. When the air ratio is greater than 1, oxygen is generated due to an increase in the excess oxygen amount. In order to increase the amount, the upper limit of the air ratio is 1.1.

このように、石炭ガス化炉10の点火時において、ポーラスフィルタ32へ可燃性ガス(酸素含有ガス)の通ガスが可能となれば、ガス中のチャーをポーラスフィルタ32で除去できるようになり、従って、バイパス主流路91の点AからBに至る配管流路が不要となる。すなわち、バイパス主流路91の点AからBに存在する配管流路だけでなく、流路入口開閉弁92や集塵装置93が不要となり、さらに、可燃性ガス供給系11の流路入口開閉弁12も不要となる。   Thus, if the combustible gas (oxygen-containing gas) can be passed through the porous filter 32 during ignition of the coal gasification furnace 10, char in the gas can be removed by the porous filter 32. Accordingly, a pipe flow path from point A to B of the bypass main flow path 91 is not necessary. That is, not only the piping flow path existing from the points A to B of the bypass main flow path 91 but also the flow path inlet opening / closing valve 92 and the dust collecting device 93 are unnecessary, and further, the flow path inlet opening / closing valve of the combustible gas supply system 11. 12 is also unnecessary.

次に、第2実施形態のIGCC1Aについて、図2に示す概略構成例を参照して説明する。なお、上述した実施形態と同様の構成については、同じ符号を付して詳細な説明を省略する。
図示のIGCC1Aでは、ガス火炉10が、生成した可燃性ガスをチャー回収装置30へ導くガス供給流路11と、ガス供給流路11に窒素ガス(イナートガス)を供給する酸素濃度調整部100と、を備えている。図示の酸素濃度調整部100は、ガス供給流路11と窒素ガス供給源(不図示)との間を接続する窒素ガス供給配管101と、窒素ガス供給配管101に設けられた窒素ガス開閉弁102とを備えている。
Next, IGCC 1A of 2nd Embodiment is demonstrated with reference to the schematic structural example shown in FIG. In addition, about the structure similar to embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
In the illustrated IGCC 1A, the gas furnace 10 includes a gas supply channel 11 that guides the generated combustible gas to the char recovery device 30, an oxygen concentration adjusting unit 100 that supplies nitrogen gas (inert gas) to the gas supply channel 11, and It has. The illustrated oxygen concentration adjusting unit 100 includes a nitrogen gas supply pipe 101 that connects a gas supply channel 11 and a nitrogen gas supply source (not shown), and a nitrogen gas on-off valve 102 provided in the nitrogen gas supply pipe 101. And.

このように構成されたIGCC1Aのガス化炉10によれば、生成した可燃性ガスをチャー回収装置30へ導くガス供給流路11と、ガス供給流路11に窒素ガスを供給する酸素濃度調整部100とを備えているので、ガス化炉10で生成された可燃性ガスのガス中酸素濃度については、適量の窒素ガスを混入することで調整が可能となる。すなわち、酸素濃度調整部100は、フレア設備90の上流側で窒素ガスを混入してガス中酸素濃度を発火限度濃度以下まで低下させることができる。
この結果、ガス化炉10の起動時においては、ガス中酸素濃度を発火限度濃度以下まで低下させたことにより、ポーラスフィルタ32へ通ガスしてもチャーが燃焼することを防止できる。すなわち、黒煙発生の原因となるチャーを除去するため、通常運転時と同様にポーラスフィルタ32へ通ガスすることが可能になる。
According to the gasification furnace 10 of the IGCC 1A configured as described above, the gas supply channel 11 that guides the generated combustible gas to the char recovery device 30, and the oxygen concentration adjustment unit that supplies nitrogen gas to the gas supply channel 11 100, the oxygen concentration in the combustible gas generated in the gasification furnace 10 can be adjusted by mixing an appropriate amount of nitrogen gas. That is, the oxygen concentration adjusting unit 100 can mix the nitrogen gas upstream of the flare equipment 90 and reduce the oxygen concentration in the gas to the ignition limit concentration or less.
As a result, when the gasification furnace 10 is started, the oxygen concentration in the gas is reduced to the ignition limit concentration or less, so that the char can be prevented from burning even if gas is passed through the porous filter 32. That is, in order to remove char that causes black smoke, gas can be passed through the porous filter 32 as in normal operation.

上述したIGCC1Aでは、ガス火炉10を起動する際に、以下に説明する起動方法が採用される。
すなわち、第2実施形態のIGCC1Aにおけるガス化炉10の起動方法は、ガス化炉10で生成された可燃性ガスにフレア設備90の上流側でイナートガスの窒素ガスを混入してガス中酸素濃度を発火限度濃度以下まで低下させる酸素濃度低減工程を備えている。このため、ガス中酸素濃度を発火限度濃度以下まで低下した可燃性ガスは、ポーラスフィルタ32へ通ガスしてもチャーが燃焼することを防止できるので、黒煙発生の原因となるチャーを除去するため、通常運転時と同様にポーラスフィルタ32へ通ガスすることが可能になる。
In IGCC1A mentioned above, when starting the gas furnace 10, the starting method demonstrated below is employ | adopted.
That is, the starting method of the gasifier 10 in the IGCC 1A of the second embodiment is that the inert gas nitrogen gas is mixed into the combustible gas generated in the gasifier 10 upstream of the flare equipment 90 to increase the oxygen concentration in the gas. It has an oxygen concentration reduction process that lowers it to below the ignition limit concentration. For this reason, the combustible gas whose oxygen concentration in the gas has been reduced to the ignition limit concentration or less can prevent char from burning even if it is passed through the porous filter 32, and therefore, char that causes black smoke is removed. Therefore, gas can be passed through the porous filter 32 as in normal operation.

このような第2実施形態の構成及び起動方法を採用しても、石炭ガス化炉10の点火時において、ポーラスフィルタ32へ可燃性ガス(酸素含有ガス)の通ガスが可能になるので、ガス中のチャーをポーラスフィルタ32で除去できるようになり、従って、バイパス主流路91の点AからBに至る配管流路が不要となる。すなわち、バイパス主流路91の点AからBに存在する配管流路だけでなく、流路入口開閉弁92や集塵装置93が不要となり、さらに、可燃性ガス供給系11の流路入口開閉弁12も不要となる。   Even if the configuration and the start-up method of the second embodiment are adopted, the combustible gas (oxygen-containing gas) can be passed through the porous filter 32 when the coal gasifier 10 is ignited. The char inside can be removed by the porous filter 32, and therefore, the pipe flow path from the point A to B of the bypass main flow path 91 becomes unnecessary. That is, not only the piping flow path existing from the points A to B of the bypass main flow path 91 but also the flow path inlet opening / closing valve 92 and the dust collecting device 93 are unnecessary, and further, the flow path inlet opening / closing valve of the combustible gas supply system 11. 12 is also unnecessary.

このように、上述した各実施形態によれば、ガス化炉起動時における一時的な黒煙発生の防止または抑制を可能にしたガス化炉10を提供することができる。すなわち、ガス化炉10から発生する酸素含有ガスをポーラスフィルタ32や既存集塵設備110に通ガスしてチャーを除去することが可能になるので、ガス化炉起動時の運転においても、一時的な黒煙の発生を防止または抑制することが可能になる。   Thus, according to each embodiment mentioned above, gasification furnace 10 which enabled prevention or control of temporary black smoke generation at the time of gasification furnace starting can be provided. That is, the oxygen-containing gas generated from the gasification furnace 10 can be passed through the porous filter 32 and the existing dust collection equipment 110 to remove the char. Therefore, even during the operation at the time of starting the gasification furnace, It is possible to prevent or suppress the generation of a black smoke.

そして、石炭をガス化する石炭ガス化炉10を備えたIGCC1,1Aにおいても、ガス化炉起動時においてフレア設備90からの一時的な黒煙発生を防止または抑制できるので、優れたエミッションレベルを有する設備の提供が可能となる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
And also in IGCC1, 1A provided with the coal gasification furnace 10 which gasifies coal, since the temporary black smoke generation | occurrence | production from the flare equipment 90 can be prevented or suppressed at the time of gasification furnace start-up, the excellent emission level It is possible to provide the equipment that has it.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

1,1A 石炭ガス化複合発電設備(IGCC)
10 石炭ガス化炉
11 可燃性ガス供給系(ガス供給流路)
12,92 流路入口開閉弁
20 給炭装置
30 チャー回収装置
31 サイクロン
32 ポーラスフィルタ
40 ガス精製設備
50 ガスタービン設備
55 空気供給流路
56 空気流量調整弁
60 排熱回収ボイラ(HRSG)
70 蒸気タービン
80 酸素分離装置(ASU)
81 イナートガス供給流路
82 イナートガス流量調整弁
83 酸素供給流路
84 酸素流量調整弁
90 フレア設備
91 バイパス主流路
100 酸素濃度調整部
BS 起動用バーナ
CU 流量制御部
1,1A Coal Gasification Combined Cycle Power Plant (IGCC)
10 Coal gasifier 11 Combustible gas supply system (gas supply flow path)
12, 92 Channel inlet / outlet valve 20 Charging device 30 Char recovery device 31 Cyclone 32 Porous filter 40 Gas purification facility 50 Gas turbine facility 55 Air supply channel 56 Air flow control valve 60 Waste heat recovery boiler (HRSG)
70 Steam turbine 80 Oxygen separator (ASU)
DESCRIPTION OF SYMBOLS 81 Inert gas supply flow path 82 Inert gas flow rate adjustment valve 83 Oxygen supply flow path 84 Oxygen flow rate adjustment valve 90 Flare equipment 91 Bypass main flow path 100 Oxygen concentration adjustment part BS Startup burner CU Flow rate control part

Claims (4)

ガス化剤と固体炭素質燃料とを供給してガス化するガス化炉の起動方法であって、
前記ガス化炉にイナートガスを通ガスする通ガス工程と、
前記通ガス工程により前記イナートガスが通ガスされたイナート雰囲気下にある前記ガス化炉において起動用バーナへ起動用燃料及び酸素含有気体を供給して点火させる起動用バーナ点火工程と、を備え、
該起動用バーナ点火工程は、前記起動用燃料と前記酸素含有気体が燃焼反応した後の燃焼ガスがイナートガスとなるように前記酸素含有気体の供給量を調整することを特徴とするガス化炉の起動方法。
A gasification furnace start-up method in which a gasifying agent and solid carbonaceous fuel are supplied and gasified,
A gas passing step of passing an inert gas through the gasifier;
A starting burner ignition step of igniting by supplying a starting fuel and an oxygen-containing gas to the starting burner in the gasification furnace in an inert atmosphere through which the inert gas has been passed by the gas passing step;
The starting burner ignition step adjusts the supply amount of the oxygen-containing gas so that the combustion gas after the combustion reaction between the starting fuel and the oxygen-containing gas becomes an inert gas. starting method.
前記イナート雰囲気における前記起動用バーナ点火工程の空気比は、0.7〜1.1の範囲内であることを特徴とする請求項1に記載のガス化炉の起動方法。   2. The gasification furnace start-up method according to claim 1, wherein an air ratio of the start-up burner ignition process in the inert atmosphere is within a range of 0.7 to 1.1. ガス化剤と固体炭素質燃料とを供給してガス化するガス化炉であって、
生成した可燃性ガスをチャー回収装置へ導くガス供給流路と、
起動用燃料及び酸素含有気体が供給されて点火する起動用バーナと、
前記起動用バーナを設けた炉内へイナートガスを供給するイナートガス流量調整弁を有するイナートガス供給流路と、
前記炉内へ酸素を供給する酸素流量調整弁を有する酸素供給流路と、
前記炉内へ空気を供給する空気流量調整弁を有する空気供給流路と、
前記イナートガス流量調整弁、前記酸素流量調整弁及び前記空気流量調整弁の流量制御部と、
を備え、
前記流量制御部は、前記ガス化炉の点火時に、前記イナートガス流量調整弁を開とし、かつ、前記酸素流量調整弁及び前記空気流量調整弁を閉とするよう制御して前記起動用燃料と前記酸素含有気体が燃焼反応した後の燃焼ガスがイナートガスとなるように前記酸素含有気体の供給量を調整し
前記起動用バーナは、前記イナートガス供給流路から前記イナートガスが通ガスされたイナート雰囲気下にある前記ガス化炉において前記起動用燃料及び前記酸素含有気体を供給して点火させることを特徴とするガス化炉。
A gasification furnace for gasifying by supplying a gasifying agent and a solid carbonaceous fuel,
A gas supply channel for guiding the generated combustible gas to the char recovery device;
A starting burner that is supplied with a starting fuel and an oxygen-containing gas and ignites;
An inert gas supply flow path having an inert gas flow rate adjusting valve for supplying an inert gas into the furnace provided with the activation burner;
An oxygen supply flow path having an oxygen flow rate adjusting valve for supplying oxygen into the furnace;
An air supply flow path having an air flow rate adjusting valve for supplying air into the furnace;
A flow rate control unit for the inert gas flow rate adjustment valve, the oxygen flow rate adjustment valve and the air flow rate adjustment valve;
With
The flow rate control unit controls the opening of the inert gas flow rate adjustment valve and closing the oxygen flow rate adjustment valve and the air flow rate adjustment valve when the gasification furnace is ignited to control the startup fuel and the Adjusting the supply amount of the oxygen-containing gas so that the combustion gas after the oxygen-containing gas undergoes a combustion reaction becomes an inert gas ;
The starting burner supplies the starting fuel and the oxygen-containing gas in the gasification furnace in an inert atmosphere through which the inert gas is passed from the inert gas supply flow path, and ignites the gas. Chemical reactor.
請求項3に記載のガス化炉で前記固体炭素質燃料を前記ガス化剤によりガス化した可燃性ガスを燃料としてガスタービン設備を駆動して発電するとともに、前記ガスタービン設備から排出される燃焼排ガスから熱回収して生成された蒸気で蒸気タービンを駆動して発電することを特徴とするガス化複合発電設備。
The gas turbine according to claim 3 generates power by driving a gas turbine facility using the combustible gas obtained by gasifying the solid carbonaceous fuel with the gasifying agent as a fuel, and combustion discharged from the gas turbine facility. A combined gasification power generation facility that generates electricity by driving a steam turbine with steam generated by heat recovery from exhaust gas.
JP2014158566A 2014-08-04 2014-08-04 Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility Active JP5808465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158566A JP5808465B2 (en) 2014-08-04 2014-08-04 Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158566A JP5808465B2 (en) 2014-08-04 2014-08-04 Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013025410A Division JP5627724B2 (en) 2013-02-13 2013-02-13 Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility

Publications (2)

Publication Number Publication Date
JP2014208850A JP2014208850A (en) 2014-11-06
JP5808465B2 true JP5808465B2 (en) 2015-11-10

Family

ID=51903254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158566A Active JP5808465B2 (en) 2014-08-04 2014-08-04 Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility

Country Status (1)

Country Link
JP (1) JP5808465B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987282B (en) * 2017-05-05 2022-09-23 北京清创晋华科技有限公司 Four-channel ignition system of gasification furnace and operation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154797A (en) * 1982-03-10 1983-09-14 Babcock Hitachi Kk Starting spouted-bed coal gasifier
JPS61233083A (en) * 1985-04-08 1986-10-17 Mitsubishi Heavy Ind Ltd Compound generating device by coal gasification
JPH047174Y2 (en) * 1985-08-09 1992-02-26
JPH0776346B2 (en) * 1990-05-16 1995-08-16 バブコツク日立株式会社 Spouted bed coal gasifier and method of starting the same
JP3676022B2 (en) * 1996-11-29 2005-07-27 三菱重工業株式会社 Combined power generation facility
JP2002249785A (en) * 2001-02-27 2002-09-06 Babcock Hitachi Kk Coal-gasification apparatus and method for starting the same

Also Published As

Publication number Publication date
JP2014208850A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP5627724B2 (en) Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility
CA2743176C (en) Blast furnace iron production with integrated power generation
JP4981771B2 (en) Coal gasification combined power generation facility
US7805923B2 (en) Integrated coal gasification combined cycle plant
JP2011247266A (en) System and method for exhaust gas use in gas turbine engine
US20100024432A1 (en) Method for improved efficiency for IGCC
CN108602631B (en) Pressurization system for powder supply hopper, gasification facility, gasification combined power generation facility, and pressurization method for powder supply hopper
JP6422689B2 (en) Gasification furnace equipment, gasification combined power generation equipment, and gasification furnace equipment start-up method
US6314715B1 (en) Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
JPH1082306A (en) Gasification compound power generating installation
JP5808465B2 (en) Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility
JP5960069B2 (en) Gasification furnace, combined gasification power generation facility and gasification furnace start-up method
JP4335758B2 (en) Coal gasification combined power generation facility
JP2019027317A (en) Gasification composite power generation facility and operation method thereof
JP6301118B2 (en) Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system
JP6033380B2 (en) Coal gasification combined power generation facility
JP2014101838A (en) Coal gasification combined generation facility
JP2016037593A (en) Gasification furnace equipment, gasification composite power generating equipment, and method for controlling the gasification furnace unit
TWI412596B (en) Blast furnace iron production with integrated power generation
JP3225940U (en) Power-saving facility type coal gasification combined cycle power generation facility
JP2000240467A (en) Gasification cogeneration power system having syn form gas holder for emergency use
JP6751048B2 (en) Gasifier facility and combined cycle power plant
JP2023109424A (en) Ground flare, gasification facility, and method for operating ground flare
JP6656942B2 (en) Ground flare, gasification facility, combined gasification combined cycle facility, and ground flare control method
JP2019178230A (en) Gasification furnace system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150908

R150 Certificate of patent or registration of utility model

Ref document number: 5808465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350